JP3405419B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3405419B2
JP3405419B2 JP27571293A JP27571293A JP3405419B2 JP 3405419 B2 JP3405419 B2 JP 3405419B2 JP 27571293 A JP27571293 A JP 27571293A JP 27571293 A JP27571293 A JP 27571293A JP 3405419 B2 JP3405419 B2 JP 3405419B2
Authority
JP
Japan
Prior art keywords
battery
negative electrode
aqueous electrolyte
aluminum
aluminum powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27571293A
Other languages
Japanese (ja)
Other versions
JPH07130359A (en
Inventor
修二 伊藤
正樹 長谷川
祐之 村井
靖彦 美藤
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP27571293A priority Critical patent/JP3405419B2/en
Publication of JPH07130359A publication Critical patent/JPH07130359A/en
Application granted granted Critical
Publication of JP3405419B2 publication Critical patent/JP3405419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、最近開発が盛んに行わ
れている非水電解質二次電池、特にその負極の改良に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, which has been actively developed recently, and more particularly to improvement of its negative electrode.

【0002】[0002]

【従来の技術】リチウムまたはリチウム化合物を負極と
する非水電解質二次電池は、高電圧で高エネルギー密度
が期待され、多くの研究が行われている。これまで非水
電解質二次電池の正極活物質には、LiCoO2、V2
5、Cr2 5、MnO2、TiS2、MoS2などの遷移金
属の酸化物やカルコゲン化合物が知られている。これら
の化合物は、層状もしくはトンネル構造を有し、リチウ
ムイオンが出入りできる結晶構造を持っている。一方、
負極活物質としては金属リチウムが多く検討されてき
た。しかしながら、充電時にリチウム表面に樹枝状にリ
チウムが析出し、充放電効率が低下したり正極と接して
内部短絡を生じたりするという問題点を有していた。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries using lithium or a lithium compound as a negative electrode are expected to have high energy density at high voltage, and many studies have been conducted. Hitherto, LiCoO 2 , V 2 O have been used as positive electrode active materials for non-aqueous electrolyte secondary batteries.
Oxides of transition metals such as 5 , Cr 2 O 5 , MnO 2 , TiS 2 and MoS 2 and chalcogen compounds are known. These compounds have a layered structure or a tunnel structure, and have a crystal structure that allows lithium ions to enter and exit. on the other hand,
Many metallic lithiums have been studied as the negative electrode active material. However, there is a problem that lithium is dendritically deposited on the surface of lithium during charging, resulting in a decrease in charge / discharge efficiency and an internal short circuit in contact with the positive electrode.

【0003】[0003]

【発明が解決しようとする課題】このような問題を解決
する手段として、リチウムの樹枝状成長を抑制しリチウ
ムを吸蔵、放出することできるリチウム−アルミニウム
などのリチウム合金板を負極に用いる検討がなされてい
る。しかしながら、リチウム合金板を用いた場合、深い
充放電を繰り返すと電極の微細化が生じサイクル特性に
問題があった。そこで、アルミニウムあるいはリチウム
−アルミニウム合金粉末と導電剤である炭素粉末と結着
剤で電極を構成し、サイクル特性を改善する提案がなさ
れている。上記構成により、微細化してくるアルミニウ
ムの集電不良を抑制することができる。しかしながら、
アルミニウム粉末同志あるいはアルミニウムと炭素粉末
間を介した電子の授受は、必ずしも良好とはいえず、分
極特性が低下するなど電池特性にばらつきが生じる問題
がある。これはアルミニウムの表面に生成した酸化膜等
の被膜により、電子の授受が損なわれることによるもの
と考えられる。
As a means for solving such a problem, studies have been made to use a lithium alloy plate such as lithium-aluminum capable of storing and releasing lithium while suppressing dendritic growth of lithium as a negative electrode. ing. However, when a lithium alloy plate is used, repeated deep charging / discharging causes miniaturization of electrodes, which causes a problem in cycle characteristics. Therefore, it has been proposed to improve the cycle characteristics by forming an electrode with aluminum or lithium-aluminum alloy powder, carbon powder as a conductive agent, and a binder. With the above configuration, it is possible to suppress the current collection failure of aluminum that is becoming finer. However,
Electron transfer between aluminum powders or between aluminum and carbon powders is not always good, and there is a problem in that battery characteristics vary, such as deterioration in polarization characteristics. It is considered that this is because the transfer of electrons is impaired by the film such as an oxide film formed on the surface of aluminum.

【0004】[0004]

【課題を解決するための手段】本発明は、上記課題を解
決するために、充放電可能な正極、非水電解質、ならび
リチウムを可逆的に吸蔵、放出できる金属もしくは
金粉末および炭素材を含む負極を具備する非水電解質二
次電池において、前記負極に用いる金属または合金粉末
の粒径(Xμm)と、極板作製後の負極合剤厚み(Yμ
m)とをY/2≦Xの関係を満足するようにする。
In order to solve the above-mentioned problems, the present invention provides a chargeable / dischargeable positive electrode, a non-aqueous electrolyte, and
Reversibly absorbing, non-aqueous electrolyte secondary battery comprising a negative electrode containing a release can metal or if <br/> alloy powder and carbon material, the particle size of the metal or alloy powder to be used for the negative electrode with lithium (Xμm) And the thickness of the negative electrode mixture (Yμ
m) and Y / 2 ≦ X are satisfied.

【0005】[0005]

【作用】リチウムを可逆的に吸蔵、放出できる金属ある
いは合金粉末の粒径(Xμm)を、極板作製後の負極合
剤厚み(Yμm)に対してY/2≦Xになるようにする
ことで、負極内の金属または合金粉末、例えばアルミニ
ウム粉末粒子間あるいはアルミニウムと導電剤の炭素粉
末間を介した電子のパスを少なくすることができる。仮
にY/2>Xになると、電極内のアルミニウム粉末粒子
間あるいはアルミニウムと導電剤炭素粉末間を介した電
子のパスが多くなり、分極特性が低下する。その結果、
容量低下等電池特性にばらつきが生じる。リチウムを可
逆的に吸蔵、放出できる金属あるいは合金粉末の粒径
(Xμm)を、極板作製後の負極合剤厚み(Yμm)に
対してY/2≦Xになるようにすることで、分極特性を
低下させることなく、高容量の電池を構成することがで
きる。
Function: The particle size (X μm) of the metal or alloy powder capable of reversibly occluding and releasing lithium should be Y / 2 ≦ X with respect to the negative electrode mixture thickness (Y μm) after the electrode plate is manufactured. Thus, it is possible to reduce the electron path through the metal or alloy powder in the negative electrode, for example, between the aluminum powder particles or between the aluminum and the carbon powder of the conductive agent. If Y / 2> X, the number of electron paths between the aluminum powder particles in the electrode or between aluminum and the conductive agent carbon powder increases, and the polarization characteristics deteriorate. as a result,
Variations in battery characteristics such as reduced capacity occur. Polarization is performed by setting the particle size (X μm) of the metal or alloy powder capable of reversibly occluding and releasing lithium to Y / 2 ≦ X with respect to the negative electrode mixture thickness (Y μm) after the electrode plate is manufactured. A high-capacity battery can be constructed without lowering the characteristics.

【0006】[0006]

【実施例】以下、本発明の実施例について詳細に説明す
る。図1ならびに図2にそれぞれ示したコイン型電池な
らびに円筒型電池を作製して、本発明の効果を示す。コ
イン型電池の負極には、表1に示す各種粒径に分級した
アルミニウムの粉末を用い、円筒型電池の負極には、表
2に示す各種粒径に分級したアルミニウムの粉末を用い
る。正極には、充電、放電に対して可逆性を有する活物
質として、LiMn24を用いる。
EXAMPLES Examples of the present invention will be described in detail below. The effects of the present invention are shown by producing the coin type battery and the cylindrical type battery shown in FIGS. 1 and 2, respectively. Aluminum powder classified into various particle sizes shown in Table 1 is used for the negative electrode of the coin-type battery, and aluminum powder classified into various particle sizes shown in Table 2 is used for the negative electrode of the cylindrical battery. LiMn 2 O 4 is used for the positive electrode as an active material having reversibility for charge and discharge.

【0007】コイン型電池の作製法を下記に示す。正極
活物質100gに対して、導電剤のアセチレンブラック
7g、および結着剤のポリ4フッ化エチレン7gを加
え、混合して正極合剤とし、この正極合剤1gを直径1
7.5mmの円板に加圧成型して正極1とし、ケース2
の中央に配置する。この正極上に微孔性ポリプロピレン
セパレータ3を置き、1モル/lの過塩素酸リチウム
(LiClO4)を溶解した体積比1:1のエチレンカ
ーボネートとジメトキシエタンの混合溶媒からなる非水
電解液を注液する。負極4は、表1に示す各種粒径に分
級したアルミニウムの粉末60gと黒鉛粉末30gと結
着剤のスチレンブタジエンゴム粉末10gを混合して負
極合剤とし、この合剤0.15gを直径17.5mmの
円板に加圧成型して作製する。負極合剤の厚みは、いず
れも360μmとする。この負極をセパレータ上にの
せ、さらにその上に外周部にポリプロピレン製ガスケッ
ト5を付けた封口板6を組み合わせて封口し電池とす
る。
A method for manufacturing a coin type battery is shown below. To 100 g of the positive electrode active material, 7 g of acetylene black as a conductive agent and 7 g of polytetrafluoroethylene as a binder were added and mixed to form a positive electrode mixture.
A positive electrode 1 was formed by pressing a 7.5 mm disc into a case 2
Place it in the center of. A microporous polypropylene separator 3 is placed on this positive electrode, and a non-aqueous electrolytic solution composed of a mixed solvent of ethylene carbonate and dimethoxyethane at a volume ratio of 1: 1 in which 1 mol / l of lithium perchlorate (LiClO 4 ) is dissolved is added. Inject liquid. For the negative electrode 4, 60 g of aluminum powder classified into various particle sizes shown in Table 1, 30 g of graphite powder, and 10 g of styrene-butadiene rubber powder as a binder were mixed to prepare a negative electrode mixture. It is prepared by pressure molding into a disk of 0.5 mm. The thickness of each negative electrode mixture is 360 μm. This negative electrode is placed on a separator, and a sealing plate 6 having a polypropylene gasket 5 attached to the outer peripheral portion is further combined thereon to seal the battery to obtain a battery.

【0008】なお、以後360〜250μmに分級した
アルミニウムの粉末を用いた電池を電池(A)とし、以
下250〜180μm、180〜90μm、90μm以
下に分級したアルミニウムの粉末を用いた電池をそれぞ
れ電池(B)、電池(C)、電池(D)とする。これら
作製した電池は、電圧範囲4.2〜3V、電流を3mA
として充放電を行った。表1に2サイクル目の放電容量
比を示す。なお、各種コイン型電池の放電容量比は下記
の計算式にあてはめた値を示す。 放電容量比(%)=各種コイン型電池の2サイクル目の
放電容量/2サイクル目の電池(B)の放電容量×10
0。
The battery using aluminum powder classified to 360 to 250 μm is hereinafter referred to as battery (A), and the battery using aluminum powder classified to 250 to 180 μm, 180 to 90 μm, and 90 μm or less is used as the battery. (B), battery (C), and battery (D). The prepared batteries have a voltage range of 4.2 to 3 V and a current of 3 mA.
Was charged and discharged. Table 1 shows the discharge capacity ratio in the second cycle. In addition, the discharge capacity ratio of each coin type battery shows the value applied to the following calculation formula. Discharge capacity ratio (%) = second cycle discharge capacity of various coin type batteries / second cycle battery (B) discharge capacity × 10
0.

【0009】[0009]

【表1】 [Table 1]

【0010】次に円筒型電池の作製法を下記に示す。正
極板は、正極活物質100gに対して導電剤の炭素粉末
を10g、結着剤のポリフッ化ビニリデンを5g加え、
ジメチルホルムアミドを用いてペースト状にし、チタン
の芯材に塗布乾燥し、圧延することにより作製する。負
極板は、表2に示す各種粒径に分級したアルミニウムの
粉末60gと黒鉛粉末30gに対して結着剤のポリフッ
化ビニリデン10gを加え、ジメチルホルムアミドを用
いてペースト状にし、これをニッケル箔からなる芯材に
塗布、乾燥し、圧延することにより作製する。負極合剤
の厚みは、いずれも80μmである。電池の組み立て
は、電極体はスポット溶接にて取り付けた芯材と同材質
の正極リード14を有する正極板11と負極リード15
を有する負極板12間に両極板より幅の広い帯状の多孔
性ポリプロピレン製セパレータ13を介在して全体を渦
巻状に捲回して構成する。さらに、上記電極体の上下そ
れぞれにポリプロピレン製の絶縁板16、17を配して
電槽18に挿入し、電槽18の上部に段部を形成させた
後、非水電解液として、1モル/lの過塩素酸リチウム
を溶解した体積比1:1のエチレンカーボネートとジメ
トキシエタンの混合溶液を注入し、正極端子20を有す
る封口板19で密閉して電池とする。
Next, a method for manufacturing a cylindrical battery will be described below. For the positive electrode plate, 10 g of carbon powder as a conductive agent and 5 g of polyvinylidene fluoride as a binder were added to 100 g of the positive electrode active material,
It is prepared by forming a paste using dimethylformamide, coating and drying on a titanium core material, and rolling. For the negative electrode plate, 60 g of aluminum powder classified into various particle sizes shown in Table 2 and 30 g of graphite powder were added with 10 g of polyvinylidene fluoride as a binder and made into a paste using dimethylformamide. It is manufactured by applying it to a core material, drying it, and rolling it. The thickness of each negative electrode mixture is 80 μm. In assembling the battery, the electrode body has a positive electrode plate 11 having a positive electrode lead 14 of the same material as the core material attached by spot welding, and a negative electrode lead 15
The strip-shaped porous polypropylene separator 13 having a width wider than those of the both electrode plates is interposed between the negative electrode plates 12 having the above-mentioned structure, and the whole is spirally wound. Further, polypropylene insulating plates 16 and 17 are arranged on the upper and lower sides of the electrode body, respectively, and inserted into a battery case 18 to form a step on the upper part of the battery case 18. A mixed solution of ethylene carbonate and dimethoxyethane having a volume ratio of 1: 1 in which 1 / l of lithium perchlorate is dissolved is injected and sealed with a sealing plate 19 having a positive electrode terminal 20 to obtain a battery.

【0011】なお、以後80〜60μmに分級したアル
ミニウムの粉末を用いた電池を電池(E)とし、以下6
0〜40μm、40〜30μm、30〜15μm、15
μm以下に分級したアルミニウムの粉末を用いた電池を
それぞれ電池(F)、電池(G)、電池(H)、電池
(I)とする。これら作製した電池は、電圧範囲4.2
〜3V、電流密度を0.5mA/cm2として充放電を
行った。表2に2サイクル目の放電容量比を示す。な
お、各種円筒型電池の放電容量比は下記の計算式にあて
はめた値を示す。 放電容量比(%)=各種円筒型電池の2サイクル目の放
電容量/2サイクル目の電池(F)の放電容量×10
0。
A battery using aluminum powder classified to 80 to 60 μm will be referred to as battery (E), and the following 6 will be used.
0-40 μm, 40-30 μm, 30-15 μm, 15
Batteries using aluminum powder classified to μm or less are referred to as battery (F), battery (G), battery (H), and battery (I), respectively. The prepared batteries have a voltage range of 4.2.
Charging / discharging was performed at ˜3 V and a current density of 0.5 mA / cm 2 . Table 2 shows the discharge capacity ratio in the second cycle. The discharge capacity ratios of various cylindrical batteries are the values fitted to the following calculation formula. Discharge capacity ratio (%) = second cycle discharge capacity of various cylindrical batteries / second cycle battery (F) discharge capacity × 10
0.

【0012】[0012]

【表2】 [Table 2]

【0013】コイン型電池で評価した場合、表1に示す
ように、180μm以上のアルミニウム粉末を負極に用
いた電池(A)、(B)は、電池(B)に対して、10
0%以上の放電容量が得られたのに対して、180μm
以下のアルミニウム粉末を負極に用いた電池(C)、
(D)は、85%以下と放電容量が大きく低下してい
る。一方、円筒型電池で評価した場合も、表2に示すよ
うに、40μm以上のアルミニウム粉末を負極に用いた
電池(E)、(F)は、電池(F)に対して、100%
以上の放電容量が得られたのに対して、40μm以下の
アルミニウム粉末を負極に用いた電池(G)、(H)、
(I)は、85%以下と放電容量が大きく低下してい
る。これらの結果は、使用したアルミニウム粉末の粒径
と電極作製時の合剤厚みに密接な関係があることを示し
ている。
When evaluated with a coin-type battery, as shown in Table 1, the batteries (A) and (B) using aluminum powder of 180 μm or more for the negative electrode were 10 times as much as the battery (B).
A discharge capacity of 0% or more was obtained, while 180 μm
A battery (C) using the following aluminum powder for the negative electrode,
In (D), the discharge capacity is greatly reduced to 85% or less. On the other hand, when evaluated using a cylindrical battery, as shown in Table 2, the batteries (E) and (F) using aluminum powder of 40 μm or more for the negative electrode were 100% of the battery (F).
While the above discharge capacities were obtained, batteries (G), (H) using aluminum powder of 40 μm or less for the negative electrode,
In (I), the discharge capacity is greatly reduced to 85% or less. These results indicate that there is a close relationship between the particle size of the aluminum powder used and the thickness of the mixture during electrode production.

【0014】実施例で示したコイン型電池の負極合剤厚
み360μmの1/2以下のアルミニウム粉末を用いた
電池(C)、(D)は、容量が小さく、逆に360μm
の1/2以上のアルミニウム粉末を用いた電池(A)、
(B)は、容量が大きい。同様に、実施例で示した円筒
型電池の負極合剤厚み80μmの1/2以下のアルミニ
ウム粉末を用いた電池(G)、(H)、(I)は、容量
が小さく、逆に80μmの1/2以上のアルミニウム粉
末を用いた電池(E)、(F)は、容量が大きい。この
結果は、電極合剤内におけるアルミニウム粉末粒子間あ
るいはアルミニウム粉末と炭素粉末間の伝導パスが多く
なるほど容量が低下することを示している。この原因と
しては、一般にアルミニウムの表面には、酸化膜等の被
膜が生成しているため、アルミニウム粉末粒子間あるい
はアルミニウム粉末と炭素粉末間を介した伝導パスが多
くなるほど、分極が大きくなり容量低下を引き起こした
ものと考えられる。従って、リチウムを可逆的に吸蔵、
放出できるアルミニウム粉末の粒径(Xμm)は、極板
作製後の負極合剤厚み(Yμm)に対してY/2≦Xに
なるようにすることが好ましい。
The batteries (C) and (D) using the aluminum powder having a negative electrode mixture thickness of 360 μm and less than 1/2 of the coin type battery shown in the examples have small capacities, and conversely 360 μm.
Battery (A) using 1/2 or more of aluminum powder,
(B) has a large capacity. Similarly, the batteries (G), (H), and (I) using the aluminum powder having a thickness of 80 μm or less of the negative electrode mixture of the cylindrical battery shown in the examples of 1/2 (G), (H), and (I) have small capacities and conversely have a capacity of 80 μm. The batteries (E) and (F) using 1/2 or more of aluminum powder have a large capacity. This result indicates that the capacity decreases as the number of conduction paths between the aluminum powder particles or between the aluminum powder and the carbon powder in the electrode mixture increases. The cause of this is that since a film such as an oxide film is generally formed on the surface of aluminum, as the number of conduction paths between aluminum powder particles or between aluminum powder and carbon powder increases, polarization increases and the capacity decreases. It is thought to have caused. Therefore, it reversibly absorbs lithium,
The particle size (X μm) of the aluminum powder that can be released is preferably Y / 2 ≦ X with respect to the negative electrode mixture thickness (Y μm) after the electrode plate is manufactured.

【0015】なお、上記実施例では、Liを可逆的に吸
蔵、放出できる金属として、アルミニウムの粉末を用い
たが、アルミニウム同様、Liを可逆的に吸蔵、放出で
きる錫、ビスマス、亜鉛、鉛、インジウム、マグネシウ
ム、ケイ素、ほう素、金、白金、パラジウム、銀などに
おいて同様の効果があることは言うまでもない。また、
上記実施例では、コイン型電池ならびに円筒型電池を用
いた場合について説明したが、本発明はこの構造に限定
されるものではなく、角型、偏平型などの形状の二次電
池においても同様の効果があることは言うまでもない。
In the above examples, aluminum powder was used as a metal capable of reversibly occluding and releasing Li, but like aluminum, tin, bismuth, zinc, lead, which can reversibly occlude and release Li, Needless to say, indium, magnesium, silicon, boron, gold, platinum, palladium, silver and the like have similar effects. Also,
In the above embodiments, the case where the coin type battery and the cylindrical type battery are used has been described, but the present invention is not limited to this structure, and the same applies to a secondary battery having a shape such as a square shape or a flat shape. It goes without saying that it is effective.

【0016】[0016]

【発明の効果】以上のように、本発明によれば、リチウ
ムを可逆的に吸蔵、放出できる金属または合金粉末から
なる負極を具備する非水電解質二次電池の容量低下を抑
制し、高エネルギー密度とすることができる。
As described above, according to the present invention, the capacity reduction of the non-aqueous electrolyte secondary battery having the negative electrode made of the metal or alloy powder capable of reversibly occluding and releasing lithium is suppressed, and high energy consumption is suppressed. It can be density.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に用いたコイン型電池の縦断面
図である。
FIG. 1 is a vertical sectional view of a coin battery used in an example of the present invention.

【図2】本発明の実施例に用いた円筒型電池の縦断面図
である。
FIG. 2 is a vertical cross-sectional view of a cylindrical battery used in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 ケース 3 セパレータ 4 負極 5 ガスケット 6 封口板 11 正極板 12 負極板 13 セパレータ 14 正極リード 15 負極リード 16 絶縁板 17 絶縁板 18 電槽 19 封口板 20 正極端子 1 positive electrode 2 cases 3 separator 4 Negative electrode 5 gasket 6 sealing plate 11 Positive plate 12 Negative electrode plate 13 separator 14 Positive electrode lead 15 Negative electrode lead 16 Insulation plate 17 Insulation plate 18 battery case 19 sealing plate 20 Positive terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 美藤 靖彦 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 豊口 ▲吉▼徳 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭62−139252(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/00 - 4/04 H01M 4/38 - 4/62 H01M 10/40 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiko Mito 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP 62-139252 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4/00-4/04 H01M 4/38- 4/62 H01M 10/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 充放電可能な正極、非水電解質、ならび
リチウムを可逆的に吸蔵、放出することができる金属
もしくは合金粉末および炭素材を含む負極を具備し、前
記負極の金属または合金粉末の粒径(Xμm)と負極合
剤厚み(Yμm)とがY/2≦Xを満足する関係にある
ことを特徴とする非水電解質二次電池。
1. A chargeable / dischargeable positive electrode, a non-aqueous electrolyte, and
A metal capable of reversibly occluding and releasing lithium
Alternatively , a negative electrode including an alloy powder and a carbon material is provided, and a particle size (X μm) of the metal or alloy powder of the negative electrode and a negative electrode mixture thickness (Y μm) have a relationship satisfying Y / 2 ≦ X. And a non-aqueous electrolyte secondary battery.
【請求項2】 負極が前記金属もしくは合金粉末、前
炭素材および結着剤の混合物からなる請求項1記載の
非水電解質二次電池。
2. The negative electrode is the metal or alloy powder ,
Serial non-aqueous electrolyte secondary battery according to claim 1, wherein a mixture of carbon material and a binder.
JP27571293A 1993-11-04 1993-11-04 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3405419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27571293A JP3405419B2 (en) 1993-11-04 1993-11-04 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27571293A JP3405419B2 (en) 1993-11-04 1993-11-04 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH07130359A JPH07130359A (en) 1995-05-19
JP3405419B2 true JP3405419B2 (en) 2003-05-12

Family

ID=17559326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27571293A Expired - Fee Related JP3405419B2 (en) 1993-11-04 1993-11-04 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3405419B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3619000B2 (en) * 1997-01-28 2005-02-09 キヤノン株式会社 Electrode structure, secondary battery, and manufacturing method thereof
JP4352475B2 (en) * 1998-08-20 2009-10-28 ソニー株式会社 Solid electrolyte secondary battery
JP4944341B2 (en) * 2002-02-26 2012-05-30 日本電気株式会社 Method for producing negative electrode for lithium ion secondary battery
JP4077294B2 (en) * 2002-10-22 2008-04-16 日立マクセル株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JPH07130359A (en) 1995-05-19

Similar Documents

Publication Publication Date Title
US6800397B2 (en) Non-aqueous electrolyte secondary battery and process for the preparation thereof
JP3403449B2 (en) Non-aqueous electrolyte secondary battery
US4658498A (en) Process for producing rechargeable electrochemical device
JPH11509959A (en) Lithium ion battery
JP3291750B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2001015146A (en) Battery
JPH09115523A (en) Nonaqueous electrolytic secondary battery
JPH11283629A (en) Organic electrolyte battery
JPH06318454A (en) Nonaqueous electrolyte secondary battery
JPH11135116A (en) Negative electrode for lithium secondary battery, lithium secondary battery using the negative electrode, and manufacture of the negative electrode for the lithium secondary battery
JP3405418B2 (en) Non-aqueous electrolyte secondary battery
JPH04294059A (en) Negative electrode for secondary battery with non-aqueous electrolyte
JP3405419B2 (en) Non-aqueous electrolyte secondary battery
JP2001250541A (en) Nonaqueous electrolyte secondary battery
JPH10255766A (en) Nonaqueous electrolyte secondary battery
JP3565478B2 (en) Non-aqueous electrolyte secondary battery
JP3152307B2 (en) Lithium secondary battery
JPS61158665A (en) Nonaqueous electrolyte secondary battery
JP2730641B2 (en) Lithium secondary battery
JP3048953B2 (en) Non-aqueous electrolyte secondary battery
JP2002260661A (en) Negative electrode for nonaqueous electrolyte secondary battery
JPS6215761A (en) Nonaqueous electrolyte secondary cell
JPS58137975A (en) Nonaqueous electrolyte secondary battery
JP3148905B2 (en) Manufacturing method of thin non-aqueous electrolyte secondary battery
JP2529479B2 (en) Negative electrode for non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees