JPH0574488A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH0574488A
JPH0574488A JP3234378A JP23437891A JPH0574488A JP H0574488 A JPH0574488 A JP H0574488A JP 3234378 A JP3234378 A JP 3234378A JP 23437891 A JP23437891 A JP 23437891A JP H0574488 A JPH0574488 A JP H0574488A
Authority
JP
Japan
Prior art keywords
lithium
solvent
secondary battery
battery
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3234378A
Other languages
Japanese (ja)
Other versions
JP3032339B2 (en
Inventor
Hiromi Okuno
博美 奧野
Hide Koshina
秀 越名
Takayuki Kawahara
隆幸 川原
Katsuaki Hasegawa
勝昭 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsubishi Petrochemical Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP3234378A priority Critical patent/JP3032339B2/en
Priority to US07/872,980 priority patent/US5256504A/en
Priority to DE69211928T priority patent/DE69211928T2/en
Priority to EP92107340A priority patent/EP0531617B1/en
Publication of JPH0574488A publication Critical patent/JPH0574488A/en
Priority to US08/143,191 priority patent/US5474862A/en
Application granted granted Critical
Publication of JP3032339B2 publication Critical patent/JP3032339B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a nonaqueous electrolyte secondary battery which is excellent at cycle life characteristic and low temperature characteristics by improving the solvent of electrolyte. CONSTITUTION:A nonaqueous electrolyte secondary battery includes a negative electrode 3 made by a carbonaceous material which can store and release lithium ions, nonaqueous electrolyte, and a positive electrode 1 made by an oxide containing lithium, and the solvent of the nonaqueous electrolyte is formed by mixing of ethylene carbonate, diethyl carbonate and propionic acid ethyl. The mixing ratio of the ethylene carbonate is 20 to 50% of the whole solvent and the mixing ratio of the propionic acid ethyl is 25 to 75% of chain ester. The nonaqueous electrolyte secondary battery excellent in cycle life and low temperature characteristics is thus obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非水電解液二次電池に関
し、さらに詳しくはこの電池のサイクル寿命および低温
における容量特性の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to improvement of cycle life and capacity characteristics at low temperature of this battery.

【0002】[0002]

【従来の技術】近年、電子機器のポータブル化,コード
レス化が急速に進んでおり、これらの駆動用電源として
小形・軽量で、高エネルギー密度を有する二次電池への
要望が高い。このような点で非水電解液系の二次電池、
特にリチウム二次電池はとりわけ高電圧・高エネルギー
密度を有する電池として期待が大きい。
2. Description of the Related Art In recent years, portable and cordless electronic devices have been rapidly developed, and there is a great demand for a small and lightweight secondary battery having high energy density as a power source for driving these devices. From this point of view, non-aqueous electrolyte secondary batteries,
In particular, lithium secondary batteries are highly expected as batteries having high voltage and high energy density.

【0003】非水電解液電池を二次電池化する場合、正
極活物質としては高容量かつ高電圧のものが望まれる。
この要望を満たすものとしてLiCoO2,LiNi
2,LiFeO2,LiMn24系の4Vの高電圧を示
す材料が挙げられる。
When a non-aqueous electrolyte battery is used as a secondary battery, a positive electrode active material having a high capacity and a high voltage is desired.
To meet this demand, LiCoO 2 , LiNi
Examples thereof include O 2 , LiFeO 2 , and LiMn 2 O 4 -based materials that exhibit a high voltage of 4V.

【0004】一方、負極材料としては金属リチウムをは
じめ、リチウム合金やリチウムイオンを吸蔵・放出でき
る炭素材などが検討されている。しかし金属リチウムに
は充放電に伴う樹枝状生成物(デンドライト)による短
絡の問題があり、リチウム合金には充放電に伴う膨脹収
縮に起因した電極の崩れなどの問題がある。従って、最
近ではこれらの問題の生じない炭素材がリチウム二次電
池の負極材料として有望視されている。一般に、負極材
料に金属リチウムを用いた場合、充電時に負極表面に生
成される活性なデンドライトと非水溶媒とが反応して一
部溶媒の分解反応を引き起こし、それが充電効率を下げ
ることは良く知られている。これを解消するものとして
特開昭57−170463号公報では、エチレンカーボ
ネートが充電効率に優れていることに着目し、このエチ
レンカーボネートとプロピレンカーボネートとの混合溶
媒を用いることが提案されている。さらに特開平3−5
5770号公報では電池の低温特性を改良するためエチ
レンカーボネートとジエチルカーボネートとの混合溶媒
に2メチルテトラヒドロフラン、1,2−ジメトキシエ
タン、4メチル1,3−ジオキソランなどを混合し、非
水電解液の溶媒として用いることが提案されている。
On the other hand, as negative electrode materials, lithium metal, lithium alloys, carbon materials capable of absorbing and releasing lithium ions, and the like have been investigated. However, metallic lithium has a problem of short circuit due to dendritic products (dendrites) associated with charge and discharge, and lithium alloy has a problem of electrode collapse due to expansion and contraction associated with charge and discharge. Therefore, recently, carbon materials that do not cause these problems have been regarded as promising as negative electrode materials for lithium secondary batteries. Generally, when metallic lithium is used as the negative electrode material, active dendrites generated on the negative electrode surface during charging react with a non-aqueous solvent to cause a partial solvent decomposition reaction, which often lowers charging efficiency. Are known. As a solution to this, JP-A-57-170463 proposes the use of a mixed solvent of ethylene carbonate and propylene carbonate, paying attention to the fact that ethylene carbonate is excellent in charging efficiency. Furthermore, JP-A-3-5
In 5770, 2-methyltetrahydrofuran, 1,2-dimethoxyethane, and 4-methyl-1,3-dioxolane are mixed in a mixed solvent of ethylene carbonate and diethyl carbonate in order to improve low-temperature characteristics of a battery, and a non-aqueous electrolyte solution It has been proposed to use it as a solvent.

【0005】しかしながら、これらの系を用いても充電
効率は最大でも98〜99%程度にとどまり、依然とし
て充電効率を十分に高めるまでには至っていない。これ
は負極にリチウム合金を用いた場合でも同様である。
However, even if these systems are used, the charging efficiency is limited to about 98 to 99% at the maximum, and the charging efficiency is not yet sufficiently increased. This is the same even when a lithium alloy is used for the negative electrode.

【0006】[0006]

【発明が解決しようとする課題】負極材料に炭素材を用
いた場合、充電反応は電解液中のリチウムイオンが炭素
材の層間にインターカレートするという反応であるた
め、リチウムのデンドライトは生成されず、上記のよう
な負極表面での溶媒の分解反応は生じないはずである。
しかし、実際には充電効率は100%に満たず、負極に
リチウムもしくはリチウム合金を用いた場合と同様の課
題が残る。
When a carbon material is used as the negative electrode material, the charging reaction is a reaction in which lithium ions in the electrolytic solution intercalate between the layers of the carbon material, so that dendrite of lithium is produced. Therefore, the decomposition reaction of the solvent on the surface of the negative electrode should not occur.
However, in reality, the charging efficiency is less than 100%, and the same problems as in the case of using lithium or a lithium alloy for the negative electrode remain.

【0007】本発明者等は、この現象はリチウム金属を
負極に用いた場合のような負極表面における溶液の分解
反応のよるものではなく、負極炭素材の層間にリチウム
がインターカレートするときに、リチウムのみならずリ
チウムを配位した溶媒と共に層間に引きこまれ、その
際、一部溶媒の分解反応を引き起こすことによると考え
た。つまり、分子半径が大きい溶媒は負極炭素材の層間
にスムーズにインターカレートされずに負極材料の層間
の入口で分解されるということである。
The present inventors have not found that this phenomenon is due to the decomposition reaction of the solution on the surface of the negative electrode as in the case where lithium metal is used for the negative electrode, but when lithium intercalates between the layers of the negative electrode carbon material. It is thought that this is due to the fact that not only lithium but also lithium is coordinated with the solvent in which it is coordinated, and it causes a decomposition reaction of some of the solvent. That is, the solvent having a large molecular radius is not smoothly intercalated between the layers of the negative electrode carbon material but is decomposed at the inlet between the layers of the negative electrode material.

【0008】一般的にリチウム電池の電解液の優れた溶
媒に求められる要件として、誘電率が大、すなわち溶質
である無機塩を多量に溶解できることが挙げられる。プ
ロピレンカーボネート,エチレンカーボネートなどはこ
の要件を満たす優れた溶媒であると言われているが、こ
れらはいずれもその環状構造ゆえ分子半径が大きいた
め、負極に炭素材を用いた場合、上述した如く充電時に
溶媒の分解反応を伴うという問題点を持つ。また、これ
らの溶媒は高粘性であるため、単独で用いると電解液の
粘度が高く高率充放電に難があると共に、低温時の容量
が小さいという欠点も持つ。特にエチレンカーボネート
は凝固点が36.4℃と高く、単独で用いることはでき
ない。
Generally, a requirement for an excellent solvent for an electrolytic solution of a lithium battery is that it has a large dielectric constant, that is, it can dissolve a large amount of an inorganic salt as a solute. Propylene carbonate, ethylene carbonate, etc. are said to be excellent solvents that satisfy this requirement. However, since all of them have a large molecular radius due to their cyclic structure, when a carbon material is used for the negative electrode, they are charged as described above. It sometimes has a problem that it involves a decomposition reaction of the solvent. Further, since these solvents are highly viscous, when used alone, they have the drawbacks that the viscosity of the electrolytic solution is high and high rate charge / discharge is difficult, and the capacity at low temperature is small. In particular, ethylene carbonate has a high freezing point of 36.4 ° C. and cannot be used alone.

【0009】一方、鎖状カーボネート類はその構造上、
炭素材の層間に入り易く、充電時の分解反応が起こりに
くいが、逆にこれらの溶媒は誘電率が比較的低く、溶質
である無機塩を溶解しにくいという欠点がある。
On the other hand, the chain carbonates are structurally
The carbon material easily enters between the layers and the decomposition reaction at the time of charging does not easily occur. On the contrary, these solvents have a disadvantage that the dielectric constant is relatively low and the solute inorganic salt is difficult to dissolve.

【0010】また、これら環状および鎖状カーボネート
を混合して用いると それぞれ単独で用いた場合に生じ
ていた上記の問題は解消され、常温での電池の充放電特
性は改良できる。しかし低温における電池の充放電特性
の改良には不十分である。通常、リチウム電池では低温
特性を向上させるために電解液中の溶媒に低凝固点かつ
低粘度溶媒を付加させるという方法を取るが、この場合
に環状エーテルなどの環状構造を持つ溶媒を用いると電
池の充電時に上述したような溶媒の分解反応を伴うこと
となる。
When these cyclic and chain carbonates are mixed and used, the above-mentioned problems that occur when they are used alone are solved, and the charge / discharge characteristics of the battery at room temperature can be improved. However, it is insufficient to improve the charge / discharge characteristics of the battery at low temperature. Usually, in a lithium battery, a method of adding a solvent having a low freezing point and a low viscosity to the solvent in the electrolytic solution in order to improve low-temperature characteristics is adopted, but in this case, when a solvent having a cyclic structure such as cyclic ether is used, At the time of charging, the above-described decomposition reaction of the solvent is involved.

【0011】本発明は、このような課題を解決するもの
で、長寿命であって、しかも低温での容量保持性に優れ
た非水電解液二次電池を提供することを主たる目的とし
たものである。
The present invention is intended to solve the above problems, and its main object is to provide a non-aqueous electrolyte secondary battery which has a long life and is excellent in capacity retention at low temperatures. Is.

【0012】また、本発明は非水電解液二次電池にとっ
て好ましい非水電解液の溶媒組成を提供することを目的
としている。
Another object of the present invention is to provide a solvent composition of the non-aqueous electrolyte solution which is preferable for the non-aqueous electrolyte secondary battery.

【0013】[0013]

【課題を解決するための手段】上記の課題を解決し、先
に述べた目的を達成するため、本発明は環状エステルで
あるエチレンカーボネートと鎖状エステルであるジエチ
ルカーボネートとプロピオン酸エチルの3成分系混合溶
媒を電解液の溶媒に用いるものである。特に全溶媒中に
占めるエチレンカーボネートの割合を体積比で20%以
上50%以下とし、溶媒成分の鎖状エステル中に占める
プロピオン酸エチルの割合を体積比で25%以上75%
以下とすることにより、優れた非水電解液二次電池用電
解液を提供するものである。
In order to solve the above-mentioned problems and to achieve the above-mentioned object, the present invention comprises three components of ethylene carbonate which is a cyclic ester, diethyl carbonate which is a chain ester and ethyl propionate. The system mixed solvent is used as the solvent of the electrolytic solution. In particular, the ratio of ethylene carbonate in the total solvent is 20% to 50% by volume, and the ratio of ethyl propionate in the chain ester of the solvent component is 25% to 75% by volume.
The following provides an excellent electrolytic solution for a non-aqueous electrolytic solution secondary battery.

【0014】[0014]

【作用】電解液溶媒中のエチレンカーボネートは溶質で
ある無機塩を多量に溶かすことにより電解液の電導度を
上げることに効果があり、ジエチルカーボネートは電池
の充電時にリチウムを配位して容易に炭素材の層間に入
り得るため、溶媒の分解を抑えることができる。さらに
低凝固点かつ低粘度のプロピオン酸エチルをこれらに混
合することにより、電解液の凝固点および粘度を下げ、
その結果優れた低温特性を発揮するものである。
[Function] The ethylene carbonate in the electrolyte solvent is effective in increasing the conductivity of the electrolyte by dissolving a large amount of the inorganic salt that is a solute, and the diethyl carbonate facilitates coordination of lithium during battery charging. Since it can enter between the layers of the carbon material, the decomposition of the solvent can be suppressed. By further mixing ethyl propionate having a low freezing point and low viscosity with these, the freezing point and viscosity of the electrolytic solution are lowered,
As a result, excellent low temperature characteristics are exhibited.

【0015】[0015]

【実施例】以下、図面とともに本発明の実施例を説明す
る。実施例においては円筒形の電池を構成して評価を行
った。
Embodiments of the present invention will be described below with reference to the drawings. In the examples, a cylindrical battery was constructed and evaluated.

【0016】(実施例1)図1に円筒形電池の縦断面図
を示す。図において1は正極を示し、活物質であるLi
CoO2の導電材としてカーボンブラックを、結着材と
してポリ四フッ化エチレンの水性ディスパージョンを重
量比で100:3:10の割合で混合したものをアルミ
ニウム箔の両面に塗着,乾燥し、圧延した後所定の大き
さに切断したものである。これには2のチタン製リード
板をスポット溶接している。なお結着剤のポリ四フッ化
エチレンの水性ディスパージョンの混合比率は、その固
形分で計算している。3は負極で、炭素質材料を主材料
とし、これとアクリル系結着剤とを重量比で100:5
の割合で混合したものをニッケル箔の両面に塗着,乾燥
し、圧延した後所定の大きさに切断したものである。こ
れにも4のニッケル製の負極リード板をスポット溶接し
ている。5はポリプロピレン製の微孔性フィルムからな
るセパレータで、正極1と負極3との間に介在し、全体
が渦巻状に捲回されて極板群を構成している。この極板
群の上下の端にはそれぞれポリプロピレン製の絶縁板
6,7を配して鉄にニッケルメッキしたケース8に挿入
する。そして正極リード2をチタン製の封口板10に、
負極リード4をケース8の底部にそれぞれスポット溶接
した後、所定量の電解液をケース内に注入し、ガスケッ
ト9を介して電池を封口板10で封口して完成電池とす
る。この電池の寸法は直径14mm,高さ50mmである。
なお、11は電池の正極端子であり、負極端子は電池ケ
ース8がこれを兼ねている。
(Embodiment 1) FIG. 1 shows a vertical sectional view of a cylindrical battery. In the figure, 1 indicates a positive electrode, which is an active material Li
A mixture of carbon black as a conductive material of CoO 2 and an aqueous dispersion of polytetrafluoroethylene at a weight ratio of 100: 3: 10 as a binder is applied to both sides of an aluminum foil and dried, After being rolled, it is cut into a predetermined size. To this, 2 titanium lead plates are spot welded. The mixing ratio of the aqueous dispersion of polytetrafluoroethylene as the binder is calculated by its solid content. Reference numeral 3 denotes a negative electrode, which is composed mainly of a carbonaceous material, and the weight ratio of the carbonaceous material to the acrylic binder is 100: 5
The nickel foil is applied on both sides of the mixture, dried, rolled, and then cut into a predetermined size. The nickel negative electrode lead plate 4 is also spot-welded to this. Reference numeral 5 denotes a separator made of a polypropylene microporous film, which is interposed between the positive electrode 1 and the negative electrode 3, and is wholly spirally wound to form an electrode plate group. Insulating plates 6 and 7 made of polypropylene are arranged at the upper and lower ends of the electrode plate group, and the plates are inserted into a case 8 made of nickel plated with iron. Then, the positive electrode lead 2 is attached to the titanium sealing plate 10,
After spot welding the negative electrode lead 4 to the bottom of the case 8, a predetermined amount of electrolytic solution is injected into the case, and the battery is sealed with the sealing plate 10 through the gasket 9 to complete the battery. The dimensions of this battery are 14 mm in diameter and 50 mm in height.
Reference numeral 11 is a positive electrode terminal of the battery, and the battery case 8 also serves as a negative electrode terminal.

【0017】電解液の溶媒としてエチレンカーボネート
(以下ECという),ジエチルカーボネート(以下DE
Cという),プロピオン酸エチル(以下EPという)の
3成分を組合せて調整した以下に示す3種類の混合溶媒
系(いずれも体重比)について、上記に示した円筒形電
池A〜Cの試作を行った。なお電解液の溶質には六フッ
化リン酸リチウムを用い、それぞれ1モル/lの濃度に
なるように調整した。
As a solvent for the electrolytic solution, ethylene carbonate (hereinafter referred to as EC), diethyl carbonate (hereinafter referred to as DE)
C), ethyl propionate (hereinafter referred to as EP), and prepared three types of mixed solvent systems (all weight ratios) shown below. went. Lithium hexafluorophosphate was used as the solute of the electrolytic solution, and the concentration was adjusted to 1 mol / l.

【0018】 電池A……EC:DEC:EP=3:3:4 電池B……EC:DEC:EP=5:5:0 電池C……EC:DEC:EP=10:0:0 評価した電池特性はサイクル寿命特性と低温特性であ
る。
Battery A ... EC: DEC: EP = 3: 3: 4 Battery B ... EC: DEC: EP = 5: 5: 0 Battery C ... EC: DEC: EP = 10: 0: 0 Evaluation Battery characteristics are cycle life characteristics and low temperature characteristics.

【0019】電圧,電流条件は、充放電電流100mA,
充電終止電圧4.2V,放電終止電圧3.0Vとした。
まず、初期10サイクルの充放電を20℃で行った後、
充電状態で試験を停止し、温度を−10℃に変えて放電
し、その放電量の大きさで低温特性を評価した。その
後、温度を20℃に戻して充放電を繰り返し、放電容量
が初期の50%に劣化した時点で試験を終了し、そのサ
イクル数をサイクル寿命とした。
The voltage and current conditions are as follows: charge / discharge current 100 mA,
The final charge voltage was 4.2V and the final discharge voltage was 3.0V.
First, after performing initial 10 cycles of charge and discharge at 20 ° C.,
The test was stopped in the charged state, the temperature was changed to −10 ° C. to discharge, and the low temperature characteristics were evaluated by the magnitude of the discharge amount. Then, the temperature was returned to 20 ° C. and charging / discharging was repeated. The test was terminated when the discharge capacity deteriorated to 50% of the initial value, and the number of cycles was taken as the cycle life.

【0020】但し、電池Cの電解液中の溶媒はEC単独
であり、ECの凝固点は36.4℃であるので、電池C
のみ40℃で充放電を行った。
However, since the solvent in the electrolytic solution of Battery C is EC alone and the freezing point of EC is 36.4 ° C., Battery C is
It was charged and discharged only at 40 ° C.

【0021】電池A〜Cのサイクル寿命特性を図2、低
温特性を図3にそれぞれ示す。図2よりサイクル寿命特
性のよい順にB−A−Cとなった。これは充電時に、負
極では炭素材の層間ヘリチウムイオンがインターカレー
トするが、その際にリチウムイオンに配位した溶媒分子
も共に層間に引きこまれるため、環状構造を持ち、分子
の大きい溶媒は一部分解すると考えられる。環状構造を
持つ溶媒の含有率が大きい電池C(EC100%)の特
性が悪いのはそのためであると考えられる。また、電池
Bに比べて電池Aの寿命が短いのは、EPのほうがDE
Cよりも高電圧で不安定であり、サイクルに伴う分解の
度合が小さいためであると考えられる。
FIG. 2 shows the cycle life characteristics of the batteries A to C, and FIG. 3 shows the low temperature characteristics thereof. From FIG. 2, B-A-C are shown in descending order of cycle life characteristics. During charging, the intercalated intercalated helium ions of the carbon material at the negative electrode intercalate, but at that time, solvent molecules coordinated to the lithium ions are also drawn in between the layers, so that the solvent has a cyclic structure and large solvent It is thought to be partially decomposed. It is considered that this is the reason why the battery C (EC 100%) having a large content of the solvent having a cyclic structure has poor characteristics. In addition, the battery life of battery A is shorter than that of battery B.
It is considered that this is because it is unstable at a higher voltage than C and the degree of decomposition accompanying the cycle is small.

【0022】次に図3より低温特性のよい順にA−B−
Cとなった。電池Cは高凝固点のECを単独で用いたた
め、−10℃では全く放電できなかった。また、電池B
においてもECの混合比率が高いため、電解液がかなり
増粘し、そのため分極が大きくなって放電容量が小さい
と考えられる。
Next, as shown in FIG.
It became C. Battery C could not be discharged at −10 ° C. at all because EC having a high freezing point was used alone. Also, the battery B
It is considered that since the mixing ratio of EC is high, the electrolytic solution is considerably thickened, so that the polarization is increased and the discharge capacity is small.

【0023】これに対し、電池Aで低粘性のEPを加え
た場合、良好な低温特性を示したことから、低粘性の溶
媒を加えることが低温特性の改善に効果的であることが
わかった。
On the other hand, when low-viscosity EP was added to the battery A, good low-temperature characteristics were exhibited. Therefore, it was found that adding a low-viscosity solvent is effective in improving the low-temperature characteristics. ..

【0024】以上の結果からEC,DECとEPの3成
分混合系を電解液の溶媒に用いることによりサイクル寿
命特性を損なう事なく低温特性を改良できることがわか
った。
From the above results, it was found that the low temperature characteristics can be improved without impairing the cycle life characteristics by using the ternary mixture system of EC, DEC and EP as the solvent of the electrolytic solution.

【0025】次に実施例2について述べる。 (実施例2)電解液の溶媒として実施例1で用いたEC
とDECとEPの3成分を組合せて調整した以下に示す
5種類の混合溶媒系について上記円筒形電池の試作を行
った。電解液の溶質も実施例1と同様六フッ化リン酸リ
チウムを用い、それぞれ1モル/lの濃度になるように
調整した。
Next, a second embodiment will be described. (Example 2) EC used in Example 1 as a solvent for an electrolytic solution
The above-mentioned cylindrical battery was prototyped for the following five types of mixed solvent systems prepared by combining the three components of DEC and EP. As the solute of the electrolytic solution, lithium hexafluorophosphate was used as in Example 1, and the concentration was adjusted to 1 mol / l.

【0026】 電池D……EC:DEC:EP=10:45:45 電池E……EC:DEC:EP=20:40:40 電池F……EC:DEC:EP=40:30:30 電池G……EC:DEC:EP=50:25:25 電池H……EC:DEC:EP=60:20:20 上記電解液以外の構成条件,試験条件は実施例1と同じ
にした。
Battery D ... EC: DEC: EP = 10: 45: 45 Battery E ... EC: DEC: EP = 20: 40: 40 Battery F ... EC: DEC: EP = 40: 30: 30 Battery G EC: DEC: EP = 50: 25: 25 Battery H ... EC: DEC: EP = 60: 20: 20 The constitutional conditions and test conditions other than the above electrolytic solution were the same as in Example 1.

【0027】電池D〜Hのサイクル寿命性を図4、低温
特性を図5に示す。図4よりサイクル寿命特性のよい順
にD−E−F−G−Hとなり、環状エステルであるEC
の混合比率が大になるほどサイクル特性は悪くなり、特
にHのECを溶媒全体の60%以上加えた場合に特に特
性が悪かった。次に図5より低温特性はE,F,Gがよ
く、D,Hが悪いという結果となった。HはECの混合
比率が高いために低温で電解液が凍結し、放電が全くで
きなかった。一方、Dが悪い理由は誘電率の高いECの
混合比率が小さいために低温で所定量の溶質を溶かす能
力がなくなり、溶質の析出が起こり、液抵抗が大きくな
って分極の増加を引き起こしたためと考えられる。
The cycle life characteristics of the batteries D to H are shown in FIG. 4, and the low temperature characteristics are shown in FIG. From FIG. 4, D-E-F-G-H is obtained in the order of good cycle life characteristics, and is a cyclic ester EC.
The cycle characteristics deteriorated as the mixing ratio of H was increased, and the characteristics were particularly poor when EC of H was added to 60% or more of the entire solvent. Next, as shown in FIG. 5, the low temperature characteristics are good in E, F and G and bad in D and H. Since H had a high EC mixing ratio, the electrolytic solution was frozen at a low temperature and no discharge was possible. On the other hand, the reason why D is bad is that the mixing ratio of EC having a high dielectric constant is small, so that the ability to dissolve a predetermined amount of solute at low temperature is lost, solute precipitation occurs, the liquid resistance increases, and the polarization increases. Conceivable.

【0028】従ってECの混合比率は溶媒全体の20〜
50%程度が適当な範囲と考えられる。
Therefore, the mixing ratio of EC is 20 to 20% of the whole solvent.
About 50% is considered to be an appropriate range.

【0029】次に実施例3について述べる。 (実施例3)電解液の溶媒として実施例2と同様ECと
DECとEPの3成分を組合せて調整した以下に示す6
種類の混合溶媒系について上記円筒形電池の試作を行っ
た。電解液の溶質も実施例1,2と同様六フッ化リン酸
リチウムを用い、それぞれ1モル/lの濃度になるよう
に調整した。
Next, a third embodiment will be described. (Example 3) The same as in Example 2 was prepared by combining three components of EC, DEC, and EP as a solvent for the electrolytic solution, and prepared as follows 6
The above-mentioned cylindrical battery was prototyped for various mixed solvent systems. As the solute of the electrolytic solution, lithium hexafluorophosphate was used as in Examples 1 and 2, and the concentration was adjusted to 1 mol / l.

【0030】 電池I……EC:DEC:EP=40:12:48 電池J……EC:DEC:EP=40:15:45 電池K……EC:DEC:EP=40:24:36 電池L……EC:DEC:EP=40:36:24 電池M……EC:DEC:EP=40:45:15 電池N……EC:DEC:EP=40:48:12 上記電解液以外の構成条件,試験条件は実施例1,2と
同じにした。
Battery I ... EC: DEC: EP = 40: 12: 48 Battery J ... EC: DEC: EP = 40: 15: 45 Battery K ... EC: DEC: EP = 40: 24: 36 Battery L EC: DEC: EP = 40: 36: 24 Battery M ... EC: DEC: EP = 40: 45: 15 Battery N ... EC: DEC: EP = 40: 48: 12 Configuration conditions other than the above electrolyte The test conditions were the same as in Examples 1 and 2.

【0031】電池I〜Nのサイクル寿命特性を図6、低
温特性を図7に示す。図6よりサイクル寿命特性のよい
順にN−M−L−K−J−Iとなり、EPの混合比率が
大きくなるほどサイクル寿命特性が悪くなった。これは
上述したような電池の充電時に負極で起こる溶媒分解反
応とは別に、正極に高い電位を示す化合物を用いるため
に、溶媒が酸化分解されることによるもので、一般に鎖
状エステル類の中ではカーボネート類が他の鎖状エステ
ル類に比べ高電位で安定であり、従って鎖状エステル類
中のDECの比率が小、すなわちEPの比率が大になる
ほどサイクル劣化は大となった。Iが特に悪い特性を示
したことから上記EPの分解反応はEPが鎖状エステル
中の80%以上含まれた場合に顕著に発生し、従って鎖
状エステル中のEPの混合比率は75%以下が適当であ
るという結果が得られた。次に図7より低温特性の良い
順にI−J−K−L−M−Nとなり、EPの混合比率が
大きいほど溶媒の粘度が下がり、低温時の放電容量が大
きくなるという結果であった。また、最適混合比率は2
5%以上であって、それ以下では余り効果が得られなか
った。以上サイクル寿命特性と低温特性の2点から考え
るとEPの最適混合比率は鎖状エステル中の25〜75
%であると言える。
FIG. 6 shows the cycle life characteristics of the batteries I to N, and FIG. 7 shows the low temperature characteristics thereof. From FIG. 6, N-M-L-K-J-I was obtained in descending order of cycle life characteristics, and the cycle life characteristics deteriorated as the EP mixing ratio increased. This is because the solvent is oxidatively decomposed because a compound showing a high potential is used for the positive electrode in addition to the solvent decomposition reaction that takes place in the negative electrode during charging of the battery as described above. In contrast, the carbonates were stable at a higher potential than other chain esters, and therefore, the smaller the DEC ratio in the chain esters, that is, the larger the EP ratio, the greater the cycle deterioration. Since I has a particularly bad characteristic, the decomposition reaction of EP remarkably occurs when EP is contained in an amount of 80% or more in the chain ester, and therefore the mixing ratio of EP in the chain ester is 75% or less. Is suitable. Next, from FIG. 7, I-J-K-L-M-N was obtained in the order of good low-temperature characteristics, and the higher the mixing ratio of EP, the lower the viscosity of the solvent and the larger the discharge capacity at low temperature. The optimum mixing ratio is 2
If it is 5% or more and less than 5%, the effect is not obtained so much. Considering the two points of cycle life characteristics and low temperature characteristics, the optimum mixing ratio of EP is 25 to 75 in the chain ester.
Can be said to be%.

【0032】以上の3つの実施例の結果を総合すると正
極に高電位を示すリチウム複合酸化物を、負極に炭素材
を用いたリチウム二次電池の電解液の溶媒にEC,DE
C,EPの3成分混合系を用いた場合、良好なサイクル
寿命特性および低温特性を示し、その最適な混合比率は
EC溶媒全体の20〜50%、EPが鎖状エステル中の
25〜75%であることがわかった。
Summarizing the results of the above three examples, EC and DE were used as the solvent of the electrolyte solution of the lithium secondary battery in which the positive electrode is the lithium composite oxide showing a high potential and the negative electrode is the carbon material.
When using a three-component mixed system of C and EP, good cycle life characteristics and low temperature characteristics are exhibited, and the optimum mixing ratio is 20 to 50% of the whole EC solvent, and EP is 25 to 75% of the chain ester. I found out.

【0033】なお、実施例では正極活物質にリチウムと
コバルトの複合酸化物を用いたが、他のたとえばリチウ
ムとニッケルの複合酸化物、リチウムとマンガンの複合
酸化物、リチウムと鉄の複合酸化物などのリチウム含有
酸化物、もしくは上記複合酸化物のそれぞれコバルト,
ニッケル,マンガン,鉄を他の遷移金属で一部置換した
ものでもほぼ同様の結果が得られた。
Although the composite oxide of lithium and cobalt was used as the positive electrode active material in the examples, other composite oxides of lithium and nickel, composite oxides of lithium and manganese, composite oxides of lithium and iron were used. Lithium-containing oxides such as, or cobalt of each of the above composite oxides,
Similar results were obtained with nickel, manganese, and iron partially replaced with other transition metals.

【0034】また本実施例では電解液の溶質に六フッ化
リン酸リチウムを用いたが、他のリチウム含有塩、例え
ばホウフッ化リチウム,過塩素酸リチウム,トリフルオ
ロメタンスルホン酸リチウム,六フッ化ヒ酸リチウムな
どでもほぼ同様の結果が得られた。
In this embodiment, lithium hexafluorophosphate is used as the solute of the electrolytic solution. However, other lithium-containing salts such as lithium borofluoride, lithium perchlorate, lithium trifluoromethanesulfonate, and hexafluoroarsenic are used. Almost similar results were obtained with lithium oxide and the like.

【0035】[0035]

【発明の効果】以上の説明で明らかなように、本発明に
よれば電解液の溶媒にエチレンカーボネート,ジエチル
カーボネート,プロピオン酸エチルの3成分系混合溶媒
を用い、エチレンカーボネートの体積比率を溶媒全体の
20〜50%とし、プロピオン酸エチルの体積比率を鎖
状エステル中の25〜75%とすることにより、サイク
ル寿命特性,低温特性に優れた非水電解液二次電池を提
供することができる。
As is apparent from the above description, according to the present invention, a three-component system mixed solvent of ethylene carbonate, diethyl carbonate and ethyl propionate is used as a solvent of an electrolytic solution, and the volume ratio of ethylene carbonate is set to the whole solvent. It is possible to provide a non-aqueous electrolyte secondary battery having excellent cycle life characteristics and low-temperature characteristics by adjusting the volume ratio of ethyl propionate to 25 to 75% of the chain ester in the chain ester. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における円筒形電池の縦断面図FIG. 1 is a vertical sectional view of a cylindrical battery according to an embodiment of the present invention.

【図2】実施例1における電池の20℃でのサイクル寿
命を示す図
FIG. 2 is a diagram showing the cycle life of the battery in Example 1 at 20 ° C.

【図3】実施例1における電池の−10℃での放電電圧
の推移を示す図
FIG. 3 is a graph showing changes in discharge voltage at −10 ° C. of the battery in Example 1.

【図4】実施例2における電池の20℃でのサイクル寿
命を示す図
FIG. 4 is a diagram showing the cycle life of the battery in Example 2 at 20 ° C.

【図5】実施例2における電池の−10℃での放電電圧
の推移を示す図
FIG. 5 is a graph showing changes in discharge voltage at −10 ° C. of the battery in Example 2.

【図6】実施例3における電池の20℃でのサイクル寿
命を示す図
FIG. 6 is a diagram showing the cycle life of the battery in Example 3 at 20 ° C.

【図7】実施例3における電池の−10℃での放電電圧
の推移を示す図
FIG. 7 is a graph showing changes in discharge voltage at −10 ° C. of the battery in Example 3.

【符号の説明】[Explanation of symbols]

1 正極 2 正極リード板 3 負極 4 負極リード板 5 セパレータ 6 上部絶縁板 7 下部絶縁板 8 ケース 9 ガスケット 10 封口板 11 正極端子 1 Positive Electrode 2 Positive Electrode Lead Plate 3 Negative Electrode 4 Negative Electrode Lead Plate 5 Separator 6 Upper Insulation Plate 7 Lower Insulation Plate 8 Case 9 Gasket 10 Sealing Plate 11 Positive Electrode Terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川原 隆幸 三重県四日市市東邦町1番地 三菱油化株 式会社四日市総合研究所内 (72)発明者 長谷川 勝昭 三重県四日市市東邦町1番地 三菱油化株 式会社四日市総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Takayuki Kawahara 1 Toho Town, Yokkaichi City, Mie Prefecture Yokkaichi Research Institute, Mitsubishi Petrochemical Co., Ltd. (72) Inventor Katsuaki Hasegawa 1 Toho Town, Yokkaichi City, Mie Prefecture Mitsubishi Petrochemical Incorporated company Yokkaichi Research Institute

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】リチウムイオンを吸蔵・放出できる炭素材
からなる負極と、非水電解液と、リチウム含有酸化物か
らなる正極とを備え、上記非水電解液の溶媒はエチレン
カーボネートとジエチルカーボネートとプロピオン酸エ
チルからなる非水電解液二次電池。
1. A negative electrode made of a carbon material capable of inserting and extracting lithium ions, a non-aqueous electrolyte solution, and a positive electrode made of a lithium-containing oxide. The solvent of the non-aqueous electrolyte solution is ethylene carbonate and diethyl carbonate. Non-aqueous electrolyte secondary battery made of ethyl propionate.
【請求項2】電解液の溶媒成分中のエチレンカーボネー
トの体積比率を溶媒全体の20%以上50%以下とする
請求項1に記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the volume ratio of ethylene carbonate in the solvent component of the electrolyte is 20% or more and 50% or less of the entire solvent.
【請求項3】電解液の溶媒成分中の鎖状エステル中に占
めるプロピオン酸エチルの体積比率を25%以上75%
以下とする請求項1または2に記載の非水電解液二次電
池。
3. The volume ratio of ethyl propionate in the chain ester in the solvent component of the electrolytic solution is 25% or more and 75% or more.
The non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein:
【請求項4】正極活物質がリチウムとコバルトの複合酸
化物、リチウムとニッケルの複合酸化物、リチウムとマ
ンガンの複合酸化物、リチウムと鉄の複合酸化物、もし
くは上記複合酸化物のそれぞれコバルト,ニッケル,マ
ンガン,鉄を他の遷移金属で一部置換したものである請
求項1〜3のいずれかに記載の非水電解液二次電池。
4. The positive electrode active material is a composite oxide of lithium and cobalt, a composite oxide of lithium and nickel, a composite oxide of lithium and manganese, a composite oxide of lithium and iron, or cobalt of the above composite oxides, respectively. The non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein nickel, manganese, and iron are partially substituted with another transition metal.
【請求項5】非水電解液はその溶質として、六フッ化リ
ン酸リチウム,ホウフッ化リチウム,過塩素酸リチウ
ム,トリフルオロメタンスルホン酸リチウム,六フッ化
ヒ酸リチウムのうち少なくとも一つを含む請求項1〜4
のいずれかに記載の非水電解液二次電池。
5. The non-aqueous electrolyte contains at least one of lithium hexafluorophosphate, lithium borofluoride, lithium perchlorate, lithium trifluoromethanesulfonate, and lithium hexafluoroarsenate as its solute. Items 1 to 4
The non-aqueous electrolyte secondary battery according to any one of 1.
JP3234378A 1991-09-13 1991-09-13 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3032339B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3234378A JP3032339B2 (en) 1991-09-13 1991-09-13 Non-aqueous electrolyte secondary battery
US07/872,980 US5256504A (en) 1991-09-13 1992-04-24 Monaqueous electrolyte secondary batteries
DE69211928T DE69211928T2 (en) 1991-09-13 1992-04-29 Secondary batteries with non-aqueous electrolytes
EP92107340A EP0531617B1 (en) 1991-09-13 1992-04-29 Nonaqueous electrolyte secondary batteries
US08/143,191 US5474862A (en) 1991-09-13 1993-10-29 Nonaqueous electrolyte secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3234378A JP3032339B2 (en) 1991-09-13 1991-09-13 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH0574488A true JPH0574488A (en) 1993-03-26
JP3032339B2 JP3032339B2 (en) 2000-04-17

Family

ID=16970069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3234378A Expired - Fee Related JP3032339B2 (en) 1991-09-13 1991-09-13 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3032339B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170428A (en) * 2009-03-23 2009-07-30 Ube Ind Ltd Nonaqueous secondary battery
EP2160787A1 (en) * 2007-06-07 2010-03-10 LG Chem, Ltd. Non-aqueous electrolyte solution for lithium ion secondary battery and lithium ion secondary battery having the same
JP6083459B1 (en) * 2015-10-01 2017-02-22 宇部興産株式会社 Non-aqueous electrolyte for lithium secondary battery or lithium ion capacitor and lithium secondary battery or lithium ion capacitor using the same
WO2017057588A1 (en) * 2015-10-01 2017-04-06 宇部興産株式会社 Non-aqueous electrolyte for lithium secondary cell or lithium-ion capacitor, and lithium secondary cell or lithium-ion capacitor in which same is used
JPWO2017057588A1 (en) * 2015-12-22 2018-08-23 宇部興産株式会社 Non-aqueous electrolyte for lithium secondary battery or lithium ion capacitor and lithium secondary battery or lithium ion capacitor using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4831642B1 (en) * 2011-05-25 2011-12-07 株式会社コバード Dorayaki ear fastening processing apparatus, dorayaki manufacturing apparatus and method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2160787A1 (en) * 2007-06-07 2010-03-10 LG Chem, Ltd. Non-aqueous electrolyte solution for lithium ion secondary battery and lithium ion secondary battery having the same
EP2160787A4 (en) * 2007-06-07 2012-07-11 Lg Chemical Ltd Non-aqueous electrolyte solution for lithium ion secondary battery and lithium ion secondary battery having the same
US8455143B2 (en) 2007-06-07 2013-06-04 Lg Chem, Ltd. Non-aqueous electrolyte solution for lithium ion secondary battery and lithium ion secondary battery having the same
JP2009170428A (en) * 2009-03-23 2009-07-30 Ube Ind Ltd Nonaqueous secondary battery
JP6083459B1 (en) * 2015-10-01 2017-02-22 宇部興産株式会社 Non-aqueous electrolyte for lithium secondary battery or lithium ion capacitor and lithium secondary battery or lithium ion capacitor using the same
JP2017069132A (en) * 2015-10-01 2017-04-06 宇部興産株式会社 Nonaqueous electrolyte solution for lithium secondary battery or lithium ion capacitor, and lithium secondary battery or lithium ion capacitor using the same
WO2017057588A1 (en) * 2015-10-01 2017-04-06 宇部興産株式会社 Non-aqueous electrolyte for lithium secondary cell or lithium-ion capacitor, and lithium secondary cell or lithium-ion capacitor in which same is used
US10868336B2 (en) 2015-10-01 2020-12-15 Ube Industries, Ltd. Non-aqueous electrolytic solution for lithium secondary battery or lithium ion capacitor, and lithium secondary battery or lithium ion capacitor using the same
JPWO2017057588A1 (en) * 2015-12-22 2018-08-23 宇部興産株式会社 Non-aqueous electrolyte for lithium secondary battery or lithium ion capacitor and lithium secondary battery or lithium ion capacitor using the same

Also Published As

Publication number Publication date
JP3032339B2 (en) 2000-04-17

Similar Documents

Publication Publication Date Title
EP0531617B1 (en) Nonaqueous electrolyte secondary batteries
EP0482287B2 (en) A non-aqueous secondary electrochemical battery
US5474862A (en) Nonaqueous electrolyte secondary batteries
JP2008147153A (en) Lithium secondary battery
JP3032338B2 (en) Non-aqueous electrolyte secondary battery
JP3199426B2 (en) Non-aqueous electrolyte secondary battery
US5484669A (en) Nonaqueous electrolyte secondary batteries
JP4328915B2 (en) Non-aqueous electrolyte for secondary battery and secondary battery using the same
JP2002025611A (en) Nonaqueous electrolyte secondary battery
JP2001351612A (en) Non-aqueous electrolyte secondary battery
JP4441935B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and battery using the same
JP3032339B2 (en) Non-aqueous electrolyte secondary battery
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
CN112467218B (en) Lithium metal battery based on copper nitrate electrolyte additive
JPH0997626A (en) Nonaqueous electrolytic battery
JPH0574490A (en) Nonaqueous electrolyte secondary battery
JPH0917446A (en) Non-aqueous electrolyte secondary battery
JPH0574489A (en) Nonaqueous electrolyte secondary battery
JPH113698A (en) Lithium ion secondary battery
JP3732062B2 (en) Non-aqueous electrolyte secondary battery charge / discharge method
JPH1154122A (en) Lithium ion secondary battery
JPH09171825A (en) Secondary battery having nonaqueous solvent
JP3024287B2 (en) Non-aqueous electrolyte secondary battery
JPH0652886A (en) Nonaqueous electrolyte secondary battery
JP3128230B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees