JPH0574490A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH0574490A
JPH0574490A JP3234380A JP23438091A JPH0574490A JP H0574490 A JPH0574490 A JP H0574490A JP 3234380 A JP3234380 A JP 3234380A JP 23438091 A JP23438091 A JP 23438091A JP H0574490 A JPH0574490 A JP H0574490A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
solvent
electrolyte secondary
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3234380A
Other languages
Japanese (ja)
Inventor
Hiromi Okuno
博美 奥野
Hide Koshina
秀 越名
Takayuki Kawahara
隆幸 川原
Katsuaki Hasegawa
勝昭 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsubishi Petrochemical Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP3234380A priority Critical patent/JPH0574490A/en
Publication of JPH0574490A publication Critical patent/JPH0574490A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a nonaqueous electrolyte secondary battery which is excellent at cycle life characteristic and low temperature characteristics by improving the solvent of electrolyte. CONSTITUTION:A nonaqueous electrolyte secondary battery includes a negative electrode 3 made by a carbonaceous material which can store and release lithium ions, nonaqueous electrolyte, and a positive electrode 1 made by an oxide containing lithium. The solvent of the nonaqueous electrolyte is a mixed solvent of ethylene carbonate and propionic acid methyl. The ratio of the volume of the propionic acid methyl to that of the ethylene carbonate is not less than 1 and not more than 4. The nonaqueous electrolyte secondary battery excellent in cycle life and low temperature characteristics is thus obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非水電解液二次電池に関
し、さらに詳しくはこの電池のサイクル寿命および低温
における容量特性の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to improvement of cycle life and capacity characteristics at low temperature of this battery.

【0002】[0002]

【従来の技術】近年、電子機器のポータブル化,コード
レス化が急速に進んでおり、これらの駆動用電源として
小形・軽量で、高エネルギー密度を有する二次電池への
要望が高い。このような点で非水電解液系の二次電池、
特にリチウム二次電池はとりわけ高電圧・高エネルギー
密度を有する電池として期待が大きい。
2. Description of the Related Art In recent years, portable and cordless electronic devices have been rapidly developed, and there is a great demand for a small and lightweight secondary battery having high energy density as a power source for driving these devices. From this point of view, non-aqueous electrolyte secondary batteries,
In particular, lithium secondary batteries are highly expected as batteries having high voltage and high energy density.

【0003】非水電解液電池を二次電池化する場合、正
極活物質としては高容量かつ高電圧のものが望まれる。
この要望を満たすものとしてLiCoO2やLiMn2
4系の4Vの高電圧を示す材料が挙げられる。
When a non-aqueous electrolyte battery is used as a secondary battery, a positive electrode active material having a high capacity and a high voltage is desired.
LiCoO 2 and LiMn 2 O satisfy the requirements.
A material showing a high voltage of 4V of 4 series is mentioned.

【0004】一方、負極材料としては金属リチウムをは
じめ、リチウム合金やリチウムイオンを吸蔵・放出でき
る炭素材などが検討されている。しかし金属リチウムに
は充放電に伴う樹枝状生成物(デンドライト)による短
絡の問題があり、リチウム合金には充放電に伴う膨脹収
縮に起因した電極の崩れなどの問題がある。従って、最
近ではこれらの問題の生じない炭素材がリチウム二次電
池の負極材料として有望視されている。一般に、負極材
料に金属リチウムを用いた場合、充電時に負極表面に生
成される活性なデンドライトと非水溶媒とが反応して一
部溶媒の分解反応を引き起こし、それが充電効率を下げ
ることは良く知られている。これを解消するものとして
特開昭57−170463号公報では、エチレンカーボ
ネートが充電効率に優れていることに着目し、このエチ
レンカーボネートとプロピレンカーボネートとの混合溶
媒を用いることが提案されている。さらに特開平3−5
5770号公報では電池の低温特性を改良するためエチ
レンカーボネートとジエチルカーボネートとの混合溶媒
に2メチルテトラヒドロフラン、1,2−ジメトキシエ
タン、4メチル1,3−ジオキソランなどを混合し、非
水電解液の溶媒として用いることが提案されている。
On the other hand, as negative electrode materials, lithium metal, lithium alloys, carbon materials capable of absorbing and releasing lithium ions, and the like have been investigated. However, metallic lithium has a problem of short circuit due to dendritic products (dendrites) associated with charge and discharge, and lithium alloy has a problem of electrode collapse due to expansion and contraction associated with charge and discharge. Therefore, recently, carbon materials that do not cause these problems have been regarded as promising as negative electrode materials for lithium secondary batteries. Generally, when metallic lithium is used as the negative electrode material, active dendrites generated on the negative electrode surface during charging react with a non-aqueous solvent to cause a partial solvent decomposition reaction, which often lowers charging efficiency. Are known. As a solution to this, JP-A-57-170463 proposes the use of a mixed solvent of ethylene carbonate and propylene carbonate, paying attention to the fact that ethylene carbonate is excellent in charging efficiency. Furthermore, JP-A-3-5
In 5770, 2-methyltetrahydrofuran, 1,2-dimethoxyethane, and 4-methyl-1,3-dioxolane are mixed in a mixed solvent of ethylene carbonate and diethyl carbonate in order to improve low-temperature characteristics of a battery, and a non-aqueous electrolyte solution It has been proposed to use it as a solvent.

【0005】しかしながら、これらの系を用いても充電
効率は最大でも98〜99%程度にとどまり、依然とし
て充電効率を十分に高めるまでには至っていない。これ
は負極にリチウム合金を用いた場合でも同様である。
However, even if these systems are used, the charging efficiency is limited to about 98 to 99% at the maximum, and the charging efficiency is not yet sufficiently increased. This is the same even when a lithium alloy is used for the negative electrode.

【0006】[0006]

【発明が解決しようとする課題】負極材料に炭素材を用
いた場合、充電反応は電解液中のリチウムイオンが炭素
材の層間にインターカレートするという反応であるた
め、リチウムのデンドライトは生成されず、上記のよう
な負極表面での溶媒の分解反応は生じないはずである。
しかし、実際には充電効率は100%に満たず、負極に
リチウムもしくはリチウム合金を用いた場合と同様の課
題が残る。
When a carbon material is used as the negative electrode material, the charging reaction is a reaction in which lithium ions in the electrolytic solution intercalate between the layers of the carbon material, so that dendrite of lithium is produced. Therefore, the decomposition reaction of the solvent on the surface of the negative electrode should not occur.
However, in reality, the charging efficiency is less than 100%, and the same problems as in the case of using lithium or a lithium alloy for the negative electrode remain.

【0007】本発明者等は、この現象はリチウム金属を
負極に用いた場合のような負極表面における溶媒の分解
反応によるものではなく、負極炭素材の層間にリチウム
がインターカレートするときに、リチウムのみならずリ
チウムを配位した溶媒も共に層間に引きこまれ、その
際、一部溶媒の分解反応を引き起こすことによると考え
た。つまり、分子半径が大きい溶媒は負極炭素材の層間
にスムーズにインターカレートされずに負極材料の層間
の入口で分解されるということである。
The inventors of the present invention have found that this phenomenon is not due to the decomposition reaction of the solvent on the surface of the negative electrode as in the case where lithium metal is used for the negative electrode, but when lithium is intercalated between the layers of the negative electrode carbon material, It was considered that not only lithium but also a solvent coordinated with lithium was drawn in between the layers, and at that time, a decomposition reaction of part of the solvent was caused. That is, the solvent having a large molecular radius is not smoothly intercalated between the layers of the negative electrode carbon material but is decomposed at the inlet between the layers of the negative electrode material.

【0008】一般的にリチウム電池の電解液の優れた溶
媒に求められる要件として、誘電率が大、すなわち溶質
である無機塩を多量に溶解できることが挙げられる。プ
ロピレンカーボネート,エチレンカーボネートなどはこ
の要件を満たす優れた溶媒であると言われているが、こ
れらはいずれもその環状構造ゆえ分子半径が大きいた
め、負極に炭素材を用いた場合、上述した如く充電時に
溶媒の分解反応を伴うという問題点を持つ。また、これ
らの溶媒は高粘性であるため、単独で用いると電解液の
粘度が高く高率充放電に難があると共に、低温時の容量
が小さいという欠点も持つ。特にエチレンカーボネート
は凝固点が36.4℃と高く、単独で用いることはでき
ない。
Generally, a requirement for an excellent solvent for an electrolytic solution of a lithium battery is that it has a large dielectric constant, that is, it can dissolve a large amount of an inorganic salt as a solute. Propylene carbonate, ethylene carbonate, etc. are said to be excellent solvents that satisfy this requirement. However, since all of them have a large molecular radius due to their cyclic structure, when a carbon material is used for the negative electrode, they are charged as described above. It sometimes has a problem that it involves a decomposition reaction of the solvent. Further, since these solvents are highly viscous, when used alone, they have the drawbacks that the viscosity of the electrolytic solution is high and high rate charge / discharge is difficult, and the capacity at low temperature is small. In particular, ethylene carbonate has a high freezing point of 36.4 ° C. and cannot be used alone.

【0009】一方、鎖状エステル類はその構造上、炭素
材の層間に入り易く、充電時の分解反応は起こりにく
い。中でも酢酸メチル,蟻酸メチルが優れた溶媒である
ことは既に米国特許第4,804,596号で知られて
いるが、逆にこれらの溶媒は比較的リチウムとの反応性
が高く、負極材料として炭素材を用いた場合でも、その
層間に入った際、一部リチウムと反応し充放電サイクル
をくり返すと徐々に消耗されていくという欠点を持つ。
また比較的低沸点のものが多く、電池を構成する際にそ
の取扱いが難しいなどの課題を持つ。
On the other hand, due to the structure of the chain ester, the chain ester easily enters between the layers of the carbon material, and the decomposition reaction during charging hardly occurs. Among them, it is already known in U.S. Pat. No. 4,804,596 that methyl acetate and methyl formate are excellent solvents, but on the contrary, these solvents have relatively high reactivity with lithium and are used as a negative electrode material. Even when a carbon material is used, it has a drawback that when it enters the layer, it partially reacts with lithium and is gradually consumed when the charge / discharge cycle is repeated.
In addition, many of them have relatively low boiling points, which makes it difficult to handle when constructing a battery.

【0010】本発明は、このような課題を解決するもの
で、長寿命であって、しかも低温での容量保持率に優れ
た非水電解液二次電池を提供することを主たる目的とし
たものである。
The present invention has been made to solve the above problems, and its main object is to provide a non-aqueous electrolyte secondary battery having a long life and an excellent capacity retention at low temperatures. Is.

【0011】また、本発明は非水電解液二次電池にとっ
て好ましい非水電解液の溶媒組成を提供することを目的
としている。
Another object of the present invention is to provide a preferable solvent composition of the non-aqueous electrolyte solution for the non-aqueous electrolyte secondary battery.

【0012】[0012]

【課題を解決するための手段】上記の課題を解決し、先
に述べた目的を達成するため、本発明はエチレンカーボ
ネートとプロピオン酸メチルの2成分系混合溶媒を電解
液の溶媒に用いるものである。特にプロピオン酸メチル
の体積÷エチレンカーボネートの体積の比率を1以上4
以下とすることにより、優れた非水電解液二次電池用電
解液を提供するものである。
In order to solve the above-mentioned problems and achieve the above-mentioned object, the present invention uses a binary solvent mixture of ethylene carbonate and methyl propionate as a solvent for an electrolytic solution. is there. Particularly, the ratio of the volume of methyl propionate ÷ the volume of ethylene carbonate is 1 or more 4
The following provides an excellent electrolytic solution for a non-aqueous electrolytic solution secondary battery.

【0013】[0013]

【作用】本発明者等は、酢酸メチル,蟻酸メチルなどの
鎖状エステルがリチウムとの反応性が比較的高いのは、
その官能基がカルボキシル基もしくはメチルカルボキシ
ル基であってその鎖状構造が比較的短いためであり、よ
り長い鎖状構造のエステルはリチウムに対し安定である
が、一方あまりに長鎖であると逆に、上述したように炭
素材の層間に引き込まれる際、溶媒の分解反応を起こし
やすく、その意味から官能基がエチルカルボキシル基で
あるプロピオン酸メチルが優れた溶媒であることを見出
した。
The present inventors have found that chain esters such as methyl acetate and methyl formate have relatively high reactivity with lithium.
This is because the functional group is a carboxyl group or a methylcarboxyl group and the chain structure is relatively short.Esters with a longer chain structure are stable to lithium, while on the other hand, if the chain is too long, As described above, it has been found that a solvent is apt to undergo a decomposition reaction when it is drawn between layers of a carbon material, and in that sense, methyl propionate having a functional group of ethylcarboxyl is an excellent solvent.

【0014】同時にこのプロピオン酸メチルは低凝固点
を有し、優れた低温特性を示すとともに、酢酸メチル,
蟻酸メチルに比べ高沸点であるため取扱いにも優れるこ
とを見出した。
At the same time, this methyl propionate has a low freezing point, exhibits excellent low-temperature characteristics, and
It has been found that it has a higher boiling point than methyl formate and is easy to handle.

【0015】さらに、この溶媒の唯一の欠点は、溶質で
ある無機塩を溶かしにくいことであるが、これは上述の
誘電率の大な環状エステル、中でもエチレンカーボネー
トを適量配合することにより、充放電サイクル特性,低
温特性に優れた電解液とすることができる。
Furthermore, the only drawback of this solvent is that it is difficult to dissolve the inorganic salt that is a solute. This is because the cyclic ester having a large dielectric constant described above, especially ethylene carbonate, is added in an appropriate amount to charge and discharge. It is possible to obtain an electrolytic solution with excellent cycle characteristics and low temperature characteristics.

【0016】[0016]

【実施例】以下、図面とともに本発明の実施例を説明す
る。実施例においては円筒形の電池を構成して評価を行
った。
Embodiments of the present invention will be described below with reference to the drawings. In the examples, a cylindrical battery was constructed and evaluated.

【0017】(実施例1)図1に円筒形電池の縦断面図
を示す。図において1は正極を示し、活物質であるLi
CoO2に導電材としてカーボンブラックを、結着剤と
してポリ四フッ化エチレンの水性ディスパージョンを重
量比で100:3:10の割合で混合したものをアルミ
ニウム箔の両面に塗着,乾燥し、圧延した後所定の大き
さに切断したものである。これには2のチタン製リード
板をスポット溶接している。なお結着剤のポリ四フッ化
エチレンの水性ディスパージョンの混合比率は、その固
形分で計算している。3は負極で、炭素質材料を主材料
とし、これとアクリル系結着剤とを重量比で100:5
の割合で混合したものをニッケル箔の両面に塗着,乾燥
し、圧延した後所定の大きさに切断したものである。こ
れにも4のニッケル製の負極リード板をスポット溶接し
ている。5はポリプロピレン製の微孔性フィルムからな
るセパレータで、正極1と負極3との間に介在し、全体
が渦巻状に捲回されて極板群を構成している。この極板
群の上下の端にはそれぞれポリプロピレン製の絶縁板
6,7を配して鉄にニッケルメッキしたケース8に挿入
する。そして正極リード2をチタン製の封口板10に、
負極リード4をケース8の底部にそれぞれスポット溶接
した後、所定量の電解液をケース内に注入し、ガスケッ
ト9を介して電池を封口板10で封口して完成電池とす
る。この電池の寸法は直径14mm,高さ50mmである。
なお、11は電池の正極端子であり、負極端子は電池ケ
ース8がこれを兼ねている。
(Embodiment 1) FIG. 1 shows a vertical sectional view of a cylindrical battery. In the figure, 1 indicates a positive electrode, which is an active material Li
CoO 2 mixed with carbon black as a conductive material and an aqueous dispersion of polytetrafluoroethylene as a binder in a weight ratio of 100: 3: 10 was applied to both sides of an aluminum foil and dried, After being rolled, it is cut into a predetermined size. To this, 2 titanium lead plates are spot welded. The mixing ratio of the aqueous dispersion of polytetrafluoroethylene as the binder is calculated by its solid content. Reference numeral 3 denotes a negative electrode, which is composed mainly of a carbonaceous material, and the weight ratio of the carbonaceous material to the acrylic binder is 100: 5
The nickel foil is applied on both sides of the mixture, dried, rolled, and then cut into a predetermined size. The nickel negative electrode lead plate 4 is also spot-welded to this. Reference numeral 5 denotes a separator made of a polypropylene microporous film, which is interposed between the positive electrode 1 and the negative electrode 3, and is wholly spirally wound to form an electrode plate group. Insulating plates 6 and 7 made of polypropylene are arranged at the upper and lower ends of the electrode plate group, and the plates are inserted into a case 8 made of nickel plated with iron. Then, the positive electrode lead 2 is attached to the titanium sealing plate 10,
After spot welding the negative electrode lead 4 to the bottom of the case 8, a predetermined amount of electrolytic solution is injected into the case, and the battery is sealed with the sealing plate 10 through the gasket 9 to complete the battery. The dimensions of this battery are 14 mm in diameter and 50 mm in height.
Reference numeral 11 is a positive electrode terminal of the battery, and the battery case 8 also serves as a negative electrode terminal.

【0018】電解液の溶媒には環状エステルとしてエチ
レンカーボネート(以下ECという)と鎖状エステルと
して蟻酸メチル(以下MFという),酢酸メチル(以下
MAという),プロピオン酸メチル(以下MPという)
の3種類を用い、環状エステル単独系と環状エステル・
鎖状エステル混合系(いずれも体積比)について、以下
に示した円筒形電池A〜Dの試作を行った。なお電解液
の溶質には六フッ化リン酸リチウムを用い、それぞれ1
モル/1の濃度になるように調整した。
In the solvent of the electrolytic solution, ethylene carbonate (hereinafter referred to as EC) as a cyclic ester and methyl formate (hereinafter referred to as MF) as a chain ester, methyl acetate (hereinafter referred to as MA), methyl propionate (hereinafter referred to as MP) are used.
The cyclic ester alone system and the cyclic ester
For the chain ester mixed system (both in volume ratio), the following cylindrical batteries A to D were prototyped. Lithium hexafluorophosphate was used as the solute of the electrolyte, and
The concentration was adjusted to be mol / 1.

【0019】 電池A……EC=100 電池B……EC:MF=30:70 電池C……EC:MA=30:70 電池D……EC:MP=30:70 評価した電池特性はサイクル寿命特性である。Battery A ... EC = 100 Battery B ... EC: MF = 30: 70 Battery C ... EC: MA = 30: 70 Battery D ... EC: MP = 30: 70 The evaluated battery characteristics are cycle life. It is a characteristic.

【0020】試験条件は、充放電電流100mA,充電終
止電圧4.2V,放電終止電圧3.0Vとし、20℃で
充放電をくり返し、放電容量が初期の50%に劣化した
時点で試験を終了し、そのサイクル数をサイクル寿命と
した。
The test conditions were a charge / discharge current of 100 mA, a charge end voltage of 4.2 V, a discharge end voltage of 3.0 V, repeated charge / discharge at 20 ° C., and the test was terminated when the discharge capacity deteriorated to 50% of the initial value. The cycle number was defined as the cycle life.

【0021】ただし、電池Aの電解液中の溶媒はEC単
独であり、ECの凝固点は36.4℃であるので、電池
Aのみ40℃で充放電を行った。
However, since the solvent in the electrolytic solution of battery A was EC alone and the freezing point of EC was 36.4 ° C., only battery A was charged and discharged at 40 ° C.

【0022】電池A〜Dのサイクル寿命特性を図2に示
す。図2よりサイクル寿命特性のよい順にD−C−B−
Aとなった。中でも環状エステルを単独で用いたAは特
にサイクル寿命が短い。これは充電時に、負極では炭素
材の層間へリチウムイオンがインターカレートするが、
その際にリチウムイオンに配位した溶媒分子も共に層間
に引き込まれるため、環状構造を持ち、分子の大きい溶
媒は一部分解するためと考えられる。また、ECと鎖状
エステルの混合系においてサイクル寿命特性はMP−M
A−MFの順によいという結果となった。このことから
鎖状エステルはその鎖が長いほうが安定であり、リチウ
ムとの反応性が抑えられて良好なサイクル特性を与える
と考えられる。
FIG. 2 shows the cycle life characteristics of the batteries A to D. From FIG. 2, in the order of good cycle life characteristics, D-C-B-
It became A. Among them, A using the cyclic ester alone has a particularly short cycle life. This is because during charging, lithium ions intercalate between the layers of carbon material at the negative electrode,
At that time, it is considered that the solvent molecules coordinated to the lithium ions are also drawn between the layers, so that the solvent having a cyclic structure and large molecules is partially decomposed. In addition, the cycle life characteristics of the mixed system of EC and chain ester is MP-M.
The result was that the order of A-MF was good. From this, it is considered that the longer the chain of the chain ester is, the more stable it is, the reactivity with lithium is suppressed, and the good cycle characteristics are given.

【0023】以上の結果からサイクル寿命特性が良好で
あったのは、環状エステルと鎖状エステルとの混合溶媒
系であり、特に鎖状エステルが本発明のプロピオン酸メ
チルの場合に最も寿命が長かった。
From the above results, it was the mixed solvent system of cyclic ester and chain ester that had good cycle life characteristics, and especially when the chain ester was methyl propionate of the present invention, the longest life was obtained. It was

【0024】次に実施例2について述べる。 (実施例2)電解液の溶媒として実施例1の電池Dで用
いたECとMPの2成分を組合わせて調整した以下に示
す5種類の混合溶媒系について円筒形電池E〜Iでの試
作を行った。なお電解液の溶質には六フッ化リン酸リチ
ウムを用い、それぞれ1モル/1の濃度になるように調
整した。
Next, a second embodiment will be described. (Example 2) As a solvent of the electrolytic solution, the following five mixed solvent systems prepared by combining the two components of EC and MP used in the battery D of Example 1 were trial-produced in the cylindrical batteries E to I. I went. Lithium hexafluorophosphate was used as the solute of the electrolytic solution, and the concentration was adjusted to 1 mol / 1 each.

【0025】 電池E……EC:MP=60:40,MP÷EC=0.
7 電池F……EC:MP=50:50,MP÷EC=1 電池G……EC:MP=30:70,MP÷EC=2.
3 電池H……EC:MP=20:80,MP÷EC=4 電池I……EC:MP=15:85,MP÷EC=5.
7 上記電解液以外の構成条件は実施例1と同じとした。
Battery E ... EC: MP = 60: 40, MP ÷ EC = 0.
7 Battery F ... EC: MP = 50: 50, MP ÷ EC = 1 Battery G ... EC: MP = 30: 70, MP ÷ EC = 2.
3 Battery H ... EC: MP = 20: 80, MP ÷ EC = 4 Battery I ... EC: MP = 15: 85, MP ÷ EC = 5.
7 The constitutional conditions other than the electrolytic solution were the same as in Example 1.

【0026】評価した電池特性はサイクル寿命特性と低
温特性で、実施例1と同様の電圧,電流条件で初期10
サイクルの充放電を20℃で行った後、充電状態で試験
を停止し、温度を−10℃に変えて放電し、その放電容
量の大きさで低温特性を評価した。その後温度を20℃
に戻し、同様の電圧,電流条件で充放電を繰り返して実
施例1と同様の方法でサイクル寿命特性を評価した。
The battery characteristics evaluated were a cycle life characteristic and a low temperature characteristic, and the initial voltage was 10 at the same voltage and current conditions as in Example 1.
After charging / discharging the cycle at 20 ° C., the test was stopped in the charged state, the temperature was changed to −10 ° C. to discharge, and the low temperature characteristics were evaluated by the magnitude of the discharge capacity. Then the temperature is 20 ℃
Then, charging and discharging were repeated under the same voltage and current conditions, and the cycle life characteristics were evaluated by the same method as in Example 1.

【0027】電池E〜Iのサイクル寿命特性を図3、低
温特性を図4にそれぞれ示す。図3よりサイクル寿命特
性のよい順にG−H−F−E−Iとなった。
FIG. 3 shows the cycle life characteristics of the batteries E to I, and FIG. 4 shows the low temperature characteristics thereof. From FIG. 3, it was G-H-F-E-I in descending order of cycle life characteristics.

【0028】まず、G−F−EとECの比率が高くなる
につれてサイクル寿命が短くなるのは、充電時に負極で
は炭素材の層間へリチウムイオンがインターカレートす
るが、その際にリチウムイオンに配位した溶媒分子も共
に層間に引きこまれるため、環状構造を持ち、分子の大
きいECは一部分解するためと考えられる。
First, the cycle life becomes shorter as the ratio of G-F-E to EC becomes higher. The reason is that lithium ions intercalate between the layers of the carbon material at the negative electrode during charging. It is considered that the coordinating solvent molecule is also drawn in between the layers, so that it has a cyclic structure and EC with a large molecule is partially decomposed.

【0029】また、H,Iとプロピオン酸メチルの量が
増えるに従ってサイクル寿命が短くなるのは、MPと負
極炭素材中のリチウムとの反応が現れてくるためと考え
られる。
The reason why the cycle life becomes shorter as the amounts of H, I and methyl propionate increase is considered to be that the reaction between MP and lithium in the negative electrode carbon material appears.

【0030】次に図4より低温特性のよい順にH−G−
F−I−Eとなった。これはMPの混合比率が大きいほ
ど電解液の粘度が小となるためであるが、ECが15%
の電池Iは低温では溶質溶解能が下がり、溶質が一部析
出などして電解液中の溶質濃度が下がり、特性が悪くな
るものと考えられる。また電池EはECの混合比率が大
きく、−10℃では電解液が凝固し、そのために放電不
可能となったと考えられる。
Next, from FIG. 4, HG-
It became F-I-E. This is because the higher the mixing ratio of MP, the lower the viscosity of the electrolytic solution, but the EC is 15%.
It is considered that the battery I has a low solute-dissolving ability at a low temperature, a part of the solute is deposited, and the solute concentration in the electrolytic solution is lowered, and the characteristics are deteriorated. Further, it is considered that the battery E had a large EC mixing ratio and the electrolytic solution was solidified at −10 ° C., which made discharge impossible.

【0031】以上の結果からサイクル寿命特性,低温特
性共に良好であったのはF,G,Hのプロピオン酸メチ
ルの体積÷エチレンカーボネートの体積比率が1以上4
以下の範囲であった。
From the above results, the cycle life characteristics and the low temperature characteristics were good because the volume ratio of methyl propionate of F, G and H divided by the volume ratio of ethylene carbonate was 1 or more 4
It was in the following range.

【0032】なお、実施例では正極活物質にリチウムと
コバルトの複合酸化物を用いたが、他のたとえばリチウ
ムとニッケルの複合酸化物、リチウムとマンガンの複合
酸化物、リチウムと鉄の複合酸化物などのリチウム含有
酸化物、もしくは上記複合酸化物のそれぞれコバルト,
ニッケル,マンガン,鉄を他の遷移金属で一部置換した
ものでもほぼ同様の結果が得られた。
Although the composite oxide of lithium and cobalt was used as the positive electrode active material in the examples, other composite oxides of lithium and nickel, composite oxides of lithium and manganese, composite oxides of lithium and iron were used. Lithium-containing oxides such as, or cobalt of each of the above composite oxides,
Similar results were obtained with nickel, manganese, and iron partially replaced with other transition metals.

【0033】また本実施例では電解液の溶質に六フッ化
リン酸リチウムを用いたが、他のリチウム含有塩、例え
ばホウフッ化リチウム,過塩素酸リチウム,トリフルオ
ロメタンスルホン酸リチウム,六フッ化ヒ酸リチウムな
どでもほぼ同様の結果が得られた。
In this embodiment, lithium hexafluorophosphate was used as the solute of the electrolytic solution, but other lithium-containing salts such as lithium borofluoride, lithium perchlorate, lithium trifluoromethanesulfonate, and hexafluorohexafluoride. Almost similar results were obtained with lithium oxide and the like.

【0034】[0034]

【発明の効果】以上の説明で明らかなように、本発明に
よれば電解液の溶媒にエチレンカーボネートとプロピオ
ン酸メチルとの混合溶媒を用い、プロピオン酸メチルの
体積÷エチレンカーボネートの体積比率を1以上4以下
とすることによって、サイクル寿命特性,低温特性に優
れた非水電解液二次電池を提供することができる。
As is apparent from the above description, according to the present invention, a mixed solvent of ethylene carbonate and methyl propionate is used as a solvent of an electrolytic solution, and a volume ratio of methyl propionate / volume ratio of ethylene carbonate is 1 By setting the ratio to 4 or less, a non-aqueous electrolyte secondary battery having excellent cycle life characteristics and low temperature characteristics can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における円筒形電池の縦断面図FIG. 1 is a vertical sectional view of a cylindrical battery according to an embodiment of the present invention.

【図2】実施例における電池の20℃でのサイクル寿命
を示す図
FIG. 2 is a diagram showing the cycle life of the battery in Example at 20 ° C.

【図3】実施例における電池の20℃でのサイクル寿命
を示す図
FIG. 3 is a diagram showing cycle life of the battery in Example at 20 ° C.

【図4】実施例における電池の−10℃での放電電圧の
推移を示す図
FIG. 4 is a graph showing changes in discharge voltage at −10 ° C. of batteries in Examples.

【符号の説明】[Explanation of symbols]

1 正極 2 正極リード板 3 負極 4 負極リード板 5 セパレータ 6 上部絶縁板 7 下部絶縁板 8 ケース 9 ガスケット 10 封口板 11 正極端子 1 Positive Electrode 2 Positive Electrode Lead Plate 3 Negative Electrode 4 Negative Electrode Lead Plate 5 Separator 6 Upper Insulation Plate 7 Lower Insulation Plate 8 Case 9 Gasket 10 Sealing Plate 11 Positive Electrode Terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川原 隆幸 三重県四日市市東邦町1番地 三菱油化株 式会社四日市総合研究所内 (72)発明者 長谷川 勝昭 三重県四日市市東邦町1番地 三菱油化株 式会社四日市総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Takayuki Kawahara 1 Toho Town, Yokkaichi City, Mie Prefecture Yokkaichi Research Institute, Mitsubishi Petrochemical Co., Ltd. (72) Inventor Katsuaki Hasegawa 1 Toho Town, Yokkaichi City, Mie Prefecture Mitsubishi Petrochemical Incorporated company Yokkaichi Research Institute

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】リチウムイオンを吸蔵・放出できる炭素材
からなる負極と、非水電解液と、リチウム含有酸化物か
らなる正極とを備え、上記非水電解液の溶媒はエチレン
カーボネートとプロピオン酸メチルからなる非水電解液
二次電池。
1. A negative electrode made of a carbon material capable of inserting and extracting lithium ions, a non-aqueous electrolyte, and a positive electrode made of a lithium-containing oxide. The solvent of the non-aqueous electrolyte is ethylene carbonate and methyl propionate. Non-aqueous electrolyte secondary battery consisting of.
【請求項2】電解液の溶媒成分のプロピオン酸メチルの
体積÷エチレンカーボネートの体積の比率が1以上4以
下である請求項1に記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein a ratio of a volume of methyl propionate as a solvent component of the electrolyte solution / a volume of ethylene carbonate is 1 or more and 4 or less.
【請求項3】正極活物質がリチウムとコバルトの複合酸
化物、リチウムとニッケルの複合酸化物、リチウムとマ
ンガンの複合酸化物、リチウムと鉄の複合酸化物、もし
くは上記複合酸化物のそれぞれコバルト,ニッケル,マ
ンガン,鉄を他の遷移金属で一部置換したものである請
求項1または2に記載の非水電解液二次電池。
3. The positive electrode active material is a composite oxide of lithium and cobalt, a composite oxide of lithium and nickel, a composite oxide of lithium and manganese, a composite oxide of lithium and iron, or cobalt of the above composite oxides, respectively. The non-aqueous electrolyte secondary battery according to claim 1, wherein nickel, manganese, and iron are partially replaced with another transition metal.
【請求項4】非水電解液はその溶質として、六フッ化リ
ン酸リチウム,ホウフッ化リチウム,過塩素酸リチウ
ム,トリフルオロメタンスルホン酸リチウム,六フッ化
ヒ酸リチウムのうち少なくとも一つを含む請求項1〜3
のいずれかに記載の非水電解液二次電池。
4. The nonaqueous electrolytic solution contains at least one of lithium hexafluorophosphate, lithium borofluoride, lithium perchlorate, lithium trifluoromethanesulfonate, and lithium hexafluoroarsenate as its solute. Items 1-3
The non-aqueous electrolyte secondary battery according to any one of 1.
JP3234380A 1991-09-13 1991-09-13 Nonaqueous electrolyte secondary battery Pending JPH0574490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3234380A JPH0574490A (en) 1991-09-13 1991-09-13 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3234380A JPH0574490A (en) 1991-09-13 1991-09-13 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH0574490A true JPH0574490A (en) 1993-03-26

Family

ID=16970098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3234380A Pending JPH0574490A (en) 1991-09-13 1991-09-13 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH0574490A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066141A (en) * 2004-08-25 2006-03-09 Matsushita Electric Ind Co Ltd Secondary battery
JP2008140760A (en) * 2006-06-14 2008-06-19 Sanyo Electric Co Ltd Nonaqueous electrolytic solution for secondary battery, and nonaqueous electrolytic solution secondary battery using the same
JP2009170428A (en) * 2009-03-23 2009-07-30 Ube Ind Ltd Nonaqueous secondary battery
KR101010377B1 (en) * 2008-06-30 2011-01-21 주식회사 엘지화학 A sylinderical lithium secondary battery
US20140011098A1 (en) * 2012-04-20 2014-01-09 Lg Chem, Ltd. Lithium secondary battery of improved rate capability
US10388945B2 (en) 2014-11-28 2019-08-20 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066141A (en) * 2004-08-25 2006-03-09 Matsushita Electric Ind Co Ltd Secondary battery
JP2008140760A (en) * 2006-06-14 2008-06-19 Sanyo Electric Co Ltd Nonaqueous electrolytic solution for secondary battery, and nonaqueous electrolytic solution secondary battery using the same
KR101010377B1 (en) * 2008-06-30 2011-01-21 주식회사 엘지화학 A sylinderical lithium secondary battery
US8936880B2 (en) 2008-06-30 2015-01-20 Lg Chem, Ltd. Cylindrical lithium secondary battery with pressure activated current interruptive device
JP2009170428A (en) * 2009-03-23 2009-07-30 Ube Ind Ltd Nonaqueous secondary battery
US20140011098A1 (en) * 2012-04-20 2014-01-09 Lg Chem, Ltd. Lithium secondary battery of improved rate capability
US10388945B2 (en) 2014-11-28 2019-08-20 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
EP0531617B1 (en) Nonaqueous electrolyte secondary batteries
JP3416016B2 (en) Ion conductor for lithium secondary battery and lithium secondary battery using the same
JP2007538365A (en) Additive for lithium secondary battery
JP3032338B2 (en) Non-aqueous electrolyte secondary battery
JP3199426B2 (en) Non-aqueous electrolyte secondary battery
JP2002025611A (en) Nonaqueous electrolyte secondary battery
JP3380501B2 (en) Non-aqueous electrolyte secondary battery
JP4441935B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and battery using the same
JP3003431B2 (en) Non-aqueous electrolyte secondary battery
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JPH0574490A (en) Nonaqueous electrolyte secondary battery
JP3032339B2 (en) Non-aqueous electrolyte secondary battery
JPH0554910A (en) Manufacture of nonaqueous secondary battery
JPH0997626A (en) Nonaqueous electrolytic battery
JPH0574489A (en) Nonaqueous electrolyte secondary battery
JP2002083631A (en) Organic electrolytic solution secondary battery
JP2003157896A (en) Nonaqueous electrolyte secondary battery
JPH113698A (en) Lithium ion secondary battery
JPH0917446A (en) Non-aqueous electrolyte secondary battery
JPH1154122A (en) Lithium ion secondary battery
JP3346739B2 (en) Non-aqueous electrolyte secondary battery
JPH0652886A (en) Nonaqueous electrolyte secondary battery
JP3024287B2 (en) Non-aqueous electrolyte secondary battery
JPH09245798A (en) Lithium secondary battery
JP3148905B2 (en) Manufacturing method of thin non-aqueous electrolyte secondary battery