JP3291750B2 - Non-aqueous electrolyte secondary battery and method of manufacturing the same - Google Patents

Non-aqueous electrolyte secondary battery and method of manufacturing the same

Info

Publication number
JP3291750B2
JP3291750B2 JP03762192A JP3762192A JP3291750B2 JP 3291750 B2 JP3291750 B2 JP 3291750B2 JP 03762192 A JP03762192 A JP 03762192A JP 3762192 A JP3762192 A JP 3762192A JP 3291750 B2 JP3291750 B2 JP 3291750B2
Authority
JP
Japan
Prior art keywords
lithium
battery
positive electrode
active material
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03762192A
Other languages
Japanese (ja)
Other versions
JPH05234621A (en
Inventor
修二 伊藤
祐之 村井
正樹 長谷川
靖彦 美藤
吉徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP03762192A priority Critical patent/JP3291750B2/en
Publication of JPH05234621A publication Critical patent/JPH05234621A/en
Application granted granted Critical
Publication of JP3291750B2 publication Critical patent/JP3291750B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は非水電解液二次電池およ
びその製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery and a method for producing the same.

【0002】[0002]

【従来の技術】リチウムまたはリチウム化合物を負極と
する非水電解液二次電池は高電圧,高エネルギー密度と
なることが期待され、実用化に向けて数多くの研究が行
われている。
2. Description of the Related Art A non-aqueous electrolyte secondary battery using lithium or a lithium compound as a negative electrode is expected to have a high voltage and a high energy density, and many studies have been conducted for practical use.

【0003】これまでに、この非水電解液二次電池の正
極活物質としてV25,Cr25,MnO2,TiS2
などが検討されてきたが、これら正極活物質はLiに対
する電位が3V程度またはそれ以下であるのに対し、近
年、LiMn24,LiCoO2あるいはLiNiO2
どがLiに対して4V以上の高い電位を示すので、高エ
ネルギー密度用正極活物質として注目されている。これ
らの高電位の正極活物質は、充電によりLiを放出し、
放電によりLiを吸蔵する。
Heretofore, V 2 O 5 , Cr 2 O 5 , MnO 2 , TiS 2 , and the like have been used as the positive electrode active material of this nonaqueous electrolyte secondary battery.
Although these positive electrode active materials have a potential of about 3 V or less with respect to Li, recently, LiMn 2 O 4 , LiCoO 2, LiNiO 2, and the like have a potential of 4 V or more with respect to Li. Since it shows a potential, it has attracted attention as a positive electrode active material for high energy density. These high-potential positive electrode active materials release Li upon charging,
Li is occluded by discharging.

【0004】一方、負極活物質としては、当初からフォ
イル状の金属Li単体が多く検討されてきたが、充電時
に負極表面に樹枝状結晶のLiが析出し易く、充放電効
率の低下だけでなく、正極と接して内部短絡を生じると
いう問題点を有していた。このような問題を解決する手
段の一つとして、Liの樹枝状成長を抑制し、充放電に
よりLiを吸蔵,放出することができるAl単体,Al
合金,ウッド合金などの金属板もしくは金属粉末,炭素
材料あるいは金属の酸化物,硫化物を負極活物質に用い
る検討がなされている。
On the other hand, as the negative electrode active material, foil-like metal Li alone has been widely studied from the beginning. However, there has been a problem that an internal short circuit occurs due to contact with the positive electrode. As means for solving such a problem, Al alone, which can suppress dendritic growth of Li and occlude and release Li by charging and discharging,
Studies have been made on the use of metal plates or metal powders such as alloys and wood alloys, carbon materials or metal oxides and sulfides as the negative electrode active material.

【0005】近年は、特に上述した充電によりLiを放
出し、放電によりLiを吸蔵し、Liに対して4V以上
の高い電位を示す正極活物質であるLiMn24,Li
CoO2あるいはLiNiO2などと、充電によりLiを
吸蔵し、放電によりLiを放出する負極活物質である炭
素材料を組み合わせて、高電圧で安全性に優れた高エネ
ルギー密度のリチウム二次電池が開発されつつある。
In recent years, LiMn 2 O 4 , Li, which is a positive electrode active material that releases Li by the above-described charging and occludes Li by discharging and has a high potential of 4 V or more with respect to Li
Developed high-energy-density lithium secondary batteries with high voltage and excellent safety by combining CoO 2 or LiNiO 2 with a carbon material that is a negative electrode active material that occludes Li by charging and releases Li by discharging Is being done.

【0006】炭素材料などの負極活物質と正極活物質と
してLiMn24,LiCoO2あるいはLiNiO2
どのリチウム複合酸化物を用いて電池を構成したとき、
1回目の充電で正極活物質から放出されたリチウムが、
負極活物質に吸蔵され、続く放電ではこの逆反応が起こ
り、リチウムイオンは負極活物質から放出され、正極活
物質に吸蔵される。したがって、この電池反応に関与す
るリチウムイオンは最初に正極中に存在するリチウムイ
オンのみとなり、このリチウムイオンの量が電池容量を
決定することになる。
When a battery is constructed using a negative electrode active material such as a carbon material and a lithium composite oxide such as LiMn 2 O 4 , LiCoO 2 or LiNiO 2 as a positive electrode active material,
Lithium released from the positive electrode active material in the first charge,
It is occluded by the negative electrode active material, and in a subsequent discharge, this reverse reaction occurs, and lithium ions are released from the negative electrode active material and occluded by the positive electrode active material. Therefore, the only lithium ions involved in the battery reaction are those initially present in the positive electrode, and the amount of the lithium ions determines the battery capacity.

【0007】[0007]

【発明が解決しようとする課題】このような従来の負極
活物質では、1回目の充電で負極上での電解液の分解に
よるガス発生が生じたり、また1回目の充電で負極活物
質に取り込まれ、以後の電池反応に関与しないリチウム
イオンが存在するため、1回目の充放電において大きな
充放電容量差を生じる。このように電池中で可逆的に移
動可能なリチウムイオンが減少し、電池の容量が低下す
る。
In such a conventional negative electrode active material, gas is generated due to decomposition of the electrolytic solution on the negative electrode in the first charge, and is taken into the negative electrode active material in the first charge. In addition, since there are lithium ions not involved in the subsequent battery reaction, a large charge / discharge capacity difference occurs in the first charge / discharge. As described above, the amount of lithium ions that can be reversibly moved in the battery decreases, and the capacity of the battery decreases.

【0008】そこで、電極上にあらかじめ充放電容量差
分のリチウム金属フォイルを設置することが考えられる
が、通常スパイラル構造の電池を想定した場合、充放電
容量差分のリチウムをリチウム金属フォイルとして電極
上に均一に設置するためには、負極重量にもよるが厚さ
は数μmとなり、作業上たいへん困難になる。仮に数十
μmのリチウム金属フォイルを部分的に設置した場合、
このリチウムが充放電に関与するまでに時間がかかった
り、リチウムが金属リチウムとして残存する可能性があ
り、安全性に問題がある。
Therefore, it is conceivable that a lithium metal foil having a charge / discharge capacity difference is previously set on the electrode. However, when a battery having a spiral structure is usually assumed, lithium having a charge / discharge capacity difference is formed on the electrode as a lithium metal foil. For uniform installation, the thickness is several μm depending on the weight of the negative electrode, which is extremely difficult to work. If a tens of μm lithium metal foil is partially installed,
There is a possibility that it takes a long time for the lithium to participate in charge and discharge, or the lithium may remain as metallic lithium, which poses a problem in safety.

【0009】本発明は上記課題を解決するもので、高容
量で、安全な非水電解液二次電池を提供することを目的
とする。
An object of the present invention is to solve the above problems and to provide a high-capacity and safe non-aqueous electrolyte secondary battery.

【0010】[0010]

【課題を解決するための手段】本発明は、上記目的を達
成するために、負極として充電でリチウムを吸蔵し、放
電でリチウムを放出する炭素材料と、正極としてリチウ
ム複合酸化物と、リチウム塩を含む非水電解液とからな
る非水電解液二次電池において、あらかじめ充放電容量
差分のリチウムをリチウム粉末として前記正極上に付着
させた構成である。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a carbon material which absorbs lithium by charging and releases lithium by discharging, as a negative electrode, a lithium composite oxide as a positive electrode, and a lithium salt. And a non-aqueous electrolyte secondary battery comprising: a lithium battery having a charge / discharge capacity difference, which is previously deposited on the positive electrode as lithium powder.

【0011】[0011]

【作用】本発明は上記した構成により、電極上にリチウ
ムを均一に分散させることができ、これらリチウムは注
液後、電極上で局部電池を構成し電極内に均一に吸蔵さ
れ高容量で安全性の高い非水電解液二次電池が得られる
ものである。
According to the present invention, lithium can be uniformly dispersed on the electrode by the above-described structure. After lithium is injected, a local battery is formed on the electrode, and the lithium is uniformly absorbed in the electrode so that the lithium battery has a high capacity and is safe. Thus, a non-aqueous electrolyte secondary battery having high performance can be obtained.

【0012】[0012]

【実施例】以下、本発明の実施例について図を参照しな
がら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings.

【0013】(実施例1)電池を以下の手順により作製
した。
(Example 1) A battery was manufactured according to the following procedure.

【0014】正極活物質であるLiMn24はLi2
3とMn34とを3:4の重量比で混合し、900℃
で加熱することによって合成した。またLiCoO2
Li2CO3とCoCO3を1:2の重量比で混合し、9
00℃で加熱することによって合成した。さらに、これ
らを粉砕し、100メッシュ以下に分級したものを正極
活物質とした。
LiMn 2 O 4 as a positive electrode active material is Li 2 C
O 3 and Mn 3 O 4 are mixed in a weight ratio of 3: 4, and 900 ° C.
And synthesized by heating. LiCoO 2 is obtained by mixing Li 2 CO 3 and CoCO 3 at a weight ratio of 1: 2,
It was synthesized by heating at 00 ° C. Furthermore, these were pulverized and classified to 100 mesh or less to obtain a positive electrode active material.

【0015】正極活物質100gに対して導電剤として
炭素粉末を10g、結着剤としてポリフッ化ビニリデン
を5g加え、ジメチルホルムアミドを用いてペースト状
にし、チタニウムの芯材に塗布し、乾燥圧延した正極
を、平均粒径100μmのリチウム粉末を分散させたヘ
キサン溶液に浸漬し、乾燥,圧延し、電解液注入後正極
で局部電池を構成した時にLiMn24は、Li1.15
24に、LiCoO2は、Li1.15CoO2になるよう
リチウムを付着させた正極を得た。
To 100 g of the positive electrode active material, 10 g of carbon powder as a conductive agent and 5 g of polyvinylidene fluoride as a binder were added, and the paste was formed using dimethylformamide, applied to a titanium core material, and dried and rolled. Is immersed in a hexane solution in which lithium powder having an average particle diameter of 100 μm is dispersed, dried and rolled, and when a local battery is composed of a positive electrode after injecting an electrolyte, LiMn 2 O 4 becomes Li 1.15 M
A positive electrode in which lithium was attached to n 2 O 4 so that LiCoO 2 became Li 1.15 CoO 2 was obtained.

【0016】負極としては、負極活物質である黒鉛10
0gに対して結着剤としてポリフッカビニリデンを10
g加え、ジメチルホルムアミドを用いてペースト状に
し、これをニッケルの芯に塗布し、乾燥して得た。
As a negative electrode, graphite 10 as a negative electrode active material is used.
10 g of polyfukka vinylidene as a binder to 0 g
g was added to form a paste using dimethylformamide, which was applied to a nickel core and dried to obtain a paste.

【0017】本実施例で使用した電池の断面図を図1に
示す。電極体はスポット溶接にて取り付けた芯材と同材
質の正極リード4を有する正極板1と負極リード5を有
する負極板2間に両極板より幅の広い帯状の多孔性ポリ
プロピレン製セパレータ3を介在して全体を渦巻状に捲
回して構成する。さらに、上記電極体の上下それぞれに
ポリプロピレン製の絶縁板6,7を配して電槽8に挿入
し、電槽8の上部に段部を形成させた後、非水電解液と
して、1モル/
FIG. 1 shows a sectional view of the battery used in this embodiment. The electrode body has a band-shaped porous polypropylene separator 3 wider than both electrode plates between a positive electrode plate 1 having a positive electrode lead 4 and a negative electrode plate 2 having a negative electrode lead 5 of the same material as the core material attached by spot welding. And the whole is spirally wound. Further, insulating plates 6 and 7 made of polypropylene are arranged on the upper and lower sides of the electrode body, respectively, and inserted into the battery case 8 to form a step on the upper portion of the battery case 8. /

【0018】[0018]

【外1】 [Outside 1]

【0019】の過塩素酸リチウムを溶解したプロピレン
カーボネート溶液を注入し、封口板9で密閉して電池と
する。
A propylene carbonate solution in which lithium perchlorate is dissolved is injected and sealed with a sealing plate 9 to obtain a battery.

【0020】上記に示した手順で、正極活物質としてL
iMn24を用いた電池(A)、正極活物質にLiCo
2を用いた電池(B)を作製した。
In the above procedure, L is used as the positive electrode active material.
Battery (A) using iMn 2 O 4 , LiCo as positive electrode active material
A battery (B) using O 2 was produced.

【0021】また比較例として、正極上にリチウムを付
着していない正極活物質としてLiMn24を用いた電
池(C)、正極活物質にLiCoO2を用いた電池
(D)を作製した。
As comparative examples, a battery (C) using LiMn 2 O 4 as a positive electrode active material having no lithium adhered on the positive electrode and a battery (D) using LiCoO 2 as a positive electrode active material were prepared.

【0022】これら作製した電池は、作製後3日間放置
し、充放電電流を0.5mA/cm2として充放電を行っ
た。但し電圧範囲は正極活物質にLiMn24を用いた
電池は、4.3〜3.0V、LiCoO2を用いた電池
は、4.1〜3.0Vとした。(表1)にこの結果をま
とめた。
The batteries thus prepared were allowed to stand for 3 days after preparation, and were charged and discharged at a charge / discharge current of 0.5 mA / cm 2 . However, the voltage range was 4.3 to 3.0 V for the battery using LiMn 2 O 4 as the positive electrode active material, and 4.1 to 3.0 V for the battery using LiCoO 2 . (Table 1) summarizes the results.

【0023】[0023]

【表1】 [Table 1]

【0024】リチウム粉末を付着していない比較電池
(C)は、1サイクル目の充電容量が410mAhであ
るのに対し、放電容量は328mAhであり、充電と放
電の容量差が82mAhあった。この1サイクル目で生
じた充放電容量差82mAh分のリチウムは負極活物質
である黒鉛中に吸蔵され、以後の充放電反応には関与し
ない。このため、2サイクル目以降の電池容量は326
mAhとなった。このように、負極に黒鉛を用いた場
合、約2割の電池容量低下となる。正極活物質としてL
iCoO2を用いた場合(D)についても、1サイクル
目の充電容量が462mAhであるのに対し、放電容量
は369mAhであり、充電と放電の容量差が93mA
hあった。電池(C)同様、電池容量が低下する。
The comparative battery (C) to which no lithium powder was attached had a charge capacity in the first cycle of 410 mAh, a discharge capacity of 328 mAh, and a difference in capacity between charge and discharge of 82 mAh. Lithium having a charge / discharge capacity difference of 82 mAh generated in the first cycle is occluded in graphite, which is a negative electrode active material, and does not participate in subsequent charge / discharge reactions. Therefore, the battery capacity after the second cycle is 326
mAh. As described above, when graphite is used for the negative electrode, the battery capacity is reduced by about 20%. L as positive electrode active material
Also in the case of using iCoO 2 (D), the charge capacity in the first cycle was 462 mAh, whereas the discharge capacity was 369 mAh, and the difference between the charge and discharge capacities was 93 mA.
h. Like the battery (C), the battery capacity decreases.

【0025】これに対して本実施例の一つである電池
(A)は、電池(C)で1サイクル目に発生した充放電
容量差分のリチウムをあらかじめリチウム粉末として正
極上に付着している。実際に電池(A)の1サイクル目
の充電容量は489mAhであり、放電容量は405m
Ahである。この場合、あらかじめ黒鉛中に充放電容量
差分のリチウム粉末が付着され、3日間放置中に正極中
にリチウムが吸蔵されているため、1サイクル目から、
比較例電池(C)の1サイクル目の充電容量に匹敵する
放電容量が得られている。また5サイクル目で充放電容
量差がほぼ解消されている。このように初期充放電容量
差を持つ炭素材料に起因する電池の容量低下が解消さ
れ、高容量な電池が得られている。また、電池(B)に
ついても同様で1サイクル目から、比較例電池(D)の
1サイクル目の充電容量にほぼ匹敵する放電容量が得ら
れ、高容量な電池が得られている。
On the other hand, in the battery (A) which is one of the present embodiments, lithium having a charge / discharge capacity difference generated in the first cycle in the battery (C) is previously deposited on the positive electrode as lithium powder. . Actually, the charge capacity in the first cycle of the battery (A) is 489 mAh, and the discharge capacity is 405 m
Ah. In this case, lithium powder having a charge / discharge capacity difference was previously attached to graphite, and lithium was occluded in the positive electrode during standing for 3 days.
The discharge capacity comparable to the charge capacity in the first cycle of the comparative example battery (C) was obtained. In addition, the charge / discharge capacity difference was substantially eliminated at the fifth cycle. As described above, the reduction in the capacity of the battery caused by the carbon material having the initial charge / discharge capacity difference is eliminated, and a high-capacity battery is obtained. In the same manner as for the battery (B), a discharge capacity almost equal to the charge capacity in the first cycle of the comparative battery (D) was obtained from the first cycle, and a high-capacity battery was obtained.

【0026】使用する炭素材料の種類によって充放電容
量差は変化するが、この実施例のように電池として組み
立てる前に、あらかじめ炭素材料の充放電容量差を見積
もって、炭素材料中に過剰のリチウムを吸蔵させておく
ことにより、容量の大きい電池を得ることができる。
Although the charge / discharge capacity difference varies depending on the type of carbon material used, before assembling as a battery as in this embodiment, the charge / discharge capacity difference of the carbon material is estimated in advance, and excess lithium in the carbon material is added. By storing ozone, a battery having a large capacity can be obtained.

【0027】(実施例2)次にリチウム金属粉末の粒径
の検討を行った。リチウム金属粉末としては、平均粒径
が、50,100,150,200,300μmの5種
類の粒径について検討した。
Example 2 Next, the particle size of the lithium metal powder was examined. Five types of lithium metal powder having an average particle size of 50, 100, 150, 200, and 300 μm were examined.

【0028】電池の作製は、リチウム金属粉末の平均粒
径が異なる以外は実施例1と同様の方法で作製した。
The battery was manufactured in the same manner as in Example 1 except that the average particle size of the lithium metal powder was different.

【0029】これら作製した電池は、作製後3日間放置
し、充放電電流を0.5mA/cm2として充放電を行っ
た。但し電圧範囲は正極活物質にLiMn24を用いた
電池は、4.3〜3.0V、LiCoO2を用いた電池
は、4.1〜3.0Vとした。(表2)に5サイクル目
の放電容量の結果をまとめた。
The batteries thus fabricated were left for 3 days after fabrication, and were charged and discharged at a charge / discharge current of 0.5 mA / cm 2 . However, the voltage range was 4.3 to 3.0 V for the battery using LiMn 2 O 4 as the positive electrode active material, and 4.1 to 3.0 V for the battery using LiCoO 2 . Table 2 summarizes the results of the discharge capacity at the fifth cycle.

【0030】[0030]

【表2】 [Table 2]

【0031】(表2)に示すように、本実施例で検討し
た平均粒径50〜300μmの範囲内においてはLiM
24,LiCoO2のいずれの正極においても、実施
例1で示した正極上にリチウム粉末を付着させていない
比較例よりも放電容量が増加している。中でも100〜
150μmの範囲が放電容量が大きく最も好ましく、1
50μm以上でも逆に100μm以下でも放電容量が低
下する傾向が認められた。この原因は不明であるが、粒
径が細かくなりすぎると表面積が増加し、表面の酸化物
層が増加したこと、逆に粒径が大きくなりすぎると作製
後の放置時間が短かったこと、電極の成型性が良くない
ことなどが考えられる。
As shown in (Table 2), when the average particle size in the range of 50 to 300 μm studied in the present example, LiM
In each of the positive electrodes of n 2 O 4 and LiCoO 2, the discharge capacity was increased as compared with the comparative example in which lithium powder was not adhered on the positive electrode shown in Example 1. Above all, 100 ~
The range of 150 μm is most preferable because the discharge capacity is large.
It was recognized that the discharge capacity tended to decrease when the thickness was 50 μm or more or 100 μm or less. Although the cause is unknown, if the particle size becomes too fine, the surface area increases, and the oxide layer on the surface increases.On the contrary, if the particle size becomes too large, the standing time after preparation is short, and the electrode It is conceivable that the moldability is not good.

【0032】[0032]

【0033】[0033]

【0034】[0034]

【0035】[0035]

【0036】[0036]

【0037】[0037]

【0038】[0038]

【0039】[0039]

【0040】[0040]

【0041】[0041]

【0042】[0042]

【0043】[0043]

【0044】[0044]

【0045】[0045]

【0046】[0046]

【0047】[0047]

【0048】[0048]

【0049】これまでの実施例においては、正極活物質
にLiMn24とLiCoO2を取り上げたが、充電で
リチウムを放出し、放電でリチウムを吸蔵するLiNi
2r−LiV25LiFeO2などのリチウム複合酸化
物を用いても効果があることは言うまでもない。
In the above embodiments, LiMn 2 O 4 and LiCoO 2 were used as the positive electrode active materials. However, LiNi which releases lithium by charging and stores lithium by discharging is used.
O 2 r-LiV 2 O 5 LiFeO there are also the effects by using a lithium composite oxide such as 2.

【0050】さらに、実施例では電解液として1モル/
(外1)の過塩素酸リチウムを溶解したプロピレンカー
ボネート溶液を用いた場合の結果であるが、電解液とし
てこれ以外に、溶質として過塩素酸リチウム,6フッ化
燐酸リチウムやトリフロロメタンスルフォン酸リチウ
ム,ホウフッ化リチウム,溶媒としてプロピレンカーボ
ネート,エチレンカーボネートなどのカーボネート類,
ガンマーブチルラクトン,酢酸メチルなどのエステル類
を用いた電解液でも同様の結果を得た。また、実施例で
は円筒型電池で説明したが、コイン型,角型などの形状
でも効果があることは言うまでもない。
Further, in the examples, 1 mol / mol
The results obtained in the case of using a propylene carbonate solution in which lithium perchlorate (1) was dissolved were used. In addition to the electrolytic solution, lithium perchlorate, lithium hexafluorophosphate and trifluoromethanesulfonic acid were used as solutes. Lithium, lithium borofluoride, carbonates such as propylene carbonate and ethylene carbonate as solvents,
Similar results were obtained with electrolytes using esters such as gamma-butyl lactone and methyl acetate. In addition, although the embodiment has been described with reference to a cylindrical battery, it goes without saying that a coin-shaped or square-shaped battery is also effective.

【0051】[0051]

【発明の効果】以上の説明から明らかなように、本発明
によればあらかじめ電極上に充放電容量差分のリチウム
粉末を均一に付着させることにより、容量が大きく、充
電時に均一に吸蔵されるので、高容量で安全性の高い非
水電解液二次電池を提供できる。
As is apparent from the above description, according to the present invention, the lithium powder having a difference in charge / discharge capacity is uniformly deposited on the electrodes in advance, so that the capacity is large and the lithium ions are uniformly absorbed during charging. Thus, a non-aqueous electrolyte secondary battery with high capacity and high safety can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による非水電解液二次電池の
縦断面図
FIG. 1 is a longitudinal sectional view of a nonaqueous electrolyte secondary battery according to one embodiment of the present invention.

【図2】正極活物質LixMn2の活物質中のLi量と
Xと開路電位の関係を示した図
FIG. 2 is a diagram showing the relationship between the amount of Li in the active material of the positive electrode active material LixMn 2 , X, and the open circuit potential.

【図3】正極活物質LixMn2の活物質中のLi量と
Xと開路電位の関係を示した図
FIG. 3 is a graph showing the relationship between the amount of Li in the active material of the positive electrode active material LixMn 2 , X, and the open circuit potential.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 正極リード板 5 負極リード板 6 上部絶縁板 7 下部絶縁板 8 電槽 9 封口板 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode lead plate 5 Negative electrode lead plate 6 Upper insulating plate 7 Lower insulating plate 8 Battery case 9 Sealing plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 美藤 靖彦 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 豊口 吉徳 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平4−39859(JP,A) 特開 平5−67468(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 H01M 4/02 - 4/04 H01M 4/58 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Yasuhiko Mito 1006 Kadoma, Kazuma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Yoshinori Toyoguchi 1006 Kadoma, Kazuma, Kadoma, Osaka Matsushita Electric Industrial Co., Ltd. In-company (56) References JP-A-4-39859 (JP, A) JP-A-5-67468 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/40 H01M 4/02-4/04 H01M 4/58

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 充電でリチウムを放出し、放電でリチウ
ムを吸蔵するリチウム複合酸化物を活物質に用いた正極
と、充電でリチウムを吸蔵し、放電でリチウムを放出す
る活物質に炭素材料を用いた負極と、リチウム塩を含む
非水電解質液とを備え、前記正極上にあらかじめリチウ
ム粉末を付着させたことを特徴とする非水電解液二次電
池。
1. A positive electrode using, as an active material, a lithium composite oxide that releases lithium on charging and stores lithium on discharging, and a carbon material on an active material that stores lithium on charging and releases lithium on discharging. A non-aqueous electrolyte secondary battery comprising: the used negative electrode; and a non-aqueous electrolyte solution containing a lithium salt, wherein lithium powder is previously attached to the positive electrode.
【請求項2】 正極活物質としてのリチウム複合酸化物
と導電材と結着剤と溶媒とを混合し、混合物質を塗
布、乾燥することによって作製される正極を、リチウム
粉末分散浴に浸漬させ、リチウム粉末を付着させたこと
を特徴とする請求項1記載の非水電解液二次電池の製造
法。
2. A mixture of lithium composite oxide as a positive electrode active material, a conductive material and a binder and a solvent, applying the mixture material, the positive electrode is made by drying, immersed in lithium powder dispersion bath 2. The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein lithium powder is adhered.
【請求項3】 リチウム複合酸化物は、LiMn24
LiCoO2から選ばれる少なくとも1つである請求項
1記載の非水電解液二次電池。
3. The lithium composite oxide is LiMn 2 O 4 ,
At least is one claim selected from LiCoO 2
2. The non-aqueous electrolyte secondary battery according to 1.
【請求項4】 リチウム複合酸化物は、LiMn24
LiCoO2から選ばれる少なくとも1つである請求項
2記載の非水電解液二次電池の製造法。
4. The lithium composite oxide is LiMn 2 O 4 ,
At least is one claim selected from LiCoO 2
3. The method for producing a non-aqueous electrolyte secondary battery according to item 2.
JP03762192A 1992-02-25 1992-02-25 Non-aqueous electrolyte secondary battery and method of manufacturing the same Expired - Fee Related JP3291750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03762192A JP3291750B2 (en) 1992-02-25 1992-02-25 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03762192A JP3291750B2 (en) 1992-02-25 1992-02-25 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05234621A JPH05234621A (en) 1993-09-10
JP3291750B2 true JP3291750B2 (en) 2002-06-10

Family

ID=12502706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03762192A Expired - Fee Related JP3291750B2 (en) 1992-02-25 1992-02-25 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3291750B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287720B1 (en) 1995-08-28 2001-09-11 Asahi Kasei Kabushiki Kaisha Nonaqueous battery having porous separator and production method thereof
US8980477B2 (en) 2000-12-22 2015-03-17 Fmc Corporation Lithium metal dispersion in secondary battery anodes
US6706447B2 (en) 2000-12-22 2004-03-16 Fmc Corporation, Lithium Division Lithium metal dispersion in secondary battery anodes
US7276314B2 (en) 2000-12-22 2007-10-02 Fmc Corporation Lithium metal dispersion in secondary battery anodes
FR2833760B1 (en) * 2001-12-19 2011-03-25 Fmc Corp DISPERSION OF LITHIUM METAL IN SECONDARY BATTERY ANODES
US8231810B2 (en) 2004-04-15 2012-07-31 Fmc Corporation Composite materials of nano-dispersed silicon and tin and methods of making the same
US7771874B2 (en) 2005-06-29 2010-08-10 Fmc Corporation Lithium manganese compounds and methods of making the same
US7588623B2 (en) 2005-07-05 2009-09-15 Fmc Corporation Lithium Division Stabilized lithium metal powder for li-ion application, composition and process
JP4306697B2 (en) 2006-06-16 2009-08-05 ソニー株式会社 Secondary battery
JP5196118B2 (en) * 2006-09-14 2013-05-15 信越化学工業株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
US20090035663A1 (en) 2006-10-13 2009-02-05 Fmc Corporation, Lithium Division Stabilized lithium metal powder for li-ion application, composition and process
US8021496B2 (en) 2007-05-16 2011-09-20 Fmc Corporation Stabilized lithium metal powder for Li-ion application, composition and process
JP5672671B2 (en) * 2009-07-09 2015-02-18 日産自動車株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP5463817B2 (en) * 2009-09-16 2014-04-09 日産自動車株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
CN103119758A (en) 2010-08-11 2013-05-22 株式会社Kri Predoping method for lithium, method for producing electrodes, and electric power storage device using these methods
JP2012248478A (en) * 2011-05-30 2012-12-13 Denso Corp Lithium ion secondary battery
WO2013168727A1 (en) 2012-05-09 2013-11-14 株式会社Kri Predoping method for lithium, lithium-predoped electrode, and electricity storage device
WO2019065287A1 (en) * 2017-09-26 2019-04-04 Tdk株式会社 Lithium ion secondary battery
JP7052304B2 (en) 2017-11-10 2022-04-12 住友ゴム工業株式会社 Manufacturing method of lithium-ion power storage device and lithium-ion power storage device
KR102297246B1 (en) 2017-11-30 2021-09-03 주식회사 엘지에너지솔루션 Positive electrode for lithium secondary battery and lithium secondary battery including the same

Also Published As

Publication number Publication date
JPH05234621A (en) 1993-09-10

Similar Documents

Publication Publication Date Title
JP3291750B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
US5316875A (en) Secondary battery with nonaqueous electrolyte and method of manufacturing same
JP3111791B2 (en) Non-aqueous electrolyte secondary battery
JP3403449B2 (en) Non-aqueous electrolyte secondary battery
JPH06318454A (en) Nonaqueous electrolyte secondary battery
JPH08102333A (en) Nonaqueous electrolytic secondary battery
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JPH04294059A (en) Negative electrode for secondary battery with non-aqueous electrolyte
JP3475759B2 (en) Non-aqueous electrolyte secondary battery
JPH0547383A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JP3565478B2 (en) Non-aqueous electrolyte secondary battery
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JP3136679B2 (en) Non-aqueous electrolyte secondary battery
JPH10255766A (en) Nonaqueous electrolyte secondary battery
JP3032339B2 (en) Non-aqueous electrolyte secondary battery
JPH0554912A (en) Nonaqueous electrolytic secondary battery and manufacture thereof
JP3405419B2 (en) Non-aqueous electrolyte secondary battery
JP3227771B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3115256B2 (en) Non-aqueous electrolyte secondary battery
JPH01128371A (en) Nonaqueous electrolyte secondary cell
JP3987320B2 (en) Non-aqueous electrolyte secondary battery
JPH07105952A (en) Lithium secondary battery and its current collecting body
JP4752126B2 (en) Non-aqueous electrolyte secondary battery
JP2002164049A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080329

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110329

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees