JP2003017058A - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery

Info

Publication number
JP2003017058A
JP2003017058A JP2001202128A JP2001202128A JP2003017058A JP 2003017058 A JP2003017058 A JP 2003017058A JP 2001202128 A JP2001202128 A JP 2001202128A JP 2001202128 A JP2001202128 A JP 2001202128A JP 2003017058 A JP2003017058 A JP 2003017058A
Authority
JP
Japan
Prior art keywords
positive electrode
aqueous electrolyte
aluminum
battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001202128A
Other languages
Japanese (ja)
Other versions
JP3836691B2 (en
Inventor
Norio Takami
見 則 雄 高
Haruyoshi Ishii
井 張 愛 石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001202128A priority Critical patent/JP3836691B2/en
Publication of JP2003017058A publication Critical patent/JP2003017058A/en
Application granted granted Critical
Publication of JP3836691B2 publication Critical patent/JP3836691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte battery having a large capacity, a high voltage and excellent cycle characteristics by using Al or an Al alloy for a negative electrode thereof. SOLUTION: This non-aqueous electrolyte battery has a positive electrode having a positive electrode active material, a negative electrode provided with aluminum or the aluminum alloy, and the non-aqueous electrolyte interposed between the positive electrode and the negative electrode. As the positive electrode active material, a metal compound expressed in a general formula Alz My (XO4 )n is used. (M means Fe, Co, Mn, Ni, Cu, Li, Na or K atom. X means S, P, Mo, W or V atom, z is 0 or more, y is 1 or more, and n is 1 or more).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、負極にアルミニウ
ム又はアルミニウム合金を用いた、高容量で、高電圧
で、サイクル特性に優れた非水系電解液電池に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery which uses aluminum or an aluminum alloy for a negative electrode and has a high capacity, a high voltage and excellent cycle characteristics.

【0002】[0002]

【従来の技術】最近、負極にリチウム金属やリチウム合
金、リチウムイオンを吸蔵放出することができる金属酸
化物等のリチウム化合物や、炭素材料を用いた非水系電
解二次電池は、高エネルギー密度電池として期待されて
いるために、高容量化の為の研究開発が盛んに行われる
ようになった。
2. Description of the Related Art Recently, non-aqueous electrolytic secondary batteries using lithium compounds such as lithium metal, lithium alloys, metal oxides capable of inserting and extracting lithium ions in the negative electrode, and carbon materials are high energy density batteries. Therefore, research and development for high capacity have been actively carried out.

【0003】中でも、負極に炭素材料を用いる場合、負
極容量はリチウム金属よりも低くなるけれども、長寿命
と高い安全性が得られるため、例えば、リチウムコバル
ト酸化物等を正極とし、前記炭素材料からなる負極とし
て使用したリチウムイオン電池は、広く携帯電話の駆動
用電源として幅広く実用化されている。
In particular, when a carbon material is used for the negative electrode, although the negative electrode capacity is lower than that of lithium metal, long life and high safety can be obtained. Therefore, for example, lithium cobalt oxide is used as the positive electrode, and The lithium ion battery used as the negative electrode has been widely put into practical use as a power source for driving mobile phones.

【0004】しかしながら、負極としてリチウム金属や
リチウムイオンを吸蔵放出することができる素材を用い
ると、電池電圧を高くすることができるために、従来の
一次電池や二次電池に比較して高エネルギー密度化に有
利であったが、更なる高容量化と長寿命化を両立させた
電池を得ることはなかなか困難なことであった。
However, when a material capable of inserting and extracting lithium metal or lithium ions is used for the negative electrode, the battery voltage can be increased, so that the energy density is higher than that of the conventional primary battery or secondary battery. However, it was difficult to obtain a battery having both higher capacity and longer life.

【0005】それ故、リチウム金属以外にマグネシウ
ム、カルシウム、アルミニウム等を用いた高容量な一次
電池や二次電池の研究がなされてきたが、前記負極と電
解液とが反応し易いことから、高容量な正極活性物質の
研究が進められてはいるが、未だに製品として開発され
るまでに至っていない。
Therefore, studies have been made on high-capacity primary batteries and secondary batteries using magnesium, calcium, aluminum, etc. in addition to lithium metal, but since the negative electrode and the electrolytic solution are easily reacted, Although research on a positive electrode active material with a large capacity is underway, it has not yet been developed as a product.

【0006】[0006]

【発明が解決しようとする課題】本発明は、負極にアル
ミニウム又はアルミニウム合金を用いた、高容量で、高
電圧で、サイクル特性に優れた非水系電解液一次電池又
は二次電池を提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention is intended to provide a non-aqueous electrolyte primary battery or secondary battery which uses aluminum or an aluminum alloy for the negative electrode and has a high capacity, a high voltage, and excellent cycle characteristics. To do.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記問題点
に鑑みて鋭意研究を重ねた結果、負極にアルミニウム又
はアルミニウム合金を用い、正極の活物質として、一般
式Al(XOで表される金属化合物を用い
ることにより、高容量で、高電圧で、サイクル特性に優
れた非水系電解液一次電池又は二次電池が得られるとの
知見に基づき本発明を完成するに至ったものである。
The present inventors SUMMARY OF THE INVENTION As a result of extensive research in view of the above problems, an aluminum or aluminum alloy in the negative electrode, as a positive electrode active material, the general formula Al z M y (XO 4 ) The present invention is completed based on the finding that a non-aqueous electrolyte primary battery or secondary battery having high capacity, high voltage, and excellent cycle characteristics can be obtained by using the metal compound represented by n. It came to.

【0008】すなわち、本発明の非水系電解液電池は、
正極活物質を有する正極と、アルミニウム又はアルミニ
ウム合金を具備した負極と、前記正極及び前記負極に挟
まれた非水系電解液とを有する非水系電解液電池におい
て、前記正極活物質は、一般式Al(XO
で表される金属化合物(式中のMはFe、Co、Mn、
Ni、Cu、Li、Na、Kから選ばれる少なくとも1
種の原子を、XはS、P、Mo、W、Vから選ばれる少
なくとも1種の原子をそれぞれ表し、zは0以上の数、
yは1以上の数、nは1以上の数である。)であるこ
と、を特徴とするものである。更に、好適には、前記非
水系電解液が、アルミニウム塩を含む常温型溶融塩又は
アルミニウム塩を含む有機溶媒からなるものである。
That is, the non-aqueous electrolyte battery of the present invention is
In a non-aqueous electrolyte battery having a positive electrode having a positive electrode active material, a negative electrode including aluminum or an aluminum alloy, and a non-aqueous electrolytic solution sandwiched between the positive electrode and the negative electrode, the positive electrode active material is represented by the general formula Al z M y (XO 4) n
A metal compound represented by (M in the formula is Fe, Co, Mn,
At least 1 selected from Ni, Cu, Li, Na and K
X represents at least one atom selected from S, P, Mo, W and V, and z represents a number of 0 or more,
y is a number of 1 or more, and n is a number of 1 or more. ), Is characterized by. Furthermore, it is preferable that the non-aqueous electrolyte solution be composed of an ambient temperature molten salt containing an aluminum salt or an organic solvent containing an aluminum salt.

【0009】[0009]

【発明の実施の形態】[I] 非水電解質電池 (1) 構 造 本発明の非水系電解液電池の構造は、図1に示すよう
に、収納容器と、前記容器に収納される正極と、前記容
器内に収納される負極と、前記容器内に収納される非水
系電解液とから基本的になるものである。
BEST MODE FOR CARRYING OUT THE INVENTION [I] Non-Aqueous Electrolyte Battery (1) Structure As shown in FIG. 1, the structure of the non-aqueous electrolyte battery of the present invention comprises a storage container and a positive electrode stored in the storage container. It basically consists of a negative electrode housed in the container and a non-aqueous electrolyte solution housed in the container.

【0010】前記正極の活物質としては、本発明におい
ては一般式Al(XOで表される金属化合
物(式中のMはFe、V、Co、Mn、Ni、Cu、L
i、Na、Kから選ばれる少なくとも1種の原子を、X
はS、P、Mo、W、Vから選ばれる少なくとも1種の
原子をそれぞれ表し、zは0以上の数、yは1以上の
数、nは1以上の数である。)で表される金属化合物を
用いることが重要である。また、前記非水系電解液は、
アルミニウム塩を含む常温型溶融塩又はアルミニウム塩
を含む有機溶媒からなるものを用いることが好ましい。
[0010] As the active material of positive electrode, M in the general formula Al z M y (XO 4) metal compound represented by n (in the formula in the present invention is Fe, V, Co, Mn, Ni, Cu, L
at least one atom selected from i, Na and K is replaced by X
Represents at least one atom selected from S, P, Mo, W and V, z is a number of 0 or more, y is a number of 1 or more, and n is a number of 1 or more. It is important to use a metal compound represented by Further, the non-aqueous electrolyte solution,
It is preferable to use an ambient temperature molten salt containing an aluminum salt or an organic solvent containing an aluminum salt.

【0011】(2) 構成部材 本発明における非水系電解液電池の構成部材である、正
極、負極、非水電解質、セパレータ、収納容器の各構成
部材について以下に詳細に説明する。
(2) Constituent members The constituent members of the positive electrode, the negative electrode, the non-aqueous electrolyte, the separator, and the storage container, which are the constituent members of the non-aqueous electrolyte battery of the present invention, will be described in detail below.

【0012】(A) 正 極 この正極は、正極集電体と、前記集電体と片面若しくは
両面に担持され、かつ活物質及び結着剤を含む正極活物
質層とを有している。
(A) Positive Electrode This positive electrode has a positive electrode current collector and a positive electrode active material layer which is carried on one side or both sides of the current collector and contains an active material and a binder.

【0013】正極活物質 前記正極活物質は、一般式Al(XOで表
される金属化合物(式中のMはFe、V、Co、Mn、
Ni、Cu、Li、Na、Kから選ばれる少なくとも1
種の原子を、XはS、P、Mo、W、Vから選ばれる少
なくとも1種以上の原子をそれぞれ表し、zは0以上の
数、yは1以上の数、nは1以上の数である。)であ
る。
The positive electrode active material the positive electrode active material has the general formula Al z M y (XO 4) metal compound represented by n (where M in the formula Fe, V, Co, Mn,
At least 1 selected from Ni, Cu, Li, Na and K
X is at least one atom selected from S, P, Mo, W and V, z is a number of 0 or more, y is a number of 1 or more, and n is a number of 1 or more. is there. ).

【0014】Al(XOで表される金属化
合物は、構造的に元素間の隙間が大きく、アルミニウム
イオンの吸蔵・放出が速やかに行われる。Mはエネルギ
ー単位的にアルミニウムイオンを吸蔵・放出できる元素
であり、且つ、Al(XOの構造を取り得
る元素である。
The metal compound represented by Al z M y (XO 4 ) n has a large gap between elements structurally, and the absorption and desorption of aluminum ions are promptly performed. M is an element capable of energy units occluding and releasing aluminum ions, and is an element capable of having a structure of Al z M y (XO 4) n.

【0015】これら金属化合物の中でもMが、Fe、C
o、Li、Mnで表されるものを用いることが好まし
く、特にFe、Co、Liで表される原子のものを用い
ることが好ましい。また、金属化合物の中でもXが、
S、V、Pで表されるものを用いることが好ましい。
Among these metal compounds, M is Fe, C
It is preferable to use those represented by o, Li, and Mn, and particularly preferable to use those represented by Fe, Co, and Li atoms. In addition, among the metal compounds, X is
It is preferable to use those represented by S, V and P.

【0016】更に、上記一般式中のyは1以上の数、特
に0.5〜2の範囲の数が好ましい。nは1以上の数、
特に1〜3の範囲の数が好ましい。zは、通常初期状態
では0であり、電池使用時にアルミニウムがインターカ
レートされた結果、金属化合物中に含有される。特に電
池が二次電池として使用される場合にはアルミニウムの
含有率は電池性能に影響しない。
Further, y in the above general formula is preferably a number of 1 or more, and particularly preferably a number in the range of 0.5 to 2. n is a number of 1 or more,
A number in the range of 1 to 3 is particularly preferable. z is usually 0 in the initial state, and is contained in the metal compound as a result of aluminum being intercalated during use of the battery. Especially when the battery is used as a secondary battery, the aluminum content does not affect the battery performance.

【0017】これら金属化合物の中でも未放電状態での
正極活物質としては、Fe(SO 、Fe(M
oO、Fe(WO、LiCOVO、L
iNiVO、LiFe0.5Mn0.5PO、Li
FePO、LiCuVO等を挙げることができる。
Among these metal compounds, in the undischarged state
As the positive electrode active material, FeTwo(SO Four)Three, FeTwo(M
oOFour)Three, FeTwo(WOFour)Three, LiCOVOFour, L
iNiVOFour, LiFe0.5Mn0.5POFour, Li
FePOFour, LiCuVOFourEtc. can be mentioned.

【0018】前記正極活物質は、電池放電時にアルミニ
ウムイオンを挿入し、アルミニウムを含有した金属化合
物を形成する。また、充電時にはアルミニウムイオンを
放出することにより二次電池として機能する。前記正極
活物質とアルミニウム負極を用いることにより電池起電
力は3V〜1Vの範囲を示すことから、正極容量は負極
にリチウムを用いた時に比べて2〜3倍に増大すること
ができるため電池を大幅に高容量化させることができ
る。
The positive electrode active material inserts aluminum ions during battery discharge to form a metal compound containing aluminum. Further, it functions as a secondary battery by releasing aluminum ions during charging. Since the battery electromotive force is in the range of 3V to 1V by using the positive electrode active material and the aluminum negative electrode, the positive electrode capacity can be increased by 2 to 3 times as compared with the case where lithium is used as the negative electrode. The capacity can be significantly increased.

【0019】結着剤 前記結着剤としては、例えば、ポリテトラフルオロエチ
レン(PTFE)、ポリフッ化エチレン(PVdF)、
フッ素系ゴム等を用いることができる。
Binder As the binder , for example, polytetrafluoroethylene (PTFE), polyfluorinated ethylene (PVdF),
Fluorine-based rubber or the like can be used.

【0020】導電剤 前記正極活物質層は、更に導電剤を含んでいても良い。
かかる導電剤としては、例えばアセチレンブラック、カ
ーボンブラック、黒鉛等を挙げることができる。
Conducting Agent The positive electrode active material layer may further contain a conducting agent.
Examples of such a conductive agent include acetylene black, carbon black, graphite and the like.

【0021】配合割合 正極活物質、導電剤及び結着剤の配合割合は、一般に正
極活物質80〜98重量%、好ましくは90〜95重量
%、導電剤3〜20重量%、好ましくは3〜8重量%、
結着剤2〜7重量%、好ましくは2.5〜6重量%の範
囲内にすることが好適である。
Blending Ratio The blending ratio of the positive electrode active material, the conductive agent and the binder is generally 80 to 98% by weight, preferably 90 to 95% by weight, the positive electrode active material, 3 to 20% by weight, preferably 3 to. 8% by weight,
It is preferable that the binder content is in the range of 2 to 7% by weight, preferably 2.5 to 6% by weight.

【0022】集電体 前記正極の集電体としては、厚さ1〜20μmの金属箔
等が用いられる。これら金属箔の中でもステンレス、ニ
ッケル、鉄、モリブデン、タングステン、炭素フィル
ム、TiN、TiC等を被覆した金属箔を用いることが
好ましい。
Current Collector As the current collector of the positive electrode, a metal foil having a thickness of 1 to 20 μm or the like is used. Among these metal foils, it is preferable to use a metal foil coated with stainless steel, nickel, iron, molybdenum, tungsten, a carbon film, TiN, TiC, or the like.

【0023】正極の作製 前記正極は、例えば、正極活物質、導電剤及び結着剤を
適当な溶媒に懸濁し、この懸濁物を集電体に塗布し、乾
燥し、プレスを施すことにより作製される。
Preparation of Positive Electrode For the positive electrode, for example, a positive electrode active material, a conductive agent and a binder are suspended in a suitable solvent, the suspension is applied to a current collector, dried and pressed. It is made.

【0024】(B) 負 極 本発明においては負極として、アルミニウム又はアルミ
ニウム合金からなる金属箔又は金属粉末を用いることが
重要である。前記アルミニウムは純度99%以上のもの
であることが好ましい。前記アルミニウム合金として
は、アルミニウム亜鉛合金、アルミニウムマグネシウム
合金、アルミニウムクロム合金、アルミニウムマンガン
合金等を挙げることができる。前記アルミニウム又はア
ルミニウム合金の金属箔の厚さ10〜300μmである
ことが好ましい。前記アルミニウム又はアルミニウム合
金の金属粉末の平均粒径は、5〜500μm、特に10
〜300μmであることが好ましい。前記金属粉末は、
ポリテトラフルオロエチレン(PTFE)、ポリフッ化
ビニリデン(PVdF)、フッ素系ゴム等の結着剤と混
合し、適当な溶媒に懸濁する。この懸濁物をステンレ
ス、ニッケル、鉄、銅などの金属箔集電体に塗布し、乾
燥し、プレスを施すことにより作製される。
(B) Negative Electrode In the present invention, it is important to use a metal foil or metal powder made of aluminum or an aluminum alloy as the negative electrode. The aluminum preferably has a purity of 99% or more. Examples of the aluminum alloy include an aluminum zinc alloy, an aluminum magnesium alloy, an aluminum chromium alloy, and an aluminum manganese alloy. The thickness of the aluminum or aluminum alloy metal foil is preferably 10 to 300 μm. The average particle diameter of the metal powder of aluminum or aluminum alloy is 5 to 500 μm, particularly 10
˜300 μm is preferred. The metal powder is
It is mixed with a binder such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF) and fluororubber, and suspended in an appropriate solvent. This suspension is applied to a metal foil current collector made of stainless steel, nickel, iron, copper or the like, dried, and pressed.

【0025】(C) 非水電解質 この非水電解質としては、アルミニウム塩を含む常温型
溶融塩又はアルミニウム塩を含む有機溶媒からなる電解
液を用いることが好ましい。
(C) Non-Aqueous Electrolyte As this non-aqueous electrolyte, it is preferable to use an electrolytic solution comprising an ambient temperature molten salt containing an aluminum salt or an organic solvent containing an aluminum salt.

【0026】(a) アルミニウム塩 前記アルミニウム塩としては、AlCl等のハロゲン
化アルミニウム、硝酸アルミニウム、硫酸アルミニウ
ム、Al(BF、Al(PF、Al(Cl
、Al(CFSO、Al((C
SON)等を挙げることができる。上記アルミ
ニウム塩の他にアンモニウム塩やリチウム塩を添加して
も良い。前記アンモニウム塩としてはテトラエチルアン
モニムクロライド等を挙げることができる。前記リチウ
ム塩としてLiCl、LiBF、LiPF、LiC
lO、LiCFSO、Li(CFSO
N、Li(CSON等を挙げることがで
きる。
(A) Aluminum Salt Examples of the aluminum salt include aluminum halides such as AlCl 3 , aluminum nitrate, aluminum sulfate, Al (BF 4 ) 3 , Al (PF 6 ) 3 , and Al (Cl
O 4 ) 3 , Al (CF 3 SO 3 ) 3 , Al ((C 2 F 5
SO 2) 2 N) 3 and the like. In addition to the above aluminum salt, ammonium salt or lithium salt may be added. Examples of the ammonium salt include tetraethylammonium chloride. As the lithium salt, LiCl, LiBF 4 , LiPF 6 , LiC
lO 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ).
2 N, Li (C 2 F 5 SO 2) can be cited 2 N or the like.

【0027】(b) 常温型溶融塩 前記常温型溶融塩としては、常温及び常温以下で融解す
るイオン性融体である。前記アルミニウム塩とイミダゾ
リウム塩又はピリジニウム塩等の有機塩との混合塩から
なる。前記イミダゾリウム塩としては、1−エチル−3
−メチルイミダゾリウムカチオン(EMI)とC
、BF 、PF 、ClO 、CFSO3
、(CFSO、(CSO
等のアニオンからなる有機塩であることが好ましい。
前記ピリジニウム塩としては、1−ブチルピリジニウム
カチオン(BP)と(Cl)、BF 、P
、ClO 、CFSO3 、(CF
、(CSO等のアニオン
からなる有機塩であることが好ましい。
(B) Room temperature molten salt As the room temperature molten salt, it melts at room temperature and below room temperature.
It is an ionic melt. The aluminum salt and imidazo
From a mixed salt with an organic salt such as a lithium salt or a pyridinium salt
Become. As the imidazolium salt, 1-ethyl-3
-Methylimidazolium cation (EMI+) And C
l, BFFour , PF6 , ClOFour , CFThreeSO3
, (CFThreeSOTwo)TwoN, (CTwoF5SOTwo)TwoN
An organic salt composed of an anion such as
Examples of the pyridinium salt include 1-butylpyridinium
Cation (BP+) And (Cl), BFFour , P
F6 , ClOFour , CFThreeSO3 , (CFThreeS
O Two)TwoN, (CTwoF5SOTwo)TwoNAnions such as
The organic salt consisting of

【0028】(c) 有機溶媒 前記有機溶媒としては、プロピレンカーボネート(P
C)等の環状カーボネート、ジエチルカーボネート(D
EC)等の鎖状カーボネート、γ-ブチロラクトン(γ
−BL)、アセトニトリル(AN)、スルホラン(S
L)、スルフォネン類、環状エーテル、鎖状エーテル等
を挙げることができる。
(C) Organic solvent As the organic solvent, propylene carbonate (P
Cyclic carbonates such as C), diethyl carbonate (D
Chain carbonates such as EC), γ-butyrolactone (γ
-BL), acetonitrile (AN), sulfolane (S
L), sulphonenes, cyclic ethers, chain ethers and the like.

【0029】(d) 配合割合 前記アルミニウム塩と、前記有機塩又は前記有機溶媒と
の混合割合(モル比率)は、1:15〜3:1、特に
1:10〜2:1の範囲にすることが好ましい。上記ア
ルミニウム塩を含む常温型溶融塩やアルミニウム塩を含
む有機溶媒は、液状のほかにポリマー材料を添加してゲ
ル状としても良い。本発明の非水系電解液電池に用いら
れる非水系電解液として、アルミニウム塩を含む常温型
溶融塩及び有機溶媒を用いることにより、電解液中のア
ルミニウムイオン(アルミニウム錯体イオン)が正極へ
の挿入反応がスムーズに行うことができるので、高容量
の電力を引き出すことができる。一方、負極においては
アルミニウムの溶解析出反応が効率良く行うことがで
き、サイクル寿命を飛躍的に向上させることができる。
(D) Mixing ratio The mixing ratio (molar ratio) of the aluminum salt and the organic salt or the organic solvent is in the range of 1:15 to 3: 1, particularly 1:10 to 2: 1. It is preferable. The room temperature molten salt containing the aluminum salt or the organic solvent containing the aluminum salt may be in the form of gel by adding a polymer material in addition to the liquid state. By using a room temperature molten salt containing an aluminum salt and an organic solvent as the non-aqueous electrolytic solution used in the non-aqueous electrolytic solution battery of the present invention, an aluminum ion (aluminum complex ion) in the electrolytic solution inserts into the positive electrode. Since it can be performed smoothly, it is possible to draw out a large amount of power. On the other hand, in the negative electrode, the dissolution and precipitation reaction of aluminum can be efficiently carried out, and the cycle life can be dramatically improved.

【0030】(D) セパレータ 本発明の非水系電解液電池においては、正極と負極の間
にセパレータを配置することができる。セパレータは、
液状又はゲル状の非水系電解液を保持させることができ
る。前記セパレータとしては、例えば、ポリエチレン、
ポリプロピレン、セルロース、又はポリフッ化ビニリデ
ン(PVdF)を含む多孔質フィルム、合成樹脂製不織
布等を挙げることができる。これら多孔質フィルムは一
般に5〜100μm、好ましくは10〜30μmの厚さ
のものが使用される。これらの中でも、ポリエチレン
か、或いは、ポリプロピレン、又は、両者からなる多孔
質フィルムは、二次電池の安全性を向上できるため好ま
しい。
(D) Separator In the non-aqueous electrolyte battery of the present invention, a separator can be arranged between the positive electrode and the negative electrode. The separator is
A liquid or gel non-aqueous electrolyte can be retained. Examples of the separator include polyethylene,
Examples thereof include a porous film containing polypropylene, cellulose, or polyvinylidene fluoride (PVdF), a synthetic resin nonwoven fabric, and the like. These porous films generally have a thickness of 5 to 100 μm, preferably 10 to 30 μm. Among these, polyethylene, polypropylene, or a porous film made of both is preferable because the safety of the secondary battery can be improved.

【0031】(E) 収納容器 収納容器の形状は、例えば、有底円筒型、有底角型、コ
イン型、ボタン型、フィルム状等の各形状にすることが
できる。収納容器を構成する材質としては、金属缶、ラ
ミネートフィルムを用いることができる。
(E) Storage Container The storage container may have any shape such as a bottomed cylindrical shape, a bottomed square shape, a coin shape, a button shape, and a film shape. As a material forming the storage container, a metal can or a laminated film can be used.

【0032】金属缶 前記金属缶としては、例えば、鉄、ステンレス、ニッケ
ルなどの金属缶や前記金属缶の内面を樹脂で絶縁被覆し
たものを用いることができる。前記金属層は、厚さ10
〜150μmのアルミニウム箔から形成することが好ま
しい。
[0032] Metal cans the metal can, for example, iron, stainless steel, metal cans and the inner surface of the metal can, such as nickel can be used as the insulated coated with a resin. The metal layer has a thickness of 10
It is preferably formed from an aluminum foil having a thickness of 150 μm.

【0033】ラミネートフィルム 前記ラミネートフィルムとしては、金属層と前記金属層
の片面若しくは両面を被覆する樹脂層とを含むことが好
ましい。前記フィルムの厚さは50〜250μmの範囲
にすることが好ましい。一方、前記樹脂層は、ポリエチ
レン、ポリプロピレンなどの熱可塑性樹脂から形成する
ことができる。前記樹脂層は、単層若しくは多層構造に
することができる。
Laminate Film The laminate film preferably includes a metal layer and a resin layer that covers one side or both sides of the metal layer. The thickness of the film is preferably in the range of 50 to 250 μm. Meanwhile, the resin layer may be formed of a thermoplastic resin such as polyethylene or polypropylene. The resin layer may have a single-layer structure or a multi-layer structure.

【0034】[II] 用 途 本発明の非水系電解液電池は、高容量で、高電圧で、サ
イクル特性に優れていることから、携帯電話の駆動用電
源等の一次電池や二次電池等として広く工業的に使用す
ることができる。
[II] Application The non-aqueous electrolyte battery of the present invention has a high capacity, a high voltage, and excellent cycle characteristics. Therefore, it is a primary battery or a secondary battery of a mobile phone driving power source. It can be widely used industrially.

【0035】[0035]

【実施例】以下に示す実施例及び比較例によって、本発
明を更に具体的に説明する。本発明の非水系電解液電池
の一例として円筒形の非水系電解液電池をその具体例の
一つとして挙げて、図1に基づき具体的に説明する。
EXAMPLES The present invention will be described in more detail with reference to the following examples and comparative examples. As an example of the non-aqueous electrolyte battery of the present invention, a cylindrical non-aqueous electrolyte battery will be cited as one of its specific examples, and will be specifically described with reference to FIG.

【0036】[I] 評価方法 (1) 起電力 電池の起電力としては、電池作製後の開回路電位を測定
した。
[I] Evaluation Method (1) As the electromotive force of the electromotive force battery, an open circuit potential after the battery was manufactured was measured.

【0037】(2) 放電容量 電池の放電容量としては、50mAの定電流放電で1V
まで放電することにより測定された。
(2) Discharge capacity The discharge capacity of the battery is 1 V at constant current discharge of 50 mA.
It was measured by discharging to.

【0038】(3) サイクル寿命 電池のサイクル寿命は、放電電流50mAで1Vまで放
電し、充電電流は50mAで3Vまで充電する充放電を繰
り返し行なうことにより、1Vまで充電することができ
る充電回数をサイクル寿命として測定した。
(3) Cycle life The cycle life of a battery is determined by the number of times of charge that can be charged up to 1 V by repeating charging / discharging by discharging up to 1 V at a discharge current of 50 mA and charging up to 3 V at a charging current of 50 mA. It was measured as cycle life.

【0039】[II] 実施例及び比較例 実施例1 図1のEBは非水系電解液電池であり、1は底部に絶縁
体2が配置された有底円筒状のステンレス容器である。
この容器1内には、電極群3が収納されている。この電
極群3は、正極4、セパレータ5及び負極6をこの順序
で積層した帯状物を負極6が外側に位置するように渦巻
き状に捲回した構造になっている。該電池EBは外径1
4mm、高さ50mmの大きさである。
[II] Examples and Comparative Examples Example 1 EB in FIG. 1 is a non-aqueous electrolyte battery, and 1 is a bottomed cylindrical stainless steel container in which an insulator 2 is arranged at the bottom.
The electrode group 3 is housed in the container 1. The electrode group 3 has a structure in which a band-shaped material in which a positive electrode 4, a separator 5, and a negative electrode 6 are laminated in this order is spirally wound so that the negative electrode 6 is located outside. The battery EB has an outer diameter of 1
The size is 4 mm and the height is 50 mm.

【0040】正 極 前記正極4は、硫酸鉄(Fe(SO)粉末91重
量%に、アセチレンブラック2.5重量%と、グラファ
イト3重量%と、ポリフッ化ビニリデン(PVdF)4
重量%と、N-メチルピロリドン(NMP)溶液とを加え
て混合し、厚さ15μmのTiNコートしたステンレス
箔の集電体に塗布し、乾燥後、プレスすることにより電
極密度2.5g/cmの帯状の正極を作製した。
Positive electrode The positive electrode 4 was composed of 91% by weight of iron sulfate (Fe 2 (SO 4 ) 3 ) powder, 2.5% by weight of acetylene black, 3% by weight of graphite, and 4% of polyvinylidene fluoride (PVdF).
Wt% and N-methylpyrrolidone (NMP) solution were added and mixed, and applied on a TiN-coated stainless steel foil collector having a thickness of 15 μm, dried, and pressed to obtain an electrode density of 2.5 g / cm 2. A strip-shaped positive electrode of No. 3 was produced.

【0041】セパレータ 前記セパレータ5は、厚さ20μmのポリエチレン性の
多孔質フィルムを用いた。
Separator As the separator 5, a polyethylene porous film having a thickness of 20 μm was used.

【0042】負 極 前記負極6は、平均粒径30μmの純度99.99%ア
ルミニム粉末90重量%と、アセチレンブラック5重量
%と、ポリフッ化ビニリデン(PVdF)5重量%と、
N−メチルピロリドン(NMP)溶液とを加えて混合
し、厚さ15μmのステレス箔に塗布し、乾燥後、プレ
スすることにより電極密度2g/cmの帯状の負極を
作製した。
Negative Electrode The negative electrode 6 contains 90% by weight of 99.99% pure aluminum powder having an average particle size of 30 μm, 5% by weight of acetylene black, and 5% by weight of polyvinylidene fluoride (PVdF).
A N-methylpyrrolidone (NMP) solution was added and mixed, coated on a 15 μm-thick Steres foil, dried, and pressed to produce a strip-shaped negative electrode having an electrode density of 2 g / cm 3 .

【0043】電解質 前記容器1内には、塩化アルミニウム(AlCl)と
1−エチル−3−メチルイミダゾリウムクロリド(EM
IC)をモル比で2:1に混合した常温型溶融塩を電解
質として収納している。
Electrolyte In the container 1, aluminum chloride (AlCl 3 ) and 1-ethyl-3-methylimidazolium chloride (EM) were used.
The normal temperature molten salt in which IC) is mixed at a molar ratio of 2: 1 is stored as an electrolyte.

【0044】絶縁紙 前記電極群3上には、中央部が開口された絶縁紙7が設
置されている。
Insulating Paper On the electrode group 3, an insulating paper 7 having a central opening is installed.

【0045】正極端子 更に、前記容器1の上部開口部には、絶縁封口板8が該
容器1へのかしめ加工等により液密に設けられており、
かつ該絶縁封口板8の中央には、正極端子9が接合され
ている。この正極端子9は、前記電極群3の正極4に正
極リード10を介して接続されている。なお、電極群3
の負極6は、図示していない負極リードを介して負極端
子である前記容器1に接続されている。
Positive electrode terminal Furthermore, an insulating sealing plate 8 is provided in the upper opening of the container 1 in a liquid-tight manner by caulking the container 1 or the like,
A positive electrode terminal 9 is joined to the center of the insulating sealing plate 8. The positive electrode terminal 9 is connected to the positive electrode 4 of the electrode group 3 via a positive electrode lead 10. The electrode group 3
The negative electrode 6 is connected to the container 1, which is a negative electrode terminal, through a negative electrode lead (not shown).

【0046】起電力と放電容量とサイクル寿命の測定 得られた電池の起電力、初期容量、及び、100サイク
ル後の容量維持率をそれぞれ測定することにより、起電
力と放電容量とサイクル寿命を測定した。その結果を表
1に示す。
Measurement of electromotive force, discharge capacity and cycle life The electromotive force, discharge capacity and cycle life of the obtained battery were measured by measuring the electromotive force, initial capacity and capacity retention rate after 100 cycles. did. The results are shown in Table 1.

【0047】実施例2 正極活物質としてFe(MoOを用いる以外、
実施例1と同様な非水系電解液を作製し、その電池の起
電力と放電容量とサイクル寿命をそれぞれ測定した。そ
の結果を表1に示す。
Example 2 Except that Fe 2 (MoO 4 ) 3 was used as the positive electrode active material,
A non-aqueous electrolyte solution similar to that of Example 1 was prepared, and the electromotive force, discharge capacity and cycle life of the battery were measured. The results are shown in Table 1.

【0048】実施例3 正極活物質としてFe(WOを用いる以外、実
施例1と同様な非水系電解液電池を作製し、その電池の
起電力と放電容量とサイクル寿命をそれぞれ測定した。
その結果を表1に示す。
Example 3 A non-aqueous electrolyte battery was prepared in the same manner as in Example 1 except that Fe 2 (WO 4 ) 3 was used as the positive electrode active material, and the electromotive force, discharge capacity and cycle life of the battery were measured. did.
The results are shown in Table 1.

【0049】実施例4 正極活物質としてLiCoVOを用いる以外、実施例
1と同様な非水系電解液電池を作製し、その電池の起電
力と放電容量とサイクル寿命をそれぞれ測定した。その
結果を表1に示す。
Example 4 A nonaqueous electrolyte battery similar to that of Example 1 was prepared except that LiCoVO 4 was used as the positive electrode active material, and the electromotive force, discharge capacity and cycle life of the battery were measured. The results are shown in Table 1.

【0050】実施例5 正極活物質としてLiFe0.5Mn0.5POを用
いる以外、実施例1と同様な非水系電解液電池を作製
し、その電池の起電力と放電容量とサイクル寿命をそれ
ぞれ測定した。その結果を表1に示す。
Example 5 A non-aqueous electrolyte battery was prepared in the same manner as in Example 1 except that LiFe 0.5 Mn 0.5 PO 4 was used as the positive electrode active material, and the electromotive force, discharge capacity and cycle life of the battery were prepared. Was measured respectively. The results are shown in Table 1.

【0051】実施例6 正極活物質としてLiNiVOを用いる以外、実施例
1と同様な非水系電解液電池を作製し、その電池の起電
力と放電容量とサイクル寿命をそれぞれ測定した。その
結果を表1に示す。
Example 6 A non-aqueous electrolyte battery was prepared in the same manner as in Example 1 except that LiNiVO 4 was used as the positive electrode active material, and the electromotive force, discharge capacity and cycle life of the battery were measured. The results are shown in Table 1.

【0052】実施例7 正極活物質としてLiFePOを用いる以外、実施例
1と同様な非水系電解液電池を作製し、その電池の起電
力と放電容量とサイクル寿命をそれぞれ測定した。その
結果を表1に示す。
Example 7 A non-aqueous electrolyte battery was prepared in the same manner as in Example 1 except that LiFePO 4 was used as the positive electrode active material, and the electromotive force, discharge capacity and cycle life of the battery were measured. The results are shown in Table 1.

【0053】実施例8 正極活物質としてLiCuPOを用いる以外、実施例
1と同様な非水系電解液電池を作製し、その電池の起電
力と放電容量とサイクル寿命をそれぞれ測定した。その
結果を表1に示す。
Example 8 A nonaqueous electrolyte battery similar to that of Example 1 was prepared except that LiCuPO 4 was used as the positive electrode active material, and the electromotive force, discharge capacity and cycle life of the battery were measured. The results are shown in Table 1.

【0054】比較例1 正極活物質としてMnOを用いる以外、実施例1と同
様な非水系電解液電池を作製し、その電池の起電力と放
電容量とサイクル寿命をそれぞれ測定した。その結果を
表1に示す。
Comparative Example 1 A nonaqueous electrolyte battery was prepared in the same manner as in Example 1 except that MnO 2 was used as the positive electrode active material, and the electromotive force, discharge capacity and cycle life of the battery were measured. The results are shown in Table 1.

【0055】比較例2 正極活物質としてLiCoOを用いる以外、実施例1
と同様な非水系電解液電池を作製し、その電池の起電力
と放電容量とサイクル寿命をそれぞれ測定した。その結
果を表1に示す。
Comparative Example 2 Example 1 except that LiCoO 2 was used as the positive electrode active material.
A non-aqueous electrolyte battery similar to that was prepared, and the electromotive force, discharge capacity and cycle life of the battery were measured. The results are shown in Table 1.

【0056】比較例3 正極活物質としてポリアニリンを用いる以外、実施例1
と同様な非水系電解液電池を作製し、その電池の起電力
と放電容量とサイクル寿命をそれぞれ測定した。その結
果を表1に示す。
Comparative Example 3 Example 1 except that polyaniline was used as the positive electrode active material.
A non-aqueous electrolyte battery similar to that was prepared, and the electromotive force, discharge capacity and cycle life of the battery were measured. The results are shown in Table 1.

【0057】[0057]

【表1】 表1から明らかなように、実施例1〜8の非水系電解液
電池は、比較例1〜3の電池に比べて高容量、高電圧、
長寿命であることがわかる。
[Table 1] As is clear from Table 1, the non-aqueous electrolyte batteries of Examples 1 to 8 have higher capacities, higher voltages, than the batteries of Comparative Examples 1 to 3.
It can be seen that it has a long life.

【0058】[0058]

【発明の効果】本発明の非水系電解液電池は、高容量、
高電圧でサイクル特性に優れた非水系電解液電池である
ことから、携帯電話の駆動用電源等として広く使用する
ことができる。
The non-aqueous electrolyte battery of the present invention has a high capacity,
Since it is a non-aqueous electrolyte battery with high voltage and excellent cycle characteristics, it can be widely used as a power source for driving mobile phones.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、実施例1において使用した本発明の円
筒形非水系電解液電池の部分断面図である。
FIG. 1 is a partial cross-sectional view of a cylindrical non-aqueous electrolyte battery of the present invention used in Example 1.

【符号の説明】[Explanation of symbols]

1 ステンレス容器 2 絶縁体 3 電極群 4 正極 5 セパレータ 6 負極 7 絶縁紙 8 絶縁封口板 9 正極端子 10 正極リード EB 非水系電解液電池 1 stainless steel container 2 insulator 3 electrode group 4 positive electrode 5 separator 6 Negative electrode 7 insulating paper 8 Insulation sealing plate 9 Positive terminal 10 Positive electrode lead EB non-aqueous electrolyte battery

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 6/16 H01M 6/16 Z 10/40 10/40 A Z Fターム(参考) 5H024 AA02 AA11 CC02 CC12 DD14 FF15 FF19 5H029 AJ02 AJ03 AJ05 AK03 AL11 AM03 AM04 AM07 BJ02 BJ14 HJ02 5H050 AA02 AA07 AA08 BA06 BA17 CA07 CB11 DA02 DA13 FA05 HA02 ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) H01M 6/16 H01M 6/16 Z 10/40 10/40 AZ F Term (Reference) 5H024 AA02 AA11 CC02 CC12 DD14 FF15 FF19 5H029 AJ02 AJ03 AJ05 AK03 AL11 AM03 AM04 AM07 BJ02 BJ14 HJ02 5H050 AA02 AA07 AA08 BA06 BA17 CA07 CB11 DA02 DA13 FA05 HA02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】正極活物質を有する正極と、アルミニウム
又はアルミニウム合金を具備した負極と、前記正極及び
前記負極に挟まれた非水系電解液とを有する非水系電解
液電池において、前記正極活物質は、一般式Al
(XOで表される金属化合物(式中のMはFe、
Co、Mn、Ni、Cu、Li、Na、Kから選ばれる
少なくとも1種の原子を、XはS、P、Mo、W、Vか
ら選ばれる少なくとも1種の原子をそれぞれ表し、zは
0以上の数、yは1以上の数、nは1以上の数であ
る。)であることを特徴とする、非水系電解液電池。
1. A non-aqueous electrolyte battery comprising a positive electrode having a positive electrode active material, a negative electrode comprising aluminum or an aluminum alloy, and a non-aqueous electrolytic solution sandwiched between the positive electrode and the negative electrode, wherein the positive electrode active material. the general formula Al z M y
A metal compound represented by (XO 4 ) n (M in the formula is Fe,
At least one atom selected from Co, Mn, Ni, Cu, Li, Na and K, X represents at least one atom selected from S, P, Mo, W and V, and z is 0 or more. , Y is a number of 1 or more, and n is a number of 1 or more. ) Is a non-aqueous electrolyte battery.
【請求項2】前記非水系電解液が、アルミニウム塩を含
む常温型溶融塩、又は、アルミニウム塩を含む有機溶媒
からなるものであることを特徴とする、請求項1に記載
の非水系電解液電池。
2. The non-aqueous electrolyte solution according to claim 1, wherein the non-aqueous electrolyte solution comprises a room temperature molten salt containing an aluminum salt or an organic solvent containing an aluminum salt. battery.
JP2001202128A 2001-07-03 2001-07-03 Non-aqueous electrolyte battery Expired - Fee Related JP3836691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001202128A JP3836691B2 (en) 2001-07-03 2001-07-03 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001202128A JP3836691B2 (en) 2001-07-03 2001-07-03 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2003017058A true JP2003017058A (en) 2003-01-17
JP3836691B2 JP3836691B2 (en) 2006-10-25

Family

ID=19038987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001202128A Expired - Fee Related JP3836691B2 (en) 2001-07-03 2001-07-03 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3836691B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055172A1 (en) * 2005-11-10 2007-05-18 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte solution and secondary battery containing same
KR100805875B1 (en) 2006-12-29 2008-02-20 한양대학교 산학협력단 Olivine type positive active material precursor for lithium battery, and method for preparing the same
KR20130115246A (en) * 2010-09-13 2013-10-21 더 리전츠 오브 더 유니버시티 오브 캘리포니아 Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof
WO2014030500A1 (en) * 2012-08-21 2014-02-27 トヨタ自動車株式会社 Electrode body and cell provided with same
JP2018534752A (en) * 2015-10-08 2018-11-22 エバーオン24 エルエルシー Rechargeable aluminum battery
US10530011B1 (en) 2014-07-21 2020-01-07 Imprint Energy, Inc. Electrochemical cells and metal salt-based electrolytes
WO2020075616A1 (en) * 2018-10-10 2020-04-16 住友化学株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode, battery, and aluminum clad metal laminate
US11603321B2 (en) 2015-10-08 2023-03-14 Everon24, Inc. Rechargeable aluminum ion battery

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055172A1 (en) * 2005-11-10 2007-05-18 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte solution and secondary battery containing same
US7524587B2 (en) 2005-11-10 2009-04-28 Panasonic Corporation Non-aqueous electrolyte and secondary battery containing same
KR100805875B1 (en) 2006-12-29 2008-02-20 한양대학교 산학협력단 Olivine type positive active material precursor for lithium battery, and method for preparing the same
US10826119B2 (en) 2010-09-13 2020-11-03 The Regents Of The University Of California Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof
KR20130115246A (en) * 2010-09-13 2013-10-21 더 리전츠 오브 더 유니버시티 오브 캘리포니아 Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof
US9742030B2 (en) 2010-09-13 2017-08-22 The Regents Of The University Of California Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof
JP2018049833A (en) * 2010-09-13 2018-03-29 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニアThe Regents Of The University Of California Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof
US11264643B2 (en) 2010-09-13 2022-03-01 The Regents Of The University Of California Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof
US10297862B2 (en) 2010-09-13 2019-05-21 The Regents Of The University Of California Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof
KR101953399B1 (en) * 2010-09-13 2019-05-22 더 리전츠 오브 더 유니버시티 오브 캘리포니아 Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof
JP2013541143A (en) * 2010-09-13 2013-11-07 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア Ionic gel electrolytes, energy storage devices, and methods for their production
WO2014030500A1 (en) * 2012-08-21 2014-02-27 トヨタ自動車株式会社 Electrode body and cell provided with same
JP2014041722A (en) * 2012-08-21 2014-03-06 Toyota Motor Corp Electrode body, and battery including the electrode body
US10530011B1 (en) 2014-07-21 2020-01-07 Imprint Energy, Inc. Electrochemical cells and metal salt-based electrolytes
JP2020031061A (en) * 2015-10-08 2020-02-27 エバーオン24 エルエルシー Rechargeable aluminum battery
US10916963B2 (en) 2015-10-08 2021-02-09 Everon24, Inc. Rechargeable aluminum ion battery
US11205917B2 (en) 2015-10-08 2021-12-21 Everon24, Inc. Rechargeable aluminum ion battery
JP2018534752A (en) * 2015-10-08 2018-11-22 エバーオン24 エルエルシー Rechargeable aluminum battery
US11336110B2 (en) 2015-10-08 2022-05-17 Everon24, Inc. Rechargeable aluminum ion battery
JP7101155B2 (en) 2015-10-08 2022-07-14 エバーオン24, インコーポレイテッド Rechargeable aluminum battery
US11603321B2 (en) 2015-10-08 2023-03-14 Everon24, Inc. Rechargeable aluminum ion battery
WO2020075616A1 (en) * 2018-10-10 2020-04-16 住友化学株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode, battery, and aluminum clad metal laminate
JPWO2020075616A1 (en) * 2018-10-10 2021-02-15 住友化学株式会社 Non-aqueous electrolyte Negative electrode for secondary batteries Active material, negative electrode, battery and aluminum clad metal laminate

Also Published As

Publication number Publication date
JP3836691B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
JP3737729B2 (en) Non-aqueous electrolyte battery and non-aqueous electrolyte
JP5049680B2 (en) Nonaqueous electrolyte battery and battery pack
JP4213687B2 (en) Nonaqueous electrolyte battery and battery pack
JP2006066341A (en) Nonaqueous electrolyte secondary cell
WO2012111546A1 (en) Battery electrode and manufacturing method thereof, non-aqueous electrolyte battery, battery pack, and active material
JP4664978B2 (en) Non-aqueous electrolyte containing oxygen anion and lithium secondary battery using the same
WO2000033402A1 (en) Non-aqueous electrolyte secondary cell and its charging method
CN116632161B (en) Negative electrode for lithium secondary battery and lithium secondary battery comprising same
JP2011228052A (en) Lithium ion secondary battery
JP4836612B2 (en) Nonaqueous electrolyte battery and battery pack
JP5865951B2 (en) Nonaqueous electrolyte battery and battery pack
JP3836691B2 (en) Non-aqueous electrolyte battery
JP7062188B2 (en) Positive electrode for lithium-sulfur battery and lithium-sulfur battery containing it
WO2018198168A1 (en) Battery member for secondary battery, and secondary battery and production method therefor
JP6554725B2 (en) Non-aqueous electrolyte battery
JP5908551B2 (en) Nonaqueous electrolyte battery separator
JP2002110152A (en) Nonaqueous electrolyte secondary battery
JP7462165B2 (en) Non-aqueous electrolyte secondary battery
JP7466112B2 (en) Non-aqueous electrolyte secondary battery
JPS63307663A (en) Nonaqueous electrolyte secondary battery
JPH07105952A (en) Lithium secondary battery and its current collecting body
JP6917963B2 (en) Electrodes, rechargeable batteries, battery packs and vehicles
JP2011003450A (en) All solid polymer battery
JPH09171839A (en) Secondary battery having nonaqueous solvent electrolyte
JP5361940B2 (en) Nonaqueous electrolyte battery and battery pack

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees