JPH09115523A - Nonaqueous electrolytic secondary battery - Google Patents

Nonaqueous electrolytic secondary battery

Info

Publication number
JPH09115523A
JPH09115523A JP26597995A JP26597995A JPH09115523A JP H09115523 A JPH09115523 A JP H09115523A JP 26597995 A JP26597995 A JP 26597995A JP 26597995 A JP26597995 A JP 26597995A JP H09115523 A JPH09115523 A JP H09115523A
Authority
JP
Japan
Prior art keywords
current collector
negative electrode
tensile strength
positive electrode
mm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26597995A
Other languages
Japanese (ja)
Other versions
JP3669646B2 (en
Inventor
Masaki Hasegawa
Shuji Ito
Yasuhiko Mifuji
Toshihide Murata
Yoshinori Toyoguchi
修二 伊藤
年秀 村田
靖彦 美藤
▲吉▼徳 豊口
正樹 長谷川
Original Assignee
Matsushita Electric Ind Co Ltd
松下電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Ind Co Ltd, 松下電器産業株式会社 filed Critical Matsushita Electric Ind Co Ltd
Priority to JP26597995A priority Critical patent/JP3669646B2/en
Publication of JPH09115523A publication Critical patent/JPH09115523A/en
Application granted granted Critical
Publication of JP3669646B2 publication Critical patent/JP3669646B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technologies with an indirect contribution to GHG emissions mitigation
    • Y02E60/122Lithium-ion batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolytic secondary battery on which an occupying rate of current collectors is reduced and which has high energy density by manufacturing the current collecting bodies on which rolling rupture is not caused and which has a high yield by forming a positive electrode current collector and a negative electrode current collector by using specific metal and specific metallic alloy whose tensile strengths have respectively a specific value.
SOLUTION: A nonaqueous electrolytic secondary battery is provided with a chargeable-dischargeable positive electrode, nonaqueous electrolyte and a chargeable- dischargeable negative electrode. A positive electrode current collector of this positive electrode is formed of Al alloy whose tensile strength is not less than 100N/mm2. On the other hand, a negative electrode current collector is formed of Cu or Cu alloy whose tensile strength is not less than 250N/mm2 or Ni alloy whose tensile strength is not less than 350N/mm2. Then, since tensile strength is large, at manufacturing time, the current collectors can be manufactured with a high yield without causing rolling rupture, and when these current collectors are used, since tensile strength is large, the nonaqueous electrolyte secondary battery on which an occupying rate of the current collectors is reduced and which has high energy density can be formed.
COPYRIGHT: (C)1997,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、非水電解質二次電池、特にその電極の集電体の改良に関するものである。 BACKGROUND OF THE INVENTION The present invention provides a non-aqueous electrolyte secondary battery, and more particularly to an improvement of the current collector of the electrode.

【0002】 [0002]

【従来の技術】アルカリ金属を負極とする非水電解質二次電池は、起電力が高く、従来のニッケルカドムミウム蓄電池や鉛蓄電池に較べ高エネルギー密度になると期待され、盛んに研究がなされている。 BACKGROUND ART Nonaqueous electrolyte secondary batteries with an alkali metal anode, a high electromotive force, is expected to become a high energy density compared to conventional nickel flaps tasteless um battery or lead-acid battery, have been made actively studied there. 中でもリチウム二次電池が最も注目をあつめ、多くの検討がなされてきた。 Among them, it gathered the lithium secondary battery is the most attention, many studies have been made.
これまでリチウム二次電池の正極活物質には、LiMn So far, the positive electrode active material of lithium secondary battery, LiMn
24 、LiCoO 2 、LiNiO 2 、V 25 、Cr 25 2 O 4, LiCoO 2, LiNiO 2, V 2 O 5, Cr 2 O 5,
MnO 2 、TiS 2 、MoS 2などの遷移金属の酸化物およびカルコゲン化合物が知られいる。 MnO 2, TiS 2, oxides and chalcogen compounds of transition metals, such as MoS 2 are known. これらは層状もしくはトンネル構造を有し、リチウムイオンが出入りできる結晶構造を持っている。 They have a layered or tunnel structure, it has a crystal structure in which lithium ions can enter and exit. 一方、負極活物質としては、 On the other hand, as the negative electrode active material,
金属LiあるいはLiと合金化可能なAlなどがこれまで多く検討されてきた。 A metal Li or Li can be alloyed Al have been many studied heretofore.

【0003】しかしながら、理論的には最も高容量化が可能な金属Li(理論容量3860mAh/g)を負極に用いると、充電時にデンドライトが発生し、短絡を起こし易く、信頼性の低い電池となるので、未だ実用化には至っていない。 [0003] However, using theoretically possible highest capacity metal Li (theoretical capacity 3860 mAh / g) in the negative electrode, dendrite is generated during charging, susceptible to short-circuit, becomes unreliable cell so, have yet to still put to practical use. また、LiAl合金も金属Liについで高容量化が可能であるが、理論値に近い容量で充放電を繰り返すと、微粉化が激しくサイクル性に問題があった。 Although LiAl alloy also possible followed high capacity to metal Li, repeated charging and discharging in a volume close to the theoretical value, micronized had a problem with vigorous cyclability. この問題を解決するために、理論的には金属Li、 To solve this problem, in theory metal Li,
LiAl合金に比べて容量は小さいがサイクル性に優れ、デンドライトが発生しにくい、Liを層間内に可逆的に出し入れすることが可能な炭素材料(理論容量37 The capacity is smaller than the LiAl alloy excellent cycle property, dendrite hardly occurs, carbon material capable of reversibly out in the interlayer of Li (theoretical capacity 37
2mAh/g)を負極に用いたリチウム二次電池が現在実用化されている。 2 mAh / g) is a lithium secondary battery using the negative electrode has been put to practical use.

【0004】 [0004]

【発明が解決しようとする課題】炭素材料を負極に用いた場合、金属Liに比べて理論的な容量が小さいために、リチウム二次電池で期待されるような高エネルギー密度化には至っていない。 [SUMMARY OF THE INVENTION When using a carbon material for the negative electrode, for theoretical capacity is small compared to the metal Li, not reached the high energy density as expected for a lithium secondary battery . また、現在実用化されている主なリチウム二次電池は、図1に示すように極板群がスパイラル構造を有する円筒タイプである。 The main lithium secondary batteries which are currently commercialized is a cylindrical type electrode plate group having a spiral structure as shown in FIG. 一般的に電池は、大きく分けて正極合剤、負極合剤、それらの集電体、および正極と負極を分離するセパレータから構成されている。 Generally cell, roughly cathode mixture, the negative electrode mixture, their collectors, and and a separator for separating the positive electrode and the negative electrode. そして、限られた電池容積内で電池のエネルギー密度向上に寄与しない正、負極集電体の占有率は大きい。 Then, it does not contribute to improving the energy density of the battery within a limited cell volume positive, occupancy of the negative electrode current collector is larger. 従来電池構成時、特に結着剤を含む電極合剤をシート状の集電体に塗着し、これを圧延して電極を作製する際、その圧延時の作業性を考慮すると、少なくとも2 When conventional battery structure, in particular an electrode mixture containing a binder and coated on a sheet-like current collector, making the electrode and rolling it, considering the workability at the time of rolling, at least 2
0〜30μmの厚みを有する電極集電体を用いなければならなかった。 It had to be used electrode current collector having a thickness of 0~30Myuemu. これは、集電体の機械的強度が弱く、圧延時にエッジ部分が破断してしまい、歩留まりが低下するためである。 This weak mechanical strength of the current collector, an edge portion ends up breaking during rolling, because the yield is reduced.

【0005】本発明は、上記のような問題を解消し、圧延時の破断がなく、歩留まりの高い電極を与える集電体を提供することを目的とする。 [0005] The present invention is to solve the above problem, there is no break during rolling, and to provide a current collector to provide a high yield electrode. 本発明は、電極集電体の占有率を少なくしてエネルギー密度の高い非水電解質二次電池を提供することを目的とする。 The present invention aims at providing a non-aqueous electrolyte secondary battery having high energy density with a reduced occupation of the electrode current collector.

【0006】 [0006]

【課題を解決するための手段】本発明は、充放電可能な正極、非水電解質、および充放電可能な負極を具備する非水電解質二次電池において、正極および/または負極の集電体に特定の引張り強さを有する金属を用いるものである。 Means for Solving the Problems The present invention, rechargeable positive electrode, a nonaqueous electrolyte, and a nonaqueous electrolyte secondary battery comprising a chargeable and dischargeable negative electrode, positive electrode and / or the current collector of the negative electrode it is to use a metal having a specific tensile strength. すなわち、正極集電体に引張り強さが100N That is, tensile strength in the positive electrode current collector 100N
/mm 2以上のAl合金を用いる。 / Mm 2 or more an Al alloy. また、負極集電体に引張り強さが250N/mm 2以上のCuあるいはCu Further, tensile strength on the negative electrode current collector 250 N / mm 2 or more Cu or Cu
合金、あるいは引張り強さが350N/mm 2以上のN Alloy or tensile strength, is 350 N / mm 2 or more N
i合金を用いることを特徴とする。 Characterized by using the i alloy.

【0007】本発明者らは、非水電解質二次電池の正極および負極集電体として各種の金属材料について詳細な検討を行った結果、正極集電体に前記のAl合金、負極集電体に前記のCu、Cu合金、あるいはNi合金を用いることで、電極作製過程における圧延時にエッジ部分の破断による歩留まり低下を抑制しつつ、従来に比べて集電体厚みをより薄くできることを見いだした。 [0007] The present inventors have found that non-aqueous result of detailed studies on various metal materials as the positive electrode and the negative electrode collector electrolyte secondary battery, wherein the Al alloy to the cathode current collector, the anode current collector Cu, said to by using the Cu alloy or Ni alloy, while suppressing reduction in the yield due to breakage of the edge portion during rolling in the electrode fabrication process, it has been found that can be thinner collector thickness as compared with the prior art. 本発明のよって、電池容積内の正極集電体および負極集電体の占有率を従来よりも低下することが可能となり、正極活物質および負極活物質の充填量をより多くすることができ、同じ電池容積で高エネルギー密度が可能となる。 By the present invention, it is possible to lower than conventional occupancy of the positive electrode current collector and the anode current collector in the battery capacity, it is possible to increase the filling amount of the positive electrode active material and the negative electrode active material, high energy density is possible with the same battery capacity.

【0008】正極集電体のAl合金の引張り強さとしては、100N/mm 2以上が好ましく、200N/mm 2 [0008] As the tensile strength of the Al alloy of the positive electrode current collector, 100 N / mm 2 or more preferably, 200 N / mm 2
以上がさらに好ましく、300N/mm 2以上が特に好ましい。 Or more preferably, 300N / mm 2 or more is particularly preferable. このような引張り強さを有するAl合金としては、Si、Fe、Cu、Mn、Zn、およびTiの少なくとも1種の元素を総重量で0.7〜5wt%含むAl Such tensile strength Al alloy having, Si, Fe, Cu, Mn, Zn, and Al containing 0.7~5Wt% by total weight of at least one element of Ti
合金が用いられる。 Alloy is used. 負極集電体のCuあるいはCu合金の引張り強さとしては、250N/mm 2以上が好ましく、350N/mm 2以上がさらに好ましく、450N The tensile strength of the Cu or Cu alloy of the negative electrode current collector is preferably 250 N / mm 2 or more, more preferably 350 N / mm 2 or more, 450 N
/mm 2以上が特に好ましい。 / Mm 2 or more is particularly preferable. このような引張り強さを有するCuあるいはCu合金としては、冷間加工処理を施した電解銅あるいはTiを1〜2%含有するCu合金が用いられる。 Such tensile Cu or Cu alloy having a strength, Cu alloy containing 1-2% of electrolytic copper or Ti subjected to the cold working process is used. また、負極集電体のNi合金の引張り強さとしては、350N/mm 2以上が好ましく、450 As the tensile strength of the Ni alloy of the negative electrode current collector, 350 N / mm 2 or more, 450
N/mm 2以上がさらに好ましく、550N/mm 2以上が特に好ましい。 More preferably N / mm 2 or higher, 550 N / mm 2 or more is particularly preferable. このような引張り強さを有するNi合金としては、冷間加工または熱間加工処理を施したCo As the Ni alloy having such a tensile strength, was subjected to cold working or hot working process Co
含量0.05wt%のNi合金が用いられる。 Content 0.05 wt% of Ni alloy is used.

【0009】なお、負極集電体が正極集電体に比べてより大きな引張り強さを必要とするのは、サイクル特性などを考慮した場合に、負極集電体と負極活物質との間により強固な密着性を保持する必要があるためである。 [0009] Incidentally, the anode current collector requires a greater tensile strength than the positive electrode current collector, when considering such as cycle characteristics, by between the anode current collector and the anode active material This is because it is necessary to retain a strong adhesion. これは通常負極材料に用いる炭素材料の充放電に伴う体積変化が、例えば正極活物質に用いるLiCoO 2などの複合酸化物に比べて大きいことによる。 This is usually the volume change during charge and discharge of the carbon material used for the negative electrode material, due to larger than the composite oxide such as LiCoO 2 is used, for example, in the positive electrode active material. さらには、正極集電体のAl合金に比べて負極集電体のCu合金あるいはNi合金は硬く、このような理由から活物質と集電体との密着性を上げるためにより強固な圧延工程が必要となるためである。 Further, Cu alloy or Ni alloy of the negative electrode current collector than Al alloy of the positive electrode current collector is hard, strong rolling by order to increase the adhesion between the active material and the current collector from such reason This is because that is required. なお、CuあるいはCu合金製集電体に対して、Ni合金製集電体の引張り強さが大きいのは、Niの方が銅に比べてより硬いためである。 Incidentally, with respect to Cu or Cu alloy current collector, the greater the tensile strength of the Ni alloy collector is due towards the Ni is harder than copper.

【0010】 [0010]

【発明の実施の形態】以下、本発明を実施例により説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, will be explained by the present invention through examples. [実施例1]本実施例では正極集電体について説明する。 [Example 1] In this embodiment described positive electrode current collector. 集電体には、厚みが10μmと15μmの各種引張り強さを有する表1に示すAl箔またはAl合金箔を用いた。 The current collector thickness using Al foil or Al alloy foil shown in Table 1 with various tensile strength of 10μm and 15 [mu] m. なお、Al箔は、純度99.9%で、引張り強さ50N/mm 2のものである。 Incidentally, Al foil, with a purity of 99.9%, those of tensile strength 50 N / mm 2. また、Al合金箔には、 In addition, the Al alloy foil,
Si、Fe、Cu、Mn、Zn、およびTiを各1wt Si, Fe, Cu, Mn, each 1 wt Zn, and Ti
%以下、総重量で0.7〜5wt%含むAl合金(引張り強さ100〜350N/mm 2 )を用いた。 % Or less, with 0.7~5Wt% containing Al alloy (tensile strength 100~350N / mm 2) by the total weight. 正極板は、次のようにして作製した。 The positive electrode plate was prepared in the following manner. 充電、放電に対して可逆性を有する正極活物質LiMn 24 100gに、導電剤の炭素粉末10gおよび結着剤のポリフッ化ビニリデン5gを加え、これにジメチルホルムアミド加えてペースト状にし、表1に示す各種アルミニウム箔またはアルミニウム合金箔上に塗布し、乾燥した。 Charging, the positive electrode active material LiMn 2 O 4 100 g having reversibility with respect to the discharge, the polyvinylidene fluoride 5g of carbon powder 10g and the binder of the conductive agent added, this was added dimethyl formamide to form a paste, Table 1 It was applied to various aluminum foil or an aluminum alloy foil shown in, and dried. こうして得た正極板の厚みは275μmであった。 The thickness of the thus obtained positive electrode plate was 275 .mu.m. 同じ引張り強さを有する集電体を用いた正極板を5cm角に裁断し、圧延ローラにそれぞれ5回から7回ずつ通して、圧延後の正極板厚みが170μmになるように圧延した。 The positive electrode plate using the current collector having the same tensile strength and cut into 5cm square, through each seven times from each 5 times the rolling roller, the positive electrode plate thickness after rolling is rolled to be 170 [mu] m. そして、圧延後の電極における集電体のエッジ部分の破断の有無をチェックした。 It was then checked for breakage of the edge portion of the current collector in the electrode after rolling. なお、試料数はそれぞれ100個とした。 The number of samples was 100 each. 集電体のエッジ部分に破断を生じていないものを良品とし、それぞれの歩留まりを表1に示す。 And good ones where there is no breakage in the edge portions of the current collector, showing the respective yields in Table 1. 歩留まりは、良品の数を試料数100で除した値である。 Yield is a value obtained by dividing the number of non-defective in the sample number 100.

【0011】 [0011]

【表1】 [Table 1]

【0012】表1に示すように、引張り強さの大きいものほど、圧延後のエッジ部分の破断が減少し、歩留まりが向上していることがわかる。 [0012] As shown in Table 1, as those tensile strength greater, breakage of the edge portion after rolling is reduced, it can be seen that the yield is improved. 引張り強さが100N/ Tensile strength of 100N /
mm 2以上の集電板を用いると、歩留まりは70%に達する。 With mm 2 or more of the current collector plate, the yield reaches 70%. 引張り強さが100N/mm 2より小さな集電板を用いて歩留まりを向上するためには、厚さ15μm以上の集電板を用いるか、圧延後の正極厚みを170μm Or tensile strength in order to improve the yield using a small current collector plate than 100 N / mm 2 is used thickness 15μm or more collector plates, 170 [mu] m a positive electrode thickness after rolling
より大きくする必要がある。 More needs to be increased. そうすると正極活物質充填量が低下し、電池容量の減少をもたらす。 Then the positive electrode active material loading decreases, resulting in a decrease in battery capacity. 以上の結果から、正極集電体には引張り強さが100N/mm 2以上のAl合金を用いることが好ましい。 From the above results, tensile strength in the positive electrode current collector is preferably used 100 N / mm 2 or more Al alloy.

【0013】[実施例2]本実施例では、実施例1で作製した正極板を用いて電池を構成してその特性を評価した。 [0013] In EXAMPLE 2 This Example, and its characteristics were evaluated by a battery using a positive electrode plate prepared in Example 1. 正極板は、実施例1で示した300N/mm 2の引張り強さを有する正極集電体厚みが10μmと15μm Positive electrode plate includes a positive electrode current collector thickness 10μm and 15μm with a tensile strength of 300N / mm 2 as shown in Example 1
のものを用いた。 It was used for. 負極板は、充電、放電に対して可逆性を有する負極活物質人造黒鉛100gに対して、結着剤のポリフッ化ビニリデン5gを加え、ジメチルホルムアミドを用いてペースト状にし、集電体厚みが20μmのCu箔上に塗布し乾燥した後、圧延して作製した。 Negative electrode plate charging, the negative electrode active material artificial graphite 100g having reversibility with respect to the discharge, polyvinylidene fluoride 5g of binder added to form a paste with dimethylformamide, 20 [mu] m is the current collector thickness after coating and drying on a Cu foil was prepared by rolling. 本実施例で使用した電池の縦断面図を図1に示す。 A longitudinal section view of the battery used in this embodiment is shown in FIG. 正極板1 The positive electrode plate 1
と負極板2および両極板間に介在させた極板より幅の広い帯状の多孔性ポリプロピレン製セパレータ3を渦巻状に捲回して電極群を構成し、その上下にそれぞれポリプロピレン製の絶縁板6、7を配して電槽8に挿入し、電槽8の上部に段部を形成させた後、非水電解液を注入し、正極端子10を設けた合成樹脂封口板9で密閉して電池とした。 A negative electrode plate 2 and width than the electrode plate which is interposed bipolar plates a wide strip of porous polypropylene separator 3 by winding spirally to form an electrode group, an insulating plate 6 each made of polypropylene and below, 7 is inserted into the container 8 by disposing, after forming the step portion on the top of the battery container 8, the nonaqueous electrolyte solution is injected, and sealed a positive electrode terminal 10 of a synthetic resin sealing plate 9 provided battery and the. 非水電解液は、1モル/lの六フッ化リン酸リチウム(LiPF 6 )を溶解した体積比で1:1のエチレンカーボネートと炭酸ジエチルの混合溶液を用いた。 The non-aqueous electrolyte, 1 by volume by dissolving lithium hexafluorophosphate (LiPF 6) of 1 mol / l: using a mixed solution of 1 of ethylene carbonate and diethyl carbonate. また、正極板および負極板には、それぞれ集電体と同材質のリード4、5がスポット溶接により接続されている。 Also, the positive electrode plate and the negative electrode plate, lead 4,5 current collector and the same material each of which is connected by spot welding.

【0014】また、比較例として、従来使用されていた正極集電体厚みが25μmのものを用いて同様な電池を作製した。 [0014] As a comparative example, conventionally used which was the positive electrode collector thickness was prepared in the same manner as batteries, using those 25 [mu] m. なお、これら電池は、負極の電気容量が正極のそれより大きく、電池の容量は正極の容量で決まる。 Note that these cells are electric capacity of the negative electrode is larger than that of the positive electrode, the capacity of the battery is determined by the capacity of the positive electrode.
これらの電池を0.5mA/cm 2の定電流で4.3V 4.3V These batteries at a constant current of 0.5 mA / cm 2
まで充電し、3.0Vまで放電する充放電を繰り返した。 Until the charge was repeated charge and discharge to discharge to 3.0V. 表2に、10サイクル目の放電容量と100サイクル目の容量維持率を示す。 Table 2 shows the discharge capacity at the 10th cycle and 100th cycle capacity maintenance ratio. 放電容量は、比較例として示した正極集電体厚みが25μmの電池の放電容量を10 Discharge capacity, the discharge capacity of the battery of the positive electrode current collector thickness 25μm shown as a comparative example 10
0として示す。 It is shown as 0. また、放電容量維持率は下記の式で算出した。 Further, the discharge capacity retention ratio was calculated by the following equation. 容量維持率(%)=100×(100サイクル目放電容量)/(10サイクル目放電容量) Capacity retention ratio (%) = 100 × (100 cycle discharge capacity) / (10 cycle discharge capacity)

【0015】 [0015]

【表2】 [Table 2]

【0016】表2に示すように、正極集電体の厚みが薄いものほど放電容量が大きいことがわかる。 [0016] As shown in Table 2, it can be seen that a large discharge capacity as those thicknesses of the positive electrode current collector is thin. これは集電体厚みをより薄くすることで、正極活物質充填量が増加したためである。 This is possible to further reduce the current collector thickness is because the cathode active material loading was increased. また、いずれの電池も100サイクル目の容量維持率は96%以上で、優れたサイクル特性を示した。 Further, the capacity retention rate also 100th cycle either battery 96% or more, exhibited excellent cycle characteristics.

【0017】[実施例3]本実施例では負極集電体について説明する。 [0017] In Example 3 This example will be described negative electrode current collector. 集電体には、厚みが10μmと12μm To the current collector, the thickness is 10μm and 12μm
の各種引張り強さを有する表3に示すCuまたはCu合金箔を用いた。 Using Cu or a Cu alloy foil are shown in Table 3 with various tensile strengths. なお、Cu箔には、冷間加工率の異なる電解銅(引張り強さ200〜350N/mm 2 )を、またCu合金箔には、Tiを1〜2wt%含有するCu合金(引張り強さ400〜500N/mm 2 )をそれぞれ用いた。 Incidentally, the Cu foil, different electrolytic copper of cold working ratio (tensile strength 200~350N / mm 2), also the Cu alloy foil, a Cu alloy (tensile strength containing 1 to 2 wt% of Ti 400 ~500N / mm 2) were used, respectively. 負極板は、充電、放電に対して可逆性を有する負極活物質人造黒鉛100gに対して、結着剤のポリフッ化ビニリデン5gを加え、ジメチルホルムアミドを用いてペースト状にし、各種Cu箔上に塗布し、乾燥して作製した。 Negative electrode plate coated charge, the negative electrode active material artificial graphite 100g having reversibility with respect to the discharge, polyvinylidene fluoride 5g of binder added to form a paste with dimethylformamide, on a variety of Cu foil and, it was prepared by drying. こうして得た負極板の厚みは200μmであった。 The thickness of the negative electrode plate thus obtained was 200 [mu] m. 同じ引張り強さを有する集電体を用いた負極板を5cm角に裁断し、圧延ローラにそれぞれ9回から10 A negative electrode plate using a current collector having the same tensile strength and cut into 5cm square, from each 9 times the rolling roller 10
回ずつ通して、圧延後の負極厚みが150μmになるように圧延した。 Through each time, the negative electrode thickness after rolling is rolled to be 150 [mu] m. そして、圧延後の電極における集電体のエッジ部分の破断の有無をチェックした。 It was then checked for breakage of the edge portion of the current collector in the electrode after rolling. 実施例1と同様にして求めた歩留まりを表3に示す。 The yield obtained in the same manner as in Example 1 shown in Table 3.

【0018】 [0018]

【表3】 [Table 3]

【0019】表3に示すように、引張り強さが大きいものほど、圧延後のエッジ部分の破断が減少し、歩留まりが向上していることがわかる。 As shown in Table 3, as those tensile strength is large, breakage of the edge portion after rolling is reduced, it can be seen that the yield is improved. 引張り強さが250N/ Tensile strength of 250N /
mm 2以上の集電板を用いると、歩留まりは74%に達している。 With mm 2 or more of the current collector plate, the yield has reached 74%. 引張り強さが250N/mm 2より小さな集電板を用いて歩留まりを向上するためには、厚さ12μ For tensile strength is improved and the yield using a small current collector plate than 250 N / mm 2, the thickness 12μ
m以上の集電板を用いるか、圧延後の負極板の厚みを1 Or use of m or more collector plates, the thickness of the negative electrode plate after rolling 1
50μm以上にする必要があり、負極活物質充填量が低下してしまい電池容量の減少をもたらす。 Must be at least 50 [mu] m, the negative electrode active material loading results in a reduction of the battery capacity will be decreased. 以上の結果から、負極集電体にはCuを含む引張り強さが250N/ From the above results, the negative electrode current collector tensile strength containing Cu 250 N /
mm 2以上の金属を用いることが好ましい。 It is preferable to use a mm 2 or more metals.

【0020】[実施例4]本実施例では、実施例3で作製した負極板を用いて電池を構成してその特性を評価した。 [0020] Example 4 In this example, and its characteristics were evaluated by a battery using a negative electrode plate prepared in Example 3. 負極板は、実施例3で示した350N/mm 2の引張り強さを有する負極集電体厚みが10μmと12μm Negative electrode plate includes a negative electrode current collector thickness 10μm having a tensile strength of 350 N / mm 2 as shown in Example 3 12 [mu] m
のものを用いた。 It was used for. 正極板は、正極活物質LiMn 24 Positive electrode plate, a positive electrode active material LiMn 2 O 4
100gに対して、導電剤の炭素粉末10gと結着剤のポリフッ化ビニリデン5gを加え、ジメチルホルムアミドを用いてペースト状にし、集電体厚みが25μmのA Against 100 g, polyvinylidene fluoride 5g of carbon powder 10g and a binder of the conductive agent added, to form a paste with dimethylformamide, collector thickness 25μm of A
l箔上に塗布し乾燥した後、圧延して作製した。 After coating and drying onto l foil was prepared by rolling. 電池の作製条件は、実施例2と同様である。 Conditions for producing the battery are the same as in Example 2. また、比較例として、従来使用されていた負極集電体の厚みが20μmのものを用いて同様の電池を作製した。 As a comparative example, the thickness of hitherto been used a negative electrode current collector was prepared in the same manner as the battery, using those 20 [mu] m. なお、これら電池は、正極の電気容量が負極のそれより大きく、電池の容量は負極の容量で決まる。 Note that these cells are larger than the electric capacity of the positive electrode is the negative electrode, the capacity of the battery is determined by the capacity of the negative electrode. これらの電池を0.5mA/ These battery 0.5mA /
cm 2の定電流で4.3Vまで充電し、3.0Vまで放電する充放電を行った。 It was charged to 4.3V at a constant current of cm 2, and a discharge for discharging to 3.0 V. 表4に、10サイクル目の放電容量と100サイクル目の容量維持率を示す。 Table 4 shows the discharge capacity at the 10th cycle and 100th cycle capacity maintenance ratio. 放電容量は、比較例として示した負極集電体厚みが20μmの電池の放電容量を100として示す。 Discharge capacity shows the discharge capacity of the negative electrode current collector thickness 20μm of the battery shown as a comparative example as 100.

【0021】 [0021]

【表4】 [Table 4]

【0022】表4に示すように、負極集電体の厚みが薄いものほど放電容量が大きいことがわかる。 As shown in Table 4, it can be seen that the discharge capacity as those thickness of the negative electrode current collector thinner is large. これは集電体厚みを薄くすることで負極活物質充填量が増加したためである。 This is because the negative electrode active material loading in reducing the current collector thickness is increased. また、いずれの電池も100サイクル目の容量維持率は96%以上で、優れたサイクル特性を示した。 Further, the capacity retention rate also 100th cycle either battery 96% or more, exhibited excellent cycle characteristics.

【0023】[実施例5]本実施例では負極集電体について説明する。 [0023] In Embodiment 5] This embodiment will be described negative electrode current collector. 表5に、厚みが10μmと12μmの各種引張り強さを有するNi合金箔を示す。 Table 5 shows the Ni alloy foil having a thickness having various tensile strength of 10μm and 12 [mu] m. なお、Ni合金箔には、Coを0.05wt%含有するNi合金を熱間圧延処理したもの(引張り強さ300〜400N/m Note that the Ni alloy foil, a Ni alloy containing 0.05 wt% of Co which was hot rolling treatment (tensile strength 300~400N / m
2 )または冷間圧延処理したもの(引張り強さ400 m 2) or those cold rolling process (tensile strength 400
〜600N/mm 2 )を用いた。 ~600N / mm 2) was used. 負極板は、充電、放電に対して可逆性を有する負極活物質人造黒鉛100gに対して、結着剤のポリフッ化ビニリデン5gを加え、ジメチルホルムアミドを用いてペースト状にし、各種Ni Negative electrode plate charging, the negative electrode active material artificial graphite 100g having reversibility with respect to the discharge, polyvinylidene fluoride 5g of binder added to form a paste with dimethylformamide, various Ni
合金箔上に塗布し、乾燥して作製した。 Was coated on the alloy foil was produced by drying. こうして得た負極板の厚みは220μmであった。 The thickness of the negative electrode plate thus obtained was 220 .mu.m. 同じ引張り強さを有する集電体を用いた負極板を5cm角に裁断し、圧延ローラにそれぞれ10回から12回ずつ通して、圧延後の負極厚み170μmになるように圧延した。 A negative electrode plate using a current collector having the same tensile strength and cut into 5cm square, through twelve times from each 10 times the rolling roller, and rolled such that the negative electrode thickness 170μm after rolling. そして、圧延後の電極における集電体のエッジ部分の破断の有無をチェックした。 It was then checked for breakage of the edge portion of the current collector in the electrode after rolling. 実施例1と同様にして求めた歩留まりを表4に示す。 The yield obtained in the same manner as in Example 1 shown in Table 4.

【0024】 [0024]

【表5】 [Table 5]

【0025】表5に示すように、引張り強さが大きいものほど、圧延後のエッジ部分の破断が減少し、歩留まりが向上していることがわかる。 As shown in Table 5, as those tensile strength is large, breakage of the edge portion after rolling is reduced, it can be seen that the yield is improved. 引張り強さが350N/ Tensile strength of 350N /
mm 2以上の集電板を用いると、歩留まりは77%に達する。 With mm 2 or more of the current collector plate, the yield reaches 77%. 引張り強さが350N/mm 2より小さな集電板を用いて歩留まりを向上するためには、厚さ12μm以上の集電板を用いるか、圧延後の負極板厚みを170μ Or tensile strength in order to improve the yield using a small current collector plate than 350 N / mm 2 is used thickness 12μm or more collector plates, 170Myu the negative electrode plate thickness after rolling
m以上にする必要があり、負極活物質充填量が低下してしまい電池容量の減少をもたらす。 Must be at least m, the negative electrode active material loading results in a reduction of the battery capacity will be decreased. 以上の結果から、負極集電体にはNiを含む引張り強さが350N/mm 2 From the above results, the negative electrode current collector tensile strength containing Ni 350 N / mm 2
以上の金属を用いることが好ましい。 It is preferable to use the above metals.

【0026】[実施例6]本実施例では、実施例5で作製した負極板を用いて電池を構成してその特性を評価した。 [0026] Example 6 In this example, and its characteristics were evaluated by a battery using a negative electrode plate prepared in Example 5. 負極板は、実施例5で示した450N/mm 2の引張り強さを有する負極集電体厚みが10μmと12μm Negative electrode plate includes a negative electrode current collector thickness 10μm having a tensile strength of 450 N / mm 2 as shown in Example 5 12 [mu] m
のものを用いた。 It was used for. 正極板は、正極活物質LiMn 24 Positive electrode plate, a positive electrode active material LiMn 2 O 4
100gに対して、導電剤の炭素粉末10gと、結着剤のポリフッ化ビニリデン5gを加え、ジメチルホルムアミドを用いてペースト状にし、集電体厚みが25μmのAl箔上に塗布し、乾燥した後、圧延して作製した。 Against 100 g, and the carbon powder 10g of the electrically conductive agent, polyvinylidene fluoride 5g of binder added to form a paste with dimethylformamide, the current collector thickness was coated on Al foil 25 [mu] m, after drying , it was prepared by rolling. 電池の作製条件は、実施例2と同様である。 Conditions for producing the battery are the same as in Example 2. また、比較例として、従来使用されていた負極集電体の厚みが20μ As a comparative example, the thickness of hitherto been used a negative electrode current collector 20μ
mのものを用いて同様の電池を作製した。 It was prepared in the same manner as the battery, using those m. なお、これら電池は、正極の電気容量が負極のそれより大きく、電池の容量は負極の容量で決まる。 Note that these cells are larger than the electric capacity of the positive electrode is the negative electrode, the capacity of the battery is determined by the capacity of the negative electrode. これらの電池を0.5m These batteries 0.5m
A/cm 2の定電流で4.3Vまで充電し、3.0Vまで放電する充放電を繰り返した。 It was charged to 4.3V at a constant current of A / cm 2, charging and discharging are repeated to discharge to 3.0 V. 表6に、10サイクル目の放電容量と100サイクル目の容量維持率を示す。 Table 6 shows the discharge capacity at the 10th cycle and 100th cycle capacity maintenance ratio.
なお、放電容量は、比較例として示した負極集電体厚みが20μmの電池の放電容量を100として示す。 The discharge capacity shows the discharge capacity of the negative electrode current collector thickness 20μm of the battery shown as a comparative example as 100.

【0027】 [0027]

【表6】 [Table 6]

【0028】表6に示すように、負極集電体の厚みが薄いほど放電容量が大きいことがわかる。 As shown in Table 6, it can be seen that the discharge capacity as the thickness of the negative electrode current collector thinner is large. これは集電体厚みをより薄くすることで負極活物質充填量が増加したためである。 This is because the negative electrode active material loading by a thinner collector thickness is increased. また、いずれの電池も100サイクル目の容量維持率は96%以上で、優れたサイクル特性を示した。 Further, the capacity retention rate also 100th cycle either battery 96% or more, exhibited excellent cycle characteristics. なお、上記の実施例では、円筒形電池で説明したが、圧延工程を有する電極板を用いる角型電池でも同様の効果が得られることは言うまでもない。 In the above embodiment has been described with a cylindrical battery, the same effect can be obtained in the prismatic battery using an electrode plate having a rolling process course.

【0029】 [0029]

【発明の効果】本発明によれば、高エネルギー密度な非水電解質二次電池を提供することが可能となる。 According to the present invention, it is possible to provide a high energy density non-aqueous electrolyte secondary battery.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の実施例に用いた二次電池の縦断面図である。 1 is a longitudinal sectional view of a rechargeable battery used in an embodiment of the present invention.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 正極 2 負極 3 セパレータ 4 正極リード 5 負極リード 6、7 絶縁板 8 電槽 9 封口板 10 正極端子 1 positive electrode 2 negative electrode 3 separator 4 positive electrode lead 5 negative electrode lead 6 insulating plate 8 battery case 9 sealing plate 10 positive terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 美藤 靖彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 豊口 ▲吉▼徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ────────────────────────────────────────────────── ─── of the front page continued (72) inventor Yoshifuji Yasuhiko Osaka Prefecture Kadoma Oaza Kadoma 1006 address Matsushita Electric industrial Co., Ltd. in the (72) inventor Toyoguchi ▲ Gil ▼ virtue Osaka Prefecture Kadoma Oaza Kadoma 1006 address Matsushita Electric industrial the Corporation

Claims (3)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 充放電可能な正極、非水電解質、および充放電可能な負極を具備し、前記正極の集電体が100 1. A rechargeable positive electrode, a nonaqueous electrolyte, and includes a chargeable and dischargeable negative electrode, a current collector of the positive electrode 100
    N/mm 2以上の引張り強さを有するAl合金であることを特徴とする非水電解質二次電池。 Non-aqueous electrolyte secondary battery, characterized by an Al alloy having a N / mm 2 or more tensile strength.
  2. 【請求項2】 充放電可能な正極、非水電解質、および充放電可能な負極を具備し、前記負極の集電体が250 2. A rechargeable positive electrode, a nonaqueous electrolyte, and includes a chargeable and dischargeable negative electrode, a current collector of the negative electrode 250
    N/mm 2以上の引張り強さを有するCuまたはCu合金であることを特徴とする非水電解質二次電池。 Non-aqueous electrolyte secondary battery which is a Cu or Cu alloy having an N / mm 2 or more tensile strength.
  3. 【請求項3】 充放電可能な正極、非水電解質、および充放電可能な負極を具備し、前記負極の集電体が350 3. A rechargeable positive electrode, a nonaqueous electrolyte, and includes a chargeable and dischargeable negative electrode, a current collector of the negative electrode 350
    N/mm 2以上の引張り強さを有するNi合金であることを特徴とする非水電解質二次電池。 Non-aqueous electrolyte secondary battery which is a Ni alloy having a N / mm 2 or more tensile strength.
JP26597995A 1995-10-13 1995-10-13 Non-aqueous electrolyte secondary battery Expired - Lifetime JP3669646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26597995A JP3669646B2 (en) 1995-10-13 1995-10-13 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26597995A JP3669646B2 (en) 1995-10-13 1995-10-13 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH09115523A true JPH09115523A (en) 1997-05-02
JP3669646B2 JP3669646B2 (en) 2005-07-13

Family

ID=17424688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26597995A Expired - Lifetime JP3669646B2 (en) 1995-10-13 1995-10-13 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3669646B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001029912A1 (en) * 1999-10-22 2001-04-26 Sanyo Electric Co., Ltd. Electrode for lithium cell and lithium secondary cell
WO2001031723A1 (en) * 1999-10-22 2001-05-03 Sanyo Electric Co., Ltd. Electrode for lithium secondary cell and lithium secondary cell
EP1536499A1 (en) * 2002-06-26 2005-06-01 Sanyo Electric Co., Ltd. Negative electrode for lithium secondary cell and lithium secondary cell
JP2005353384A (en) * 2004-06-10 2005-12-22 Mitsui Mining & Smelting Co Ltd Metal foil with carrier foil, manufacturing method of the same, and collector of nonaqueous electrolyte secondary battery using the same
JP2006190691A (en) * 2006-03-08 2006-07-20 Hitachi Maxell Ltd Nonaqueous secondary battery
US7122279B2 (en) 2000-04-26 2006-10-17 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7195842B1 (en) 1999-10-22 2007-03-27 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
KR100731417B1 (en) * 2005-11-03 2007-06-21 삼성에스디아이 주식회사 Lithium secondary battery
US7241533B1 (en) 1999-10-22 2007-07-10 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7410728B1 (en) 1999-10-22 2008-08-12 Sanyo Electric Co., Ltd. Electrode for lithium batteries and rechargeable lithium battery
JP2009064560A (en) * 2006-08-29 2009-03-26 Toyo Aluminium Kk Aluminum alloy foil for current collector
JP2009081110A (en) * 2007-09-27 2009-04-16 Toyo Aluminium Kk Aluminum alloy foil for current collector
KR101154771B1 (en) * 2009-01-22 2012-06-18 파나소닉 주식회사 Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery
WO2012169570A1 (en) * 2011-06-07 2012-12-13 住友軽金属工業株式会社 Aluminum alloy foil and method for manufacturing same
KR101236027B1 (en) * 2007-08-09 2013-02-21 파나소닉 주식회사 Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery
WO2014208272A1 (en) * 2013-06-27 2014-12-31 日立マクセル株式会社 Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US9136537B2 (en) 2010-05-24 2015-09-15 Samsung Sdi Co., Ltd. Rechargeable lithium battery including heat-treated negative current collector

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7192673B1 (en) 1999-10-22 2007-03-20 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
WO2001031723A1 (en) * 1999-10-22 2001-05-03 Sanyo Electric Co., Ltd. Electrode for lithium secondary cell and lithium secondary cell
US7410728B1 (en) 1999-10-22 2008-08-12 Sanyo Electric Co., Ltd. Electrode for lithium batteries and rechargeable lithium battery
US7241533B1 (en) 1999-10-22 2007-07-10 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7235330B1 (en) 1999-10-22 2007-06-26 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
US7794881B1 (en) 1999-10-22 2010-09-14 Sanyo Electric Co., Ltd. Electrode for lithium batteries and rechargeable lithium battery
US7195842B1 (en) 1999-10-22 2007-03-27 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
WO2001029912A1 (en) * 1999-10-22 2001-04-26 Sanyo Electric Co., Ltd. Electrode for lithium cell and lithium secondary cell
US7122279B2 (en) 2000-04-26 2006-10-17 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US8216720B2 (en) 2002-06-26 2012-07-10 Sanyo Electric Co., Ltd. Negative electrode for lithium secondary cell and lithium secondary cell
EP1536499A1 (en) * 2002-06-26 2005-06-01 Sanyo Electric Co., Ltd. Negative electrode for lithium secondary cell and lithium secondary cell
EP1536499A4 (en) * 2002-06-26 2009-05-13 Sanyo Electric Co Negative electrode for lithium secondary cell and lithium secondary cell
WO2005122297A1 (en) * 2004-06-10 2005-12-22 Mitsui Mining & Smelting Co., Ltd. Metal foil with carrier foil, method for producing such metal foil with carrier foil, collector for nonaqueous electrolyte secondary battery using such metal foil with carrier foil
JP2005353384A (en) * 2004-06-10 2005-12-22 Mitsui Mining & Smelting Co Ltd Metal foil with carrier foil, manufacturing method of the same, and collector of nonaqueous electrolyte secondary battery using the same
KR100731417B1 (en) * 2005-11-03 2007-06-21 삼성에스디아이 주식회사 Lithium secondary battery
JP4530289B2 (en) * 2006-03-08 2010-08-25 日立マクセル株式会社 Non-aqueous secondary battery
JP2006190691A (en) * 2006-03-08 2006-07-20 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2009064560A (en) * 2006-08-29 2009-03-26 Toyo Aluminium Kk Aluminum alloy foil for current collector
KR101236027B1 (en) * 2007-08-09 2013-02-21 파나소닉 주식회사 Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery
JP2009081110A (en) * 2007-09-27 2009-04-16 Toyo Aluminium Kk Aluminum alloy foil for current collector
KR101154771B1 (en) * 2009-01-22 2012-06-18 파나소닉 주식회사 Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery
US8389161B2 (en) 2009-01-22 2013-03-05 Panasonic Corporation Nonaqueous electrolyte secondary battery and method for fabricating the same
US9136537B2 (en) 2010-05-24 2015-09-15 Samsung Sdi Co., Ltd. Rechargeable lithium battery including heat-treated negative current collector
WO2012169570A1 (en) * 2011-06-07 2012-12-13 住友軽金属工業株式会社 Aluminum alloy foil and method for manufacturing same
WO2014208272A1 (en) * 2013-06-27 2014-12-31 日立マクセル株式会社 Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
CN105359301A (en) * 2013-06-27 2016-02-24 日立麦克赛尔株式会社 Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JPWO2014208272A1 (en) * 2013-06-27 2017-02-23 日立マクセル株式会社 Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
TWI622208B (en) * 2013-06-27 2018-04-21 Maxell Holdings Ltd Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN105359301B (en) * 2013-06-27 2018-11-30 麦克赛尔控股株式会社 Positive electrode for nonaqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP3669646B2 (en) 2005-07-13

Similar Documents

Publication Publication Date Title
US7482090B2 (en) Nonaqueous electrolyte secondary battery
EP0981194B1 (en) Charging method of secondary battery and device therefor
JP4366101B2 (en) lithium secondary battery
JP3497380B2 (en) Lithium secondary battery
JP3227080B2 (en) Lithium secondary battery
US5576119A (en) Rechargeable electrochemical alkali-metal cells
KR100789070B1 (en) Non-aqueous electrolyte secondary battery
JP3010226B2 (en) A nonaqueous electrolyte secondary battery and a manufacturing method thereof
US20070212607A1 (en) Nonaqueous electrolyte secondary battery
JP3600051B2 (en) Lithium secondary battery
US5316875A (en) Secondary battery with nonaqueous electrolyte and method of manufacturing same
JP5178111B2 (en) Non-aqueous electrolyte battery and pack battery
JP3368877B2 (en) Cylindrical lithium-ion battery
JP3538500B2 (en) Non-aqueous electrolyte-based secondary battery
US5490320A (en) Method of making a positive electrode for lithium secondary battery
CN1121728C (en) Non-aqueous electrolyte secondary battery
JP2962782B2 (en) Non-aqueous electrolyte battery
KR20000071133A (en) Non-aqueous electrolyte secondary cell, negative electrode therefor, and method of producing negative electrode
JP2003100347A (en) Nonaqueous electrolyte cell and nonaqueous electrolyte
JPH08153541A (en) Lithium secondary battery
JPH11233116A (en) Electrode structural body for lithium secondary battery, its manufacture and lithium secondary battery
JP2002289178A (en) Lithium secondary battery and electrode for it
US4956247A (en) Nonaqueous electrolyte secondary cell
JP2003522367A (en) Ion battery having a high aspect ratio electrodes
JPH08250120A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050411

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

EXPY Cancellation because of completion of term