JP2003157896A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2003157896A
JP2003157896A JP2001355613A JP2001355613A JP2003157896A JP 2003157896 A JP2003157896 A JP 2003157896A JP 2001355613 A JP2001355613 A JP 2001355613A JP 2001355613 A JP2001355613 A JP 2001355613A JP 2003157896 A JP2003157896 A JP 2003157896A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
battery
aqueous electrolyte
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001355613A
Other languages
Japanese (ja)
Inventor
Toshitada Sato
俊忠 佐藤
Takayuki Nakamoto
貴之 中本
Harunari Shimamura
治成 島村
Yasuhiko Mifuji
靖彦 美藤
Yoshiaki Nitta
芳明 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001355613A priority Critical patent/JP2003157896A/en
Publication of JP2003157896A publication Critical patent/JP2003157896A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem of being high in initial discharge capacity, and being low in a service life characteristic in an alloy negative electrode material capable of storing and releasing lithium ions in a nonaqueous electrolyte secondary battery. SOLUTION: This nonaqueous electrolyte secondary battery has a negative electrode having an intermetallic compound having Ti or Si or an intermetallic compound having Ti and Sn, a positive electrode storing and releasing the lithium ions, and a nonaqueous electrolyte, and is characterized in that the nonaqueous electrolyte has a nonaqueous solvent and lithium salt indicated in (the formula 1). (The formula 1) R1-SO2+R2-SO2=N-Li [R1, R2: CnX (an integer of 8 from 2n+1, or 2n-1; n; 1) X: an element of hydrogen or a halogen group].

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、前記負極材料を含
有する負極およびそれを搭載した高容量かつ長寿命な非
水電解質二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode containing the above negative electrode material and a non-aqueous electrolyte secondary battery equipped with the negative electrode and having a high capacity and a long life.

【0002】[0002]

【従来の技術】非水電解液二次電池の負極としては、高
電圧で高エネルギー密度を実現できることから、金属リ
チウムまたはリチウム化合物の研究が多く行われてき
た。一方、正極としてはLiMn24、LiCoO2
LiNiO2、V25、Cr25、MnO2、TiS2
MoS2などの遷移金属酸化物およびカルコゲン化合物
が検討されてきた。これらはリチウムイオンが出入りで
きる層状もしくはトンネル構造を有することが知られて
いる。
2. Description of the Related Art As a negative electrode for a non-aqueous electrolyte secondary battery, metallic lithium or a lithium compound has been extensively studied because it can realize a high energy density at a high voltage. On the other hand, as the positive electrode, LiMn 2 O 4 , LiCoO 2 ,
LiNiO 2 , V 2 O 5 , Cr 2 O 5 , MnO 2 , TiS 2 ,
Transition metal oxides such as MoS 2 and chalcogen compounds have been investigated. It is known that these have a layered structure or a tunnel structure through which lithium ions can enter and exit.

【0003】負極に金属リチウム等を用いると、充電時
に負極の金属リチウムの表面に樹枝状のリチウムが析出
し、電池の充放電効率が低下したり、樹枝状のリチウム
が正極と接して内部短絡を生じたりするという問題があ
る。このため、近年は金属リチウムより容量は小さいが
リチウムを可逆的に吸蔵および放出でき、サイクル寿命
および安全性に優れた黒鉛系の炭素材料を負極に用いた
リチウムイオン電池が実用化されている。
When metallic lithium or the like is used for the negative electrode, dendritic lithium is deposited on the surface of the metallic lithium of the negative electrode during charging, the charge / discharge efficiency of the battery is lowered, and the dendritic lithium contacts the positive electrode to cause an internal short circuit. There is a problem that occurs. Therefore, in recent years, a lithium ion battery using a graphite-based carbon material, which has a smaller capacity than metallic lithium but can reversibly store and release lithium, and has excellent cycle life and safety, has been put into practical use.

【0004】しかしながら炭素材料を負極に使用した場
合、その実用容量が350mAh/gと小さく、また、
理論密度も2.2g/ccと低い点が、電池の高容量化
を求めるうえで妨げとなっている。そこで、より高容量
な実用容量を有する金属系材料を負極材料として利用す
ることが望まれる。
However, when a carbon material is used for the negative electrode, its practical capacity is as small as 350 mAh / g, and
The fact that the theoretical density is as low as 2.2 g / cc hinders the demand for higher capacity batteries. Therefore, it is desired to use a metal-based material having a higher practical capacity as the negative electrode material.

【0005】一方、金属系材料を負極活物質として使用
する場合、リチウムの吸蔵・放出にともない、活物質が
膨張・収縮を繰り返し、微粉化するという問題がある。
微粉化した活物質は、負極中の他の活物質あるいは導電
剤との接点を失って見かけ上は不活性な活物質となり、
負極の電子伝導性が低下して容量も減少する。
On the other hand, when a metal-based material is used as the negative electrode active material, there is a problem that the active material repeatedly expands and contracts with the occlusion and release of lithium, and becomes fine powder.
The finely divided active material loses contact with other active materials in the negative electrode or the conductive agent, and becomes an apparently inactive active material.
The electron conductivity of the negative electrode is reduced and the capacity is also reduced.

【0006】この問題を解決する手段として、Si、S
nといったLiを吸蔵・放出可能な活性相と電気化学的
にLiと反応しない不活性相とを一粒子中に共存させた
構造が提案されている(特開平11−86854号公
報)。この場合、リチウムの吸蔵により活物質粒子に生
じた応力を、リチウムを吸蔵しない相が緩和し、活物質
の膨張や微粉化を抑制していると考えられる。
As means for solving this problem, Si, S
A structure has been proposed in which an active phase capable of occluding and releasing Li such as n and an inactive phase that does not electrochemically react with Li coexist in one particle (Japanese Patent Laid-Open No. 11-86854). In this case, it is considered that the stress generated in the active material particles by occlusion of lithium is relaxed by the phase that does not occlusion of lithium, and expansion and pulverization of the active material are suppressed.

【0007】しかしながら、上述のような負極材料を用
い、正極にLiCoO2、LiNiO2、あるいはLi
Mn2O4などの金属酸化物を用いた非水電解液二次電
池において支持電解質にリチウムイオン電池で一般に使
用されているLiPF6、LiBF4に代表される含フ
ッ素無機アニオンリチウム塩を用いたところ、急激な寿
命劣化が確認された。
However, the negative electrode material as described above is used, and LiCoO 2, LiNiO 2, or Li is used for the positive electrode.
When a non-aqueous electrolyte secondary battery using a metal oxide such as Mn2O4 is used as a supporting electrolyte, a fluorine-containing inorganic anion lithium salt typified by LiPF6 and LiBF4, which is generally used in lithium-ion batteries, is used, and the life is rapidly increased. Deterioration was confirmed.

【0008】この劣化した電池に対し、劣化要因の解析
を行ったところ負極表面に大量の含リチウムフッ化金属
塩(例えば負極にSi含有合金を用いた場合、LiSi
F6)が生成していることが判明した。この原因とし
て、電解液に含まれる微量の水分が支持電解質である含
フッ素無機アニオンリチウム塩と反応することでフッ化
水素酸(HF)が生成し、その結果HFが負極中の合金
と反応して上記含リチウムフッ化金属塩が生成すること
が推定される。
When the deterioration factor was analyzed for this deteriorated battery, a large amount of lithium-containing metal fluoride salt was formed on the surface of the negative electrode (for example, when Si-containing alloy was used for the negative electrode, LiSi
It was found that F6) was generated. As a cause for this, a small amount of water contained in the electrolytic solution reacts with the fluorine-containing inorganic anion lithium salt that is the supporting electrolyte to generate hydrofluoric acid (HF), and as a result, HF reacts with the alloy in the negative electrode. It is presumed that the above lithium-containing metal fluoride salt is produced.

【0009】[0009]

【発明が解決しようとする課題】本発明は、高容量な金
属系負極材料を用いながら、課題であった寿命特性につ
いて大幅な改善を見いだし、高容量・長寿命を両立する
非水電解質二次電池を提供するものである。
DISCLOSURE OF THE INVENTION The present invention finds a significant improvement in the life characteristics, which is a problem, while using a high capacity metal-based negative electrode material, and is a non-aqueous electrolyte secondary that achieves both high capacity and long life. A battery is provided.

【0010】[0010]

【課題を解決するための手段】前記従来の課題を解決す
るため本発明は、TiとSiとを有する金属間化合物、
またはTiとSnとを有する金属間化合物を具備した負
極と、リチウムイオンを吸蔵・放出する正極と、非水電
解液とを備えた非水電解質二次電池であって、前記非水
電解液は非水溶媒と(化1)に示したリチウム塩とを有
することを特徴とする。
In order to solve the above conventional problems, the present invention provides an intermetallic compound containing Ti and Si,
Alternatively, a non-aqueous electrolyte secondary battery including a negative electrode including an intermetallic compound containing Ti and Sn, a positive electrode that absorbs and releases lithium ions, and a non-aqueous electrolyte solution, wherein the non-aqueous electrolyte solution is It is characterized by having a non-aqueous solvent and the lithium salt shown in Chemical formula 1.

【0011】このとき、非水電解液中の(化1)に示し
たリチウム塩の濃度が0.05mol/L以上で1.0
mol/L以下であることが有効である。さらに、非水
溶媒は環状炭酸エステル、環状カルボン酸エステル、ま
たは非環状炭酸エステルのいずれか1種類以上を含むこ
とが有効である。
At this time, when the concentration of the lithium salt shown in (Chemical Formula 1) in the non-aqueous electrolyte is 0.05 mol / L or more, 1.0
It is effective that it is not more than mol / L. Further, it is effective that the non-aqueous solvent contains at least one kind of cyclic carbonic acid ester, cyclic carboxylic acid ester, and non-cyclic carbonic acid ester.

【0012】[0012]

【発明の実施の形態】本発明は、リチウムと合金化する
金属元素を含む負極活物質を用いた非水電解質二次電池
において、非水電解質は非水溶媒と(化1)に示される
リチウム塩の中から選ばれる少なくとも1種の電解質塩
を含むことを特徴とする二次電池である。また(化1)
において式中R1およびR2はそれぞれ独立しており、
CnX2n+1またはCnX2n−1で示され、前記n
は1から8の整数であり、Xは水素原子またはハロゲン
原子であることを特徴とする。非水電解質を構成する電
解質塩としてリチウム塩と、LiPF6あるいはLiB
F4からなる含フッ素無機アニオンリチウム塩の群から
選ばれる少なくとも1種との混合電解質塩であることを
特徴とする。また、本発明で用いる前記リチウムイミド
塩の例としてはLiN(CF3SO2)2、LiN(C
2F5SO2)2、LiN(CF3SO2)(C4F9
SO2)等があげられる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a non-aqueous electrolyte secondary battery using a negative electrode active material containing a metal element capable of alloying with lithium, wherein the non-aqueous electrolyte is a non-aqueous solvent and the lithium shown in (Chemical Formula 1). A secondary battery comprising at least one electrolyte salt selected from salts. Also (Chemical formula 1)
In the formula, R1 and R2 are each independent,
CnX2n + 1 or CnX2n−1, wherein n
Is an integer of 1 to 8, and X is a hydrogen atom or a halogen atom. Lithium salt, LiPF6 or LiB as an electrolyte salt constituting the non-aqueous electrolyte
It is a mixed electrolyte salt with at least one selected from the group of fluorine-containing inorganic anion lithium salts consisting of F4. Examples of the lithium imide salt used in the present invention include LiN (CF3SO2) 2 and LiN (C
2F5SO2) 2, LiN (CF3SO2) (C4F9
SO2) and the like.

【0013】非水電解質に含まれる水分量は多くとも5
0ppm以下であることが望ましい。
The amount of water contained in the non-aqueous electrolyte is at most 5
It is preferably 0 ppm or less.

【0014】本発明は、前記非水電解質を構成する溶媒
は少なくとも環状炭酸エステルまたは環状カルボン酸エ
ステルまたは非環状炭酸エステルのいずれかを含有する
ことを特徴とする。そのとき、前記非水電解質中の電解
質塩濃度の合計が0.5mol/L以上2mol/L以
下であり前記非水電解質中にはエチレンカーボネート、
あるいはビニレンカーボネート、あるいはγ−ブチロラ
クトン、あるいはプロピレンカーボネートのいずれかを
含有することが望ましく、また、前記非水電解質中には
ジエチルカーボネート、あるいはエチルメチルカーボネ
ート、あるいはジメチルカーボネートのいずれかを含有
することが望ましい。
The present invention is characterized in that the solvent constituting the non-aqueous electrolyte contains at least either a cyclic carbonic acid ester, a cyclic carboxylic acid ester or a non-cyclic carbonic acid ester. At that time, the total electrolyte salt concentration in the non-aqueous electrolyte is 0.5 mol / L or more and 2 mol / L or less, and ethylene carbonate is contained in the non-aqueous electrolyte.
Alternatively, it is desirable to contain any of vinylene carbonate, or γ-butyrolactone, or propylene carbonate, and the nonaqueous electrolyte may contain any of diethyl carbonate, ethyl methyl carbonate, or dimethyl carbonate. desirable.

【0015】さらには環状炭酸エステルまたは環状カル
ボン酸エステルと、非環状炭酸エステルとを混合した溶
媒が特に好ましい。
Further, a solvent in which a cyclic carbonic acid ester or cyclic carboxylic acid ester and an acyclic carbonic acid ester are mixed is particularly preferable.

【0016】本発明において、非水電解質への添加剤と
してリチウム塩、リチウムイミド塩等を利用することに
より、原理的に合金負極の劣化要因である過剰なマスク
生成を防ぎ、良好な充放電サイクル性(寿命特性)を得
ることを特徴としている。
In the present invention, by utilizing a lithium salt, a lithium imide salt or the like as an additive to the non-aqueous electrolyte, it is possible to prevent generation of an excessive mask, which is a factor of deterioration of the alloy negative electrode in principle, and a good charge and discharge cycle is obtained. Characteristics (life characteristics).

【0017】また、リチウム塩を添加した電解質は充放
電サイクルの経過にともなうガス発生が抑制されること
を特徴としている。
Further, the electrolyte to which the lithium salt is added is characterized in that the generation of gas with the progress of charge / discharge cycles is suppressed.

【0018】さらにリチウム塩とLiPF6やLiBF
4のような含フッ素無機アニオンリチウム塩とを最適な
混合比率で混ぜ、電解液中の水分量を制御することによ
り、上記サイクル性およびガス発生の利点を活かしたま
ま、レート性を向上させることが可能になった。
Further, lithium salt and LiPF6 or LiBF
Fluorine-containing inorganic anion lithium salt such as No. 4 is mixed at an optimum mixing ratio to control the amount of water in the electrolytic solution to improve the rate performance while taking advantage of the above cycle characteristics and gas generation advantages. Became possible.

【0019】負極活物質に含まれる、リチウムと合金化
する金属元素はSiまたはSnを含むことを特徴とす
る。さらには前記負極活物質にTiとSiまたはTiと
Snからなる金属間化合物が含まれることが望ましい。
上記金属間化合物としてTiSi2あるいはTiSiあ
るいはTi2SnあるいはTi6Sn5あるいはTi5
Sn3などがあげられ、しかも上記金属間化合物は低結
晶性または非晶質性を有することが特に望ましい。
The metallic element which forms an alloy with lithium contained in the negative electrode active material is characterized by containing Si or Sn. Further, it is desirable that the negative electrode active material contains an intermetallic compound composed of Ti and Si or Ti and Sn.
As the intermetallic compound, TiSi2, TiSi, Ti2Sn, Ti6Sn5, or Ti5 is used.
It is particularly desirable that the intermetallic compound have a low crystallinity or an amorphous property.

【0020】リチウム塩を添加した電解質は充放電サイ
クル特性の向上は以下の原理によるものと考えている。
It is considered that the lithium salt-added electrolyte is based on the following principle for improving the charge-discharge cycle characteristics.

【0021】リチウム塩はその代表的な組成である、L
iN(CF3SO2)2、LiN(C2F5SO2)
2、LiN(CF3SO2)(C4F9SO2)等にお
いてフッ素元素を含んでいるが、含フッ素無機アニオン
リチウム塩と異なり、強い結合力を有する炭素−フッ素
結合をとっていることにより原理的にフッ素を放出しに
くい。そのため、電解液中に水分が存在してもHFを生
成することはなく、前述しているような含リチウムフッ
化金属塩を生成するような劣化メカニズムを起こしにく
い。
Lithium salt has a typical composition, L
iN (CF3SO2) 2, LiN (C2F5SO2)
2. LiN (CF3SO2) (C4F9SO2) and the like contain elemental fluorine, but unlike fluorine-containing inorganic anion lithium salt, it has a carbon-fluorine bond having a strong binding force, and thus releases fluorine in principle. Hateful. Therefore, HF is not generated even if water is present in the electrolytic solution, and the deterioration mechanism such as the above-described lithium-containing metal fluoride salt is unlikely to occur.

【0022】さらにはリチウム塩を用いた場合、支持電
解質および溶媒との副反応によって負極表面上に生成す
る皮膜は、LiPF6に比べ高い電位(対リチウム比
0.8V)で生成し、そしてマスク厚みは薄く、またサ
イクル経過にともなっての皮膜厚み増加がみられない。
この要因に関しては鋭意解析中であるが恐らく、リチウ
ム塩を出発物質としてなる上記表面皮膜はLiPF6の
それと異なり電子伝導性・Liイオン伝導性に富み、ま
た合金負極の充電・放電にともなう膨張・収縮に追随で
きる弾性に富んだ皮膜ではないかと推測している。
Further, when a lithium salt is used, the film formed on the surface of the negative electrode by the side reaction with the supporting electrolyte and the solvent is formed at a higher potential (ratio of lithium to 0.8 V) than LiPF6, and the mask thickness is increased. Is thin, and the film thickness does not increase with the progress of cycles.
Although this factor is under diligent analysis, it is probable that the above-mentioned surface film, which uses a lithium salt as a starting material, is rich in electron conductivity and Li ion conductivity unlike that of LiPF6, and also expands and contracts due to charge and discharge of the alloy negative electrode. It is speculated that it may be a film that is rich in elasticity and can follow.

【0023】また、リチウム塩を添加した電解質は充放
電サイクルの経過にともなうガス発生が抑制は以下の原
理によるものと推定している。
In addition, it is presumed that the electrolyte generated by adding a lithium salt suppresses the generation of gas with the progress of charge / discharge cycles according to the following principle.

【0024】リチウム塩は従来一般的に使用されている
LiPF6と比べて低い電位で酸化分解する(このとき
の分解生成物にもHFは存在しないことも確認してい
る)。室温下、白金電極を作用極、リチウム金属を対
極、参照極に用いてサイクリックボルタモグラムを測定
したところ、Li基準において4.2V付近で支持塩の
分解を示す酸化電流が流れ始める。本電池系(正極にL
iCoO2、LiNiO2、あるいはLiMn2O4の
いづれか、負極にSiあるいはSnを含む合金)におけ
る満充電時の正極電位は4.2V以上に達するため、電
解液中のリチウムイミド塩の一部は分解される。その
際、分解生成物が正極表面ばかりでなく負極表面におい
ても皮膜形成することにより、正極および負極両方の活
性点を保護することで過剰な電解液の分解を抑え、その
結果、ガス発生を抑制していると予想される。
Lithium salt is oxidatively decomposed at a lower potential than LiPF6 which is generally used in the past (it has been confirmed that the decomposition product at this time also does not contain HF). When a cyclic voltammogram was measured at room temperature using a platinum electrode as a working electrode, a lithium metal as a counter electrode, and a reference electrode, an oxidation current indicating decomposition of the supporting salt started to flow near 4.2 V on the Li standard. This battery system (L to the positive electrode
Since any one of iCoO2, LiNiO2, and LiMn2O4, or the alloy containing Si or Sn in the negative electrode) has a positive electrode potential of 4.2 V or more when fully charged, part of the lithium imide salt in the electrolytic solution is decomposed. At that time, decomposition products form a film not only on the surface of the positive electrode but also on the surface of the negative electrode, thereby protecting the active sites of both the positive electrode and the negative electrode, thereby suppressing excessive decomposition of the electrolytic solution, and as a result, suppressing gas generation. It is expected that

【0025】以上のようにリチウム塩は非常に優れた支
持電解質であるが、正極集電体にAl箔を用いた場合、
集電体を腐食させるといった悪影響を及ぼすことがよく
知られている。そこで本発明者らは従来塩であるLiP
F6およびLiBF4との混合塩について検討を行い、
その結果、電解液中の含水分量は多くとも50ppm以
下であり、かつリチウム塩の濃度を0.05mol/L
以上1.0mol/L以下の範囲が適当であることがわ
かった。このような混合塩および含水分量にすることで
正極集電体であるAl箔の腐食を抑えることが可能とな
り、さらに最適な混合比率で混ぜることによって上述の
良好な特性を維持したまま電池のレート特性を向上させ
ることが判明した。
As described above, the lithium salt is a very excellent supporting electrolyte, but when an Al foil is used for the positive electrode current collector,
It is well known that adverse effects such as corrosion of the current collector are caused. Therefore, the present inventors have used LiP, which is a conventional salt.
The mixed salt with F6 and LiBF4 was examined,
As a result, the water content in the electrolytic solution was at most 50 ppm or less, and the concentration of the lithium salt was 0.05 mol / L.
It was found that the above range of 1.0 mol / L or less is suitable. By using such a mixed salt and a water content, it is possible to suppress the corrosion of the Al foil, which is the positive electrode current collector, and by mixing at an optimum mixing ratio, the rate of the battery can be maintained while maintaining the above good characteristics. It was found to improve the characteristics.

【0026】電解液中の含水分量が50ppmより多く
なると、混合しているLiPF6あるいはLiBF4と
水が反応することでHFが発生しやすくなり、充放電サ
イクル特性が劣化する傾向にあった。
When the water content in the electrolytic solution exceeds 50 ppm, the mixed LiPF6 or LiBF4 reacts with water to easily generate HF, which tends to deteriorate the charge / discharge cycle characteristics.

【0027】1.0mol/L以上リチウム塩を添加す
ると、電解液の粘度が増加し電池のレート特性が低下す
る傾向にあった。また0.05mol/L以下の添加量
ではリチウム塩の分解生成物が十分な量ではないために
ガス発生を抑制することが困難であった。好ましくは
0.05mol/L以上0.5mol/L以下であり、
さらに好ましくは0.1mol/L以上0.3mol/
L以下の範囲でリチウム塩を添加するのが好ましい。こ
の範囲において最も電池レート特性がよく、また良好な
寿命特性およびガス発生抑制を示した。
When 1.0 mol / L or more of lithium salt was added, the viscosity of the electrolytic solution increased and the rate characteristics of the battery tended to deteriorate. Further, when the addition amount is 0.05 mol / L or less, it is difficult to suppress the gas generation because the decomposition product of the lithium salt is not sufficient. It is preferably 0.05 mol / L or more and 0.5 mol / L or less,
More preferably 0.1 mol / L or more and 0.3 mol / L
It is preferable to add the lithium salt in the range of L or less. In this range, the battery rate characteristics were the best, and the life characteristics and gas generation inhibition were excellent.

【0028】また、混合塩の全電解質塩濃度の合計が
0.5mol/L以上2mol/L以下であることが望
ましい。0.5mol/L以下の場合、電解液自体のリ
チウムイオン伝導度が低下し電池のレート性が極端に低
下する傾向にあった。また逆に2mol/L以上の塩濃
度になると電解液の粘度が非常に高くなることで同様に
レート特性が低下する傾向にあった。好ましくは0.8
mol/L以上1.5mol/L以下であった。この範
囲において電池レート特性は良好であり、寿命特性およ
びガス抑制効果も充分発揮できた。
It is desirable that the total concentration of all electrolyte salts in the mixed salt is 0.5 mol / L or more and 2 mol / L or less. When it was 0.5 mol / L or less, the lithium ion conductivity of the electrolytic solution itself was lowered, and the rate property of the battery tended to be extremely lowered. On the other hand, when the salt concentration is 2 mol / L or more, the viscosity of the electrolytic solution becomes very high, and the rate characteristic also tends to deteriorate. Preferably 0.8
It was not less than mol / L and not more than 1.5 mol / L. In this range, the battery rate characteristics were good, and the life characteristics and the gas suppressing effect could be sufficiently exhibited.

【0029】なお、LiPF6のような含フッ素無機ア
ニオンリチウム塩とリチウム塩との混合系を電池に用い
る技術はすでに特開平10−189045号公報、特開
2001−223025号公報などで開示されている。
それに対し、本発明では負極材料としてSiあるいはS
nといったLiを吸蔵・放出できる金属が含まれる合金
材料を用いた電池が特有する課題について言及し、改善
したものである。
A technique of using a mixed system of a fluorine-containing inorganic anion lithium salt such as LiPF6 and a lithium salt in a battery has already been disclosed in JP-A-10-189045, JP-A-2001-223025 and the like. .
On the other hand, in the present invention, Si or S is used as the negative electrode material.
This is an improvement by mentioning a problem peculiar to a battery using an alloy material containing a metal capable of inserting and extracting Li such as n.

【0030】本発明に用いられる負極材料はリチウムと
合金化可能な金属元素を含む材料に限られており、例と
してSi、Sn、Al、Pb、Bi、Ge、Gaなどが
あげられる。望ましい元素としてSi、Sn、Alから
選ばれ、特に望ましい元素はSiおよびSnである。
The negative electrode material used in the present invention is limited to a material containing a metal element that can be alloyed with lithium, and examples thereof include Si, Sn, Al, Pb, Bi, Ge and Ga. Preferred elements are selected from Si, Sn, and Al, and particularly desirable elements are Si and Sn.

【0031】SiおよびSnは理論的にも実験的にも他
の上記元素に比較して高容量を示し、かつ長寿命を示す
ことが実験的にも判明している。
It has been experimentally proved that Si and Sn have a high capacity and a long life compared with the above-mentioned other elements theoretically and experimentally.

【0032】また、上記にあげる元素単体であるよりも
Liと電気化学的に反応しない元素、例としてはFe、
Mn、Coなどに代表される遷移金属元素、Mg、Ca
に代表されるアルカリ土類金属元素、Ti、Zrに代表
されるIVA族元素、ランタノイド、Vに代表されるV
A族元素などがあげられる。好ましくは遷移金属元素お
よびIVA族元素であり、特に好ましくはIVA族元素
である。その中でもTiが存在する合金負極材料が好ま
しく、合金の一部をTiとSiあるいはTiとSnから
なる金属間化合物を形成していることが望ましい。さら
には前記金属間化合物は低結晶性または非晶質性を有す
ることが特に望ましい。
An element that does not electrochemically react with Li than the above-mentioned elements alone, such as Fe,
Transition metal elements represented by Mn, Co, etc., Mg, Ca
Alkaline earth metal elements represented by, Ti, group IVA elements represented by Zr, lanthanoids, V represented by V
Examples include Group A elements. A transition metal element and a group IVA element are preferable, and a group IVA element is particularly preferable. Among them, an alloy negative electrode material containing Ti is preferable, and it is desirable that a part of the alloy is formed of an intermetallic compound composed of Ti and Si or Ti and Sn. Furthermore, it is particularly desirable that the intermetallic compound has low crystallinity or amorphousness.

【0033】Tiと合金化したSn合金材料およびSi
合金材料は、他の各種元素と合金化させたSn合金材料
およびSi合金材料に比較して寿命特性が向上した。こ
れはTiと合金化することにより耐食性が格段に向上し
たことに起因していると予想している。
Sn alloy material alloyed with Ti and Si
The alloy material has improved life characteristics as compared with the Sn alloy material and Si alloy material alloyed with other various elements. It is expected that this is due to a marked improvement in corrosion resistance by alloying with Ti.

【0034】さらに上記合金負極材料は平均粒径が45
μm以下であることが望ましく、特に望ましくは10μ
m以下である。45μm以上の粒径を有すると、電池設
計に有効な負極板を作成することができなくなる。平均
粒径が10μm以下であれば有効な負極板が作成しやす
くなる上、材料の比表面積が増加することにより反応面
積が増加し、良好なレート性が得られる。
Further, the above alloy negative electrode material has an average particle size of 45.
It is preferable that the thickness is less than or equal to μm, and particularly preferably 10 μm.
m or less. If the particle size is 45 μm or more, it becomes impossible to produce a negative electrode plate effective for battery design. When the average particle size is 10 μm or less, an effective negative electrode plate can be easily formed, and the reaction surface area is increased due to the increase in the specific surface area of the material, so that a good rate property can be obtained.

【0035】また上記合金負極材料は平均結晶子径が少
なくとも10μm以下であり、好ましくは1μm以下、
特に好ましきは0.3μm以下であることが望ましい。
結晶子径が小さくなることにより、粒子割れを防ぎ、そ
の結果サイクル劣化を抑制することができる。
The alloy negative electrode material has an average crystallite size of at least 10 μm or less, preferably 1 μm or less,
Particularly preferably, the thickness is 0.3 μm or less.
By reducing the crystallite size, particle cracking can be prevented, and as a result, cycle deterioration can be suppressed.

【0036】さらには負極板全体の電子伝導性を向上す
る目的で、合金に加えて導電剤を加えることが望まし
い。導電剤としては黒鉛、カーボンブラック、アセチレ
ンブラックなどがあげられる。特に望ましきはアセチレ
ンブラックおよびカーボンブラックである。
Further, in order to improve the electron conductivity of the entire negative electrode plate, it is desirable to add a conductive agent in addition to the alloy. Examples of the conductive agent include graphite, carbon black, acetylene black and the like. Particularly desirable are acetylene black and carbon black.

【0037】本発明で用いられる正極材料は、リチウム
含有複合遷移金属酸化物もしくはリチウム含有複合遷移
金属酸化物を構成する遷移金属以外の金属元素を固溶さ
せたリチウム含有複合遷移金属酸化物を用いる。これら
の例としては、LiCoO2、LiNiO2、LiMn
2O4、LiMnO2、LiFeO2やそれらの遷移金
属(Co、Ni、Mn、Fe)の一部を他の遷移金属、
Sn、Al、Mgなどで置換したものがあげられる。
As the positive electrode material used in the present invention, a lithium-containing composite transition metal oxide or a lithium-containing composite transition metal oxide in which a metal element other than the transition metal constituting the lithium-containing composite transition metal oxide is solid-dissolved is used. . Examples of these are LiCoO2, LiNiO2, LiMn
2O4, LiMnO2, LiFeO2 or a part of their transition metals (Co, Ni, Mn, Fe), other transition metals,
Examples thereof include those substituted with Sn, Al, Mg and the like.

【0038】[0038]

【実施例】以下に、本発明を実施例に基づいて具体的に
説明する。まず、以下の実施例において、放電容量の測
定に用いた試験セルおよびレート特性、サイクル寿命の
測定に用いた円筒形電池、ならびに放電容量とレート特
性、サイクル寿命の測定方法について説明する。
EXAMPLES The present invention will be specifically described below based on examples. First, in the following examples, the test cell and rate characteristics used for measuring the discharge capacity, the cylindrical battery used for measuring the cycle life, the discharge capacity and rate characteristics, and the method for measuring the cycle life will be described.

【0039】(試験セル)図1に示す試験セルを作製し
た。まず、負極材料としてTi−Si合金およびTi−
Sn合金、そして比較例として黒鉛を選択した。Ti−
Si合金はTiインゴットとSiインゴットとをモル比
で1:2.5になるように混合し、その混合インゴット
をガスアトマイズ法で溶解・微粉末化した。この原料合
金をステンレス製ボールとともに(合金:ボール比
1:10(重量比))アトライタボールミル中で24時
間ミリングした。その粉末をAr雰囲気中で取り出して
Ti−Si合金活物質とした。Ti−Sn合金は同様に
各単体のインゴットからガスアトマイズ法で溶解・微粉
末化により原料合金を得た(合金比率はTi:Sn=
2:1(モル比))。この原料合金をステンレス製ボー
ルとともにボールミル装置に投入し(合金:ボール比
1:5(重量比))、3日間、窒素雰囲気下でミリング
を行った。その粉末を窒素雰囲気下で取り出してTi−
Sn合金活物質とした。各々の合金粉末はX線回折によ
る結晶構造分析から非晶質であり、その平均粒径はどち
らも約2μmであった。またその結晶子径は0.05μ
mから0.2μmの範囲で透過電子顕微鏡によって観察
された。比較例である黒鉛粉末は天然黒鉛を粒径50μ
m以下に分級することで得た。各活物質7.5gと、導
電剤としてのアセチレンブラック粉末2gと、結着剤と
してのポリエチレン粉末0.5gとを混合して合剤を得
た。この合剤0.1gを直径17.5mmに加圧成形し
て電極1とし、ケース2の中に置いた。次に、微孔性ポ
リプロピレン製のセパレータ3を電極1の上にかぶせ
た。そして、所定の電解液を試験セルに2ml注液し
た。電解液調製においてリチウムイミド塩として3点選
択した。イミドAとしてLiN(CF3SO2)2、イ
ミドBとしてLiF(C2F5SO2)2、そしてイミ
ドCとしてLiF(CF3SO2)(C4F9SO2)
を選択し、表1に示すような濃度で混合した。また電解
液中の含水分量は基本的には水分を極限まで除去した溶
媒・支持塩を用い、多水分量の電解液に関しては微量の
水を適宜、混入させることで含水分量の制御を行った。
次いで、内側に直径17.5mmの金属リチウム4を張
り付け、外周部にポリプロピレン製のガスケット5を付
けた封口板6でケース2を封口し、試験セルとした。
(Test Cell) The test cell shown in FIG. 1 was prepared. First, as a negative electrode material, Ti-Si alloy and Ti-
Sn alloys and graphite were chosen as comparative examples. Ti-
For the Si alloy, a Ti ingot and a Si ingot were mixed at a molar ratio of 1: 2.5, and the mixed ingot was melted and pulverized by a gas atomizing method. This raw material alloy together with stainless steel balls (alloy: ball ratio
Milling was performed in an attritor ball mill for 24 hours. The powder was taken out in an Ar atmosphere to obtain a Ti-Si alloy active material. Similarly, for the Ti-Sn alloy, a raw material alloy was obtained by melting and pulverizing the individual ingots by the gas atomizing method (the alloy ratio is Ti: Sn =
2: 1 (molar ratio)). This raw material alloy was put into a ball mill with stainless steel balls (alloy: ball ratio).
Milling was performed under a nitrogen atmosphere for 3 days (1: 5 (weight ratio)). The powder was taken out under a nitrogen atmosphere and Ti-
The Sn alloy active material was used. Each of the alloy powders was amorphous according to the crystal structure analysis by X-ray diffraction, and the average particle size of both was about 2 μm. The crystallite size is 0.05μ
It was observed by a transmission electron microscope in the range of m to 0.2 μm. The graphite powder of the comparative example is made of natural graphite with a particle size of 50 μm.
It was obtained by classifying to m or less. A mixture was obtained by mixing 7.5 g of each active material, 2 g of acetylene black powder as a conductive agent, and 0.5 g of polyethylene powder as a binder. 0.1 g of this mixture was pressure-molded to a diameter of 17.5 mm to form an electrode 1, which was placed in a case 2. Next, the separator 3 made of microporous polypropylene was put on the electrode 1. Then, 2 ml of the predetermined electrolytic solution was injected into the test cell. In the preparation of the electrolytic solution, three points were selected as the lithium imide salt. LiN (CF3SO2) 2 as imide A, LiF (C2F5SO2) 2 as imide B, and LiF (CF3SO2) (C4F9SO2) as imide C
Were selected and mixed at the concentrations shown in Table 1. As for the water content in the electrolyte, basically, a solvent / supporting salt from which water is removed to the limit is used, and in the case of a high water content, the water content is controlled by appropriately mixing a trace amount of water. .
Next, metallic lithium 4 having a diameter of 17.5 mm was attached to the inside, and the case 2 was sealed with a sealing plate 6 having a polypropylene gasket 5 attached to the outer peripheral portion to form a test cell.

【0040】(円筒形電池)図2に示す円筒形電池を作
製した。まず、正極活物質であるLiCoO2は、Li
2CO3とCoCO3とを所定のモル比で混合し、950
℃で加熱することによって合成した。さらに、これを1
00メッシュ以下の大きさに分級したものを用いた。正
極活物質100gに対して、導電剤としてアセチレンブ
ラックを10g、結着剤としてポリ4フッ化エチレンの
水性分散液8g(樹脂成分)および純水を加え、充分に
混合し、正極合剤ペーストを得た。このペーストをアル
ミニウムの芯材に塗布し、乾燥し、圧延して正極11を
得た。
(Cylindrical Battery) A cylindrical battery shown in FIG. 2 was produced. First, the positive electrode active material LiCoO2 is
2 CO 3 and CoCO 3 are mixed at a predetermined molar ratio to obtain 950
It was synthesized by heating at ℃. In addition, 1
The one classified into a size of 00 mesh or less was used. To 100 g of the positive electrode active material, 10 g of acetylene black as a conductive agent, 8 g of an aqueous dispersion of polytetrafluoroethylene as a binder (resin component) and pure water were added and mixed sufficiently to form a positive electrode mixture paste. Obtained. This paste was applied to an aluminum core material, dried, and rolled to obtain a positive electrode 11.

【0041】負極合剤ペーストは、所定の負極活物質材
料と、導電剤としてのアセチレンブラック粉末と、結着
剤としてのスチレンブタジエンゴムとを、重量比で8
0:10:10の割合で混合し、水を加えて得た。そし
て、このペーストを銅の芯材に塗布し、140℃で乾燥
し、負極12とした。
The negative electrode mixture paste contains a predetermined negative electrode active material, acetylene black powder as a conductive agent, and styrene-butadiene rubber as a binder in a weight ratio of 8.
It was obtained by mixing at a ratio of 0:10:10 and adding water. Then, this paste was applied to a copper core material and dried at 140 ° C. to obtain a negative electrode 12.

【0042】次に、超音波溶接で、正極の芯材にアルミ
ニウムからなる正極リード14を取り付けた。同様に負
極の芯材に銅の負極リード15を取り付けた。そして、
正極、負極、および両極板より幅が広く、帯状の多孔性
ポリプロピレン製セパレータ13を積層した。このとき
両極板の間にセパレータを介在させた。次いで、積層物
を円筒状に捲回して電極群とした。電極群は、その上下
にそれぞれポリプロピレン製の絶縁板16、17を配し
て電槽18に挿入した。そして、電槽18の上部に段部
を形成した後、任意の電解液を注入し、正極端子20を
有する封口板19で密閉して円筒形電池とした。
Next, the positive electrode lead 14 made of aluminum was attached to the core material of the positive electrode by ultrasonic welding. Similarly, a copper negative electrode lead 15 was attached to the negative electrode core material. And
A strip-shaped porous polypropylene separator 13 having a width wider than that of the positive electrode, the negative electrode, and the bipolar plates was laminated. At this time, a separator was interposed between the bipolar plates. Then, the laminate was rolled into a cylindrical shape to form an electrode group. Insulating plates 16 and 17 made of polypropylene were placed on the upper and lower sides of the electrode group, respectively, and inserted into a battery case 18. Then, after forming a step on the upper part of the battery case 18, an arbitrary electrolytic solution was injected and sealed with a sealing plate 19 having a positive electrode terminal 20 to obtain a cylindrical battery.

【0043】(放電容量の測定方法)試験セルを0.5
mA/cm2の一定電流で端子電圧が0Vになるまで充
電(負極材料へのリチウムの吸蔵)を行い、次に端子電
圧が1.5Vになるまで0.5mA/cm2の電流で放
電(負極材料からのリチウムの放出)を行い、放電容量
(mAh/g)を測定した。
(Measurement Method of Discharge Capacity) The test cell is set to 0.5.
It is charged at a constant current of mA / cm 2 until the terminal voltage becomes 0 V (storage of lithium in the negative electrode material), and then discharged at a current of 0.5 mA / cm 2 until the terminal voltage becomes 1.5 V ( Lithium was released from the negative electrode material), and the discharge capacity (mAh / g) was measured.

【0044】(サイクル寿命・レート特性の測定方法)
円筒形電池の充放電サイクル試験を20℃で以下のよう
に行った。まず、円筒形電池の定電流充電を、充電電流
0.2C(1Cは1時間率電流)で電池電圧が4.2V
になるまで行い、次いで定電圧充電を4.2V、電流値
が0.01Cになるまで行った。その後、円筒形電池の
放電を、0.2Cの電流で電池電圧が2.0Vになるま
で行った。この充放電サイクルを繰り返し、1サイクル
目の放電容量に対する100サイクル目の放電容量の比
を求め、その値に100をかけて容量維持率(%)とし
た。容量維持率が100に近いほどサイクル寿命が良好
であることを示す。
(Method of measuring cycle life and rate characteristics)
The charge / discharge cycle test of the cylindrical battery was conducted at 20 ° C. as follows. First, constant-current charging of a cylindrical battery was performed with a charging current of 0.2 C (1 C is 1 hour rate current) and a battery voltage of 4.2 V.
Then, constant voltage charging was carried out until 4.2V and a current value became 0.01C. Then, the cylindrical battery was discharged at a current of 0.2 C until the battery voltage became 2.0 V. This charging / discharging cycle was repeated, the ratio of the discharge capacity at the 100th cycle to the discharge capacity at the first cycle was determined, and the value was multiplied by 100 to obtain the capacity retention rate (%). The closer the capacity retention rate is to 100, the better the cycle life.

【0045】また、サイクル寿命特性評価中に以下のよ
うな設定でレート特性評価を行った。10サイクル目ま
で測定を行い、その間、充分に安定した充放電容量を示
すことが確認された後、次の順番でレート特性評価を行
った。ここで下記充電レートは定電流充電の領域の値を
記載している。 サイクル数 充電レート 放電レート 10 0.2C 0.2C 11 0.2C 1.0C 12 0.2C 2.0C 13 0.2C 0.2C(容量確認) 14 1.0C 0.2C 15 0.2C 0.2C(容量確認) その後、再びサイクル特性を評価した。
During the cycle life characteristic evaluation, rate characteristic evaluation was performed under the following settings. The measurement was performed up to the 10th cycle, and after it was confirmed that the charge and discharge capacity was sufficiently stable during that period, the rate characteristics were evaluated in the following order. Here, the following charging rate describes the value in the area of constant current charging. Number of cycles Charge rate Discharge rate 10 0.2C 0.2C 11 0.2C 1.0C 12 0.2C 2.0C 13 0.2C 0.2C (capacity confirmation) 14 1.0C 0.2C 15 0.2C 0 .2 C (capacity confirmation) After that, the cycle characteristics were evaluated again.

【0046】(実施例1)表1に示すように電解液成分
および負極材料を変化させて電池を作成し、これらを電
池A1〜A24とした。表1のECはエチレンカーボネ
ート、EMCはエチルメチルカーボネート、GBLはγ
−ブチルラクトン、PCはプロピルカーボネートであ
る。
Example 1 As shown in Table 1, batteries were prepared by changing the components of the electrolytic solution and the materials of the negative electrodes, and these were named batteries A1 to A24. In Table 1, EC is ethylene carbonate, EMC is ethyl methyl carbonate, and GBL is γ.
-Butyl lactone, PC is propyl carbonate.

【0047】電池A1〜A24を用いて100サイクル
後のガス発生量測定を行った。その結果を表1に示す。
前記ガス発生量測定の方法として試験電池の一部を、テ
フロン(登録商標)製の袋の中に入れ、既知量のアルゴ
ンガスを充満させて密閉し、袋の中で電池上部に穴をあ
けて電池内部のガスを放出させた。そのガス量をガスク
ロマトグラフィーのピーク面積比から求めた。電池A1
3、A23は非水電解質液にECの代わりに、PCを、
電池A14、A24は同様に電解質液にGBLを採用し
た。
The amount of gas generated after 100 cycles was measured using batteries A1 to A24. The results are shown in Table 1.
As a method for measuring the gas generation amount, a part of the test battery was put in a Teflon (registered trademark) bag, filled with a known amount of argon gas and sealed, and a hole was opened in the bag at the upper part of the battery. The gas inside the battery was released. The amount of gas was determined from the peak area ratio of gas chromatography. Battery A1
3, A23 is PC instead of EC in the non-aqueous electrolyte solution,
The batteries A14 and A24 similarly adopted GBL as the electrolyte solution.

【0048】イミドAは(LiN(CF3SO2)2) イミドBは(LiF(C2F5SO2)2) イミドCは( LiF(CF3SO2)(C4F9SO
2))とした。
Imide A is (LiN (CF3SO2) 2) Imide B is (LiF (C2F5SO2) 2) Imide C is (LiF (CF3SO2) (C4F9SO)
2)).

【0049】[0049]

【表1】 [Table 1]

【0050】電池A1〜4では負極材料に黒鉛を使用し
たところ、非水電解質液にリチウム塩を添加したもの
(電池A2〜A4)は容量維持率、サイクル後ガス量と
もに電池A1に比べ改善された。電池A5〜14では負
極材料にTiとSiを有する合金化合物とし、電解質は
LiPF6のみおよびLiPF6にリチウム塩を添加し
た。合金負極を用いた電池は高容量を示し(電池A1〜
A4と電池A5〜A14)、かつ非水電解質液にLiP
F6のみを用いた電池(電池A5)と比較して、リチウ
ム塩を添加した非水電解液を用いた電池(電池A6、A
8、A10、A13、A14)は寿命特性の向上および
サイクル経過後のガス発生量も低減した。しかしなが
ら、水分含量(表1では含水分量)が50ppmを越え
る、電池A7、A11は容量維持率、サイクル後ガス量
等が低下した。またレート特性の観点からも電解質塩全
体の濃度が2mol/L以上になると放電レート性が低
下した(電池A9)。
In the batteries A1 to A4, when graphite was used as the negative electrode material, the one obtained by adding a lithium salt to the non-aqueous electrolyte solution (Batteries A2 to A4) was improved in both the capacity retention rate and the amount of gas after cycling as compared with the battery A1. It was In batteries A5 to A14, an alloy compound containing Ti and Si was used as the negative electrode material, and only LiPF6 was added as an electrolyte or a lithium salt was added to LiPF6. The battery using the alloy negative electrode shows a high capacity (Batteries A1 to
A4 and batteries A5 to A14), and LiP in the non-aqueous electrolyte solution.
Compared to the battery using only F6 (battery A5), the battery using a non-aqueous electrolyte solution containing a lithium salt (batteries A6, A
8, A10, A13, A14), the life characteristics were improved and the amount of gas generated after the cycle was also reduced. However, in the batteries A7 and A11 having a water content (water content in Table 1) of more than 50 ppm, the capacity retention rate, the amount of gas after cycling, etc. decreased. Also from the viewpoint of rate characteristics, the discharge rate property decreased when the concentration of the entire electrolyte salt was 2 mol / L or more (Battery A9).

【0051】さらに、電池A15〜24では負極材料に
TiとSnを有する合金化合物としたところ、TiとS
iを有する合金化合物と同等の結果を得た。ただし、電
池A17、A21は水分含量が50ppmを越えるも
の、電池A19は電解質塩のモル濃度が2mol/L以
上となり、比較例に相当する。
Further, in batteries A15 to 24, when an alloy compound containing Ti and Sn was used as the negative electrode material, Ti and S were obtained.
Results similar to the alloy compounds with i were obtained. However, the batteries A17 and A21 had a water content of more than 50 ppm, and the battery A19 had a molar concentration of the electrolyte salt of 2 mol / L or more, which corresponds to the comparative example.

【0052】[0052]

【発明の効果】本発明により、TiとSiとを有する金
属間化合物、またはTiとSnとを有する金属間化合物
を具備した負極と、リチウムイオンを吸蔵・放出する正
極と、非水溶媒とリチウム塩とを有する非水電解液とを
備えた非水電解質二次電池は、含水分量が少なく、高容
量を維持でき、サイクル後のガス発生がすくなく、さら
に高寿命化を達成することができる。
According to the present invention, a negative electrode comprising an intermetallic compound containing Ti and Si or an intermetallic compound containing Ti and Sn, a positive electrode capable of absorbing and releasing lithium ions, a non-aqueous solvent and lithium. The non-aqueous electrolyte secondary battery provided with the non-aqueous electrolyte solution containing a salt has a low water content, can maintain a high capacity, can easily generate gas after the cycle, and can achieve a longer life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の負極材料を含有する負極を有する試験
セルの断面図
FIG. 1 is a cross-sectional view of a test cell having a negative electrode containing the negative electrode material of the present invention.

【図2】本発明のサイクル寿命の測定に用いた円筒形電
池の断面図
FIG. 2 is a sectional view of a cylindrical battery used for measuring the cycle life of the present invention.

【符号の説明】[Explanation of symbols]

1 試験電極 2 ケース 3 セパレータ 4 金属リチウム 5 ガスケット 6 封口板 11 正極 12 負極 13 セパレータ 14 正極リード 15 負極リード 16 上部絶縁板 17 下部絶縁板 18 電槽 19 封口板 20 正極端子 1 test electrode 2 cases 3 separator 4 metallic lithium 5 gasket 6 sealing plate 11 Positive electrode 12 Negative electrode 13 separator 14 Positive electrode lead 15 Negative electrode lead 16 Upper insulating plate 17 Lower insulation plate 18 battery case 19 sealing plate 20 Positive terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 島村 治成 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 美藤 靖彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 新田 芳明 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H029 AJ03 AJ05 AK03 AL11 AL12 AM02 AM03 AM05 AM07 BJ02 BJ03 BJ14 DJ09 EJ04 EJ11 EJ12 HJ02 HJ10 5H050 AA07 AA08 BA17 CA07 CA08 CA09 CB12 DA13 EA10 EA23 FA05 HA02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Osamu Shimamura             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Yasuhiko Mito             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Yoshiaki Nitta             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 5H029 AJ03 AJ05 AK03 AL11 AL12                       AM02 AM03 AM05 AM07 BJ02                       BJ03 BJ14 DJ09 EJ04 EJ11                       EJ12 HJ02 HJ10                 5H050 AA07 AA08 BA17 CA07 CA08                       CA09 CB12 DA13 EA10 EA23                       FA05 HA02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 TiとSiとを有する金属間化合物、ま
たはTiとSnとを有する金属間化合物を具備した負極
と、リチウムイオンを吸蔵・放出する正極と、非水電解
液とを備えた非水電解質二次電池であって、前記非水電
解液は非水溶媒と(化1)に示したリチウム塩とを有す
ることを特徴とする非水電解質二次電池。 【化1】
1. A non-electrode comprising a negative electrode comprising an intermetallic compound containing Ti and Si or an intermetallic compound containing Ti and Sn, a positive electrode absorbing and releasing lithium ions, and a non-aqueous electrolyte. A non-aqueous electrolyte secondary battery, wherein the non-aqueous electrolyte solution contains a non-aqueous solvent and the lithium salt shown in Chemical formula 1. [Chemical 1]
【請求項2】 非水電解液中の(化1)に示したリチウ
ム塩の濃度が0.05mol/L以上で1.0mol/
L以下であることを特徴とする請求項1記載の非水電解
質二次電池。
2. The concentration of the lithium salt represented by (Chemical formula 1) in the non-aqueous electrolyte is 1.0 mol / L when the concentration is 0.05 mol / L or more.
It is L or less, The nonaqueous electrolyte secondary battery of Claim 1 characterized by the above-mentioned.
【請求項3】 非水溶媒は環状炭酸エステル、環状カル
ボン酸エステル、または非環状炭酸エステルのいずれか
1種類以上を含むことを特徴とする請求項1記載の非水
電解質二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous solvent contains at least one kind of cyclic carbonic acid ester, cyclic carboxylic acid ester, and non-cyclic carbonic acid ester.
JP2001355613A 2001-11-21 2001-11-21 Nonaqueous electrolyte secondary battery Pending JP2003157896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001355613A JP2003157896A (en) 2001-11-21 2001-11-21 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001355613A JP2003157896A (en) 2001-11-21 2001-11-21 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2003157896A true JP2003157896A (en) 2003-05-30

Family

ID=19167292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001355613A Pending JP2003157896A (en) 2001-11-21 2001-11-21 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2003157896A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166442A (en) * 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd Energy device and manufacturing method therefor
WO2005088761A1 (en) * 2004-03-16 2005-09-22 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
JP2006049266A (en) * 2004-07-09 2006-02-16 Samsung Sdi Co Ltd Lithium secondary battery
JP2007027084A (en) * 2005-06-17 2007-02-01 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte solution secondary battery
JP2007214127A (en) * 2006-02-10 2007-08-23 Samsung Sdi Co Ltd Negative active material for lithium secondary battery, its manufacturing method, and lithium secondary battery containing it
US8753775B2 (en) 2004-07-09 2014-06-17 Samsung Sdi Co., Ltd. Rechargeable lithium battery with an electrode active material including a multi-phase alloy powder
JP2021520602A (en) * 2018-04-12 2021-08-19 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Anode material and its manufacturing method and usage method
RU2784564C1 (en) * 2019-07-31 2022-11-28 Иннолит Текнолоджи Аг (Ch/Ch) Accumulator battery element
US11710849B2 (en) 2019-07-31 2023-07-25 Innolith Technology AG SO2-based electrolyte for a rechargeable battery cell, and rechargeable battery cells

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166442A (en) * 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd Energy device and manufacturing method therefor
JP4526806B2 (en) * 2003-12-02 2010-08-18 パナソニック株式会社 Method for producing lithium ion secondary battery
WO2005088761A1 (en) * 2004-03-16 2005-09-22 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
CN100448096C (en) * 2004-03-16 2008-12-31 松下电器产业株式会社 Lithium secondary battery
JPWO2005088761A1 (en) * 2004-03-16 2009-05-07 松下電器産業株式会社 Lithium secondary battery
US8389163B2 (en) 2004-03-16 2013-03-05 Panasonic Corporation Lithium secondary battery containing organic peroxide in non-aqueous electrolyte, positive electrode, or negative electrode
US8753775B2 (en) 2004-07-09 2014-06-17 Samsung Sdi Co., Ltd. Rechargeable lithium battery with an electrode active material including a multi-phase alloy powder
JP2006049266A (en) * 2004-07-09 2006-02-16 Samsung Sdi Co Ltd Lithium secondary battery
JP2007027084A (en) * 2005-06-17 2007-02-01 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte solution secondary battery
JP2007214127A (en) * 2006-02-10 2007-08-23 Samsung Sdi Co Ltd Negative active material for lithium secondary battery, its manufacturing method, and lithium secondary battery containing it
JP2021520602A (en) * 2018-04-12 2021-08-19 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Anode material and its manufacturing method and usage method
RU2786511C1 (en) * 2019-04-30 2022-12-21 Иннолит Текнолоджи Аг (Ch/Ch) Accumulator battery cell
RU2784564C1 (en) * 2019-07-31 2022-11-28 Иннолит Текнолоджи Аг (Ch/Ch) Accumulator battery element
US11710849B2 (en) 2019-07-31 2023-07-25 Innolith Technology AG SO2-based electrolyte for a rechargeable battery cell, and rechargeable battery cells
US11876170B2 (en) 2019-07-31 2024-01-16 Innolith Technology AG Rechargeable battery cell
US11901504B2 (en) 2019-07-31 2024-02-13 Innolith Technology AG Rechargeable battery cell having an SO2-based electrolyte
US11942594B2 (en) 2019-07-31 2024-03-26 Innolith Technology AG Rechargeable battery cell

Similar Documents

Publication Publication Date Title
EP0696075B1 (en) Non-aqueous electrolyte secondary battery
JP5143852B2 (en) Nonaqueous electrolyte secondary battery
JP2005228565A (en) Electrolytic solution and battery
JP2000030703A (en) Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this negative electrode material
CA2361089A1 (en) Double current collector cathode design using the same active material in varying formulations for alkali metal or ion electrochemical cells
WO2005099022A1 (en) Nonaqueous electrolyte secondary battery
JP3640227B2 (en) Non-aqueous secondary battery
US6686090B2 (en) Battery with a nonaqueous electrolyte and a negative electrode having a negative electrode active material occluding and releasing an active material
JP3032338B2 (en) Non-aqueous electrolyte secondary battery
JPH05182689A (en) Nonaqueous electrolyte secondary battery
JP4984402B2 (en) Nonaqueous electrolyte secondary battery
JPH06302320A (en) Nonaqueous electrolyte secondary battery
JP3819663B2 (en) Lithium secondary battery charge / discharge method and lithium secondary battery
JP4608743B2 (en) Nonaqueous electrolyte secondary battery
JP3380501B2 (en) Non-aqueous electrolyte secondary battery
JP2003157896A (en) Nonaqueous electrolyte secondary battery
JP4439660B2 (en) Nonaqueous electrolyte secondary battery
JPH0982360A (en) Nonaqueous electrolyte secondary battery
JPH0997626A (en) Nonaqueous electrolytic battery
JP3032339B2 (en) Non-aqueous electrolyte secondary battery
JP2002110152A (en) Nonaqueous electrolyte secondary battery
JP3921836B2 (en) Organic electrolyte secondary battery
JP3438364B2 (en) Non-aqueous electrolyte
JP2002260726A (en) Nonaqueous electrolyte secondary battery
JP3144833B2 (en) Non-aqueous solvent secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070112