JP5196118B2 - Non-aqueous electrolyte secondary battery and manufacturing method thereof - Google Patents
Non-aqueous electrolyte secondary battery and manufacturing method thereof Download PDFInfo
- Publication number
- JP5196118B2 JP5196118B2 JP2007223450A JP2007223450A JP5196118B2 JP 5196118 B2 JP5196118 B2 JP 5196118B2 JP 2007223450 A JP2007223450 A JP 2007223450A JP 2007223450 A JP2007223450 A JP 2007223450A JP 5196118 B2 JP5196118 B2 JP 5196118B2
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- lithium
- active material
- secondary battery
- electrode active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、非水電解質二次電池及びその製造方法に関するものであり、特にはリチウムイオン二次電池及びその製造方法に関する。 The present invention relates to a non-aqueous electrolyte secondary battery and a method for manufacturing the same, and more particularly to a lithium ion secondary battery and a method for manufacturing the same.
近年、ノートパソコン、携帯電話、デジタルカメラのポータブル電源として、高エネルギー密度を有するリチウムイオン二次電池の使用が増大している。また、環境にやさしい自動車として実用化が期待される電気自動車用の電源としても、リチウムイオン二次電池が検討されている。 In recent years, the use of lithium ion secondary batteries having a high energy density as portable power sources for notebook computers, mobile phones, and digital cameras is increasing. Also, lithium ion secondary batteries are being studied as a power source for electric vehicles that are expected to be put into practical use as environmentally friendly vehicles.
これまでのリチウムイオン二次電池は、負極に炭素材料が活物質として使用されていたが、近年の容量向上の要求から、高い充放電容量を期待することができる珪素などのリチウムと合金化する金属及びそれらの酸化物を負極活物質として用いることが考えられている。しかしながら、このような合金化する金属を活物質として用いると、高容量を期待することはできるが、初回の充電に正極材料中のリチウムが負極材料中に導入され、リチウムが全て放電によって取り出せずに一定量負極中に残ってしまう不可逆容量のリチウムが生じてしまう。その結果、電池の放電容量が低下し、電池能力が低下するという課題を有している。この課題を解決する方策がこれまで多く提案され、実施され、特許文献でも多く紹介されている。 Conventional lithium-ion secondary batteries have used a carbon material as an active material for the negative electrode. However, due to recent demands for capacity enhancement, they are alloyed with lithium such as silicon that can be expected to have high charge / discharge capacity. It is considered to use metals and their oxides as negative electrode active materials. However, when such an alloying metal is used as an active material, high capacity can be expected, but lithium in the positive electrode material is introduced into the negative electrode material for the first charge, and all lithium cannot be taken out by discharge. Thus, a certain amount of irreversible lithium remains in the negative electrode. As a result, there is a problem that the discharge capacity of the battery is reduced and the battery capacity is reduced. Many measures to solve this problem have been proposed and implemented so far, and many are introduced in patent literature.
即ち、特許文献1(特開平5−226003号公報)では、不可逆容量分の有機リチウム化合物により補充する方法、特許文献2(特開平10−223259号公報)では、金属リチウムを電池ケース上部に配置する方法、特許文献3(特許第3403858号公報)では、正極の断面方向にリチウムを配置させることにより、不可逆容量分のリチウムを補う方法が提案されている。また、特許文献4(特開2003−234125号公報)では、金属リチウム箔を電池ケースに貼り付け、非水電解液の注入後負極の電位を2.5V<E<3.2Vの範囲で初期の充電を行うことにより、不純物金属イオンの析出を押さえ、微少短絡を防止して、サイクル特性を向上させる方法が提案されている。これらは、電池能力の低下に対して有益な方法であるが、工程が複雑であったり、リチウムが反応しない環境での作業が複雑であるなど取扱場所が制限され、工業的には実現が難しかった。 That is, in Patent Document 1 (JP-A-5-226003), a method of replenishing with an irreversible capacity of an organic lithium compound, and in Patent Document 2 (JP-A-10-223259), metallic lithium is disposed on the upper part of the battery case. Japanese Patent No. 3403858 proposes a method of compensating for irreversible capacity lithium by arranging lithium in the cross-sectional direction of the positive electrode. Moreover, in patent document 4 (Unexamined-Japanese-Patent No. 2003-234125), a metal lithium foil is affixed on a battery case, and after injection | pouring of nonaqueous electrolyte, the electric potential of a negative electrode is initial in the range of 2.5V <E <3.2V. Thus, there has been proposed a method for improving the cycle characteristics by suppressing the deposition of impurity metal ions and preventing a minute short circuit by performing the above charging. These are useful methods for reducing the battery capacity, but they are difficult to implement industrially due to limited handling locations such as complicated processes and complicated work in an environment where lithium does not react. It was.
本発明は、上記事情に鑑みなされたもので、負極に残ってしまう不可逆容量のリチウムを簡便に補うことができて、電池能力が向上し、また製造時の取り扱い性に優れた非水電解質二次電池及びその製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and can easily compensate for irreversible capacity lithium remaining in the negative electrode, improve battery performance, and is excellent in handleability during production. An object of the present invention is to provide a secondary battery and a manufacturing method thereof.
本発明者は、上記目的を達成するため鋭意検討した結果、簡便な方法でかつ露点マイナス40℃程度で容易に取り扱える方法を見出し、本発明をなすに至った。即ち、金属リチウムを粉末状に加工した金属リチウム粉末を用いて作製したリチウム含有膜を負極に形成して用いることで、負極中に残ってしまう不可逆容量のリチウムを補うことが可能となり、電池能力が向上する方法を見出した。 As a result of intensive studies to achieve the above object, the present inventor has found a simple method and a method that can be easily handled at a dew point of about minus 40 ° C., and has reached the present invention. In other words, by using a lithium-containing film prepared using a metal lithium powder obtained by processing metal lithium in a powder form on the negative electrode, it becomes possible to compensate for irreversible lithium remaining in the negative electrode, and battery capacity Found a way to improve.
従って、本発明は、下記非水電解質二次電池及びその製造方法を提供する。
(1)リチウムイオンを吸蔵・放出することが可能な珪素を含有する負極活物質を用いた負極と、
リチウムイオンを吸蔵・放出することが可能な酸化物、硫化物又は有機高分子化合物を含有する正極活物質を用いた正極と、
金属リチウム粉末又は有機ゴム、有機樹脂もしくは金属炭酸塩で表面コートされた金属リチウム粉末と、バインダと、導電材とを含む混合物からなるリチウムを含んだ膜と、
リチウム塩を含む非水電解液を用いた非水電解質二次電池において、
負極がその少なくとも正極側においてリチウムを含んだ膜を有していることを特徴とする非水電解質二次電池。
(2)上記リチウムを含んだ膜中、バインダが、ポリフッ化ビニリデン、スチレン・ブタジエン共重合体、ポリテトラフルオロエチレン樹脂、トリブタジエンゴム、エチレンビニルアルコール共重合体樹脂、ポリアミド樹脂、ポリイミド樹脂及びポリアミドイミド樹脂から選ばれ、その量が、金属リチウム100質量部に対し0.1〜70質量部であり、導電材の量が、金属リチウム100質量部に対し、0.1〜70質量部である(1)記載の非水電解質二次電池。
(3)負極が集電体シートを備え、該負極集電体シートの一面に負極活物質層が形成されていると共に、該負極活物質層上にリチウムを含んだ膜が形成された(1)又は(2)記載の非水電解質二次電池。
(4)負極が集電体シートを備え、該負極集電体シートの両面に負極活物質層がそれぞれ形成されていると共に、該両負極活物質層上にそれぞれリチウムを含んだ膜が形成された(1)又は(2)記載の非水電解質二次電池。
(5)(1)記載の非水電解質二次電池の製造方法であって、金属リチウム粉末又は有機ゴム、有機樹脂もしくは金属炭酸塩で表面コートされた金属リチウム粉末と、バインダと、導電材と、脱水した溶剤とを含有するスラリーを、負極の少なくとも正極側の面に直接塗布し、これを乾燥して負極の少なくとも正極側の面にリチウムを含んだ膜を製膜する工程を含む、非水電解質二次電池の製造方法。
(6)負極が集電体シートを備え、該集電体シートの一面に負極活物質層を形成すると共に、該負極活物質層上に、前記スラリーを直接塗布し、これを乾燥してリチウムを含んだ膜を製膜する工程を含む(5)記載の非水電解質二次電池の製造方法。
(7)負極が集電体シートを備え、該集電体シートの両面に負極活物質層をそれぞれ形成すると共に、該両負極活物質層上に前記スラリーをそれぞれ直接塗布し、これを乾燥してリチウムを含んだ膜を製膜する工程を含む(5)記載の非水電解質二次電池の製造方法。
(8)(1)記載の非水電解質二次電池の製造方法であって、金属リチウム粉末又は有機ゴム、有機樹脂もしくは金属炭酸塩で表面コートされた金属リチウム粉末と、バインダ、導電材、及び脱水した溶剤とを含有するスラリーから、リチウムを含んだ膜を予め製膜し、これを負極の少なくとも正極側の面に貼り合わせる工程を含む、非水電解質二次電池の製造方法。
(9)負極が集電体シートを備え、該集電体シートの一面に負極活物質層を形成すると共に、該負極活物質層上に前記リチウムを含んだ膜を貼り合わせる工程を含む、(8)記載の非水電解質二次電池の製造方法。
(10)負極が集電体シートを備え、該集電体シートの両面に負極活物質層をそれぞれ形成すると共に、該両負極活物質層上に前記リチウムを含んだ膜をそれぞれ貼り合わせる工程を含む(8)記載の非水電解質二次電池の製造方法。
(11)脱水した溶剤が、N−メチルピロリドン、トルエン、キシレン又はメチルエチルケトンである(5)〜(10)のいずれかに記載の製造方法。
Accordingly, the present invention provides the following nonaqueous electrolyte secondary battery and a method for manufacturing the same.
(1) a negative electrode using a negative electrode active material containing silicon capable of inserting and extracting lithium ions;
A positive electrode using a positive electrode active material containing an oxide, sulfide or organic polymer compound capable of inserting and extracting lithium ions;
A lithium-containing film made of a mixture containing a metallic lithium powder or a metallic lithium powder surface-coated with an organic rubber, an organic resin or a metal carbonate, a binder, and a conductive material;
In a non-aqueous electrolyte secondary battery using a non-aqueous electrolyte containing a lithium salt,
A nonaqueous electrolyte secondary battery, wherein the negative electrode has a film containing lithium at least on the positive electrode side.
(2) In the lithium-containing film, the binder is polyvinylidene fluoride, styrene / butadiene copolymer, polytetrafluoroethylene resin, tributadiene rubber, ethylene vinyl alcohol copolymer resin, polyamide resin, polyimide resin, and polyamide. An imide resin is selected, and the amount thereof is 0.1 to 70 parts by mass with respect to 100 parts by mass of metallic lithium, and the amount of the conductive material is 0.1 to 70 parts by mass with respect to 100 parts by mass of metallic lithium. (1) The nonaqueous electrolyte secondary battery as described.
(3) The negative electrode includes a current collector sheet, a negative electrode active material layer is formed on one surface of the negative electrode current collector sheet, and a film containing lithium is formed on the negative electrode active material layer (1 Or the nonaqueous electrolyte secondary battery according to (2).
(4) The negative electrode includes a current collector sheet, and a negative electrode active material layer is formed on both sides of the negative electrode current collector sheet, and a film containing lithium is formed on each of the negative electrode active material layers. The nonaqueous electrolyte secondary battery according to (1) or (2).
(5) The method for producing a non-aqueous electrolyte secondary battery according to (1), wherein metal lithium powder or metal lithium powder surface-coated with organic rubber, organic resin or metal carbonate, a binder, and a conductive material A slurry containing a dehydrated solvent is directly applied to at least the positive electrode side surface of the negative electrode, and dried to form a film containing lithium on at least the positive electrode surface of the negative electrode. A method for producing a water electrolyte secondary battery.
(6) The negative electrode includes a current collector sheet, and a negative electrode active material layer is formed on one surface of the current collector sheet, and the slurry is directly applied on the negative electrode active material layer, and then dried to form lithium. (5) The manufacturing method of the nonaqueous electrolyte secondary battery as described in (5) including the process of forming the film | membrane containing this.
(7) The negative electrode includes a current collector sheet, and the negative electrode active material layers are formed on both sides of the current collector sheet, and the slurry is directly applied on both the negative electrode active material layers and dried. comprising the step of film a film containing lithium Te (5) the method of producing a non-aqueous electrolyte secondary battery according.
(8) A method for producing a non-aqueous electrolyte secondary battery according to (1), wherein metal lithium powder or metal lithium powder surface-coated with organic rubber, organic resin or metal carbonate, a binder, a conductive material, and A method for producing a nonaqueous electrolyte secondary battery, comprising: forming a film containing lithium in advance from a slurry containing a dehydrated solvent; and bonding the film to at least a positive electrode side surface of a negative electrode.
(9) The negative electrode includes a current collector sheet, and includes a step of forming a negative electrode active material layer on one surface of the current collector sheet and bonding the lithium-containing film on the negative electrode active material layer. 8 ) A method for producing a non-aqueous electrolyte secondary battery as described above.
(10) A step in which the negative electrode includes a current collector sheet, and a negative electrode active material layer is formed on both surfaces of the current collector sheet, and a film containing lithium is bonded to each of the negative electrode active material layers. The manufacturing method of the nonaqueous electrolyte secondary battery as described in ( 8 ).
(11) The production method according to any one of (5) to (10), wherein the dehydrated solvent is N-methylpyrrolidone, toluene, xylene, or methyl ethyl ketone.
本発明の製造方法によれば、負極中に残ってしまう不可逆容量のリチウムを簡便な方法で補うことが可能となり、電池能力が向上し、露点マイナス40℃程度で容易に取り扱える非水電解質二次電池を提供できる。 According to the production method of the present invention, the irreversible capacity lithium remaining in the negative electrode can be supplemented by a simple method, the battery capacity is improved, and the non-aqueous electrolyte secondary that can be easily handled at a dew point of about −40 ° C. Battery can be provided.
本発明の非水電解質二次電池は、リチウムイオンを吸蔵・放出することが可能な珪素を含有する負極活物質を用いた負極と、リチウムイオンを吸蔵・放出することが可能な酸化物、硫化物又は有機高分子化合物を含有する正極活物質を用いた正極と、リチウム塩を含む非水電解液を用いたものである。 The non-aqueous electrolyte secondary battery of the present invention includes a negative electrode using a negative electrode active material containing silicon capable of occluding and releasing lithium ions, an oxide capable of occluding and releasing lithium ions, and sulfide. A positive electrode using a positive electrode active material containing a product or an organic polymer compound, and a non-aqueous electrolyte containing a lithium salt.
ここで、正極活物質としては、リチウムイオンを吸蔵及び放出することが可能な酸化物、硫化物又は有機高分子化合物が挙げられ、これらのいずれか1種又は2種以上が用いられる。具体的には、例えばTiS2、MoS2、NbS2、ZrS2、VS2、V2O5、MoO3、Mg(V3O8)2などのリチウムを含有しない金属硫化物、酸化物、又はリチウムを含有するリチウム複合酸化物が挙げられ、また、NbSe2などの複合金属も挙げられる。中でも、エネルギー密度を高くするためには、Li(Met)xO2を主体とするリチウム複合酸化物が好ましい。なお、Metは具体的には、コバルト、ニッケル、鉄、及びマンガンのうち少なくとも1種が好ましく、xは、通常、0.05≦x≦1.10の範囲内の値である。このようなリチウム複合酸化物の具体例としては、層構造をもつLiCoO2、LiNiO2、LiFeO2、LixNiyCo1-yO2(但し、0.05≦x≦1.10、0≦y≦1)、スピネル構造のLiMn2O4及び斜方晶のLiMnO2が挙げられる。更に高電圧対応型として置換スピネルマンガン化合物LiMetxMn1-xO4(但し、0≦x≦1)も使用されており、この場合のMetはチタン、クロム、鉄、コバルト、銅及び亜鉛等が挙げられる。 Here, examples of the positive electrode active material include oxides, sulfides, and organic polymer compounds capable of occluding and releasing lithium ions, and any one or more of these are used. Specifically, for example, TiS 2 , MoS 2 , NbS 2 , ZrS 2 , VS 2 , V 2 O 5 , MoO 3 , Mg (V 3 O 8 ) 2 and other metal sulfides and oxides not containing lithium, or lithium composite oxide is exemplified containing lithium and a composite metal such as NbSe 2 can also be mentioned. Among these, in order to increase the energy density, a lithium composite oxide mainly composed of Li (Met) x O 2 is preferable. Specifically, Met is preferably at least one of cobalt, nickel, iron, and manganese, and x is usually a value in the range of 0.05 ≦ x ≦ 1.10. Specific examples of such a lithium composite oxide include LiCoO 2 , LiNiO 2 , LiFeO 2 , Li x Ni y Co 1-y O 2 having a layer structure (where 0.05 ≦ x ≦ 1.10, 0 ≦ y ≦ 1), spinel-structured LiMn 2 O 4 and orthorhombic LiMnO 2 . Furthermore, substituted spinel manganese compounds LiMet x Mn 1-x O 4 (where 0 ≦ x ≦ 1) are also used as high voltage types, where Met is titanium, chromium, iron, cobalt, copper, zinc, etc. Is mentioned.
なお、上記のリチウム複合酸化物は、例えば、リチウムの炭酸塩、硝酸塩、塩化物あるいは水酸化物と、遷移金属の炭酸塩、硝酸塩、酸化物あるいは水酸化物とを所望の組成に応じて粉砕混合し、酸素雰囲気中において600〜1,000℃の範囲内の温度で焼成することにより調製される。 The lithium composite oxide is obtained by, for example, grinding lithium carbonate, nitrate, chloride or hydroxide and transition metal carbonate, nitrate, oxide or hydroxide according to a desired composition. It is prepared by mixing and baking at a temperature in the range of 600 to 1,000 ° C. in an oxygen atmosphere.
更に、正極活物質としては有機高分子化合物も使用することができる。例示するとポリアセチレン、ポリピロール、ポリパラフェニレン、ポリアニリン、ポリチオフェン、ポリアセン、ポリスルフィド化合物等の導電性ポリマーなどの高分子化合物である。 Furthermore, an organic polymer compound can also be used as the positive electrode active material. Illustrative examples include high molecular compounds such as conductive polymers such as polyacetylene, polypyrrole, polyparaphenylene, polyaniline, polythiophene, polyacene, and polysulfide compounds.
負極活物質としては、リチウムイオンを吸蔵及び放出することが可能な珪素を含む活物質が挙げられる。具体的には、金属不純物濃度が各々1ppm以下の高純度シリコン粉末や塩酸で洗浄したのちフッ化水素酸及びフッ化水素酸と硝酸の混合物で処理することで金属不純物を取り除いたケミカルグレードのシリコン粉末及び冶金的に精製された金属珪素を粉末状に加工したもの、更にそれらの合金や珪素の低級酸化物や部分酸化物、珪素の窒化物や部分窒化物、更にそれらを導電化処理するため炭素材料と混合したり、メカニカルアロイング等により合金化したもの、スパッタリングやめっき法により金属等の導電材で被覆したもの、有機ガスでカーボンを析出させたものを含む。 Examples of the negative electrode active material include an active material containing silicon capable of inserting and extracting lithium ions. Specifically, chemical-grade silicon from which metal impurities are removed by washing with high-purity silicon powder or hydrochloric acid with a metal impurity concentration of 1 ppm or less and then treating with hydrofluoric acid or a mixture of hydrofluoric acid and nitric acid. Powders and metallurgically refined metal silicon processed into powder, their alloys, lower oxides and partial oxides of silicon, silicon nitrides and partial nitrides, and further for conducting a conductive treatment Including those mixed with a carbon material, alloyed by mechanical alloying, etc., coated with a conductive material such as metal by sputtering or plating, and carbon deposited with an organic gas.
この場合、負極活物質としては、特開2004−47404号公報に記載されているような、1〜500nmの大きさの珪素の微結晶が珪素系化合物、特に二酸化珪素に分散した構造を有する粒子の表面を炭素でコーティングしたものが好適である。 In this case, the negative electrode active material is a particle having a structure in which silicon microcrystals having a size of 1 to 500 nm are dispersed in a silicon-based compound, particularly silicon dioxide, as described in JP-A-2004-47404. Those having a surface coated with carbon are preferred.
正極、負極の作製方法については特に制限はない。一般的には、溶媒に活物質、結着剤、導電剤等を加えてスラリー状とし、集電体シートに塗布し、乾燥、圧着して作製する。
結着剤としては、一般的にポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレン・ブタジエンゴム、イソプレンゴム、各種ポリイミド樹脂等が挙げられる。
導電剤としては、一般的に黒鉛、カーボンブラック等の炭素系材料や、銅、ニッケル等の金属材料が挙げられる。
集電体としては、正極用にはアルミニウム、又はその合金、負極用には銅、ステンレス、ニッケル等の金属又はそれらの合金等が挙げられる。
There is no restriction | limiting in particular about the preparation methods of a positive electrode and a negative electrode. In general, an active material, a binder, a conductive agent or the like is added to a solvent to form a slurry, which is applied to a current collector sheet, dried and pressed.
Examples of the binder generally include polyvinylidene fluoride, polytetrafluoroethylene, styrene / butadiene rubber, isoprene rubber, various polyimide resins, and the like.
Examples of the conductive agent generally include carbon-based materials such as graphite and carbon black, and metal materials such as copper and nickel.
Examples of the current collector include aluminum or an alloy thereof for the positive electrode, and a metal such as copper, stainless steel, nickel, or an alloy thereof for the negative electrode.
正極と負極の間に用いられるセパレータは電解液に対して安定であり、保液性に優れていれば特に制限はないが、一般的にはポリエチレン、ポリプロピレン等のポリオレフィンの多孔質シート、又は不織布が挙げられる。 The separator used between the positive electrode and the negative electrode is not particularly limited as long as it is stable with respect to the electrolytic solution and has excellent liquid retention, but is generally a porous sheet of polyolefin such as polyethylene or polypropylene, or a nonwoven fabric. Is mentioned.
本発明の非水電解液は、電解質塩及び非水溶媒を含有する。電解質塩としては、例えば、軽金属塩が挙げられる。軽金属塩にはリチウム塩、ナトリウム塩、あるいはカリウム塩等のアルカリ金属塩、又はマグネシウム塩あるいはカルシウム塩等のアルカリ土類金属塩、又はアルミニウム塩等があり、目的に応じて1種又は複数種が選択される。例えば、リチウム塩であれば、LiBF4、LiClO4、LiPF6、LiAsF6、CF3SO3Li、(CF3SO2)2NLi、C4F9SO3Li、CF3CO2Li、(CF3CO2)2NLi、C6F5SO3Li、C8F17SO3Li、(C2F5SO2)2NLi、(C4F9SO2)(CF3SO2)NLi、(FSO2C6F4)(CF3SO2)NLi、((CF3)2CHOSO2)2NLi、(CF3SO2)3CLi、(3,5−(CF3)2C6F3)4BLi、LiCF3、LiAlCl4あるいはC4BO8Liが挙げられ、これらのうちのいずれか1種又は2種以上が混合して用いられる。 The nonaqueous electrolytic solution of the present invention contains an electrolyte salt and a nonaqueous solvent. Examples of the electrolyte salt include light metal salts. Light metal salts include alkali metal salts such as lithium salts, sodium salts, or potassium salts, alkaline earth metal salts such as magnesium salts or calcium salts, or aluminum salts. Selected. For example, in the case of a lithium salt, LiBF 4 , LiClO 4 , LiPF 6 , LiAsF 6 , CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, C 4 F 9 SO 3 Li, CF 3 CO 2 Li, ( CF 3 CO 2 ) 2 NLi, C 6 F 5 SO 3 Li, C 8 F 17 SO 3 Li, (C 2 F 5 SO 2 ) 2 NLi, (C 4 F 9 SO 2 ) (CF 3 SO 2 ) NLi , (FSO 2 C 6 F 4 ) (CF 3 SO 2 ) NLi, ((CF 3 ) 2 CHOSO 2 ) 2 NLi, (CF 3 SO 2 ) 3 CLi, (3,5- (CF 3 ) 2 C 6 F 3 ) 4 BLi, LiCF 3 , LiAlCl 4, or C 4 BO 8 Li may be used, and any one or two of these may be used in combination.
非水電解液の電解質塩の濃度は、電気伝導性の点から、0.5〜2.0mol/Lが好ましい。なお、この電解質の温度25℃における導電率は0.01S/m以上であることが好ましく、電解質塩の種類あるいはその濃度により調整される。 The concentration of the electrolyte salt in the nonaqueous electrolytic solution is preferably 0.5 to 2.0 mol / L from the viewpoint of electrical conductivity. The conductivity of the electrolyte at 25 ° C. is preferably 0.01 S / m or more, and is adjusted by the type of electrolyte salt or its concentration.
本発明に使用される非水電解液用溶媒としては、非水電解液用として使用し得るものであれば特に制限はない。一般にエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン等の非プロトン性高誘電率溶媒や、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、ジプロピルカーボネート、ジエチルエーテル、テトラヒドロフラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,3−ジオキソラン、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル、アニソール、メチルアセテート等の酢酸エステル類あるいはプロピオン酸エステル類等の非プロトン性低粘度溶媒が挙げられる。これらの非プロトン性高誘電率溶媒と非プロトン性低粘度溶媒を適当な混合比で併用することが望ましい。更には、イミダゾリウム、アンモニウム、及びピリジニウム型のカチオンを用いたイオン性液体を使用することができる。対アニオンは特に限定されるものではないが、BF4 -、PF6 -、(CF3SO2)2N-等が挙げられる。イオン性液体は前述の非水電解液溶媒と混合して使用することが可能である。 The solvent for non-aqueous electrolyte used in the present invention is not particularly limited as long as it can be used for non-aqueous electrolyte. Generally, aprotic high dielectric constant solvents such as ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl propyl carbonate, dipropyl carbonate, diethyl ether, tetrahydrofuran, 1,2, -Aprotic low viscosity such as acetate ester or propionate ester such as dimethoxyethane, 1,2-diethoxyethane, 1,3-dioxolane, sulfolane, methylsulfolane, acetonitrile, propionitrile, anisole, methyl acetate A solvent is mentioned. It is desirable to use these aprotic high dielectric constant solvents and aprotic low viscosity solvents in combination at an appropriate mixing ratio. Furthermore, ionic liquids using imidazolium, ammonium, and pyridinium type cations can be used. The counter anion is not particularly limited, and examples thereof include BF 4 − , PF 6 − , (CF 3 SO 2 ) 2 N − and the like. The ionic liquid can be used by mixing with the aforementioned non-aqueous electrolyte solvent.
固体電解質やゲル電解質とする場合にはシリコーンゲル、シリコーンポリエーテルゲル、アクリルゲル、アクリロニトリルゲル、ポリ(ビニリデンフルオライド)等を高分子材料として含有することが可能である。なお、これらは予め重合していてもよく、注液後重合してもよい。これらは単独もしくは混合物として使用可能である。 In the case of a solid electrolyte or gel electrolyte, it is possible to contain silicone gel, silicone polyether gel, acrylic gel, acrylonitrile gel, poly (vinylidene fluoride) and the like as a polymer material. These may be polymerized in advance or may be polymerized after injection. These can be used alone or as a mixture.
更に、本発明の非水電解液中には必要に応じて各種添加剤を添加してもよい。例えば、サイクル寿命向上を目的としたビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、4−ビニルエチレンカーボネート等や、過充電防止を目的としたビフェニル、アルキルビフェニル、シクロヘキシルベンゼン、t−ブチルベンゼン、ジフェニルエーテル、ベンゾフラン等や、脱酸や脱水を目的とした各種カーボネート化合物、各種カルボン酸無水物、各種含窒素及び含硫黄化合物が挙げられる。 Furthermore, you may add various additives in the non-aqueous electrolyte of this invention as needed. For example, vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, 4-vinylethylene carbonate and the like for the purpose of improving cycle life, biphenyl, alkylbiphenyl, cyclohexylbenzene, t-butylbenzene, diphenyl ether for the purpose of preventing overcharge, Examples include benzofuran, various carbonate compounds for the purpose of deoxidation and dehydration, various carboxylic acid anhydrides, various nitrogen-containing compounds, and sulfur-containing compounds.
電池の形状は任意であり、特に制限はない。一般的にはコイン形状に打ち抜いた電極とセパレータを積層したコインタイプ、電極シートとセパレータをスパイラル状にしたシリンダータイプ等が挙げられる。 The shape of the battery is arbitrary and is not particularly limited. In general, a coin type in which an electrode punched into a coin shape and a separator are stacked, a cylinder type in which an electrode sheet and a separator are spiraled, and the like can be given.
本発明においては、このような非水電解質二次電池において、上記した負極の少なくとも正極側にリチウムを含んだ膜を塗布又は貼り合わせにより形成したものである。 In the present invention, in such a nonaqueous electrolyte secondary battery, a film containing lithium is formed on at least the positive electrode side of the negative electrode by coating or bonding.
即ち、上述した珪素を含む負極活物質は、従来より用いられていた黒鉛と比べ高い充放電容量を持つが、初回の充電で負極材料中に導入されたリチウムが、全て放電によって取り出せずに一定量負極中に残ってしまう不可逆容量のリチウムがあり、特に珪素の低級酸化物である酸化珪素は、優れたサイクル特性を示すが、不可逆容量のリチウムが大きく、実用化に問題があったものであるが、上記リチウムを含んだ膜の形成により、かかる問題が解決されるものである。 In other words, the negative electrode active material containing silicon described above has a higher charge / discharge capacity than graphite conventionally used, but the lithium introduced into the negative electrode material by the first charge is not taken out by discharge and is constant. There is an irreversible capacity lithium that remains in the negative electrode, especially silicon oxide, which is a lower oxide of silicon, which shows excellent cycle characteristics, but the irreversible capacity lithium is large and has a problem in practical use. However, this problem can be solved by forming the lithium-containing film.
この場合、リチウムを含んだ膜は、金属リチウム粉末もしくは表面コートされた金属リチウム粉末と、バインダと、導電材とを含む混合物の膜であることが好ましい。 In this case, the film containing lithium is preferably a film of a mixture containing metal lithium powder or surface-coated metal lithium powder, a binder, and a conductive material.
本発明に係わる金属リチウム粉末は、安定化処理させたリチウム粉末を使用するのが好ましい。リチウム粉末を安定化処理することで、露点マイナス40℃程度のドライルームにおいてもリチウム粉末の変質が進行しなくなる。ここでリチウム粉末の安定化処理とは、リチウム粉末の表面に環境安定の良い物質、例えば、NBR(ニトリルブタジエンゴム)、SBR(スチレンブタジエンゴム)等の有機ゴム、EVA(エチレンビニルアルコール共重合樹脂)等の有機樹脂やLi2CO3などの金属炭酸塩等の無機化合物等でコーティングされたもので、市販品としてFMC社製のSLMPやアルドリッチ社製のリチウムパウダー等がある。 As the metallic lithium powder according to the present invention, it is preferable to use a stabilized lithium powder. By stabilizing the lithium powder, the modification of the lithium powder does not proceed even in a dry room having a dew point of about −40 ° C. Here, the stabilization of the lithium powder is a material having good environmental stability on the surface of the lithium powder, for example, organic rubber such as NBR (nitrile butadiene rubber) and SBR (styrene butadiene rubber), EVA (ethylene vinyl alcohol copolymer resin). ) And other inorganic compounds such as metal carbonates such as Li 2 CO 3 , and commercially available products include SLMP manufactured by FMC and lithium powder manufactured by Aldrich.
また、バインダとしては、ポリフッ化ビニリデン、スチレン・ブタジエン共重合体、ポリテトラフルオロエチレン樹脂、トリブタジエンゴム、エチレンビニルアルコール共重合体樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂等が挙げられ、バインダの使用量は、上記金属リチウム100質量部に対し、0.1〜70質量部、特に0.2〜10質量部であることが好ましい。 Examples of the binder include polyvinylidene fluoride, styrene / butadiene copolymer, polytetrafluoroethylene resin, tributadiene rubber, ethylene vinyl alcohol copolymer resin, polyamide resin, polyimide resin, polyamideimide resin, and the like. Is preferably 0.1 to 70 parts by mass, particularly preferably 0.2 to 10 parts by mass with respect to 100 parts by mass of the lithium metal.
導電材としては、アセチレンブラック、黒鉛、炭素繊維や銅、ステンレス、ニッケルなどの金属粉末や金属繊維あるいはこれらの2種以上の合金の粉末や繊維等が挙げられ、その使用量は、上記金属リチウム100質量部に対し、0.1〜70質量部、特に0.2〜10質量部とすることが好ましい。 Examples of the conductive material include metal powders such as acetylene black, graphite, carbon fiber, copper, stainless steel, nickel, metal fibers, or powders or fibers of two or more of these alloys. It is preferable to set it as 0.1-70 mass parts with respect to 100 mass parts, especially 0.2-10 mass parts.
上記金属リチウム粉末とバインダと導電材とからなる混合物は、これに脱水した溶剤、例えばN−メチルピロリドン、トルエン、キシレン、メチルエチルケトン等を加えてスラリーとし、これを例えば露点マイナス40℃の窒素グローブボックス中で負極に塗布し、これを乾燥してリチウム塗布負極としたり、あるいは上記スラリーを膜状に製膜し、このリチウム含有膜を負極に貼り合わせ、これを乾燥して、リチウム貼り合わせ負極とすることができる。 The mixture composed of the lithium metal powder, the binder, and the conductive material is made into a slurry by adding a dehydrated solvent such as N-methylpyrrolidone, toluene, xylene, methyl ethyl ketone, and the like, for example, a nitrogen glove box having a dew point of −40 ° C. In the negative electrode and dried to form a lithium-coated negative electrode, or the slurry is formed into a film, the lithium-containing film is bonded to the negative electrode, and dried to form a lithium bonded negative electrode can do.
この場合、リチウムを含んだ膜は、負極の少なくとも正極側に形成するが、前記負極集電体シートの負極活物質が塗布された面にリチウム含有膜を塗布又は貼り合わせによって形成することが好ましい。つまり、集電体シートの一面に負極活物質層を形成し、その上にリチウム含有膜を形成すること、あるいは集電体シートの両面に負極活物質層をそれぞれ形成し、これら両負極活物質層上にそれぞれリチウム含有膜を形成することが好ましい。リチウム含有膜は、正極に対面するように配置されるが、この場合、例えば集電体シートの一面に負極活物質層、リチウム含有膜を形成する態様はコイン型電池に、集電体シートの両面にそれぞれ負極活物質層、リチウム含有膜を形成する態様はシリンダータイプの電池に有効である。 In this case, the lithium-containing film is formed on at least the positive electrode side of the negative electrode, but it is preferable to form the lithium-containing film on the surface of the negative electrode current collector sheet coated with the negative electrode active material by coating or bonding. . That is, a negative electrode active material layer is formed on one surface of the current collector sheet, and a lithium-containing film is formed thereon, or a negative electrode active material layer is formed on both surfaces of the current collector sheet. A lithium-containing film is preferably formed on each layer. The lithium-containing film is arranged so as to face the positive electrode. In this case, for example, the negative electrode active material layer and the lithium-containing film are formed on one surface of the current collector sheet, in a coin-type battery, A mode in which a negative electrode active material layer and a lithium-containing film are formed on both surfaces is effective for a cylinder type battery.
本発明の非水電解質二次電池において、上記リチウム皮膜は、集電体シート上に形成されたリチウムが初回の充電により負極活物質層の内部に拡散されるように機能する。このリチウム皮膜は、負極の不可逆容量分を補うために利用されるものであるので、その添加量は負極の不可逆容量を補うだけの量以下であることが望ましい。リチウムの最適な添加量は、負極活物質の量や材質によって変化し、添加量に応じて不可逆容量が減少するが、多すぎると負極にリチウムが析出してしまい、逆に電池の容量が減少する。従って、最適なリチウムの添加量は別途に負極の初期効率を求めてから定めることが好ましく、また、電池設計における負極の厚み(使用量)に応じて定められる。 In the non-aqueous electrolyte secondary battery of the present invention, the lithium film functions so that lithium formed on the current collector sheet is diffused into the negative electrode active material layer by the first charge. Since this lithium film is used to supplement the irreversible capacity of the negative electrode, it is desirable that the amount of addition be less than or equal to the amount sufficient to supplement the irreversible capacity of the negative electrode. The optimum addition amount of lithium varies depending on the amount and material of the negative electrode active material, and the irreversible capacity decreases depending on the addition amount, but if it is too much, lithium is deposited on the negative electrode, and conversely the battery capacity decreases. To do. Therefore, it is preferable to determine the optimum addition amount of lithium after separately obtaining the initial efficiency of the negative electrode, and is determined according to the thickness (use amount) of the negative electrode in battery design.
以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、下記例で%は質量%を示す。 EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not limited to the following Example. In the following examples,% indicates mass%.
[実施例1]
[負極活物質(導電性珪素複合体)の作製]
負極活物質である導電性珪素複合体は、特開2004−47404号公報の記載に基づき作製した。以下にその作製方法を記す。
二酸化珪素粉末(BET比表面積=200m2/g)とケミカルグレード用金属珪素粉末(BET比表面積=4m2/g)を等モルの割合で混合した混合粉末を、1,350℃、0.1Torrの高温減圧雰囲気で熱処理し、発生したSiOxガスを水冷したSUS製基体に析出させた。次にこの析出物を回収した後、ヘキサン中ボールミルで5時間粉砕し、d50=8μmの酸化珪素粉末(SiOx:x=1.02)を得た。ここで得られた粉末をCu−Kα線によるX線回折を行い、得られた粉末は無定形の酸化珪素(SiOx)粉末であることを確認した。
[Example 1]
[Preparation of negative electrode active material (conductive silicon composite)]
A conductive silicon composite as a negative electrode active material was prepared based on the description in JP-A-2004-47404. The production method is described below.
A mixed powder prepared by mixing silicon dioxide powder (BET specific surface area = 200 m 2 / g) and metal silicon powder for chemical grade (BET specific surface area = 4 m 2 / g) at an equimolar ratio was 1,350 ° C., 0.1 Torr. Then, the generated SiO x gas was deposited on a water-cooled SUS substrate. Next, this precipitate was collected and then pulverized with a ball mill in hexane for 5 hours to obtain a silicon oxide powder (SiO x : x = 1.02) having d 50 = 8 μm. The powder obtained here was subjected to X-ray diffraction using Cu-Kα rays, and it was confirmed that the obtained powder was amorphous silicon oxide (SiO x ) powder.
得られた酸化珪素粉末をロータリーキルン型の反応器を用いて、メタン−アルゴン混合ガス通気下で1,150℃、平均滞留時間約2時間の条件で酸化珪素の不均化と同時に熱CVDを行った。運転終了後、降温し、黒色粉末を回収した。得られた黒色粉末の蒸着炭素量は22.0%であり、X線回折パターンより、得られた黒色粉末は、酸化珪素粉末とは異なり、2θ=28.4°付近のSi(111)に帰属される回折線が存在し、この回折線の半価幅よりシェーラー法で結晶の大きさを求め、二酸化珪素中に分散した珪素の結晶の大きさは11nmであり、このことから微細な珪素(Si)の結晶が、二酸化珪素(SiO2)の中に分散している導電性珪素複合体粉末を作製した。 The obtained silicon oxide powder was subjected to thermal CVD simultaneously with disproportionation of silicon oxide using a rotary kiln type reactor under the conditions of 1,150 ° C. and average residence time of about 2 hours under methane-argon mixed gas flow. It was. After the operation was completed, the temperature was lowered and black powder was recovered. The amount of deposited carbon of the obtained black powder is 22.0%. From the X-ray diffraction pattern, the obtained black powder is different from silicon oxide powder in Si (111) near 2θ = 28.4 °. There is an assigned diffraction line, and the size of the crystal is obtained by the Scherrer method from the half width of this diffraction line. The size of the silicon crystal dispersed in the silicon dioxide is 11 nm. A conductive silicon composite powder in which (Si) crystals are dispersed in silicon dioxide (SiO 2 ) was produced.
[負極の作製]
負極の作製は、以下の手順で行った。
導電性珪素複合体粉末5gにポリイミドを10%加え、更にN−メチルピロリドンを加え、スラリーとし、このスラリーを厚さ20μmの銅箔の一面に塗布し(導電性珪素複合体粉末の塗布量:1.5mg/cm2)、80℃で1時間真空乾燥後、ローラープレスにより電極を加圧成形し、350℃で1時間真空乾燥し負極とした。
[Production of negative electrode]
The negative electrode was produced according to the following procedure.
10% of polyimide is added to 5 g of conductive silicon composite powder, N-methylpyrrolidone is further added to form a slurry, and this slurry is applied to one surface of a copper foil having a thickness of 20 μm (coating amount of conductive silicon composite powder: 1.5 mg / cm 2 ), after vacuum drying at 80 ° C. for 1 hour, the electrode was press-molded by a roller press and vacuum dried at 350 ° C. for 1 hour to obtain a negative electrode.
[リチウム入りペーストの作製]
リチウム入りペーストの作製は、以下の手順で行った。
アルドリッチ社製リチウムパウダー50〜150μm(Cat. No.590584) 1gにアセチレンブラック0.5gを加え、更にポリフッ化ビニリデンをこの組成物に対して3%となるように加えた。これにモレキュラーシーブスで脱水したN−メチルピロリドンを加えて、スラリーとし、露点−40℃の窒素グローブバック中で先ほど作製した負極の銅箔の他面に塗布し、100℃で1時間真空乾燥して、リチウム含有膜形成負極とし、2cm2に打ち抜いた。
[Preparation of paste containing lithium]
The lithium-containing paste was produced according to the following procedure.
0.5 g of acetylene black was added to 1 g of lithium powder 50 to 150 μm (Cat. No. 5905884) manufactured by Aldrich, and polyvinylidene fluoride was further added to 3% of the composition. N-methylpyrrolidone dehydrated with molecular sieves was added to this to form a slurry, which was applied to the other surface of the negative electrode copper foil prepared in a nitrogen glove bag with a dew point of −40 ° C., and vacuum-dried at 100 ° C. for 1 hour. Thus, a lithium-containing film-forming negative electrode was punched out to 2 cm 2 .
[電池の作製]
正極材料として、LiCoO2を活物質とし、集電体としてアルミ箔を用いた単層シート(パイオニクス(株)製、商品名;ピオクセル C−100)を用いて2cm2に打ち抜き、正極とした。
[Production of battery]
As a positive electrode material, a single layer sheet (Pionix Co., Ltd., trade name: Pioxel C-100) using LiCoO 2 as an active material and an aluminum foil as a current collector was punched into 2 cm 2 to obtain a positive electrode.
得られた正極及びリチウム入り負極をグローブボックス(露点−80℃以下)中で、非水電解質として六フッ化リン酸リチウムをエチレンカーボネートとジエチルカーボネートの1/1(体積比)混合液に1モル/Lの濃度で溶解させた非水電解質溶液を用い、セパレータに厚さ30μmのポリエチレン製微多孔質フィルムを用いて、2032型コイン電池に正極、セパレータ及びリチウム含有膜形成負極の順に重ねて非水電解質溶液を入れて、評価用リチウムイオン二次電池を作製した。この場合、負極は、リチウム含有膜が正極側に存在するように配置した。 1 mol of lithium hexafluorophosphate as a non-aqueous electrolyte in a 1/1 (volume ratio) mixture of ethylene carbonate and diethyl carbonate in a glove box (dew point -80 ° C or lower) with the obtained positive electrode and lithium-containing negative electrode Using a non-aqueous electrolyte solution dissolved at a concentration of / L, using a polyethylene microporous film having a thickness of 30 μm as a separator, a 2032 type coin battery is stacked in the order of a positive electrode, a separator, and a lithium-containing film-forming negative electrode. A lithium electrolyte secondary battery for evaluation was prepared by adding a water electrolyte solution. In this case, the negative electrode was disposed so that the lithium-containing film was present on the positive electrode side.
作製したリチウムイオン二次電池は、一晩室温で放置した後、二次電池充放電試験装置((株)ナガノ製)を用い、充電電流をテストセルの電圧が4.2Vに達するまで0.5mA/cm2の定電流で充電を行った。放電は0.5mA/cm2の定電流で行い、セル電圧が2.5Vを下回った時点で放電を終了し、放電容量を求めた。以上の本充放電試験を50回繰り返し、50サイクル後のサイクル保持率を求めた。結果を表1に示す。 The produced lithium ion secondary battery was allowed to stand at room temperature overnight, and then charged with a secondary battery charge / discharge test apparatus (manufactured by Nagano Co., Ltd.) until the voltage of the test cell reached 4.2V. Charging was performed at a constant current of 5 mA / cm 2 . Discharging was performed at a constant current of 0.5 mA / cm 2 , and when the cell voltage fell below 2.5 V, the discharging was terminated and the discharge capacity was determined. The above charge / discharge test was repeated 50 times, and the cycle retention after 50 cycles was determined. The results are shown in Table 1.
[実施例2]
実施例1で作製した負極活物質(導電性珪素複合体粉末)5gを用い、これにポリフッ化ビニリデンを10%加え、更にN−メチルピロリドンを加え、スラリーとし、このスラリーを厚さ20μmの銅箔の一面に塗布し、120℃で1時間真空乾燥後、ローラープレスにより負極電極を加圧成形した。
[Example 2]
Using 5 g of the negative electrode active material (conductive silicon composite powder) prepared in Example 1, 10% polyvinylidene fluoride was added thereto, and N-methylpyrrolidone was further added to form a slurry. This slurry was made into copper having a thickness of 20 μm. It apply | coated to one side of foil, and after vacuum-drying at 120 degreeC for 1 hour, the negative electrode was pressure-molded with the roller press.
アルドリッチ社製リチウムパウダー50〜150μm(Cat. No.590584)1gにアセチレンブラック0.5gを加えた。更にこの組成物に、旭化成(株)製SBR タフテックM1943のキシレン溶液を組成物に対して2%となるように加え、更にモレキュラーシーブスで脱水したキシレンを加えて、スラリーとした。このスラリーを窒素グローブボックス(露点−40℃)中で前記負極電極の銅箔の他面に塗布し、100℃で1時間真空乾燥して、リチウム入り膜とし、2cm2に打ち抜いた。
正極は、パイオニクス(株)製、商品名;ピオクセル C−100を用いて2cm2に打ち抜き、正極とした。
0.5 g of acetylene black was added to 1 g of lithium powder 50 to 150 μm (Cat. No. 5905884) manufactured by Aldrich. Further, a xylene solution of SBR Tuftec M1943 manufactured by Asahi Kasei Co., Ltd. was added to this composition so as to be 2% with respect to the composition, and further xylene dehydrated with molecular sieves was added to obtain a slurry. This slurry was applied to the other surface of the copper foil of the negative electrode in a nitrogen glove box (dew point −40 ° C.), vacuum-dried at 100 ° C. for 1 hour, and punched into 2 cm 2 as a lithium-containing film.
The positive electrode was manufactured by Pionics Co., Ltd., trade name: Pioxel C-100, and punched out to 2 cm 2 to obtain a positive electrode.
得られた正極及びリチウム含有膜形成負極をアルゴングローブボックス(露点−80℃以下)に入れ、非水電解質として六フッ化リン酸リチウムをエチレンカーボネートとジエチルカーボネートの1/1(体積比)混合液に1モル/Lの濃度で溶解させた非水電解質溶液を用い、セパレータに厚さ30μmのポリエチレン製微多孔質フィルムを用いて、2032型コイン電池に正極、セパレータ及びリチウム含有膜形成負極の順に重ねて非水電解質溶液を入れて、評価用リチウムイオン二次電池を作製した。この場合、負極はリチウム含有膜が正極側に存在するように配置した。
作製したリチウムイオン二次電池は、実施例1と同様にしてサイクル特性を求めた。結果を表1に示す。
The obtained positive electrode and lithium-containing film-formed negative electrode were put in an argon glove box (dew point -80 ° C. or lower), and lithium hexafluorophosphate was mixed in 1/1 (volume ratio) of ethylene carbonate and diethyl carbonate as a non-aqueous electrolyte. A non-aqueous electrolyte solution dissolved at a concentration of 1 mol / L is used, a polyethylene microporous film having a thickness of 30 μm is used as a separator, a positive electrode, a separator, and a lithium-containing film-forming negative electrode are sequentially formed in a 2032 type coin battery. A non-aqueous electrolyte solution was put on top of each other to produce a lithium ion secondary battery for evaluation. In this case, the negative electrode was arranged so that the lithium-containing film was present on the positive electrode side.
The manufactured lithium ion secondary battery was subjected to cycle characteristics in the same manner as in Example 1. The results are shown in Table 1.
[比較例1]
実施例1で作製した負極活物質(導電性珪素複合体粉末)を用い、これにポリフッ化ビニリデンを10%加え、更にN−メチルピロリドンを加え、スラリーとし、このスラリーを厚さ20μmの銅箔の一面に塗布し、120℃で1時間真空乾燥後、ローラープレスにより負極電極を加圧成形し、2cm2に打ち抜き、負極とした。
正極は、パイオニクス(株)製、商品名;ピオクセル C−100を用いて2cm2に打ち抜き、正極とした。
[Comparative Example 1]
Using the negative electrode active material (conductive silicon composite powder) prepared in Example 1, 10% polyvinylidene fluoride was added thereto, and further N-methylpyrrolidone was added to form a slurry. This slurry was a copper foil having a thickness of 20 μm. After being dried on one surface and vacuum-dried at 120 ° C. for 1 hour, the negative electrode was pressure-formed by a roller press and punched out to 2 cm 2 to obtain a negative electrode.
The positive electrode was manufactured by Pionics Co., Ltd., trade name: Pioxel C-100, and punched out to 2 cm 2 to obtain a positive electrode.
得られた正極及び負極をアルゴングローブボックス(露点−80℃以下)に入れ、非水電解質として六フッ化リン酸リチウムをエチレンカーボネートとジエチルカーボネートの1/1(体積比)混合液に1モル/Lの濃度で溶解させた非水電解質溶液を用い、セパレータに厚さ30μmのポリエチレン製微多孔質フィルムを用いて、2032型コイン電池に正極、セパレータ及び負極の順に重ね、非水電解質溶液を入れて、評価用リチウムイオン二次電池を作製した。
作製したリチウムイオン二次電池は、実施例1と同様にしてサイクル特性を求めた。結果を表1に示す。
The obtained positive electrode and negative electrode were put in an argon glove box (dew point -80 ° C. or lower), and lithium hexafluorophosphate was added as a non-aqueous electrolyte to a 1/1 (volume ratio) mixture of ethylene carbonate and diethyl carbonate at 1 mol / Using a non-aqueous electrolyte solution dissolved at a concentration of L, using a polyethylene microporous film with a thickness of 30 μm as a separator, stack the positive electrode, separator, and negative electrode on a 2032 type coin battery in this order, and put the non-aqueous electrolyte solution Thus, a lithium ion secondary battery for evaluation was produced.
The manufactured lithium ion secondary battery was subjected to cycle characteristics in the same manner as in Example 1. The results are shown in Table 1.
Claims (11)
リチウムイオンを吸蔵・放出することが可能な酸化物、硫化物又は有機高分子化合物を含有する正極活物質を用いた正極と、
金属リチウム粉末又は有機ゴム、有機樹脂もしくは金属炭酸塩で表面コートされた金属リチウム粉末と、バインダと、導電材とを含む混合物からなるリチウムを含んだ膜と、
リチウム塩を含む非水電解液を用いた非水電解質二次電池において、
負極がその少なくとも正極側においてリチウムを含んだ膜を有していることを特徴とする非水電解質二次電池。 A negative electrode using a negative electrode active material containing silicon capable of inserting and extracting lithium ions;
A positive electrode using a positive electrode active material containing an oxide, sulfide or organic polymer compound capable of inserting and extracting lithium ions;
A lithium-containing film made of a mixture containing a metallic lithium powder or a metallic lithium powder surface-coated with an organic rubber, an organic resin or a metal carbonate, a binder, and a conductive material;
In a non-aqueous electrolyte secondary battery using a non-aqueous electrolyte containing a lithium salt,
A nonaqueous electrolyte secondary battery, wherein the negative electrode has a film containing lithium at least on the positive electrode side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007223450A JP5196118B2 (en) | 2006-09-14 | 2007-08-30 | Non-aqueous electrolyte secondary battery and manufacturing method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006248967 | 2006-09-14 | ||
JP2006248967 | 2006-09-14 | ||
JP2007223450A JP5196118B2 (en) | 2006-09-14 | 2007-08-30 | Non-aqueous electrolyte secondary battery and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008098151A JP2008098151A (en) | 2008-04-24 |
JP5196118B2 true JP5196118B2 (en) | 2013-05-15 |
Family
ID=39380752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007223450A Active JP5196118B2 (en) | 2006-09-14 | 2007-08-30 | Non-aqueous electrolyte secondary battery and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5196118B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9825289B2 (en) | 2015-08-27 | 2017-11-21 | Tdk Corporation | Stabilized lithium powder, and negative electrode and lithium ion secondary battery using the same |
US10290866B2 (en) | 2014-10-03 | 2019-05-14 | Tdk Corporation | Stabilized lithium powder |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5468723B2 (en) * | 2006-12-19 | 2014-04-09 | Necエナジーデバイス株式会社 | Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same |
JP2010225494A (en) * | 2009-03-25 | 2010-10-07 | Shin-Etsu Chemical Co Ltd | Anode material for nonaqueous electrolyte secondary battery, its manufacturing method, and lithium ion secondary battery |
US9166222B2 (en) | 2010-11-02 | 2015-10-20 | Envia Systems, Inc. | Lithium ion batteries with supplemental lithium |
KR101243913B1 (en) | 2011-04-07 | 2013-03-14 | 삼성에스디아이 주식회사 | Anode active material, anode and lithium battery containing the same, and preparation method thereof |
US8920762B2 (en) * | 2011-06-27 | 2014-12-30 | Sixpoint Materials, Inc. | Synthesis method of transition metal nitride and transition metal nitride |
JP5675546B2 (en) * | 2011-10-14 | 2015-02-25 | 信越化学工業株式会社 | Silicon oxide for non-aqueous electrolyte secondary battery negative electrode material, method for producing the same, lithium ion secondary battery, and electrochemical capacitor |
JP5912493B2 (en) * | 2011-12-15 | 2016-04-27 | 出光興産株式会社 | Composition comprising lithium particles, electrode and battery |
JP5601388B2 (en) * | 2012-03-27 | 2014-10-08 | Tdk株式会社 | Negative electrode and lithium ion secondary battery |
KR20150096773A (en) * | 2012-12-19 | 2015-08-25 | 록우드 리튬 게엠베하 | Lithium powder anode |
JP6414545B2 (en) | 2013-02-28 | 2018-10-31 | 三洋電機株式会社 | Nonaqueous electrolyte secondary battery |
US10243204B2 (en) | 2013-09-30 | 2019-03-26 | Tdk Corporation | Negative electrode active material, and negative electrode and lithium ion secondary battery using the negative electrode active material |
CN104617259B (en) * | 2015-01-06 | 2018-06-08 | 中国科学院化学研究所 | The protection processing of cathode of lithium in lithium secondary battery |
KR102617865B1 (en) * | 2017-05-12 | 2023-12-26 | 주식회사 엘지에너지솔루션 | Method for preparing negative electrode for lithium secondary battery |
KR102327179B1 (en) | 2017-08-10 | 2021-11-16 | 주식회사 엘지에너지솔루션 | Pre-lithiation method of lithium secondary battery anode using lithium metal-ceramic thin layer |
KR102362887B1 (en) | 2018-01-03 | 2022-02-14 | 주식회사 엘지에너지솔루션 | Method of pre-lithiating an anode for lithium secondary battery and Lithium metal laminate for being used therefor |
WO2019135525A1 (en) * | 2018-01-03 | 2019-07-11 | 주식회사 엘지화학 | Pre-lithiation method of anode for lithium secondary battery, and lithium metal laminate to be used therein |
KR20200062427A (en) * | 2018-11-26 | 2020-06-04 | 주식회사 엘지화학 | Method for preparing lithium secondary battery |
CN110808360A (en) * | 2019-09-29 | 2020-02-18 | 惠州锂威新能源科技有限公司 | Silicon-carbon negative electrode material, preparation method thereof, battery negative electrode plate and lithium ion battery |
WO2021092866A1 (en) * | 2019-11-14 | 2021-05-20 | 宁德新能源科技有限公司 | Negative electrode material, and electrochemical device and electronic device comprising same |
EP4095941A4 (en) * | 2021-03-30 | 2022-11-30 | Ningde Amperex Technology Limited | Electrochemical device and electronic device |
CN115249787A (en) * | 2021-04-28 | 2022-10-28 | 株式会社村田制作所 | Lithium ion secondary battery cathode, preparation method thereof and lithium ion secondary battery |
JP2024517978A (en) * | 2021-12-03 | 2024-04-23 | エルジー エナジー ソリューション リミテッド | Anode for lithium secondary battery, method for producing anode for lithium secondary battery, and lithium secondary battery including anode |
CN114583302B (en) * | 2022-05-05 | 2022-08-02 | 华中科技大学 | MOF-based monatomic lithium-supplement composite material, preparation method thereof, positive electrode material and battery |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3291750B2 (en) * | 1992-02-25 | 2002-06-10 | 松下電器産業株式会社 | Non-aqueous electrolyte secondary battery and method of manufacturing the same |
JPH09293538A (en) * | 1995-09-06 | 1997-11-11 | Fuji Photo Film Co Ltd | Lithium ion secondary battery |
JPH09245771A (en) * | 1996-03-13 | 1997-09-19 | Fuji Photo Film Co Ltd | Non-aqueous secondary battery |
JPH10162828A (en) * | 1996-11-29 | 1998-06-19 | Seiko Instr Inc | Nonaqueous electrolyte battery, and manufacture thereof |
JPH11120993A (en) * | 1997-10-17 | 1999-04-30 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte secondary battery |
US20050130043A1 (en) * | 2003-07-29 | 2005-06-16 | Yuan Gao | Lithium metal dispersion in electrodes |
GB0318942D0 (en) * | 2003-08-13 | 2003-09-17 | Aea Technology Battery Systems | Process for producing an electrode |
KR100590096B1 (en) * | 2004-04-29 | 2006-06-14 | 삼성에스디아이 주식회사 | Rechargeable lithium battery |
-
2007
- 2007-08-30 JP JP2007223450A patent/JP5196118B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10290866B2 (en) | 2014-10-03 | 2019-05-14 | Tdk Corporation | Stabilized lithium powder |
US9825289B2 (en) | 2015-08-27 | 2017-11-21 | Tdk Corporation | Stabilized lithium powder, and negative electrode and lithium ion secondary battery using the same |
Also Published As
Publication number | Publication date |
---|---|
JP2008098151A (en) | 2008-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5196118B2 (en) | Non-aqueous electrolyte secondary battery and manufacturing method thereof | |
KR101390057B1 (en) | Non-aqueous electrolyte secondary battery and process for producing the same | |
JP5256660B2 (en) | Non-aqueous secondary battery separator, method for producing the same, and non-aqueous electrolyte secondary battery | |
US8236068B2 (en) | Separator for non-aqueous secondary battery, making method, and non-aqueous electrolyte secondary battery | |
JP4697382B2 (en) | Nonaqueous electrolyte secondary battery | |
WO2015037451A1 (en) | Lithium ion secondary battery | |
WO2013129428A1 (en) | Lithium secondary cell | |
JP5310711B2 (en) | Nonaqueous electrolyte secondary battery | |
KR20130134239A (en) | Negative active material for lithium battery and battery comprising the same | |
WO2011111228A1 (en) | Electrode active material and method for producing electrode active material | |
KR20130134240A (en) | Negative active material for lithium battery and battery comprising the same | |
JP4352719B2 (en) | ELECTROLYTE SOLUTION FOR LITHIUM ION SECONDARY BATTERY AND LITHIUM ION SECONDARY BATTERY USING THE SAME | |
US20080113266A1 (en) | Electrode for lithium secondary batteries having enhanced cycle performance and lithium secondary batteries comprising the same | |
JP4544408B2 (en) | Secondary battery electrolyte and secondary battery using the same | |
JP2004022379A (en) | Secondary cell, electrolyte therefor and usage thereof | |
JP4304570B2 (en) | Non-aqueous electrolyte and secondary battery using the same | |
JP2009009727A (en) | Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using it | |
KR20200033764A (en) | positive material having surface coated positive active material for lithium secondary battery, preparation method thereof and lithium secondary battery comprising the same | |
KR20220046267A (en) | Anodeless lithium secondary battery and preparing method thereof | |
JP6319092B2 (en) | Secondary battery | |
WO2019065288A1 (en) | Nonaqueous electrolyte for lithium ion secondary batteries, and lithium ion secondary battery using same | |
CN114335434B (en) | Electroactive particles with conductive coatings | |
JP2019061826A (en) | Lithium ion secondary battery | |
JP5360860B2 (en) | Non-aqueous electrolyte secondary battery | |
JP4525018B2 (en) | Electrolytic solution for lithium secondary battery and lithium secondary battery using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090727 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120125 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120314 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120822 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130122 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160215 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5196118 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |