JPH09115523A - Nonaqueous electrolytic secondary battery - Google Patents

Nonaqueous electrolytic secondary battery

Info

Publication number
JPH09115523A
JPH09115523A JP7265979A JP26597995A JPH09115523A JP H09115523 A JPH09115523 A JP H09115523A JP 7265979 A JP7265979 A JP 7265979A JP 26597995 A JP26597995 A JP 26597995A JP H09115523 A JPH09115523 A JP H09115523A
Authority
JP
Japan
Prior art keywords
current collector
negative electrode
tensile strength
positive electrode
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7265979A
Other languages
Japanese (ja)
Other versions
JP3669646B2 (en
Inventor
Shuji Ito
修二 伊藤
Toshihide Murata
年秀 村田
Masaki Hasegawa
正樹 長谷川
Yasuhiko Mifuji
靖彦 美藤
Yoshinori Toyoguchi
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26597995A priority Critical patent/JP3669646B2/en
Publication of JPH09115523A publication Critical patent/JPH09115523A/en
Application granted granted Critical
Publication of JP3669646B2 publication Critical patent/JP3669646B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolytic secondary battery on which an occupying rate of current collectors is reduced and which has high energy density by manufacturing the current collecting bodies on which rolling rupture is not caused and which has a high yield by forming a positive electrode current collector and a negative electrode current collector by using specific metal and specific metallic alloy whose tensile strengths have respectively a specific value. SOLUTION: A nonaqueous electrolytic secondary battery is provided with a chargeable-dischargeable positive electrode, nonaqueous electrolyte and a chargeable- dischargeable negative electrode. A positive electrode current collector of this positive electrode is formed of Al alloy whose tensile strength is not less than 100N/mm<2> . On the other hand, a negative electrode current collector is formed of Cu or Cu alloy whose tensile strength is not less than 250N/mm<2> or Ni alloy whose tensile strength is not less than 350N/mm<2> . Then, since tensile strength is large, at manufacturing time, the current collectors can be manufactured with a high yield without causing rolling rupture, and when these current collectors are used, since tensile strength is large, the nonaqueous electrolyte secondary battery on which an occupying rate of the current collectors is reduced and which has high energy density can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池、特にその電極の集電体の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to an improvement in the current collector of its electrode.

【0002】[0002]

【従来の技術】アルカリ金属を負極とする非水電解質二
次電池は、起電力が高く、従来のニッケルカドムミウム
蓄電池や鉛蓄電池に較べ高エネルギー密度になると期待
され、盛んに研究がなされている。中でもリチウム二次
電池が最も注目をあつめ、多くの検討がなされてきた。
これまでリチウム二次電池の正極活物質には、LiMn
24、LiCoO2、LiNiO2、V25、Cr25
MnO2、TiS2、MoS2などの遷移金属の酸化物お
よびカルコゲン化合物が知られいる。これらは層状もし
くはトンネル構造を有し、リチウムイオンが出入りでき
る結晶構造を持っている。一方、負極活物質としては、
金属LiあるいはLiと合金化可能なAlなどがこれま
で多く検討されてきた。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries using an alkali metal as a negative electrode have high electromotive force and are expected to have a higher energy density than conventional nickel-cadmium storage batteries and lead storage batteries, and have been actively researched. There is. Of these, lithium secondary batteries have received the most attention, and many studies have been made.
Until now, LiMn has been used as a positive electrode active material for lithium secondary batteries.
2 O 4 , LiCoO 2 , LiNiO 2 , V 2 O 5 , Cr 2 O 5 ,
Oxides of transition metals such as MnO 2 , TiS 2 and MoS 2 and chalcogen compounds are known. These have a layered or tunnel structure, and have a crystal structure through which lithium ions can enter and exit. On the other hand, as the negative electrode active material,
Many studies have been conducted on metal Li or Al that can be alloyed with Li.

【0003】しかしながら、理論的には最も高容量化が
可能な金属Li(理論容量3860mAh/g)を負極
に用いると、充電時にデンドライトが発生し、短絡を起
こし易く、信頼性の低い電池となるので、未だ実用化に
は至っていない。また、LiAl合金も金属Liについ
で高容量化が可能であるが、理論値に近い容量で充放電
を繰り返すと、微粉化が激しくサイクル性に問題があっ
た。この問題を解決するために、理論的には金属Li、
LiAl合金に比べて容量は小さいがサイクル性に優
れ、デンドライトが発生しにくい、Liを層間内に可逆
的に出し入れすることが可能な炭素材料(理論容量37
2mAh/g)を負極に用いたリチウム二次電池が現在
実用化されている。
However, when theoretically the highest capacity metal Li (theoretical capacity of 3860 mAh / g) is used for the negative electrode, dendrites are generated during charging, short circuit is likely to occur, and the battery becomes low in reliability. Therefore, it has not been put to practical use yet. Further, the LiAl alloy can also have a higher capacity next to the metal Li, but if charge and discharge are repeated at a capacity close to the theoretical value, it is pulverized severely and there is a problem in cycleability. In order to solve this problem, theoretically metallic Li,
A carbon material that has a smaller capacity than LiAl alloy but has excellent cycleability, does not easily generate dendrites, and is capable of reversibly taking Li in and out between layers (theoretical capacity 37
A lithium secondary battery using 2 mAh / g) as a negative electrode is currently in practical use.

【0004】[0004]

【発明が解決しようとする課題】炭素材料を負極に用い
た場合、金属Liに比べて理論的な容量が小さいため
に、リチウム二次電池で期待されるような高エネルギー
密度化には至っていない。また、現在実用化されている
主なリチウム二次電池は、図1に示すように極板群がス
パイラル構造を有する円筒タイプである。一般的に電池
は、大きく分けて正極合剤、負極合剤、それらの集電
体、および正極と負極を分離するセパレータから構成さ
れている。そして、限られた電池容積内で電池のエネル
ギー密度向上に寄与しない正、負極集電体の占有率は大
きい。従来電池構成時、特に結着剤を含む電極合剤をシ
ート状の集電体に塗着し、これを圧延して電極を作製す
る際、その圧延時の作業性を考慮すると、少なくとも2
0〜30μmの厚みを有する電極集電体を用いなければ
ならなかった。これは、集電体の機械的強度が弱く、圧
延時にエッジ部分が破断してしまい、歩留まりが低下す
るためである。
When a carbon material is used for the negative electrode, the theoretical capacity is smaller than that of metallic Li, so that the high energy density expected in lithium secondary batteries has not been reached. . In addition, the main lithium secondary batteries that have been put into practical use at present are of a cylindrical type in which the electrode plate group has a spiral structure as shown in FIG. Generally, a battery is roughly composed of a positive electrode mixture, a negative electrode mixture, a collector thereof, and a separator for separating the positive electrode and the negative electrode. The occupancy of the positive and negative electrode current collectors that do not contribute to the improvement of the energy density of the battery within the limited battery volume is large. In the conventional battery construction, in particular, when an electrode mixture containing a binder is applied to a sheet-shaped current collector and rolled to produce an electrode, workability at the time of rolling is considered to be at least 2.
An electrode current collector having a thickness of 0 to 30 μm had to be used. This is because the mechanical strength of the current collector is weak, the edge portion is broken during rolling, and the yield is reduced.

【0005】本発明は、上記のような問題を解消し、圧
延時の破断がなく、歩留まりの高い電極を与える集電体
を提供することを目的とする。本発明は、電極集電体の
占有率を少なくしてエネルギー密度の高い非水電解質二
次電池を提供することを目的とする。
It is an object of the present invention to solve the above problems and to provide a current collector which gives an electrode with high yield without breakage during rolling. An object of the present invention is to provide a non-aqueous electrolyte secondary battery having a high energy density by reducing the occupation ratio of the electrode current collector.

【0006】[0006]

【課題を解決するための手段】本発明は、充放電可能な
正極、非水電解質、および充放電可能な負極を具備する
非水電解質二次電池において、正極および/または負極
の集電体に特定の引張り強さを有する金属を用いるもの
である。すなわち、正極集電体に引張り強さが100N
/mm2以上のAl合金を用いる。また、負極集電体に
引張り強さが250N/mm2以上のCuあるいはCu
合金、あるいは引張り強さが350N/mm2以上のN
i合金を用いることを特徴とする。
The present invention provides a non-aqueous electrolyte secondary battery comprising a chargeable / dischargeable positive electrode, a non-aqueous electrolyte, and a chargeable / dischargeable negative electrode, which is used as a current collector for the positive electrode and / or the negative electrode. It uses a metal having a specific tensile strength. That is, the positive electrode current collector has a tensile strength of 100 N.
/ Al 2 or more is used. In addition, the negative electrode current collector has a tensile strength of 250 N / mm 2 or more of Cu or Cu.
Alloy or N with a tensile strength of 350 N / mm 2 or more
It is characterized by using an i alloy.

【0007】本発明者らは、非水電解質二次電池の正極
および負極集電体として各種の金属材料について詳細な
検討を行った結果、正極集電体に前記のAl合金、負極
集電体に前記のCu、Cu合金、あるいはNi合金を用
いることで、電極作製過程における圧延時にエッジ部分
の破断による歩留まり低下を抑制しつつ、従来に比べて
集電体厚みをより薄くできることを見いだした。本発明
のよって、電池容積内の正極集電体および負極集電体の
占有率を従来よりも低下することが可能となり、正極活
物質および負極活物質の充填量をより多くすることがで
き、同じ電池容積で高エネルギー密度が可能となる。
As a result of detailed investigations on various metal materials as the positive electrode and negative electrode current collectors of non-aqueous electrolyte secondary batteries, the present inventors have found that the above-mentioned Al alloy and negative electrode current collector are used as the positive electrode current collector. It was found that by using the above-mentioned Cu, Cu alloy, or Ni alloy for the above, it is possible to reduce the thickness of the current collector as compared with the conventional one, while suppressing the reduction in yield due to the breakage of the edge portion during rolling in the electrode manufacturing process. According to the present invention, it becomes possible to lower the occupancy of the positive electrode current collector and the negative electrode current collector in the battery volume as compared with the conventional one, and it is possible to increase the filling amount of the positive electrode active material and the negative electrode active material. High energy density is possible with the same battery volume.

【0008】正極集電体のAl合金の引張り強さとして
は、100N/mm2以上が好ましく、200N/mm2
以上がさらに好ましく、300N/mm2以上が特に好
ましい。このような引張り強さを有するAl合金として
は、Si、Fe、Cu、Mn、Zn、およびTiの少な
くとも1種の元素を総重量で0.7〜5wt%含むAl
合金が用いられる。負極集電体のCuあるいはCu合金
の引張り強さとしては、250N/mm2以上が好まし
く、350N/mm2以上がさらに好ましく、450N
/mm2以上が特に好ましい。このような引張り強さを
有するCuあるいはCu合金としては、冷間加工処理を
施した電解銅あるいはTiを1〜2%含有するCu合金
が用いられる。また、負極集電体のNi合金の引張り強
さとしては、350N/mm2以上が好ましく、450
N/mm2以上がさらに好ましく、550N/mm2以上
が特に好ましい。このような引張り強さを有するNi合
金としては、冷間加工または熱間加工処理を施したCo
含量0.05wt%のNi合金が用いられる。
The tensile strength of the Al alloy of the positive electrode current collector is preferably 100 N / mm 2 or more, and 200 N / mm 2
The above is more preferable, and 300 N / mm 2 or more is particularly preferable. As the Al alloy having such tensile strength, Al containing 0.7 to 5 wt% of the total weight of at least one element of Si, Fe, Cu, Mn, Zn, and Ti.
An alloy is used. The tensile strength of Cu or Cu alloy of the negative electrode current collector is preferably 250 N / mm 2 or more, more preferably 350 N / mm 2 or more, 450 N
/ Mm 2 or more is particularly preferable. As the Cu or Cu alloy having such tensile strength, cold-worked electrolytic copper or a Cu alloy containing 1 to 2% of Ti is used. Further, the tensile strength of the Ni alloy of the negative electrode current collector is preferably 350 N / mm 2 or more, 450
N / mm 2 or more is more preferable, and 550 N / mm 2 or more is particularly preferable. As a Ni alloy having such tensile strength, cold-worked or hot-worked Co is used.
A Ni alloy with a content of 0.05 wt% is used.

【0009】なお、負極集電体が正極集電体に比べてよ
り大きな引張り強さを必要とするのは、サイクル特性な
どを考慮した場合に、負極集電体と負極活物質との間に
より強固な密着性を保持する必要があるためである。こ
れは通常負極材料に用いる炭素材料の充放電に伴う体積
変化が、例えば正極活物質に用いるLiCoO2などの
複合酸化物に比べて大きいことによる。さらには、正極
集電体のAl合金に比べて負極集電体のCu合金あるい
はNi合金は硬く、このような理由から活物質と集電体
との密着性を上げるためにより強固な圧延工程が必要と
なるためである。なお、CuあるいはCu合金製集電体
に対して、Ni合金製集電体の引張り強さが大きいの
は、Niの方が銅に比べてより硬いためである。
The reason why the negative electrode current collector needs a higher tensile strength than that of the positive electrode current collector is that the negative electrode current collector and the negative electrode active material are different in consideration of cycle characteristics. This is because it is necessary to maintain strong adhesion. This is because the volume change due to charge and discharge of the carbon material normally used for the negative electrode material is larger than that of the composite oxide such as LiCoO 2 used for the positive electrode active material. Furthermore, the Cu alloy or Ni alloy of the negative electrode current collector is harder than the Al alloy of the positive electrode current collector, and for this reason, a stronger rolling process is required to improve the adhesion between the active material and the current collector. This is necessary. The tensile strength of the Ni alloy current collector is higher than that of the Cu or Cu alloy current collector because Ni is harder than copper.

【0010】[0010]

【発明の実施の形態】以下、本発明を実施例により説明
する。 [実施例1]本実施例では正極集電体について説明す
る。集電体には、厚みが10μmと15μmの各種引張
り強さを有する表1に示すAl箔またはAl合金箔を用
いた。なお、Al箔は、純度99.9%で、引張り強さ
50N/mm2のものである。また、Al合金箔には、
Si、Fe、Cu、Mn、Zn、およびTiを各1wt
%以下、総重量で0.7〜5wt%含むAl合金(引張
り強さ100〜350N/mm2)を用いた。正極板
は、次のようにして作製した。充電、放電に対して可逆
性を有する正極活物質LiMn24 100gに、導電
剤の炭素粉末10gおよび結着剤のポリフッ化ビニリデ
ン5gを加え、これにジメチルホルムアミド加えてペー
スト状にし、表1に示す各種アルミニウム箔またはアル
ミニウム合金箔上に塗布し、乾燥した。こうして得た正
極板の厚みは275μmであった。同じ引張り強さを有
する集電体を用いた正極板を5cm角に裁断し、圧延ロ
ーラにそれぞれ5回から7回ずつ通して、圧延後の正極
板厚みが170μmになるように圧延した。そして、圧
延後の電極における集電体のエッジ部分の破断の有無を
チェックした。なお、試料数はそれぞれ100個とし
た。集電体のエッジ部分に破断を生じていないものを良
品とし、それぞれの歩留まりを表1に示す。歩留まり
は、良品の数を試料数100で除した値である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described with reference to embodiments. Example 1 In this example, a positive electrode current collector will be described. As the current collector, Al foil or Al alloy foil shown in Table 1 having various tensile strengths of 10 μm and 15 μm was used. The Al foil has a purity of 99.9% and a tensile strength of 50 N / mm 2 . In addition, Al alloy foil,
1 wt% of each of Si, Fe, Cu, Mn, Zn, and Ti
%, And an Al alloy (tensile strength 100 to 350 N / mm 2 ) containing 0.7 to 5 wt% in total weight was used. The positive electrode plate was manufactured as follows. To 100 g of positive electrode active material LiMn 2 O 4 having reversibility for charge and discharge, 10 g of carbon powder as a conductive agent and 5 g of polyvinylidene fluoride as a binder were added, and dimethylformamide was added thereto to form a paste. It was applied on various aluminum foils or aluminum alloy foils shown in 1 and dried. The positive electrode plate thus obtained had a thickness of 275 μm. A positive electrode plate using a current collector having the same tensile strength was cut into 5 cm square pieces, passed through a rolling roller 5 to 7 times, respectively, and rolled so that the positive electrode plate thickness after rolling was 170 μm. Then, the presence or absence of breakage of the edge portion of the current collector in the rolled electrode was checked. The number of samples was 100 each. Table 1 shows the yields of each of the current collectors, in which the edge portion of the current collector did not break. The yield is a value obtained by dividing the number of non-defective products by 100 samples.

【0011】[0011]

【表1】 [Table 1]

【0012】表1に示すように、引張り強さの大きいも
のほど、圧延後のエッジ部分の破断が減少し、歩留まり
が向上していることがわかる。引張り強さが100N/
mm2以上の集電板を用いると、歩留まりは70%に達
する。引張り強さが100N/mm2より小さな集電板
を用いて歩留まりを向上するためには、厚さ15μm以
上の集電板を用いるか、圧延後の正極厚みを170μm
より大きくする必要がある。そうすると正極活物質充填
量が低下し、電池容量の減少をもたらす。以上の結果か
ら、正極集電体には引張り強さが100N/mm2以上
のAl合金を用いることが好ましい。
As shown in Table 1, the higher the tensile strength, the less the fracture of the edge portion after rolling and the higher the yield. Tensile strength is 100N /
The yield reaches 70% when a current collector plate having a size of mm 2 or more is used. In order to improve the yield by using a current collector having a tensile strength of less than 100 N / mm 2 , use a current collector having a thickness of 15 μm or more, or use a positive electrode having a thickness of 170 μm after rolling.
Need to be bigger. Then, the filling amount of the positive electrode active material is reduced, and the battery capacity is reduced. From the above results, it is preferable to use an Al alloy having a tensile strength of 100 N / mm 2 or more for the positive electrode current collector.

【0013】[実施例2]本実施例では、実施例1で作
製した正極板を用いて電池を構成してその特性を評価し
た。正極板は、実施例1で示した300N/mm2の引
張り強さを有する正極集電体厚みが10μmと15μm
のものを用いた。負極板は、充電、放電に対して可逆性
を有する負極活物質人造黒鉛100gに対して、結着剤
のポリフッ化ビニリデン5gを加え、ジメチルホルムア
ミドを用いてペースト状にし、集電体厚みが20μmの
Cu箔上に塗布し乾燥した後、圧延して作製した。本実
施例で使用した電池の縦断面図を図1に示す。正極板1
と負極板2および両極板間に介在させた極板より幅の広
い帯状の多孔性ポリプロピレン製セパレータ3を渦巻状
に捲回して電極群を構成し、その上下にそれぞれポリプ
ロピレン製の絶縁板6、7を配して電槽8に挿入し、電
槽8の上部に段部を形成させた後、非水電解液を注入
し、正極端子10を設けた合成樹脂封口板9で密閉して
電池とした。非水電解液は、1モル/lの六フッ化リン
酸リチウム(LiPF6)を溶解した体積比で1:1の
エチレンカーボネートと炭酸ジエチルの混合溶液を用い
た。また、正極板および負極板には、それぞれ集電体と
同材質のリード4、5がスポット溶接により接続されて
いる。
[Example 2] In this example, a battery was constructed using the positive electrode plate prepared in Example 1 and its characteristics were evaluated. The positive electrode plate has the tensile strength of 300 N / mm 2 shown in Example 1 and the thickness of the positive electrode current collector is 10 μm and 15 μm.
Was used. The negative electrode plate was prepared by adding 5 g of polyvinylidene fluoride as a binder to 100 g of artificial graphite, which is a negative electrode active material having reversibility for charging and discharging, and made a paste using dimethylformamide, and had a current collector thickness of 20 μm. After being coated on the Cu foil, dried, and rolled, it was manufactured. A vertical cross-sectional view of the battery used in this example is shown in FIG. Positive plate 1
And a negative electrode plate 2 and a band-shaped porous polypropylene separator 3 wider than the electrode plate interposed between the negative electrode plate 2 and the both electrode plates are spirally wound to form an electrode group. 7 is placed and inserted in the battery case 8, a step is formed on the upper part of the battery case 8, a non-aqueous electrolyte is injected, and the battery is sealed with a synthetic resin sealing plate 9 provided with a positive electrode terminal 10. And The non-aqueous electrolyte used was a mixed solution of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 in which 1 mol / l lithium hexafluorophosphate (LiPF 6 ) was dissolved. Further, leads 4 and 5 made of the same material as the current collector are connected to the positive electrode plate and the negative electrode plate by spot welding, respectively.

【0014】また、比較例として、従来使用されていた
正極集電体厚みが25μmのものを用いて同様な電池を
作製した。なお、これら電池は、負極の電気容量が正極
のそれより大きく、電池の容量は正極の容量で決まる。
これらの電池を0.5mA/cm2の定電流で4.3V
まで充電し、3.0Vまで放電する充放電を繰り返し
た。表2に、10サイクル目の放電容量と100サイク
ル目の容量維持率を示す。放電容量は、比較例として示
した正極集電体厚みが25μmの電池の放電容量を10
0として示す。また、放電容量維持率は下記の式で算出
した。 容量維持率(%)=100×(100サイクル目放電容
量)/(10サイクル目放電容量)
As a comparative example, a similar battery was manufactured by using a conventionally used positive electrode current collector having a thickness of 25 μm. In these batteries, the electric capacity of the negative electrode is larger than that of the positive electrode, and the capacity of the battery is determined by the capacity of the positive electrode.
These batteries were operated at 4.3 V at a constant current of 0.5 mA / cm 2.
Was repeatedly charged and discharged up to 3.0 V. Table 2 shows the discharge capacity at the 10th cycle and the capacity retention rate at the 100th cycle. Regarding the discharge capacity, the discharge capacity of the battery having a thickness of the positive electrode current collector of 25 μm shown as the comparative example was 10
Shown as 0. The discharge capacity retention rate was calculated by the following formula. Capacity retention rate (%) = 100 × (100th cycle discharge capacity) / (10th cycle discharge capacity)

【0015】[0015]

【表2】 [Table 2]

【0016】表2に示すように、正極集電体の厚みが薄
いものほど放電容量が大きいことがわかる。これは集電
体厚みをより薄くすることで、正極活物質充填量が増加
したためである。また、いずれの電池も100サイクル
目の容量維持率は96%以上で、優れたサイクル特性を
示した。
As shown in Table 2, it can be seen that the thinner the positive electrode current collector, the larger the discharge capacity. This is because the positive electrode active material filling amount was increased by making the thickness of the current collector thinner. Further, all the batteries had a capacity retention ratio at the 100th cycle of 96% or more, and showed excellent cycle characteristics.

【0017】[実施例3]本実施例では負極集電体につ
いて説明する。集電体には、厚みが10μmと12μm
の各種引張り強さを有する表3に示すCuまたはCu合
金箔を用いた。なお、Cu箔には、冷間加工率の異なる
電解銅(引張り強さ200〜350N/mm2)を、ま
たCu合金箔には、Tiを1〜2wt%含有するCu合
金(引張り強さ400〜500N/mm2)をそれぞれ
用いた。負極板は、充電、放電に対して可逆性を有する
負極活物質人造黒鉛100gに対して、結着剤のポリフ
ッ化ビニリデン5gを加え、ジメチルホルムアミドを用
いてペースト状にし、各種Cu箔上に塗布し、乾燥して
作製した。こうして得た負極板の厚みは200μmであ
った。同じ引張り強さを有する集電体を用いた負極板を
5cm角に裁断し、圧延ローラにそれぞれ9回から10
回ずつ通して、圧延後の負極厚みが150μmになるよ
うに圧延した。そして、圧延後の電極における集電体の
エッジ部分の破断の有無をチェックした。実施例1と同
様にして求めた歩留まりを表3に示す。
[Embodiment 3] In this embodiment, a negative electrode current collector will be described. The thickness of the current collector is 10 μm and 12 μm
The Cu or Cu alloy foils shown in Table 3 having various tensile strengths were used. The Cu foil contains electrolytic copper (tensile strength 200 to 350 N / mm 2 ) having different cold working ratios, and the Cu alloy foil contains Cu alloy containing 1 to 2 wt% of Ti (tensile strength 400 ~500N / mm 2) were used, respectively. The negative electrode plate was prepared by adding 5 g of polyvinylidene fluoride as a binder to 100 g of artificial graphite, which is a negative electrode active material having reversibility for charge and discharge, and made a paste using dimethylformamide, and applied on various Cu foils. Then, it was dried. The thickness of the negative electrode plate thus obtained was 200 μm. A negative electrode plate using a current collector having the same tensile strength was cut into 5 cm squares, and the rolling roller was cut 9 times to 10 times, respectively.
It was passed through each time and rolled so that the negative electrode thickness after rolling was 150 μm. Then, the presence or absence of breakage of the edge portion of the current collector in the rolled electrode was checked. Table 3 shows the yields obtained in the same manner as in Example 1.

【0018】[0018]

【表3】 [Table 3]

【0019】表3に示すように、引張り強さが大きいも
のほど、圧延後のエッジ部分の破断が減少し、歩留まり
が向上していることがわかる。引張り強さが250N/
mm2以上の集電板を用いると、歩留まりは74%に達
している。引張り強さが250N/mm2より小さな集
電板を用いて歩留まりを向上するためには、厚さ12μ
m以上の集電板を用いるか、圧延後の負極板の厚みを1
50μm以上にする必要があり、負極活物質充填量が低
下してしまい電池容量の減少をもたらす。以上の結果か
ら、負極集電体にはCuを含む引張り強さが250N/
mm2以上の金属を用いることが好ましい。
As shown in Table 3, it can be seen that the higher the tensile strength, the less the fracture of the edge portion after rolling and the higher the yield. Tensile strength is 250 N /
The yield reaches 74% when a current collector plate of mm 2 or more is used. In order to improve the yield by using a current collector having a tensile strength of less than 250 N / mm 2 , the thickness is 12 μm.
Use a collector plate of m or more, or set the thickness of the negative electrode plate after rolling to 1
It is necessary to set the thickness to 50 μm or more, so that the filling amount of the negative electrode active material is reduced and the battery capacity is reduced. From the above results, the negative electrode current collector has a tensile strength of 250 N / containing Cu.
It is preferable to use a metal of mm 2 or more.

【0020】[実施例4]本実施例では、実施例3で作
製した負極板を用いて電池を構成してその特性を評価し
た。負極板は、実施例3で示した350N/mm2の引
張り強さを有する負極集電体厚みが10μmと12μm
のものを用いた。正極板は、正極活物質LiMn24
100gに対して、導電剤の炭素粉末10gと結着剤の
ポリフッ化ビニリデン5gを加え、ジメチルホルムアミ
ドを用いてペースト状にし、集電体厚みが25μmのA
l箔上に塗布し乾燥した後、圧延して作製した。電池の
作製条件は、実施例2と同様である。また、比較例とし
て、従来使用されていた負極集電体の厚みが20μmの
ものを用いて同様の電池を作製した。なお、これら電池
は、正極の電気容量が負極のそれより大きく、電池の容
量は負極の容量で決まる。これらの電池を0.5mA/
cm2の定電流で4.3Vまで充電し、3.0Vまで放
電する充放電を行った。表4に、10サイクル目の放電
容量と100サイクル目の容量維持率を示す。放電容量
は、比較例として示した負極集電体厚みが20μmの電
池の放電容量を100として示す。
Example 4 In this example, a battery was constructed using the negative electrode plate prepared in Example 3 and its characteristics were evaluated. The negative electrode plate has the tensile strength of 350 N / mm 2 shown in Example 3 and the thickness of the negative electrode current collector is 10 μm and 12 μm.
Was used. The positive electrode plate is made of positive electrode active material LiMn 2 O 4
To 100 g, 10 g of carbon powder as a conductive agent and 5 g of polyvinylidene fluoride as a binder were added and made into a paste using dimethylformamide, and the thickness of the current collector was 25 μm.
It was prepared by coating on 1-foil, drying and rolling. The battery manufacturing conditions are the same as in Example 2. Further, as a comparative example, a similar battery was manufactured using a conventionally used negative electrode current collector having a thickness of 20 μm. In these batteries, the electric capacity of the positive electrode is larger than that of the negative electrode, and the capacity of the battery is determined by the capacity of the negative electrode. These batteries are 0.5mA /
The battery was charged to 4.3 V with a constant current of cm 2 and discharged to 3.0 V for charging and discharging. Table 4 shows the discharge capacity at the 10th cycle and the capacity retention rate at the 100th cycle. Regarding the discharge capacity, the discharge capacity of a battery having a negative electrode current collector thickness of 20 μm shown as a comparative example is shown as 100.

【0021】[0021]

【表4】 [Table 4]

【0022】表4に示すように、負極集電体の厚みが薄
いものほど放電容量が大きいことがわかる。これは集電
体厚みを薄くすることで負極活物質充填量が増加したた
めである。また、いずれの電池も100サイクル目の容
量維持率は96%以上で、優れたサイクル特性を示し
た。
As shown in Table 4, the thinner the negative electrode current collector, the larger the discharge capacity. This is because the negative electrode active material filling amount was increased by reducing the thickness of the current collector. Further, all the batteries had a capacity retention ratio at the 100th cycle of 96% or more, and showed excellent cycle characteristics.

【0023】[実施例5]本実施例では負極集電体につ
いて説明する。表5に、厚みが10μmと12μmの各
種引張り強さを有するNi合金箔を示す。なお、Ni合
金箔には、Coを0.05wt%含有するNi合金を熱
間圧延処理したもの(引張り強さ300〜400N/m
2)または冷間圧延処理したもの(引張り強さ400
〜600N/mm2)を用いた。負極板は、充電、放電
に対して可逆性を有する負極活物質人造黒鉛100gに
対して、結着剤のポリフッ化ビニリデン5gを加え、ジ
メチルホルムアミドを用いてペースト状にし、各種Ni
合金箔上に塗布し、乾燥して作製した。こうして得た負
極板の厚みは220μmであった。同じ引張り強さを有
する集電体を用いた負極板を5cm角に裁断し、圧延ロ
ーラにそれぞれ10回から12回ずつ通して、圧延後の
負極厚み170μmになるように圧延した。そして、圧
延後の電極における集電体のエッジ部分の破断の有無を
チェックした。実施例1と同様にして求めた歩留まりを
表4に示す。
[Embodiment 5] In this embodiment, a negative electrode current collector will be described. Table 5 shows Ni alloy foils having various tensile strengths of 10 μm and 12 μm in thickness. The Ni alloy foil was obtained by hot rolling a Ni alloy containing 0.05 wt% Co (tensile strength: 300 to 400 N / m).
m 2 ) or cold-rolled (tensile strength 400
˜600 N / mm 2 ) was used. The negative electrode plate was prepared by adding 5 g of polyvinylidene fluoride as a binder to 100 g of artificial graphite, which is a negative electrode active material having reversibility for charge and discharge, and made a paste using dimethylformamide.
It was prepared by coating on an alloy foil and drying. The negative electrode plate thus obtained had a thickness of 220 μm. A negative electrode plate using a current collector having the same tensile strength was cut into 5 cm square pieces, passed through a rolling roller 10 times to 12 times each, and rolled to have a negative electrode thickness of 170 μm after rolling. Then, the presence or absence of breakage of the edge portion of the current collector in the rolled electrode was checked. The yield obtained in the same manner as in Example 1 is shown in Table 4.

【0024】[0024]

【表5】 [Table 5]

【0025】表5に示すように、引張り強さが大きいも
のほど、圧延後のエッジ部分の破断が減少し、歩留まり
が向上していることがわかる。引張り強さが350N/
mm2以上の集電板を用いると、歩留まりは77%に達
する。引張り強さが350N/mm2より小さな集電板
を用いて歩留まりを向上するためには、厚さ12μm以
上の集電板を用いるか、圧延後の負極板厚みを170μ
m以上にする必要があり、負極活物質充填量が低下して
しまい電池容量の減少をもたらす。以上の結果から、負
極集電体にはNiを含む引張り強さが350N/mm2
以上の金属を用いることが好ましい。
As shown in Table 5, it can be seen that the higher the tensile strength, the less the fracture of the edge portion after rolling and the higher the yield. Tensile strength is 350 N /
The yield reaches 77% when a current collector plate of mm 2 or more is used. In order to improve the yield by using a current collector having a tensile strength of less than 350 N / mm 2 , use a current collector having a thickness of 12 μm or more, or use a negative electrode plate having a thickness of 170 μm after rolling.
Since it is necessary to make it m or more, the filling amount of the negative electrode active material is reduced, and the battery capacity is reduced. From the above results, the negative electrode current collector has a tensile strength including Ni of 350 N / mm 2
It is preferable to use the above metals.

【0026】[実施例6]本実施例では、実施例5で作
製した負極板を用いて電池を構成してその特性を評価し
た。負極板は、実施例5で示した450N/mm2の引
張り強さを有する負極集電体厚みが10μmと12μm
のものを用いた。正極板は、正極活物質LiMn24
100gに対して、導電剤の炭素粉末10gと、結着剤
のポリフッ化ビニリデン5gを加え、ジメチルホルムア
ミドを用いてペースト状にし、集電体厚みが25μmの
Al箔上に塗布し、乾燥した後、圧延して作製した。電
池の作製条件は、実施例2と同様である。また、比較例
として、従来使用されていた負極集電体の厚みが20μ
mのものを用いて同様の電池を作製した。なお、これら
電池は、正極の電気容量が負極のそれより大きく、電池
の容量は負極の容量で決まる。これらの電池を0.5m
A/cm2の定電流で4.3Vまで充電し、3.0Vま
で放電する充放電を繰り返した。表6に、10サイクル
目の放電容量と100サイクル目の容量維持率を示す。
なお、放電容量は、比較例として示した負極集電体厚み
が20μmの電池の放電容量を100として示す。
Example 6 In this example, a battery was constructed using the negative electrode plate prepared in Example 5 and its characteristics were evaluated. The negative electrode plate has the tensile strength of 450 N / mm 2 shown in Example 5, and the thickness of the negative electrode current collector is 10 μm and 12 μm.
Was used. The positive electrode plate is made of positive electrode active material LiMn 2 O 4
To 100 g, 10 g of carbon powder as a conductive agent and 5 g of polyvinylidene fluoride as a binder were added to form a paste using dimethylformamide, and the paste was applied on an Al foil having a thickness of 25 μm and dried. It was rolled and produced. The battery manufacturing conditions are the same as in Example 2. In addition, as a comparative example, the thickness of the negative electrode current collector that has been conventionally used is 20 μm.
A similar battery was produced by using m. In these batteries, the electric capacity of the positive electrode is larger than that of the negative electrode, and the capacity of the battery is determined by the capacity of the negative electrode. 0.5m for these batteries
The battery was charged up to 4.3 V with a constant current of A / cm 2 and discharged up to 3.0 V, which was repeated. Table 6 shows the discharge capacity at the 10th cycle and the capacity retention rate at the 100th cycle.
The discharge capacity is shown by setting the discharge capacity of the battery having a negative electrode current collector thickness of 20 μm shown as a comparative example to 100.

【0027】[0027]

【表6】 [Table 6]

【0028】表6に示すように、負極集電体の厚みが薄
いほど放電容量が大きいことがわかる。これは集電体厚
みをより薄くすることで負極活物質充填量が増加したた
めである。また、いずれの電池も100サイクル目の容
量維持率は96%以上で、優れたサイクル特性を示し
た。なお、上記の実施例では、円筒形電池で説明した
が、圧延工程を有する電極板を用いる角型電池でも同様
の効果が得られることは言うまでもない。
As shown in Table 6, the thinner the negative electrode current collector, the larger the discharge capacity. This is because the negative electrode active material filling amount was increased by making the thickness of the current collector thinner. Further, all the batteries had a capacity retention ratio at the 100th cycle of 96% or more, and showed excellent cycle characteristics. In addition, in the above-mentioned embodiment, the cylindrical battery has been described, but it goes without saying that the same effect can be obtained even with a rectangular battery using an electrode plate having a rolling process.

【0029】[0029]

【発明の効果】本発明によれば、高エネルギー密度な非
水電解質二次電池を提供することが可能となる。
According to the present invention, it is possible to provide a high energy density non-aqueous electrolyte secondary battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に用いた二次電池の縦断面図で
ある。
FIG. 1 is a vertical cross-sectional view of a secondary battery used in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 正極リード 5 負極リード 6、7 絶縁板 8 電槽 9 封口板 10 正極端子 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode lead 5 Negative electrode lead 6 and 7 Insulating plate 8 Battery case 9 Sealing plate 10 Positive electrode terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 美藤 靖彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 豊口 ▲吉▼徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Yasuhiko Mito 1006 Kadoma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. Inside the corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 充放電可能な正極、非水電解質、および
充放電可能な負極を具備し、前記正極の集電体が100
N/mm2以上の引張り強さを有するAl合金であるこ
とを特徴とする非水電解質二次電池。
1. A chargeable / dischargeable positive electrode, a non-aqueous electrolyte, and a chargeable / dischargeable negative electrode, wherein the positive electrode current collector is 100.
A non-aqueous electrolyte secondary battery, which is an Al alloy having a tensile strength of N / mm 2 or more.
【請求項2】 充放電可能な正極、非水電解質、および
充放電可能な負極を具備し、前記負極の集電体が250
N/mm2以上の引張り強さを有するCuまたはCu合
金であることを特徴とする非水電解質二次電池。
2. A chargeable / dischargeable positive electrode, a nonaqueous electrolyte, and a chargeable / dischargeable negative electrode, wherein the negative electrode current collector is 250.
A non-aqueous electrolyte secondary battery, which is Cu or a Cu alloy having a tensile strength of N / mm 2 or more.
【請求項3】 充放電可能な正極、非水電解質、および
充放電可能な負極を具備し、前記負極の集電体が350
N/mm2以上の引張り強さを有するNi合金であるこ
とを特徴とする非水電解質二次電池。
3. A chargeable / dischargeable positive electrode, a nonaqueous electrolyte, and a chargeable / dischargeable negative electrode, wherein the negative electrode current collector is 350.
A non-aqueous electrolyte secondary battery, which is a Ni alloy having a tensile strength of N / mm 2 or more.
JP26597995A 1995-10-13 1995-10-13 Nonaqueous electrolyte secondary battery Expired - Lifetime JP3669646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26597995A JP3669646B2 (en) 1995-10-13 1995-10-13 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26597995A JP3669646B2 (en) 1995-10-13 1995-10-13 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH09115523A true JPH09115523A (en) 1997-05-02
JP3669646B2 JP3669646B2 (en) 2005-07-13

Family

ID=17424688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26597995A Expired - Lifetime JP3669646B2 (en) 1995-10-13 1995-10-13 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3669646B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001029912A1 (en) * 1999-10-22 2001-04-26 Sanyo Electric Co., Ltd. Electrode for lithium cell and lithium secondary cell
WO2001031723A1 (en) * 1999-10-22 2001-05-03 Sanyo Electric Co., Ltd. Electrode for lithium secondary cell and lithium secondary cell
JP2002042889A (en) * 2000-07-21 2002-02-08 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2002246030A (en) * 2001-02-20 2002-08-30 Sanyo Electric Co Ltd Lithium secondary battery
KR100416097B1 (en) * 2001-10-19 2004-01-24 삼성에스디아이 주식회사 Anode current collector and lithium battery employing the same
EP1536499A1 (en) * 2002-06-26 2005-06-01 Sanyo Electric Co., Ltd. Negative electrode for lithium secondary cell and lithium secondary cell
JP2005243636A (en) * 2004-02-25 2005-09-08 Samsung Sdi Co Ltd Positive electrode current collector for lithium secondary battery, and lithium secondary battery comprising the same
WO2005122297A1 (en) * 2004-06-10 2005-12-22 Mitsui Mining & Smelting Co., Ltd. Metal foil with carrier foil, method for producing such metal foil with carrier foil, collector for nonaqueous electrolyte secondary battery using such metal foil with carrier foil
JP2006190691A (en) * 2006-03-08 2006-07-20 Hitachi Maxell Ltd Nonaqueous secondary battery
US7122279B2 (en) 2000-04-26 2006-10-17 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7195842B1 (en) 1999-10-22 2007-03-27 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
KR100731417B1 (en) * 2005-11-03 2007-06-21 삼성에스디아이 주식회사 Lithium secondary battery
US7241533B1 (en) 1999-10-22 2007-07-10 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7410728B1 (en) 1999-10-22 2008-08-12 Sanyo Electric Co., Ltd. Electrode for lithium batteries and rechargeable lithium battery
JP2009064560A (en) * 2006-08-29 2009-03-26 Toyo Aluminium Kk Aluminum alloy foil for current collector
JP2009081110A (en) * 2007-09-27 2009-04-16 Toyo Aluminium Kk Aluminum alloy foil for current collector
KR101154771B1 (en) * 2009-01-22 2012-06-18 파나소닉 주식회사 Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery
WO2012169570A1 (en) * 2011-06-07 2012-12-13 住友軽金属工業株式会社 Aluminum alloy foil and method for manufacturing same
KR101236027B1 (en) * 2007-08-09 2013-02-21 파나소닉 주식회사 Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery
WO2014208272A1 (en) * 2013-06-27 2014-12-31 日立マクセル株式会社 Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US9136537B2 (en) 2010-05-24 2015-09-15 Samsung Sdi Co., Ltd. Rechargeable lithium battery including heat-treated negative current collector
JP2019016587A (en) * 2017-07-06 2019-01-31 日立金属株式会社 Nickel material for battery, negative electrode, and battery case material

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195842B1 (en) 1999-10-22 2007-03-27 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
US7794881B1 (en) 1999-10-22 2010-09-14 Sanyo Electric Co., Ltd. Electrode for lithium batteries and rechargeable lithium battery
US7241533B1 (en) 1999-10-22 2007-07-10 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7235330B1 (en) 1999-10-22 2007-06-26 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
WO2001029912A1 (en) * 1999-10-22 2001-04-26 Sanyo Electric Co., Ltd. Electrode for lithium cell and lithium secondary cell
US7410728B1 (en) 1999-10-22 2008-08-12 Sanyo Electric Co., Ltd. Electrode for lithium batteries and rechargeable lithium battery
WO2001031723A1 (en) * 1999-10-22 2001-05-03 Sanyo Electric Co., Ltd. Electrode for lithium secondary cell and lithium secondary cell
US7192673B1 (en) 1999-10-22 2007-03-20 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7122279B2 (en) 2000-04-26 2006-10-17 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
JP2002042889A (en) * 2000-07-21 2002-02-08 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2002246030A (en) * 2001-02-20 2002-08-30 Sanyo Electric Co Ltd Lithium secondary battery
KR100416097B1 (en) * 2001-10-19 2004-01-24 삼성에스디아이 주식회사 Anode current collector and lithium battery employing the same
US8216720B2 (en) 2002-06-26 2012-07-10 Sanyo Electric Co., Ltd. Negative electrode for lithium secondary cell and lithium secondary cell
EP1536499A1 (en) * 2002-06-26 2005-06-01 Sanyo Electric Co., Ltd. Negative electrode for lithium secondary cell and lithium secondary cell
EP1536499A4 (en) * 2002-06-26 2009-05-13 Sanyo Electric Co Negative electrode for lithium secondary cell and lithium secondary cell
JP2005243636A (en) * 2004-02-25 2005-09-08 Samsung Sdi Co Ltd Positive electrode current collector for lithium secondary battery, and lithium secondary battery comprising the same
JP2005353384A (en) * 2004-06-10 2005-12-22 Mitsui Mining & Smelting Co Ltd Metal foil with carrier foil, manufacturing method of the same, and collector of nonaqueous electrolyte secondary battery using the same
WO2005122297A1 (en) * 2004-06-10 2005-12-22 Mitsui Mining & Smelting Co., Ltd. Metal foil with carrier foil, method for producing such metal foil with carrier foil, collector for nonaqueous electrolyte secondary battery using such metal foil with carrier foil
KR100731417B1 (en) * 2005-11-03 2007-06-21 삼성에스디아이 주식회사 Lithium secondary battery
JP4530289B2 (en) * 2006-03-08 2010-08-25 日立マクセル株式会社 Non-aqueous secondary battery
JP2006190691A (en) * 2006-03-08 2006-07-20 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2009064560A (en) * 2006-08-29 2009-03-26 Toyo Aluminium Kk Aluminum alloy foil for current collector
KR101236027B1 (en) * 2007-08-09 2013-02-21 파나소닉 주식회사 Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery
JP2009081110A (en) * 2007-09-27 2009-04-16 Toyo Aluminium Kk Aluminum alloy foil for current collector
KR101154771B1 (en) * 2009-01-22 2012-06-18 파나소닉 주식회사 Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery
US8389161B2 (en) 2009-01-22 2013-03-05 Panasonic Corporation Nonaqueous electrolyte secondary battery and method for fabricating the same
US9136537B2 (en) 2010-05-24 2015-09-15 Samsung Sdi Co., Ltd. Rechargeable lithium battery including heat-treated negative current collector
WO2012169570A1 (en) * 2011-06-07 2012-12-13 住友軽金属工業株式会社 Aluminum alloy foil and method for manufacturing same
WO2014208272A1 (en) * 2013-06-27 2014-12-31 日立マクセル株式会社 Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
CN105359301A (en) * 2013-06-27 2016-02-24 日立麦克赛尔株式会社 Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JPWO2014208272A1 (en) * 2013-06-27 2017-02-23 日立マクセル株式会社 Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
TWI622208B (en) * 2013-06-27 2018-04-21 Maxell Holdings Ltd Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN105359301B (en) * 2013-06-27 2018-11-30 麦克赛尔控股株式会社 Positive electrode for nonaqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2019016587A (en) * 2017-07-06 2019-01-31 日立金属株式会社 Nickel material for battery, negative electrode, and battery case material

Also Published As

Publication number Publication date
JP3669646B2 (en) 2005-07-13

Similar Documents

Publication Publication Date Title
JP3669646B2 (en) Nonaqueous electrolyte secondary battery
JPH097638A (en) Nonaqueous electrolytic secondary battery
JP4411690B2 (en) Lithium ion secondary battery
US20070054191A1 (en) Non- aqueous electrolyte secondary battery
JPH1186854A (en) Lithium secondary battery
JPH06318454A (en) Nonaqueous electrolyte secondary battery
JP3393243B2 (en) Non-aqueous electrolyte secondary battery
US20030013018A1 (en) Negative electrode material and battery using the same
JPH06310126A (en) Nonaquous electrolytic secondary battery
JPH04294059A (en) Negative electrode for secondary battery with non-aqueous electrolyte
JPS62272473A (en) Nonaqueous solvent secondary battery
JP2003100278A (en) Nonaqueous electrolyte secondary battery
JPH06275268A (en) Nonaqueous electrolyte secondary battery
JP3152307B2 (en) Lithium secondary battery
JP2007095570A (en) Lithium secondary battery and negative electrode used in that battery
JP2017037776A (en) Nonaqueous electrolyte battery
JP2730641B2 (en) Lithium secondary battery
JP4752126B2 (en) Non-aqueous electrolyte secondary battery
JP3405419B2 (en) Non-aqueous electrolyte secondary battery
JPH0574488A (en) Nonaqueous electrolyte secondary battery
JP2002100364A (en) ELECTRODE MATERIAL FOR Li ION CELL, AND Li ION CELL
JPH07105952A (en) Lithium secondary battery and its current collecting body
JP2775754B2 (en) Non-aqueous electrolyte secondary battery
JP3358482B2 (en) Lithium secondary battery
JP3124749B2 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

EXPY Cancellation because of completion of term