JPH07105952A - Lithium secondary battery and its current collecting body - Google Patents

Lithium secondary battery and its current collecting body

Info

Publication number
JPH07105952A
JPH07105952A JP5250717A JP25071793A JPH07105952A JP H07105952 A JPH07105952 A JP H07105952A JP 5250717 A JP5250717 A JP 5250717A JP 25071793 A JP25071793 A JP 25071793A JP H07105952 A JPH07105952 A JP H07105952A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
current collector
lithium secondary
metal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5250717A
Other languages
Japanese (ja)
Inventor
Yoshinori Takada
善典 高田
Mitsuhiro Marumoto
光弘 丸本
Kozo Sasaki
孝蔵 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP5250717A priority Critical patent/JPH07105952A/en
Publication of JPH07105952A publication Critical patent/JPH07105952A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide a current collector which does not react with lithium and has a low electric resistivity and to offer a lithium secondary battery excellent in the electromotive force and the cycle characteristic. CONSTITUTION:A metallic material A is provided whose electric resistivity at 20 deg.C is below 5X10<-8>OMEGA.m while another metallic material B has a reactivity with lithium which is lower than that of the metal material A, and a current collector S for a lithium secondary battery is constructed by forming a layer consisting of the metallic material B on that surface of the metallic material A which is to be joined with a negative electrode. The collector S is joined with the negative electrode. Thereby deterioration of the lithium negative electrode and drop of the electromotive force are prevented, and a resultant lithium secondary battery is excellent in the cycle characteristic and is equipped with a high electromotive force and high capacity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウムまたはリチウ
ム合金よりなる負極を用いたリチウム二次電池の負極集
電体、およびその集電体を用いたリチウム二次電池に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode current collector for a lithium secondary battery using a negative electrode made of lithium or a lithium alloy, and a lithium secondary battery using the current collector.

【0002】[0002]

【従来の技術】リチウム二次電池は、使用温度範囲が広
く、放電電圧が安定で、自己放電率が極めて小さいとい
う数々の長所を有する高エネルギー密度電池として知ら
れている。このリチウム二次電池は、一般的には負極に
リチウムやリチウム合金を用いたものであるが、このリ
チウム負極を使用する場合は、その導電性を向上させる
ために、通常集電体が併用される。この集電体として
は、20℃における電気抵抗率が1.67×10-8Ω・
mのCuや、20℃における電気抵抗率が2.69×1
-8Ω・mのAl等の、高導電率を示す金属材が使用さ
れている。
2. Description of the Related Art Lithium secondary batteries are known as high energy density batteries which have various advantages such as wide operating temperature range, stable discharge voltage, and extremely low self-discharge rate. This lithium secondary battery generally uses lithium or a lithium alloy for the negative electrode, but when this lithium negative electrode is used, a current collector is usually used together to improve its conductivity. It This current collector has an electrical resistivity of 1.67 × 10 −8 Ω at 20 ° C.
Cu of m or electric resistivity at 20 ° C. is 2.69 × 1
A metal material having a high conductivity such as Al of 0 −8 Ω · m is used.

【0003】[0003]

【発明が解決しようとする課題】集電体は通常、電池内
で電極と接合して使用されるが、上記Cu、Al等より
なる集電体をリチウムやリチウム合金よりなる負極に接
合すると、該集電体とリチウムとの間で室温下でも反応
拡散により合金化反応が起こる。この反応が進行する
と、集電体の電気抵抗が大となると同時に、負極のリチ
ウムが集電体のCuやAlに汚染されて、電池の起電力
やサイクル特性が低下する。
The current collector is usually used by bonding it to an electrode in a battery. When the current collector made of Cu, Al or the like is bonded to a negative electrode made of lithium or a lithium alloy, An alloying reaction occurs between the current collector and lithium due to reaction diffusion even at room temperature. When this reaction progresses, the electric resistance of the current collector becomes large, and at the same time, lithium of the negative electrode is contaminated by Cu and Al of the current collector, and the electromotive force and cycle characteristics of the battery deteriorate.

【0004】このため、集電体としてリチウムとの反応
性が上記Cu、Al等よりも低い金属を使用することが
考えられ、このような金属としてNi、Fe、Cr、M
o、W、Ta等が挙げられるが、これらの金属は、20
℃における電気抵抗率が、例えばWで5.5×10-8Ω
・m、Taでは13.5×10-8Ω・mであるように、
いずれもCuの約3〜8倍と高い電気抵抗率を示す。し
たがって、これらの金属を集電体として用いると電池の
内部抵抗が大となるという問題がある。
For this reason, it is considered to use a metal whose reactivity with lithium is lower than that of Cu, Al or the like as the current collector. As such a metal, Ni, Fe, Cr, M is used.
o, W, Ta, etc., but these metals are 20
The electrical resistivity at ℃ is 5.5 × 10 -8 Ω at W
・ As m and Ta are 13.5 × 10 -8 Ω ・ m,
Both show high electrical resistivity of about 3 to 8 times that of Cu. Therefore, when these metals are used as a current collector, there is a problem that the internal resistance of the battery becomes large.

【0005】本発明の目的は、上記の如き問題を解決
し、リチウムと反応せず、かつ電気抵抗率が低い集電体
を提供することにある。また、本発明の他の目的は、電
池の起電力やサイクル特性に優れるリチウム二次電池を
提供することにある。
An object of the present invention is to solve the above problems and provide a current collector which does not react with lithium and has a low electric resistivity. Another object of the present invention is to provide a lithium secondary battery having excellent battery electromotive force and cycle characteristics.

【0006】[0006]

【課題を解決するための手段】本発明者等は、Cu、A
l等の高導電率と、Ni、Fe、Ta、W等のリチウム
との反応性が低い性質とを組み合わせることに着想し、
その方法について種々検討を重ねた結果、Cu、Al等
の高導電率を示す金属材の、負極との接合を意図する表
面に、Ni、Fe、Ta、W等のリチウムとの反応性が
低い金属材よりなる層を形成して集電体を構成するよう
にすると、Cu、Al等の高導電率により電池の内部抵
抗を低く抑えることができるとともに、表面の金属層に
より集電体がリチウムと反応することが抑制されること
を見出し、本発明を完成するに至った。
The present inventors have found that Cu, A
Inspired by the combination of high conductivity such as 1 and low reactivity with lithium such as Ni, Fe, Ta and W,
As a result of various studies on the method, the reactivity of a metal material having high conductivity such as Cu and Al with lithium such as Ni, Fe, Ta and W is low on the surface intended to be bonded to the negative electrode. When a current collector is formed by forming a layer made of a metal material, the internal resistance of the battery can be kept low due to the high conductivity of Cu, Al, etc., and the current collector is made of lithium due to the metal layer on the surface. The inventors have found that the reaction with is suppressed and have completed the present invention.

【0007】即ち、本発明のリチウム二次電池用集電体
は、20℃における電気抵抗率が5×10-8Ω・m以下
の金属材(以下、金属材Aと称す)の、負極との接合を
意図する表面に、金属材Aよりもリチウムとの反応性が
低い金属材(以下、金属材Bと称す)よりなる層を形成
してなるものであり、望ましくは該金属材Bよりなる層
の厚さが0.05〜5μmであるものである。また、本
発明のリチウム二次電池は、リチウムまたはリチウム合
金よりなる負極と正極と電解質とで構成され、該負極に
上記リチウム二次電池用集電体を接合したものであり、
望ましくは該負極が、リチウム含有率80原子%以上の
リチウム合金よりなるものである。
That is, the current collector for a lithium secondary battery of the present invention is used as a negative electrode of a metal material (hereinafter referred to as metal material A) having an electric resistivity of 5 × 10 −8 Ω · m or less at 20 ° C. Is formed on the surface intended to be bonded with a metal material having a lower reactivity with lithium than the metal material A (hereinafter referred to as metal material B), and more preferably from the metal material B. The thickness of the layer is 0.05 to 5 μm. Further, the lithium secondary battery of the present invention is composed of a negative electrode made of lithium or a lithium alloy, a positive electrode, and an electrolyte, and the lithium secondary battery current collector is bonded to the negative electrode.
Desirably, the negative electrode is made of a lithium alloy having a lithium content of 80 atomic% or more.

【0008】以下、本発明を図面に基づき詳細に説明す
る。図1は本発明のリチウム二次電池用集電体の一実施
態様を示す模式断面図である。同図において、Sはリチ
ウム二次電池用集電体で、金属材Aの、負極との接合を
意図する表面に、金属材Bよりなる層が形成されてい
る。
The present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing one embodiment of the current collector for a lithium secondary battery of the present invention. In the figure, S is a current collector for a lithium secondary battery, and a layer made of a metal material B is formed on the surface of the metal material A intended to be bonded to the negative electrode.

【0009】上記金属材Aは、集電体Sを高導電率を有
するものとするためのものである。この金属材Aとして
は、20℃における電気抵抗率が5×10-8Ω・m以
下、好ましくは3×10-8Ω・m以下、より好ましくは
2×10-8Ω・m以下のものが使用され、具体的にはC
u、Al、Ag、Cu−Ag合金等が例示されるが、な
かでもCuまたはAlが高導電率を示すものとして好適
に使用される。
The metal material A is used to make the current collector S have high conductivity. The metal material A has an electrical resistivity of 5 × 10 −8 Ω · m or less at 20 ° C., preferably 3 × 10 −8 Ω · m or less, more preferably 2 × 10 −8 Ω · m or less. Is used, specifically C
Examples include u, Al, Ag, and Cu-Ag alloy. Among them, Cu or Al is preferably used as a material exhibiting high conductivity.

【0010】上記金属材Aの形状は、リチウム二次電池
の形状に応じた形状に成形される。例えば図2に示すよ
うなボタン型電池の場合には、シート型(円板状)に成
形され、図3に示すように電極およびセパレータがスパ
イラル状に巻かれた構成の電池の場合には、テープ状に
成形される。
The metal material A is formed into a shape corresponding to the shape of the lithium secondary battery. For example, in the case of a button type battery as shown in FIG. 2, a sheet type (disc-shaped) battery is formed, and as shown in FIG. 3, an electrode and a separator are spirally wound. It is shaped like a tape.

【0011】一方上記金属材Bは、集電体とリチウムと
が合金化反応を起こして集電体の電気抵抗が大となった
り、負極のリチウムが集電体のCuやAlに汚染された
りすることを抑制するためのものである。この金属材B
としては、リチウムとの反応性が金属材Aよりも低いも
の、望ましくは700℃におけるリチウムへの溶解度が
1重量%以下、好ましくは0.5重量%以下、より好ま
しくは0.2重量%以下のものが使用され、具体的には
Ni、Fe、Cr、Mo、W、Taより選ばれる一種の
金属または二種以上の金属よりなる合金等が例示され
る。
On the other hand, in the metal material B, the current collector and lithium undergo an alloying reaction to increase the electrical resistance of the current collector, or the negative electrode lithium is contaminated with Cu or Al of the current collector. This is for suppressing that. This metal material B
As those having a reactivity with lithium lower than that of the metal material A, desirably having a solubility in lithium at 700 ° C. of 1% by weight or less, preferably 0.5% by weight or less, and more preferably 0.2% by weight or less. The above materials are used, and specific examples thereof include one kind of metal selected from Ni, Fe, Cr, Mo, W, and Ta, or an alloy composed of two or more kinds of metals.

【0012】上記集電体Sは、金属材Aの、負極との接
合を意図する表面に金属材Bよりなる層を形成すること
により得らたものであるが、該層の形成方法としては、
電気メッキ、真空蒸着、スパッタ、イオンプレーティン
グ等の物理蒸着法や、電気メッキ、溶射等の方法と圧延
とを組み合わせる方法等のうちから適宜選定される。
The current collector S is obtained by forming a layer of the metal material B on the surface of the metal material A intended to be bonded to the negative electrode. The method for forming the layer is as follows. ,
It is appropriately selected from among physical vapor deposition methods such as electroplating, vacuum deposition, sputtering, and ion plating, and methods of combining rolling with methods such as electroplating and thermal spraying.

【0013】上記金属材Bよりなる層の厚さは、0.0
5〜5μm程度、さらに好ましくは0.1〜1μm程度
であることが望ましい。この層の厚さが0.05μm未
満であると、層を均一に形成することが困難となり、一
方5μmを越えると、層の電気抵抗が大となるため好ま
しくない。
The thickness of the layer made of the metal material B is 0.0
The thickness is preferably about 5 to 5 μm, more preferably about 0.1 to 1 μm. When the thickness of this layer is less than 0.05 μm, it becomes difficult to form the layer uniformly, while when it exceeds 5 μm, the electric resistance of the layer becomes large, which is not preferable.

【0014】図2は本発明のリチウム二次電池の一実施
態様を示す模式図である。同図において、Dはリチウム
二次電池で、負極体1と正極体2との間にセパレータ3
を介在させ、上記負極体1の外側面に圧着した集電体4
aに圧接する負極キャップ5と、正極体2の外側面に圧
着した集電体4bに圧接する正極缶6とを絶縁体7で封
止した構成となっている。
FIG. 2 is a schematic view showing an embodiment of the lithium secondary battery of the present invention. In the figure, D is a lithium secondary battery, and a separator 3 is provided between the negative electrode body 1 and the positive electrode body 2.
Collector 4 which is pressure-bonded to the outer surface of the negative electrode body 1 with the interposition of
A negative electrode cap 5 that is in pressure contact with a and a positive electrode can 6 that is in pressure contact with a current collector 4b that is pressure bonded to the outer surface of the positive electrode body 2 are sealed with an insulator 7.

【0015】上記負極体1に接合される集電体4aとし
ては、前記金属材Aの表面に金属材Bよりなる層が形成
されてなる集電体が使用される。なお、この実施態様に
おいては集電体4aはシート状に成形されている。ま
た、集電体4aにおいて、金属材Bよりなる層は、負極
体1との接合面に形成されている。
As the current collector 4a joined to the negative electrode body 1, a current collector in which a layer of the metal material B is formed on the surface of the metal material A is used. In addition, in this embodiment, the current collector 4a is formed into a sheet shape. In addition, in the current collector 4 a, the layer made of the metal material B is formed on the joint surface with the negative electrode body 1.

【0016】一方、正極体2に接合される集電体4bと
しては、通常使用されるAl、Cu等が使用される。
On the other hand, as the current collector 4b joined to the positive electrode body 2, usually used Al, Cu or the like is used.

【0017】なお、上記集電体4aおよび4bと電極と
を接合する方法としては、例えば図1に示すようなシー
ト状集電体の場合は、集電体を電極に圧着するように
し、またテープ状集電体の場合は、負極活物質または正
極活物質をロール成形、スプレー塗布、減圧プラズマ溶
射等の方法により集電体表面にコーティングするように
することが好ましい。
As a method of joining the current collectors 4a and 4b to the electrodes, for example, in the case of a sheet-shaped current collector as shown in FIG. 1, the current collectors are pressure-bonded to the electrodes. In the case of a tape-shaped current collector, it is preferable that the negative electrode active material or the positive electrode active material is coated on the surface of the current collector by a method such as roll molding, spray coating, or reduced pressure plasma spraying.

【0018】上記負極体1としては、金属リチウムまた
はその合金等が使用できるが、サイクル特性や安全性の
点からリチウム合金を用いることが好ましい。ただし、
このリチウム合金を用いる場合、リチウムの高起電力、
高放電容量といった特性をできるだけ損なわないように
するため、該合金中のリチウム含有率を80原子%以上
とすることが好ましい。なお、この金属リチウムまたは
その合金は、粉末状、シート状等の形状で負極材として
使用される。
As the negative electrode body 1, metallic lithium or an alloy thereof can be used, but it is preferable to use a lithium alloy from the viewpoint of cycle characteristics and safety. However,
When using this lithium alloy, high electromotive force of lithium,
The lithium content in the alloy is preferably 80 atomic% or more in order to prevent the characteristics such as high discharge capacity from being impaired as much as possible. The metallic lithium or its alloy is used as a negative electrode material in the form of powder, sheet, or the like.

【0019】上記正極体2としては、通常リチウム二次
電池の正極に使用されるMnO2 、LiCoO2 、Li
Co0.5 0.5 2 、LiCo0.3 Ni0.3
0.4 2 、MoS2 、TiS2 等の酸化物、硫化物等を
主成分とする正極材が使用できる。なお、上記正極活物
質には、アセチレンブラック、ケッチェンブラック等の
導電材料が、またポリテトラフルオロエチレン、ポリエ
チレン等の結着剤が配合される。
As the positive electrode body 2, MnO 2 , LiCoO 2 and Li which are usually used for positive electrodes of lithium secondary batteries are used.
Co 0.5 P 0.5 O 2 , LiCo 0.3 Ni 0.3 P
A positive electrode material whose main component is an oxide, sulfide, or the like such as 0.4 O 2 , MoS 2 , or TiS 2 can be used. The positive electrode active material is mixed with a conductive material such as acetylene black or Ketjen black, and a binder such as polytetrafluoroethylene or polyethylene.

【0020】上記正極構成体および前記負極材は、キャ
スティング成形、圧縮成形、ロール成形等の任意の方法
で適当な形状、大きさに成形されるか、あるいは前記し
たように集電体表面にコーティングされて本発明のリチ
ウム二次電池Dの負極体1および正極体2として使用さ
れる。
The above-mentioned positive electrode constituent and the above-mentioned negative electrode material are formed into an appropriate shape and size by any method such as casting, compression molding, roll molding, or coated on the surface of the current collector as described above. Then, it is used as the negative electrode body 1 and the positive electrode body 2 of the lithium secondary battery D of the present invention.

【0021】本発明では、電解質として塩類を有機溶媒
に溶解させた電解液や固体電解質が使用できる。電解質
が電解液の場合、この塩類としては、LiClO 4 ,LiB
F4 ,LiPF 6,LiF 6, LiAlCl4 , Li(CF 3SO2 ) 2 N 等が
使用でき、エチレンカーボネート,プロピレンカーボネ
ート,ジメチルスルホキシド,スルホラン,γ−ブチロ
ラクトン,1,2-ジメトキシエタン,N,N-ジメチルホルム
アミド,テトラヒドロフラン,1,3-ジオキソラン,2-メ
チルテトラヒドロフラン,ジエチルエーテルおよびこれ
らの混合物等の有機溶媒に溶解させて濃度0.1〜3モ
ル/リットルに調製して使用する。
In the present invention, salts are used as electrolytes in organic solvents.
An electrolytic solution or solid electrolyte dissolved in can be used. Electrolytes
If the electrolyte is electrolyte, LiClOFour , LiB
FFour, LiPF6, LiF 6, LiAlClFour , Li (CF3SO2)2N etc.
Can be used, ethylene carbonate, propylene carbon
, Dimethyl sulfoxide, sulfolane, γ-butyro
Lactone, 1,2-dimethoxyethane, N, N-dimethylform
Amide, tetrahydrofuran, 1,3-dioxolane, 2-me
Cyltetrahydrofuran, diethyl ether and this
When dissolved in an organic solvent such as a mixture of
It is adjusted to 1 / liter before use.

【0022】上記電解液は、多孔性ポリマーやガラスフ
ィルタのようなセパレータ3に含浸あるいは充填させ
て、電解質として使用する。
The electrolytic solution is used as an electrolyte by impregnating or filling a separator 3 such as a porous polymer or a glass filter.

【0023】電解質が固体電解質の場合、上記塩類をポ
リエチレンオキシド,ポリプロピレンオキシド,ポリホ
スファゼン,ポリアジリジン,ポリエチレンスルフィド
等やこれらの誘導体、混合物、複合体等に混合して使用
する。この固体電解質は、負極体1と正極体2とのセパ
レータ3を兼ねる。
When the electrolyte is a solid electrolyte, the above-mentioned salts are mixed with polyethylene oxide, polypropylene oxide, polyphosphazene, polyaziridine, polyethylene sulfide, etc. or their derivatives, mixtures, complexes and the like. This solid electrolyte also serves as a separator 3 for the negative electrode body 1 and the positive electrode body 2.

【0024】なお、本発明では、負極体1、セパレータ
(あるいは固体電解質)3、正極体2等をテープ状に成
形し、これらを巻いてスパイラル構造とすると、さらに
高電気容量のリチウム二次電池を製造することができ
る。図3は、上記電極およびセパレータがスパイラル状
に巻かれた構成としたリチウム二次電池の一実施態様を
示す模式図である。同図において、Dはリチウム二次電
池で、負極テープ1、セパレータ3および正極テープ2
を重ね合わせたものを巻いて得られたスパイラル体が電
池缶5に装填され、負極テープ1中の集電体テープ4a
が上記電池缶5の底部に、一方正極テープ2中の集電体
テープ4bが正極キャップ6にそれぞれ接続されてい
る。上記電池缶5内には電解液が注入されており、電池
缶5と正極キャップ6とが絶縁体7で封止されている。
In the present invention, the negative electrode body 1, the separator (or the solid electrolyte) 3, the positive electrode body 2 and the like are formed into a tape shape and wound into a spiral structure to form a lithium secondary battery having a higher electric capacity. Can be manufactured. FIG. 3 is a schematic diagram showing an embodiment of a lithium secondary battery in which the electrode and the separator are spirally wound. In the figure, D is a lithium secondary battery, which is a negative electrode tape 1, a separator 3 and a positive electrode tape 2.
The spiral body obtained by winding the stacked ones is loaded into the battery can 5, and the current collector tape 4a in the negative electrode tape 1 is
Is connected to the bottom of the battery can 5 while the current collector tape 4b in the positive electrode tape 2 is connected to the positive electrode cap 6. An electrolytic solution is injected into the battery can 5, and the battery can 5 and the positive electrode cap 6 are sealed with an insulator 7.

【0025】[0025]

【作用】上記リチウム二次電池用集電体は、20℃にお
ける電気抵抗率が5×10-8Ω・m以下の金属材Aの、
負極との接合を意図する表面に、リチウムとの反応性が
金属材Aより低い金属材Bよりなる層を形成してなるも
のであり、該金属材Bよりなる層によって集電体がリチ
ウムと反応することが抑制されるとともに、金属材Aの
高導電率により集電体の電気抵抗が低く抑えられてい
る。
The current collector for the lithium secondary battery comprises a metal material A having an electric resistivity of 5 × 10 −8 Ω · m or less at 20 ° C.
A layer made of a metal material B having a reactivity with lithium lower than that of the metal material A is formed on the surface intended to be bonded to the negative electrode, and the layer made of the metal material B serves as a collector for lithium. The reaction is suppressed, and the high electrical conductivity of the metal material A keeps the electrical resistance of the current collector low.

【0026】[0026]

【実施例】以下、実施例を示し本発明をより具体的に説
明する。なお、本発明がこれに限定されるものでないこ
とは言うまでもない。 実施例1 (集電体の作製)幅41mm、長さ250mm、厚さ10μ
mのCuテープの全面に、無電解メッキにより厚さ1μ
mのNi層を形成して、集電体テープを調製した。
EXAMPLES Hereinafter, the present invention will be described more specifically by showing examples. Needless to say, the present invention is not limited to this. Example 1 (Production of Current Collector) Width 41 mm, Length 250 mm, Thickness 10 μ
Thickness of 1μ by electroless plating on the entire surface of Cu tape of m
A Ni layer of m was formed to prepare a current collector tape.

【0027】(負極体の作製)Li−Ag−Te合金
(組成が原子比でLi:Ag:Te=95:10:3で
あるもの)の粉末を原料として、Ar雰囲気下の減圧プ
ラズマ溶射により上記集電体テープの両面に厚さ50μ
mの合金層を形成して負極テープを調製した。
(Preparation of Negative Electrode Body) A powder of Li-Ag-Te alloy (having an atomic ratio of Li: Ag: Te = 95: 10: 3) was used as a raw material and was subjected to reduced pressure plasma spraying in an Ar atmosphere. 50μ thick on both sides of the current collector tape
An alloy layer of m was formed to prepare a negative electrode tape.

【0028】(正極体の作製)炭酸リチウムと塩基性コ
バルトとリン酸含有率85%のリン酸水溶液とを、原子
比でLi:Co:P=2:1.5:0.5となる量をそ
れぞれ秤量して十分に混合した後、これをアルミナ製る
つぼに入れて電気炉で24時間900℃で加熱処理を行
って酸化物質を調製した。この酸化物質は、リチウムの
リン酸塩、リチウム・コバルトのリン酸塩およびコバル
ト酸化物よりなる混合物である。ついで、この酸化物質
をボールミルにより粉砕して、ふるいにより粒径20μ
mの粉末状正極活物質を調製した。ついで、上記正極活
物質46重量部、アセチレンブラック4重量部、ポリフ
ッ化ビニリデン2重量部およびn−メチルピロリドン5
0重量部を混合し、この混合物を幅38mm、長さ240
mm、厚さ20μmのAlテープに塗布し真空乾燥して、
厚さ150μmの正極テープを調製した。
(Production of Positive Electrode) Lithium carbonate, basic cobalt, and an aqueous phosphoric acid solution having a phosphoric acid content of 85%, in an atomic ratio of Li: Co: P = 2: 1.5: 0.5. Were weighed and thoroughly mixed, then placed in an alumina crucible and heat-treated in an electric furnace at 900 ° C. for 24 hours to prepare an oxide substance. The oxidant is a mixture of lithium phosphate, lithium cobalt phosphate and cobalt oxide. Then, this oxide is crushed with a ball mill and sieved to a particle size of 20μ.
m powdered positive electrode active material was prepared. Then, 46 parts by weight of the positive electrode active material, 4 parts by weight of acetylene black, 2 parts by weight of polyvinylidene fluoride and 5 parts of n-methylpyrrolidone.
Mix 0 parts by weight, and mix this mixture with a width of 38 mm and a length of 240
mm, 20 μm thick Al tape is applied and vacuum dried,
A positive electrode tape having a thickness of 150 μm was prepared.

【0029】(セパレータの作製)厚さ20μmの多孔
性ポリプロピレンフィルムを、幅44mm、長さ250mm
に調製して、セパレータを作製した。
(Preparation of Separator) A porous polypropylene film having a thickness of 20 μm was formed with a width of 44 mm and a length of 250 mm.
To prepare a separator.

【0030】(電解液の調製)含水量を50ppm 以下に
調製したプロピレンカーボネートに、1モル/リットル
の過塩素酸リチウムを溶解して電解液を調製した。
(Preparation of Electrolyte Solution) An electrolyte solution was prepared by dissolving 1 mol / liter of lithium perchlorate in propylene carbonate having a water content of 50 ppm or less.

【0031】(リチウム二次電池の作製)上記セパレー
タ、負極テープ、セパレータおよび正極テープをこの順
序に重ね合わせ、正極テープが内側となるように巻いて
スパイラル体を得た。このスパイラル体を、図3に示す
ように、直径15mm、高さ50mmのNiメッキFe製電
池缶5に装填した。その際、負極テープ1中の集電体テ
ープ4aに接続しておいたリード線8aを上記電池缶5
の底部に、一方正極テープ2中のAlテープ4bに接続
しておいたリード線8bをNi製正極キャップ6にそれ
ぞれ溶接した。ついで、この電池缶5内に前記電解液3
mlを注入した後、電池缶5に正極キャップ6を被せてガ
スケット7で封止してかしめ、円筒形リチウム二次電池
Dを作製した。
(Production of Lithium Secondary Battery) The above separator, negative electrode tape, separator and positive electrode tape were superposed in this order and wound so that the positive electrode tape was on the inside to obtain a spiral body. This spiral body was loaded into a Ni-plated Fe battery can 5 having a diameter of 15 mm and a height of 50 mm, as shown in FIG. At that time, the lead wire 8a connected to the current collector tape 4a in the negative electrode tape 1 is connected to the battery can 5 described above.
The lead wire 8b connected to the Al tape 4b in the positive electrode tape 2 was welded to the positive electrode cap 6 made of Ni, respectively, at the bottom of the. Then, the electrolytic solution 3 is placed in the battery can 5.
After injecting ml, the battery can 5 was covered with the positive electrode cap 6, sealed with the gasket 7, and caulked to prepare a cylindrical lithium secondary battery D.

【0032】(リチウム二次電池の充放電試験)上記リ
チウム二次電池を100時間放置した後、電流密度0.
4mA/cm2で起電力が4.2Vに上昇するまで充電し、つ
いで同じ電流密度で起電力が2.0Vに降下するまで放
電させた。この充放電において、充電後の電池起電力お
よび放電時間は表1に示すとおりであった。
(Charge / Discharge Test of Lithium Secondary Battery) After leaving the above lithium secondary battery for 100 hours, a current density of 0.
It was charged at 4 mA / cm 2 until the electromotive force increased to 4.2 V, and then discharged at the same current density until the electromotive force dropped to 2.0 V. In this charging / discharging, the battery electromotive force and the discharging time after charging were as shown in Table 1.

【0033】[0033]

【表1】 [Table 1]

【0034】比較例1 上記実施例1において、Cuテープ上にNi層を形成せ
ずに集電体テープとして使用する以外は全て同様にして
リチウム二次電池の製造および充放電試験を行ったとこ
ろ、充電後の電池起電力および放電時間は表1に示すと
おりであった。
Comparative Example 1 A lithium secondary battery was manufactured and a charge / discharge test was conducted in the same manner as in Example 1 except that the Ni layer was not formed on the Cu tape and used as a current collector tape. The battery electromotive force after discharge and the discharge time were as shown in Table 1.

【0035】実施例2 上記実施例1において、Cuテープの全面に、スパッタ
により厚さ0.8μmのTa層を形成して集電体テープ
を調製する以外は全て同様にしてリチウム二次電池を製
造し、この電池を500時間放置する以外は実施例1と
全て同様にして充放電試験を行ったところ、充電後の電
池起電力および放電時間は表1に示すとおりであった。
Example 2 A lithium secondary battery was prepared in the same manner as in Example 1 except that a Ta layer having a thickness of 0.8 μm was formed on the entire surface of the Cu tape by sputtering to prepare a current collector tape. A charging / discharging test was conducted in the same manner as in Example 1 except that the battery was manufactured and allowed to stand for 500 hours, and the battery electromotive force and the discharging time after charging were as shown in Table 1.

【0036】比較例2 上記実施例2において、Cuテープ上にTa層を形成せ
ずに集電体テープとして使用する以外は全て同様にして
リチウム二次電池の製造および充放電試験を行ったとこ
ろ、充電後の電池起電力および放電時間は表1に示すと
おりであった。
Comparative Example 2 A lithium secondary battery was manufactured and a charge / discharge test was conducted in the same manner as in Example 2 except that the Ta layer was not formed on the Cu tape and used as a current collector tape. The battery electromotive force after discharge and the discharge time were as shown in Table 1.

【0037】実施例3 上記実施例1において、Li−Ag−Te合金粉末(平
均粒径10μm)を、Ni層を形成した集電体テープ上
に厚さ80μmとなるように120℃でのホットプレス
により圧着して負極テープを調製する以外は全て同様に
してリチウム二次電池の製造および充放電試験を行った
ところ、充電後の電池起電力および放電時間は表1に示
すとおりであった。
Example 3 In Example 1, the Li-Ag-Te alloy powder (average particle size: 10 μm) was hot-rolled at 120 ° C. on a current collector tape having a Ni layer so that the thickness was 80 μm. A lithium secondary battery was manufactured and a charge / discharge test was conducted in the same manner except that the negative electrode tape was prepared by pressure bonding with a press. The battery electromotive force and the discharge time after charging were as shown in Table 1.

【0038】比較例3 上記実施例3において、Cuテープ上にNi層を形成せ
ずに集電体テープとして使用する以外は全て同様にして
リチウム二次電池の製造および充放電試験を行ったとこ
ろ、充電後の電池起電力および放電時間は表1に示すと
おりであった。
Comparative Example 3 A lithium secondary battery was manufactured and a charge / discharge test was conducted in the same manner as in Example 3 except that the Ni layer was not formed on the Cu tape and used as a current collector tape. The battery electromotive force after discharge and the discharge time were as shown in Table 1.

【0039】実施例4〜7 上記実施例1において、Cuテープ上のNi層の厚さを
表1に示すように変量して集電体テープを調製する以外
は全て同様にしてリチウム二次電池の製造および充放電
試験を行ったところ、充電後の電池起電力および放電時
間は表1に示すとおりであった。
Examples 4 to 7 A lithium secondary battery was prepared in the same manner as in Example 1 except that the current collector tape was prepared by varying the thickness of the Ni layer on the Cu tape as shown in Table 1. Was manufactured and a charge / discharge test was conducted. The battery electromotive force and the discharge time after charging were as shown in Table 1.

【0040】[0040]

【発明の効果】以上詳述したように、本発明のリチウム
二次電池用集電体は、20℃における電気抵抗率が5×
10-8Ω・m以下の金属材Aの、負極との接合を意図す
る表面に、リチウムとの反応性が金属材Aよりも低い金
属材Bよりなる層を形成してなるものであるので、金属
材Bよりなる層によって集電体がリチウムと反応するこ
とが抑制されるとともに、金属材Aの高導電率により集
電体の電気抵抗が低く抑えられたものとなっている。し
たがって、上記リチウム二次電池用集電体を用いてなる
リチウム二次電池は、リチウム負極の劣化や電池起電力
の低下が防止され、サイクル特性に優れる高起電力、高
容量のリチウム二次電池となっている。
As described in detail above, the current collector for a lithium secondary battery of the present invention has an electric resistivity of 5 × at 20 ° C.
Since a metal material B having a reactivity with lithium lower than that of the metal material A is formed on the surface of the metal material A having a resistance of 10 −8 Ω · m or less, which is intended to be bonded to the negative electrode. The reaction of the current collector with lithium is suppressed by the layer made of the metal material B, and the high electrical conductivity of the metal material A suppresses the electrical resistance of the current collector to a low level. Therefore, a lithium secondary battery using the current collector for a lithium secondary battery described above is a lithium secondary battery with high electromotive force and high capacity, which is excellent in cycle characteristics, in which deterioration of the lithium negative electrode and decrease in battery electromotive force are prevented. Has become.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すリチウム二次電池用集
電体の模式断面図である。
FIG. 1 is a schematic cross-sectional view of a lithium secondary battery current collector showing an embodiment of the present invention.

【図2】本発明の一実施例を示すリチウム二次電池の模
式断面図である。
FIG. 2 is a schematic cross-sectional view of a lithium secondary battery showing an example of the present invention.

【図3】本発明の他の実施例を示すリチウム二次電池の
斜視断面図である。
FIG. 3 is a perspective sectional view of a lithium secondary battery showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

A 20℃における電気抵抗率が5×10-8Ω・m以下
の金属材 B リチウムとの反応性が金属材Aよりも低い金属材 S リチウム二次電池用集電体
A metal material having an electric resistivity of 5 × 10 −8 Ω · m or less at 20 ° C. B metal material having lower reactivity with lithium than metal material A S current collector for lithium secondary battery

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 20℃における電気抵抗率が5×10-8
Ω・m以下の金属材(A)の、負極との接合を意図する
表面に、金属材(A)よりもリチウムとの反応性が低い
金属材よりなる層を形成してなるリチウム二次電池用集
電体。
1. The electrical resistivity at 20 ° C. is 5 × 10 −8.
A lithium secondary battery in which a layer of a metal material having a reactivity with lithium lower than that of the metal material (A) is formed on the surface of the metal material (A) of Ω · m or less intended to be bonded to the negative electrode. Current collector.
【請求項2】 金属材(A)よりもリチウムとの反応性
が低い金属材が、700℃におけるリチウムへの溶解度
が1重量%以下の金属材である請求項1記載のリチウム
二次電池用集電体。
2. The lithium secondary battery according to claim 1, wherein the metal material having a lower reactivity with lithium than the metal material (A) has a solubility in lithium at 700 ° C. of 1% by weight or less. Current collector.
【請求項3】 金属材(A)がCuまたはAlである請
求項1記載のリチウム二次電池用集電体。
3. The current collector for a lithium secondary battery according to claim 1, wherein the metal material (A) is Cu or Al.
【請求項4】 金属材(A)よりもリチウムとの反応性
が低い金属材が、Ni、Fe、Cr、Mo、W、Taよ
り選ばれる一種の金属または二種以上の金属よりなる合
金である請求項1記載のリチウム二次電池用集電体。
4. The metal material having a lower reactivity with lithium than the metal material (A) is a metal selected from Ni, Fe, Cr, Mo, W and Ta or an alloy composed of two or more metals. The current collector for a lithium secondary battery according to claim 1.
【請求項5】 金属材(A)よりもリチウムとの反応性
が低い金属材よりなる層の厚さが0.05〜5μmであ
る請求項1記載のリチウム二次電池用集電体。
5. The current collector for a lithium secondary battery according to claim 1, wherein the layer made of a metal material having a lower reactivity with lithium than the metal material (A) has a thickness of 0.05 to 5 μm.
【請求項6】 リチウムまたはリチウム合金よりなる負
極と正極と電解質とで構成され、上記負極に請求項1〜
5のいずれかに記載のリチウム二次電池用集電体を接合
したものであるリチウム二次電池。
6. A negative electrode made of lithium or a lithium alloy, a positive electrode, and an electrolyte, wherein
5. A lithium secondary battery, which is obtained by joining the current collector for a lithium secondary battery according to any one of 5 above.
【請求項7】 負極が、リチウム含有率80原子%以上
のリチウム合金よりなるものである請求項6記載のリチ
ウム二次電池。
7. The lithium secondary battery according to claim 6, wherein the negative electrode is made of a lithium alloy having a lithium content of 80 atomic% or more.
JP5250717A 1993-10-06 1993-10-06 Lithium secondary battery and its current collecting body Pending JPH07105952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5250717A JPH07105952A (en) 1993-10-06 1993-10-06 Lithium secondary battery and its current collecting body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5250717A JPH07105952A (en) 1993-10-06 1993-10-06 Lithium secondary battery and its current collecting body

Publications (1)

Publication Number Publication Date
JPH07105952A true JPH07105952A (en) 1995-04-21

Family

ID=17212008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5250717A Pending JPH07105952A (en) 1993-10-06 1993-10-06 Lithium secondary battery and its current collecting body

Country Status (1)

Country Link
JP (1) JPH07105952A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306504A (en) * 1996-05-08 1997-11-28 Sony Corp Nonaqueous electrolyte secondary battery
JPH10125353A (en) * 1996-10-17 1998-05-15 Fuji Elelctrochem Co Ltd Spiral nonaqueous electrolyte battery
JP2001250560A (en) * 2000-03-08 2001-09-14 Enax Inc Lithium ion secondary cell
WO2014141962A1 (en) * 2013-03-11 2014-09-18 株式会社村田製作所 All-solid-state battery
JP2020187929A (en) * 2019-05-15 2020-11-19 株式会社アルバック Current collector of negative electrode for lithium ion secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306504A (en) * 1996-05-08 1997-11-28 Sony Corp Nonaqueous electrolyte secondary battery
JP3742144B2 (en) * 1996-05-08 2006-02-01 ソニー株式会社 Nonaqueous electrolyte secondary battery and planar current collector for nonaqueous electrolyte secondary battery
JPH10125353A (en) * 1996-10-17 1998-05-15 Fuji Elelctrochem Co Ltd Spiral nonaqueous electrolyte battery
JP2001250560A (en) * 2000-03-08 2001-09-14 Enax Inc Lithium ion secondary cell
WO2014141962A1 (en) * 2013-03-11 2014-09-18 株式会社村田製作所 All-solid-state battery
JP2020187929A (en) * 2019-05-15 2020-11-19 株式会社アルバック Current collector of negative electrode for lithium ion secondary battery

Similar Documents

Publication Publication Date Title
EP2262037B1 (en) Lithium secondary battery using ionic liquid
KR100772751B1 (en) Non-aqueous electrolyte secondary battery
JP3619125B2 (en) Nonaqueous electrolyte secondary battery
EP3070767A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JP2009021134A (en) Nonaqueous electrolyte battery and battery pack
WO2003044882A1 (en) Electrode active material, electrode, lithium ion secondary cell, method for producing electrode active material, and method for producing lithium ion secondary cell
JP2007335331A (en) Positive electrode active material and its manufacturing method, positive electrode, its manufacturing method, and secondary battery
EP2169756A1 (en) Lithium secondary battery
JP3405380B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH11283664A (en) Solid-electrolyte battery
JP3291750B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH09115523A (en) Nonaqueous electrolytic secondary battery
JP2003242965A (en) Two sheets of positive electrode collectors for alkaline metal ion electrochemical battery
JP4830207B2 (en) battery
JP3393243B2 (en) Non-aqueous electrolyte secondary battery
JPH06310126A (en) Nonaquous electrolytic secondary battery
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
JPH07105952A (en) Lithium secondary battery and its current collecting body
JP2003017058A (en) Non-aqueous electrolyte battery
JP3432922B2 (en) Solid electrolyte secondary battery
JPH0536401A (en) Lithium secondary battery
JP2730641B2 (en) Lithium secondary battery
JP3405419B2 (en) Non-aqueous electrolyte secondary battery
JP2000277095A (en) Lithium ion battery
JPH08124597A (en) Solid electrolytic secondary cell