JP4526806B2 - Method for producing lithium ion secondary battery - Google Patents

Method for producing lithium ion secondary battery Download PDF

Info

Publication number
JP4526806B2
JP4526806B2 JP2003403537A JP2003403537A JP4526806B2 JP 4526806 B2 JP4526806 B2 JP 4526806B2 JP 2003403537 A JP2003403537 A JP 2003403537A JP 2003403537 A JP2003403537 A JP 2003403537A JP 4526806 B2 JP4526806 B2 JP 4526806B2
Authority
JP
Japan
Prior art keywords
thin film
negative electrode
current collector
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003403537A
Other languages
Japanese (ja)
Other versions
JP2005166442A (en
Inventor
和義 本田
毅一郎 大石
靖彦 美藤
貴之 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003403537A priority Critical patent/JP4526806B2/en
Publication of JP2005166442A publication Critical patent/JP2005166442A/en
Application granted granted Critical
Publication of JP4526806B2 publication Critical patent/JP4526806B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明はリチウムイオン二次電池の製造方法に関する。 The present invention relates to a method for manufacturing a lithium ion secondary battery .

リチウムイオン次電池は、負極集電体、負極活物質、電解質、セパレーター、正極活物質、正極集電体を主な構成要素とする。このリチウムイオン次電池は、移動体通信機器や各種AV機器のエネルギー源として大きな役割を果たしている。機器の小型化高性能化とあいまってリチウムイオン次電池の小形化、高エネルギー密度化が進められており、電池を構成する各要素の改良に多くの努力が払われている。 Lithium ion secondary battery, the negative electrode current collector, the negative electrode active material, the electrolyte, the separator, the positive electrode active material, the main component of the positive electrode current collector. The lithium ion secondary battery plays a major role as an energy source for mobile communication devices and various types of AV equipment. Compact high-performance device coupled with miniaturization of the lithium ion secondary battery has higher energy density is advanced, much effort on improving the elements constituting the battery have been made.

例えば、特許文献1には、特定の遷移金属酸化物の混合粉末を加熱し溶融後、急冷して得たアモルファス化した酸化物を正極活物質として用いることにより、高エネルギー密度化を実現できることが開示されている。   For example, Patent Document 1 discloses that a high energy density can be realized by using, as a positive electrode active material, an amorphous oxide obtained by heating, melting, and rapidly cooling a mixed powder of a specific transition metal oxide. It is disclosed.

また、特許文献2には、正極活物質としてリチウムを含有する遷移金属酸化物を用い、負極活物質としてケイ素原子を含む化合物を用い、かつ正極活物質重量を負極活物質重量よりも多くすることによって電池容量とサイクル寿命を高めることができることが開示されている。   In Patent Document 2, a transition metal oxide containing lithium is used as a positive electrode active material, a compound containing a silicon atom is used as a negative electrode active material, and the weight of the positive electrode active material is larger than the weight of the negative electrode active material. Can increase battery capacity and cycle life.

更に、特許文献3には、負極活物質として非晶質シリコン薄膜を用いることが開示されている。これにより、カーボンを用いた場合に比べてリチウムを多く吸蔵できるので大容量化が可能になると期待される。
特開平8−78002号公報 特開2000−12092号公報 特開2002−83594号公報
Further, Patent Document 3 discloses using an amorphous silicon thin film as a negative electrode active material. As a result, a larger amount of lithium can be occluded than when carbon is used, and it is expected that the capacity can be increased.
JP-A-8-78002 Japanese Unexamined Patent Publication No. 2000-12092 JP 2002-83594 A

非晶質シリコン薄膜はスパッタ法や蒸着法をはじめとする真空成膜法で形成することが出来る。この非晶質シリコン薄膜を負極活物質材料として用いることは大容量化に有望であるが、シリコン薄膜はリチウムの吸蔵量が大きいために充放電時に膨張/収縮するなどの課題も多く、実用化のためにはサイクル特性の確保が課題となる。サイクル特性確保のためには膨張/収縮といった物理的課題とならんで化学的課題を明らかにし対策を施す必要がある。ところが負極活物質のサイクル特性に対する化学的なアプローチは未だ十分と言えない。   The amorphous silicon thin film can be formed by a vacuum film forming method such as a sputtering method or a vapor deposition method. The use of this amorphous silicon thin film as a negative electrode active material is promising for increasing the capacity, but the silicon thin film has many problems such as expansion / contraction during charge / discharge due to its large amount of occlusion of lithium. For this purpose, ensuring the cycle characteristics is an issue. In order to ensure cycle characteristics, it is necessary to clarify the chemical problem as well as the physical problem such as expansion / contraction and take countermeasures. However, a chemical approach to the cycle characteristics of the negative electrode active material is still not sufficient.

本発明は、サイクル特性が向上したリチウムイオン二次電池の製造方法を提供することを目的とする。 An object of this invention is to provide the manufacturing method of the lithium ion secondary battery with improved cycling characteristics.

本発明のリチウムイオン二次電池の製造方法は、集電体上に直接あるいは下地層を介して、負極活物質薄膜としてシリコンを主成分として含む非晶質シリコン薄膜を真空成膜法で形成する工程を有するリチウムイオン二次電池の製造方法において、前記工程は、最初にシリコンからなる第1の蒸着源からの第1の蒸発粒子が主として堆積し、その後、徐々に第2の蒸着源からの第2の蒸発粒子の比率を増加し、最後に第1の蒸発粒子および第2の蒸発粒子を混合して堆積する工程であり、前記第2の蒸発源は、Ti、Zr、La、Ce、Sc、及びYのいずれかであることを特徴とする。 In the method for producing a lithium ion secondary battery of the present invention, an amorphous silicon thin film containing silicon as a main component as a negative electrode active material thin film is formed on a current collector directly or via an underlayer by a vacuum film forming method . In the method of manufacturing a lithium ion secondary battery having a step, the step includes firstly depositing first evaporated particles mainly from a first vapor deposition source made of silicon, and then gradually from the second vapor deposition source. A step of increasing a ratio of the second evaporation particles and finally mixing and depositing the first evaporation particles and the second evaporation particles, and the second evaporation source includes Ti, Zr, La, Ce, sc, and wherein the Y is either.

本発明によれば、サイクル特性が向上したリチウムイオン二次電池を提供することができる。 According to the present invention, a lithium ion secondary battery with improved cycle characteristics can be provided.

本発明の第1のリチウムイオン二次電池は、集電体上に直接あるいは下地層を介して、シリコンを主成分として含む負極活物質薄膜が形成されたリチウムイオン二次電池であって、前記負極活物質薄膜の表面近傍における酸素濃度のピーク値をOP1、前記集電体又は前記下地層と前記負極活物質薄膜との界面近傍及び前記表面近傍を除いた前記負極活物質薄膜中の深さ方向の酸素濃度分布が略一定と見なせる部分における酸素濃度をOC、前記表面近傍において酸素濃度が{(OP1−OC)/2}+OCである位置をD1、前記位置D1の前記負極活物質薄膜の表面からの深さをT1としたとき、T1≦20nmである。 The first lithium ion secondary battery of the present invention is a lithium ion secondary battery in which a negative electrode active material thin film containing silicon as a main component is formed on a current collector directly or via an underlayer, The peak value of the oxygen concentration in the vicinity of the surface of the negative electrode active material thin film is expressed as O P1 , the depth in the negative electrode active material thin film excluding the vicinity of the interface between the current collector or the underlayer and the negative electrode active material thin film, and the vicinity of the surface. oxygen concentration O C in the portion where the direction of the oxygen concentration distribution can be regarded as substantially constant, the oxygen concentration in the vicinity of the surface {(O P1 -O C) / 2} + O position D 1 which is C, the position D 1 T 1 ≦ 20 nm where T 1 is the depth from the surface of the negative electrode active material thin film.

1≦20nm、即ち、負極活物質薄膜の表面近傍での酸化層の厚みが薄いので、リチウムイオンの移動が容易となり、サイクル特性が向上する。 Since T 1 ≦ 20 nm, that is, the thickness of the oxide layer in the vicinity of the surface of the negative electrode active material thin film is thin, lithium ions can be easily moved and cycle characteristics are improved.

負極活物質薄膜の表面近傍での酸化層を薄くする第1の製造方法としては、集電体上に直接あるいは下地層を介して、シリコンを主成分として含む負極活物質薄膜を形成するに際し、前記負極活物質薄膜の表面にTi、Zr、La、Ce、Sc、及びYから選ばれた少なくとも一種を主成分として含む材料を付与することが有効である。 As a first manufacturing method for thinning the oxide layer in the vicinity of the surface of the negative electrode active material thin film, when forming a negative electrode active material thin film containing silicon as a main component directly on the current collector or through an underlayer, It is effective to provide a material containing at least one selected from Ti, Zr, La, Ce, Sc, and Y as a main component on the surface of the negative electrode active material thin film.

れらは、酸化層の厚みを薄くするのに有効だからである。 These are, it is because it is effective to reduce the thickness of the oxide layer.

前記材料の付与が真空成膜法によることが好ましい。効率よく前記材料を付与することができるからである。 The material is preferably applied by a vacuum film forming method. This is because the material can be efficiently applied.

負極活物質薄膜の表面近傍での酸化層を薄くする第2の製造方法としては、集電体上に直接あるいは下地層を介して、還元雰囲気でシリコンを主成分として含む負極活物質薄膜を形成することが有効である。   As a second manufacturing method for thinning the oxide layer near the surface of the negative electrode active material thin film, a negative electrode active material thin film containing silicon as a main component in a reducing atmosphere is formed directly on the current collector or through an underlayer. It is effective to do.

還元雰囲気の実現には水素ガスなどを用いることが出来る。   Hydrogen gas or the like can be used to realize a reducing atmosphere.

本発明の第2のリチウムイオン二次電池は、集電体上にシリコンを主成分として含む負極活物質薄膜が形成されたリチウムイオン二次電池であって、前記集電体と前記負極活物質薄膜との界面近傍における酸素濃度のピーク値をOP2、前記集電体と前記負極活物質薄膜との界面近傍及び前記負極活物質薄膜の表面近傍を除いた前記負極活物質薄膜中の深さ方向の酸素濃度分布が略一定と見なせる部分における酸素濃度をOC、酸素濃度が前記ピーク値OP2をとる位置D2の近傍において前記位置D2を深さ方向において挟む、酸素濃度が{(OP2−OC)/2}+OCである位置をD3,D4、前記位置D3と前記位置D4との深さ方向における距離をT2としたとき、T2≦5nmである。 The second lithium ion secondary battery of the present invention is a lithium ion secondary battery in which a negative electrode active material thin film containing silicon as a main component is formed on a current collector, wherein the current collector and the negative electrode active material The peak value of the oxygen concentration in the vicinity of the interface with the thin film is O P2 , the depth in the negative electrode active material thin film excluding the vicinity of the interface between the current collector and the negative electrode active material thin film and the vicinity of the surface of the negative electrode active material thin film. The oxygen concentration at a portion where the oxygen concentration distribution in the direction can be regarded as substantially constant is O C , and the position D 2 is sandwiched in the depth direction in the vicinity of the position D 2 where the oxygen concentration takes the peak value OP 2. O P2 -O C) / 2} + O C a is position D 3, D 4, and the distance in the depth direction of the position D 3 and the position D 4 was T 2, is T 2 ≦ 5 nm .

2≦5nm、即ち、集電体と負極活物質薄膜との界面近傍における酸化層の厚みが薄いので、リチウムイオンの移動や電子の移動(集電)が容易となり、サイクル特性が向上する。また、界面近傍における酸化層の厚みが薄いことにより、充放電による負極活物質薄膜の膨張/収縮に対する界面近傍における脆性が改善されるので、サイクル特性が向上する。 Since T 2 ≦ 5 nm, that is, the thickness of the oxide layer in the vicinity of the interface between the current collector and the negative electrode active material thin film is thin, the movement of lithium ions and the movement of electrons (current collection) are facilitated, and the cycle characteristics are improved. In addition, since the thickness of the oxide layer in the vicinity of the interface is thin, the brittleness in the vicinity of the interface against the expansion / contraction of the negative electrode active material thin film due to charge / discharge is improved, so that the cycle characteristics are improved.

集電体と負極活物質薄膜との界面近傍における酸化層を薄くする製造方法としては、集電体の表面を還元雰囲気でプラズマ処理した後に、前記プラズマ処理された前記集電体の表面にシリコンを主成分として含む負極活物質薄膜を形成することが有効である。   As a manufacturing method of thinning the oxide layer in the vicinity of the interface between the current collector and the negative electrode active material thin film, the surface of the current collector is subjected to plasma treatment in a reducing atmosphere, and silicon is then applied to the surface of the current collector subjected to the plasma treatment. It is effective to form a negative electrode active material thin film containing as a main component.

本発明の第3のリチウムイオン二次電池は、集電体上に下地層を介して、シリコンを主成分として含む負極活物質薄膜が形成されたリチウムイオン二次電池であって、前記下地層と前記負極活物質薄膜との界面近傍における酸素濃度のピーク値をOP2、前記下地層と前記負極活物質薄膜との界面近傍及び前記負極活物質薄膜の表面近傍を除いた前記負極活物質薄膜中の深さ方向の酸素濃度分布が略一定と見なせる部分における酸素濃度をOC、酸素濃度が前記ピーク値OP2をとる位置D2の近傍において前記位置D2を深さ方向において挟む、酸素濃度が{(OP2−OC)/2}+OCである位置をD3,D4、前記位置D3と前記位置D4との深さ方向における距離をT2としたとき、T2≦5nmであることを特徴とする。 The third lithium ion secondary battery of the present invention is a lithium ion secondary battery in which a negative electrode active material thin film containing silicon as a main component is formed on a current collector via a base layer, the base layer The negative active material thin film excluding the peak value of the oxygen concentration in the vicinity of the interface between the negative electrode active material thin film and O P2 , the vicinity of the interface between the underlayer and the negative active material thin film, and the vicinity of the surface of the negative active material thin film The oxygen concentration in the portion where the oxygen concentration distribution in the depth direction is regarded as substantially constant is O C , and the position D 2 is sandwiched in the depth direction in the vicinity of the position D 2 where the oxygen concentration takes the peak value OP 2. when the concentration is {(O P2 -O C) / 2} + O C a is position D 3, D 4, the distance in the depth direction of the position D 3 and the position D 4 was T 2, T 2 ≦ 5 nm.

2≦5nm、即ち、下地層と負極活物質薄膜との界面近傍における酸化層の厚みが薄いので、リチウムイオンの移動や電子の移動(集電)が容易となり、サイクル特性が向上する。また、界面近傍における酸化層の厚みが薄いことにより、充放電による負極活物質薄膜の膨張/収縮に対する界面近傍における脆性が改善されるので、サイクル特性が向上する。 Since T 2 ≦ 5 nm, that is, the thickness of the oxide layer in the vicinity of the interface between the underlayer and the negative electrode active material thin film is thin, the movement of lithium ions and the movement of electrons (current collection) are facilitated, and the cycle characteristics are improved. In addition, since the thickness of the oxide layer in the vicinity of the interface is thin, the brittleness in the vicinity of the interface against the expansion / contraction of the negative electrode active material thin film due to charge / discharge is improved, so that the cycle characteristics are improved.

下地層と負極活物質薄膜との界面近傍における酸化層を薄くする製造方法としては、表面に下地層が形成された集電体の前記下地層の表面を還元雰囲気でプラズマ処理した後に、前記プラズマ処理された前記下地層の表面にシリコンを主成分として含む負極活物質薄膜を形成することが有効である。   As a manufacturing method for thinning the oxide layer in the vicinity of the interface between the underlayer and the negative electrode active material thin film, the surface of the underlayer of the current collector having the underlayer formed on the surface is subjected to plasma treatment in a reducing atmosphere, and then the plasma It is effective to form a negative electrode active material thin film containing silicon as a main component on the surface of the treated underlayer.

本発明の第4のリチウムイオン二次電池は、集電体上に直接あるいは下地層を介して、シリコンを主成分として含む負極活物質薄膜が形成されたリチウムイオン二次電池であって、前記集電体又は前記下地層と前記負極活物質薄膜との界面近傍及び前記負極活物質薄膜の表面近傍を除く前記負極活物質薄膜中において、深さ方向の酸素濃度分布が略一定と見なせる部分における酸素濃度をOC、深さ方向のシリコン濃度分布が略一定と見なせる部分におけるシリコン濃度をSCとしたとき、(OC/SC)×100≦0.5%である。 A fourth lithium ion secondary battery of the present invention is a lithium ion secondary battery in which a negative electrode active material thin film containing silicon as a main component is formed on a current collector directly or through an underlayer, In the negative electrode active material thin film except for the vicinity of the interface between the current collector or the base layer and the negative electrode active material thin film and the vicinity of the surface of the negative electrode active material thin film, the oxygen concentration distribution in the depth direction can be regarded as substantially constant oxygen concentration O C, when the silicon concentration distribution in the depth direction is the silicon concentration in the portion which can be regarded as approximately constant and S C, a (O C / S C) × 100 ≦ 0.5%.

(OC/SC)×100≦0.5%、即ち、集電体又は下地層と負極活物質薄膜との界面近傍及び負極活物質薄膜の表面近傍を除く負極活物質薄膜中の酸素濃度が低いので、リチウムイオン及び電子の移動が容易となり、サイクル特性が向上する。 (O C / S C ) × 100 ≦ 0.5%, that is, oxygen concentration in the negative electrode active material thin film excluding the vicinity of the interface between the current collector or the underlayer and the negative electrode active material thin film and the surface of the negative electrode active material thin film Therefore, the movement of lithium ions and electrons is facilitated, and the cycle characteristics are improved.

集電体又は下地層と負極活物質薄膜との界面近傍及び負極活物質薄膜の表面近傍を除く負極活物質薄膜中の酸素濃度を低くする製造方法としては、集電体上に直接あるいは下地層を介して、還元雰囲気でシリコンを主成分として含む負極活物質薄膜を形成することが有効である。   As a manufacturing method for reducing the oxygen concentration in the negative electrode active material thin film excluding the vicinity of the interface between the current collector or the base layer and the negative electrode active material thin film and the vicinity of the surface of the negative electrode active material thin film, Thus, it is effective to form a negative electrode active material thin film containing silicon as a main component in a reducing atmosphere.

本発明において、負極活物質薄膜はシリコンを主成分として含む。「シリコンを主成分として含む」とは、シリコンの含有量が50at%以上であることを意味し、望ましくは70at%以上、更に望ましくは80at%以上、最も望ましくは90at%以上である。シリコン含有量が高いほど電池容量を向上できる。   In the present invention, the negative electrode active material thin film contains silicon as a main component. “Containing silicon as a main component” means that the silicon content is 50 at% or more, desirably 70 at% or more, more desirably 80 at% or more, and most desirably 90 at% or more. The higher the silicon content, the better the battery capacity.

負極活物質薄膜の製造方法は、特に制限はないが、真空成膜法が好ましい。「真空成膜法」とは、蒸着法、スパッタ法、CVD法、イオンプレーティング法、レーザーアブレーション法などの各種真空薄膜製造プロセスを含む。薄膜の種類に応じて最適な成膜法を選択することができる。真空成膜法により薄い負極活物質薄膜を効率よく製造できる。その結果、小型薄型のリチウムイオン二次電池が得られる。 Although the manufacturing method of a negative electrode active material thin film does not have a restriction | limiting in particular, A vacuum film-forming method is preferable. The “vacuum film forming method” includes various vacuum thin film manufacturing processes such as a vapor deposition method, a sputtering method, a CVD method, an ion plating method, and a laser ablation method. An optimum film formation method can be selected according to the type of the thin film. A thin negative electrode active material thin film can be efficiently produced by a vacuum film formation method. As a result, a small and thin lithium ion secondary battery can be obtained.

以下、図面を参照しながら本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明の一実施形態にかかるリチウムイオン二次電池は、両面に正極活物質が形成された正極集電体と、セパレータと、両面に負極活物質が形成された負極集電体とを、正極集電体と負極集電体との間にセパレータが介在するようにして巻回した円筒状巻回物を電池缶に収め、この電池缶を電解液で満たしてなる。 A lithium ion secondary battery according to an embodiment of the present invention includes a positive electrode current collector having a positive electrode active material formed on both sides, a separator, and a negative electrode current collector having a negative electrode active material formed on both sides. A cylindrical roll wound with a separator interposed between the current collector and the negative electrode current collector is housed in a battery can, and the battery can is filled with an electrolytic solution.

正極集電体としては、Al、Cu、Ni、ステンレススチールの厚さ10〜80μmの箔、網などを用いることが出来る。あるいは、表面に金属薄膜が形成されたポリエチレンテレフタレート、ポリエチレンナフタレートなどの高分子基板を用いることも出来る。   As the positive electrode current collector, Al, Cu, Ni, stainless steel foil or net having a thickness of 10 to 80 μm can be used. Alternatively, a polymer substrate such as polyethylene terephthalate or polyethylene naphthalate having a metal thin film formed on the surface can be used.

正極活物質はリチウムイオンの出入が出来ることが必要であり、Co、Ni、Mo、Ti、Mn、Vなどの遷移金属を含むリチウム含有遷移金属酸化物や、これにアセチレンブラックなどの導電性補助剤とニトリルゴム、ブチルゴム、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどの結着剤とを混合した混合ペーストを用いることも出来る。   The positive electrode active material needs to be able to enter and exit lithium ions, and includes lithium-containing transition metal oxides including transition metals such as Co, Ni, Mo, Ti, Mn, and V, and conductivity aids such as acetylene black. It is also possible to use a mixed paste in which an agent and a binder such as nitrile rubber, butyl rubber, polytetrafluoroethylene, and polyvinylidene fluoride are mixed.

負極集電体としては、Cu、Ni、ステンレススチールの厚さ10〜80μmの箔、網などを用いることが出来る。あるいは、表面に金属薄膜が形成されたポリエチレンテレフタレート、ポリエチレンナフタレートなどの高分子基板を用いることも出来る。   As the negative electrode current collector, a foil, net, or the like of Cu, Ni, stainless steel having a thickness of 10 to 80 μm can be used. Alternatively, a polymer substrate such as polyethylene terephthalate or polyethylene naphthalate having a metal thin film formed on the surface can be used.

負極集電体の表面には下地層が形成(表面処理)されていてもよい。下地層としては、例えば、集電体と負極活物質薄膜との間の接着力強化や防錆処理などを目的とする層であってもよく、具体的には、例えばシリコン−銅薄膜やクロメート処理層などを用いることが出来る。あるいは、負極集電体として銅箔を用いる場合には、亜鉛メッキ、スズ、銅、ニッケル、若しくはコバルトと亜鉛との合金メッキ、ベンゾトリアゾールなどのアゾール誘導体を用いた被覆層、クロム酸若しくは二クロム酸塩を含む溶液などによるクロム含有被膜、またはこれらの組み合わせを用いることが出来る。負極集電体として、銅箔に代えて、他の基材の表面に銅被覆を施したものを用いることも出来、この場合には、この銅被覆の表面に上記の下地層を形成してもよい。   An underlayer may be formed (surface treatment) on the surface of the negative electrode current collector. The underlayer may be, for example, a layer for the purpose of strengthening the adhesion between the current collector and the negative electrode active material thin film or for preventing rust, and specifically, for example, a silicon-copper thin film or a chromate. A treatment layer or the like can be used. Alternatively, when copper foil is used as the negative electrode current collector, zinc plating, tin, copper, nickel, or alloy plating of cobalt and zinc, a coating layer using an azole derivative such as benzotriazole, chromic acid or dichrome A chromium-containing film by a solution containing an acid salt or a combination thereof can be used. As the negative electrode current collector, instead of copper foil, it is also possible to use a surface of another base material coated with copper. In this case, the above underlayer is formed on the surface of the copper coating. Also good.

セパレーターは機械的強度とイオン透過性とに優れることが好ましく、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデンなどを用いることが出来る。セパレーターの孔径は例えば0.01〜10μmであり、その厚さは例えば5〜200μmである。   The separator is preferably excellent in mechanical strength and ion permeability, and polyethylene, polypropylene, polyvinylidene fluoride, and the like can be used. The pore diameter of the separator is, for example, 0.01 to 10 μm, and the thickness thereof is, for example, 5 to 200 μm.

電解液としては、エチレンカーボネート、プロピレンカーボネート、メチルエチルカーボネート、6フッ化メチルアセテート、又はテトロヒドロフラン等の溶媒に、LiPF6、LiBF4、LiClO4などの電解質塩を溶解させた溶液を用いることが出来る。 As an electrolytic solution, a solution in which an electrolyte salt such as LiPF 6 , LiBF 4 , or LiClO 4 is dissolved in a solvent such as ethylene carbonate, propylene carbonate, methyl ethyl carbonate, hexafluoromethyl acetate, or tetrohydrofuran is used. I can do it.

電池缶としては、ステンレススチール、鉄、アルミニウム、ニッケルメッキスチールなどの金属材料を用いることができるが、電池用途に応じてプラスチック材料を用いることもできる。   As the battery can, a metal material such as stainless steel, iron, aluminum, or nickel-plated steel can be used, but a plastic material can also be used depending on the battery application.

負極活物質は、シリコンを主成分とするシリコン薄膜である。シリコン薄膜はアモルファスまたは微結晶であることが好ましく、スパッタリング法、蒸着法、CVD法をはじめとする真空成膜法で形成することができる。   The negative electrode active material is a silicon thin film containing silicon as a main component. The silicon thin film is preferably amorphous or microcrystalline, and can be formed by a vacuum film formation method such as sputtering, vapor deposition, or CVD.

参考例1〜8、比較例1]
まず、正極の作製方法を述べる。Li2CO3とCoCO3とを所定のモル比で混合し、大気中において900℃で加熱することによって合成してLiCoO2を得た。これを100メッシュ以下に分級して正極活物質を得た。この正極活物質100g、導電剤として炭素粉末12g、結着剤としてポリ4フッ化エチレンディスパージョン10g、及び純水を混ぜ合わせてペースト状にした。この正極活物質含有ペーストを、正極集電体としての厚さ25μmの帯状のアルミニウム箔の両面に塗布し、乾燥して正極を得た。
[ Reference Examples 1 to 8, Comparative Example 1]
First, a method for manufacturing a positive electrode will be described. Li 2 CO 3 and CoCO 3 were mixed at a predetermined molar ratio and synthesized by heating at 900 ° C. in the atmosphere to obtain LiCoO 2 . This was classified to 100 mesh or less to obtain a positive electrode active material. 100 g of this positive electrode active material, 12 g of carbon powder as a conductive agent, 10 g of polytetrafluoroethylene dispersion as a binder, and pure water were mixed to form a paste. This positive electrode active material-containing paste was applied to both sides of a strip-shaped aluminum foil having a thickness of 25 μm as a positive electrode current collector and dried to obtain a positive electrode.

負極集電体として厚さ30μmの帯状の銅箔を用い、その両面に負極活物質としてシリコン薄膜をスパッタリング法により形成した。詳細は後述する。   A strip-shaped copper foil having a thickness of 30 μm was used as the negative electrode current collector, and a silicon thin film was formed as a negative electrode active material on both surfaces by sputtering. Details will be described later.

セパレータとして、厚さ35μmで、正極集電体及び負極集電体よりも広幅の帯状の多孔性ポリエチレンを用いた。   As the separator, a belt-shaped porous polyethylene having a thickness of 35 μm and wider than the positive electrode current collector and the negative electrode current collector was used.

正極集電体にこれと同材質の正極リードをスポット溶接にて取り付けた。また、負極集電体にこれと同材質の負極リードをスポット溶接にて取り付けた。   A positive electrode lead made of the same material was attached to the positive electrode current collector by spot welding. Further, a negative electrode lead made of the same material as the negative electrode current collector was attached by spot welding.

上記によって得た正極と負極との間にセパレータが介在するようにこれらを重ね合わせて渦巻き状に巻回した。この円筒状巻回物の上下面に、ポリプロピレン製の絶縁板をそれぞれ配して有底の円筒状電池缶内に収納し、電池缶の開口近傍に段部を形成した後、非水電解液として、LiPF6を濃度1×103モル/m3で溶解したエチレンカーボネートとジエチルカーボネートの等比体積混合溶液を電池缶に注入し、封口板で開口を密閉してリチウムイオン二次電池を得た。 These were overlapped so that a separator was interposed between the positive electrode and the negative electrode obtained as described above, and wound in a spiral shape. Polypropylene insulation plates are arranged on the upper and lower surfaces of this cylindrical wound product, respectively, and housed in a bottomed cylindrical battery can, and a step is formed in the vicinity of the opening of the battery can. Then, an equal volume mixed solution of ethylene carbonate and diethyl carbonate in which LiPF 6 was dissolved at a concentration of 1 × 10 3 mol / m 3 was poured into a battery can, and the opening was sealed with a sealing plate to obtain a lithium ion secondary battery. It was.

負極活物質としてのシリコン薄膜の形成方法を説明する。   A method for forming a silicon thin film as a negative electrode active material will be described.

シリコン薄膜の形成に先立ち、帯状の銅箔からなる負極集電体に対して図1に示すプラズマ処理装置50を用いてプラズマ処理を行った。真空ポンプ59により減圧された真空槽51内で、負極集電体5は、巻き出しロール52から巻き出され、複数の搬送ロール54で搬送されて巻き取りロール53に巻き取られる。この過程で、負極集電体5はプラズマ発生装置55内を通過する。プラズマ発生装置55は13.56MHzの高周波プラズマを発生し、これにガス導入管56によりアルゴンガスと水素ガスとが導入される。負極集電体5は、プラズマ発生装置55内を通過する際に、還元ガス雰囲気下でのプラズマの照射を受けて還元プラズマ処理される。プラズマ発生装置55へのアルゴンガスの導入量は0.07Pa・m3/sとし、還元ガスとしての水素ガスの導入量は0Pa・m3/s(導入無し)、0.009Pa・m3/s、0.09Pa・m3/sの3通りとした。 Prior to the formation of the silicon thin film, the negative electrode current collector made of a strip-shaped copper foil was subjected to plasma processing using the plasma processing apparatus 50 shown in FIG. In the vacuum chamber 51 depressurized by the vacuum pump 59, the negative electrode current collector 5 is unwound from the unwinding roll 52, transported by the plurality of transporting rolls 54, and wound around the winding roll 53. In this process, the negative electrode current collector 5 passes through the plasma generator 55. The plasma generator 55 generates high frequency plasma of 13.56 MHz, and argon gas and hydrogen gas are introduced into the high frequency plasma by a gas introduction pipe 56. When the negative electrode current collector 5 passes through the plasma generator 55, the negative electrode current collector 5 is subjected to reduction plasma treatment by being irradiated with plasma in a reducing gas atmosphere. The amount of argon gas introduced into the plasma generator 55 is 0.07 Pa · m 3 / s, and the amount of hydrogen gas as the reducing gas is 0 Pa · m 3 / s (no introduction), 0.009 Pa · m 3 / s. s, 0.09 Pa · m 3 / s.

プラズマ処理した負極集電体5に対して図2の真空成膜装置10を用いて負極集電体としてのシリコン薄膜をスパッタ法により形成した。   A silicon thin film as a negative electrode current collector was formed by sputtering on the plasma-treated negative electrode current collector 5 using the vacuum film forming apparatus 10 of FIG.

図2に示す真空成膜装置10は、隔壁1aにより上下に仕切られた真空槽1を備える。隔壁1aより上側の部屋(搬送室)1bには、捲き出しロール11,円筒状のキャンロール13,捲き取りロール14,搬送ロール12a,12bが配置される。隔壁1aより下側の部屋(薄膜形成室)1cには、スパッタ成膜源21、ガス導入ノズル23a,23bが配置されている。隔壁1aの中央部にはマスク4が設けられ、マスク4の開口を介してキャンロール13の下面が薄膜形成室1c側に露出している。真空槽1内は、真空ポンプ16により所定の真空度に維持される。   A vacuum film forming apparatus 10 shown in FIG. 2 includes a vacuum chamber 1 that is partitioned vertically by a partition wall 1a. In a room (conveying chamber) 1b above the partition wall 1a, a separating roll 11, a cylindrical can roll 13, a separating roll 14, and conveying rolls 12a and 12b are arranged. A sputter deposition source 21 and gas introduction nozzles 23a and 23b are disposed in a room (thin film formation chamber) 1c below the partition wall 1a. A mask 4 is provided at the center of the partition wall 1a, and the lower surface of the can roll 13 is exposed to the thin film formation chamber 1c through the opening of the mask 4. The inside of the vacuum chamber 1 is maintained at a predetermined degree of vacuum by a vacuum pump 16.

捲き出しロール11から捲き出された帯状の負極集電体5は、搬送ロール12a、キャンロール13、搬送ロール12bによって順に搬送され、捲き取りロール14に捲き取られる。この過程で、スパッタ成膜源21から生成された原子、分子、又はクラスタなどの粒子(以下、「スパッタ粒子」という)が隔壁1aのマスク4を通過して、キャンロール13上を走行している負極集電体5の表面上に付着して薄膜6を形成する。この際、ガス導入ノズル23a,23bより負極集電体5のスパッタ粒子の被付着領域に向けて還元ガスが導入される。   The strip-shaped negative electrode current collector 5 squeezed out from the scooping roll 11 is sequentially transported by the transporting roll 12 a, the can roll 13, and the transporting roll 12 b, and scraped off by the scooping roll 14. In this process, particles such as atoms, molecules, or clusters (hereinafter referred to as “sputtered particles”) generated from the sputter deposition source 21 pass through the mask 4 of the partition wall 1 a and travel on the can roll 13. A thin film 6 is formed by adhering to the surface of the negative electrode current collector 5. At this time, the reducing gas is introduced from the gas introduction nozzles 23a and 23b toward the area where the sputter particles of the negative electrode current collector 5 are attached.

このような装置を用いて、スパッタ成膜源21においてアルゴンイオンによりシリコンをスパッタして、負極集電体5としての銅箔上に厚さ4μmのシリコン薄膜を形成した。シリコン薄膜の堆積速度を概ね2nm/sに設定した。スパッタ成膜源21として直流マグネトロンスパッタを使用した。アルゴンガス導入前の真空度は3×10-4Pa、アルゴンガス導入後の真空度を4×10-2Paとした。ガス導入ノズル23a,23bからの還元ガスとしての水素ガスの導入量は0Pa・m3/s(導入無し)、0.003Pa・m3/s、0.009Pa・m3/sの3通りとした。 Using such an apparatus, silicon was sputtered by argon ions in the sputter deposition source 21 to form a 4 μm thick silicon thin film on the copper foil as the negative electrode current collector 5. The deposition rate of the silicon thin film was set to approximately 2 nm / s. A direct current magnetron sputtering was used as the sputtering film forming source 21. The degree of vacuum before introducing the argon gas was 3 × 10 −4 Pa, and the degree of vacuum after introducing the argon gas was 4 × 10 −2 Pa. Gas injection nozzle 23a, the introduction amount of 0Pa · m 3 / s (without the introduction) of hydrogen gas as a reducing gas from 23b, a three ways 0.003Pa · m 3 /s,0.009Pa · m 3 / s did.

上述のように、負極集電体5に対するプラズマ処理における水素ガス導入量を3通りに変え、シリコン薄膜形成時の水素ガス導入量を3通りに変えて、合計9種類のリチウムイオン二次電池を作製した(参考例1〜8,比較例1)。 As described above, the amount of hydrogen gas introduced in the plasma treatment for the negative electrode current collector 5 is changed to three ways, and the amount of hydrogen gas introduced during the formation of the silicon thin film is changed to three ways. It produced ( Reference Examples 1-8, Comparative Example 1).

得られたリチウムイオン二次電池に対し、試験温度20℃、充放電電流3mA/cm2、充放電電圧範囲4.2V〜2.5Vで充放電サイクル試験を行った。初回放電容量に対する200サイクル後の放電容量の割合を電池容量維持率(サイクル特性)として求めた。結果を表1に示す。 The resulting lithium ion secondary battery was subjected to a charge / discharge cycle test at a test temperature of 20 ° C., a charge / discharge current of 3 mA / cm 2 , and a charge / discharge voltage range of 4.2 V to 2.5 V. The ratio of the discharge capacity after 200 cycles to the initial discharge capacity was determined as the battery capacity retention rate (cycle characteristics). The results are shown in Table 1.

Figure 0004526806
シリコン薄膜(負極活物質薄膜)が形成された負極集電体5のオージェデプスプロファイルを測定し、プラズマ処理やシリコン薄膜の成膜中の還元ガス導入がシリコン薄膜に及ぼす化学的影響を調べた。オージェデプスプロファイルは、フィリップス社製のSAM670を用いて測定した。電子銃の加速電圧を10kV、照射電流10nAとし、エッチング用のイオンガンの加速電圧3kV、スパッタレート0.17nm/sにて測定した。
Figure 0004526806
The Auger depth profile of the negative electrode current collector 5 on which a silicon thin film (negative electrode active material thin film) was formed was measured, and the chemical effect of plasma treatment and introduction of a reducing gas during the formation of the silicon thin film on the silicon thin film was investigated. The Auger depth profile was measured using a SAM670 manufactured by Philips. The acceleration voltage of the electron gun was 10 kV, the irradiation current was 10 nA, and the measurement was performed with the acceleration voltage of the ion gun for etching being 3 kV and the sputtering rate of 0.17 nm / s.

図3はオージェデプスプロファイルの一例を示した模式図である。図の横軸の「膜表面からの深さ」は、サンプルと同一のSi膜とCu膜をスパッタエッチングして形成された段差を段差計で測定して得たスパッタレートを用いて、サンプルのスパッタエッチング時間を厚さ方向のエッチング深さに換算して得た。縦軸の「オージェ信号強度」は、各元素ごとに、最大値を1として規格化して表示している。   FIG. 3 is a schematic diagram showing an example of an Auger depth profile. The “depth from the film surface” on the horizontal axis in the figure is the same as the sample, using the sputter rate obtained by measuring the step formed by sputter etching of the same Si film and Cu film with the step meter. The sputter etching time was obtained by converting into the etching depth in the thickness direction. The “Auger signal intensity” on the vertical axis is normalized and displayed with a maximum value of 1 for each element.

シリコン薄膜(負極活物質薄膜)中の深さ方向における酸素濃度分布は、図3に示すように、シリコン薄膜の表面近傍及びシリコン薄膜と負極集電体(銅箔)との界面近傍においてピークとなり、この間の部分ではこれより少なくほぼ一定値をとる。シリコン薄膜の表面近傍での酸素濃度のピーク値はシリコン薄膜と負極集電体との界面近傍での酸素濃度のピーク値よりも大きい。なお、図示していないが、負極集電体に上述の下地層を形成した場合には、シリコン薄膜と下地層との界面近傍において酸素分布がピークとなる以外は、図3と同様の酸素濃度分布となることを確認した。   As shown in FIG. 3, the oxygen concentration distribution in the depth direction in the silicon thin film (negative electrode active material thin film) has a peak near the surface of the silicon thin film and near the interface between the silicon thin film and the negative electrode current collector (copper foil). In this part, it takes a substantially constant value less than this. The peak value of the oxygen concentration near the surface of the silicon thin film is larger than the peak value of the oxygen concentration near the interface between the silicon thin film and the negative electrode current collector. Although not shown, when the above-described underlayer is formed on the negative electrode current collector, the oxygen concentration is the same as in FIG. 3 except that the oxygen distribution has a peak near the interface between the silicon thin film and the underlayer. The distribution was confirmed.

このような酸素分布を定量的に表現するために、図3に示すように、T1、T2、Rという指標を以下のように定義する。 In order to express such an oxygen distribution quantitatively, as shown in FIG. 3, indices T 1 , T 2 , and R are defined as follows.

シリコン薄膜の表面近傍における酸素濃度のピーク値をOP1、負極集電体5(下地層が形成されている場合は下地層)とシリコン薄膜との界面近傍における酸素濃度のピーク値をOP2、酸素濃度がピーク値OP2をとる位置をD2、負極集電体5(下地層が形成されている場合は下地層)とシリコン薄膜との界面近傍及びシリコン薄膜の表面近傍を除いたシリコン薄膜中の深さ方向の酸素濃度分布が略一定と見なせる部分における酸素濃度をOCとする。 The peak value of the oxygen concentration in the vicinity of the surface of the silicon thin film is O P1 , and the peak value of the oxygen concentration in the vicinity of the interface between the negative electrode current collector 5 (the base layer when the base layer is formed) and the silicon thin film is O P2 , The position where the oxygen concentration takes the peak value O P2 is D 2 , and the silicon thin film excluding the vicinity of the interface between the negative electrode current collector 5 (underlayer when a base layer is formed) and the silicon thin film and the vicinity of the surface of the silicon thin film Let O C be the oxygen concentration in a portion where the oxygen concentration distribution in the depth direction in the inside can be regarded as substantially constant.

そして、シリコン薄膜の表面近傍において、酸素濃度がピーク値OP1から一定値OCに減少する過程において、酸素濃度が{(OP1−OC)/2}+OCになる位置をD1、この位置D1のシリコン薄膜の表面(深さ=0)からの深さをT1とする。このT1はシリコン薄膜の表面近傍での酸化層の厚みを示す指標である。 In the vicinity of the surface of the silicon thin film, the position where the oxygen concentration becomes {(O P1 −O C ) / 2} + O C in the process of decreasing the oxygen concentration from the peak value O P1 to the constant value O C is D 1 , The depth from the surface (depth = 0) of the silicon thin film at position D 1 is T 1 . This T 1 is an index indicating the thickness of the oxide layer in the vicinity of the surface of the silicon thin film.

また、位置D2に対して深さ方向の両側において酸素濃度がピーク値OP2から減少する
過程において、酸素濃度が{(OP2−OC)/2}+OCになる位置をD3,D4、この位置D3と位置D4との深さ方向における距離をT2とする。このT2はシリコン薄膜と負極集電体5(下地層が形成されている場合は下地層)との界面近傍での酸化層の厚みを示す指標である。
Further, in the process in which the oxygen concentration decreases from the peak value O P2 on both sides in the depth direction with respect to the position D 2 , the position where the oxygen concentration becomes {(O P2 −O C ) / 2} + O C is defined as D 3 , D 4 , and the distance between the position D 3 and the position D 4 in the depth direction is T 2 . This T 2 is an index indicating the thickness of the oxide layer in the vicinity of the interface between the silicon thin film and the negative electrode current collector 5 (underlayer when the underlayer is formed).

さらに、シリコン薄膜中において、深さ方向のシリコン濃度分布が略一定と見なせる部分におけるシリコン濃度をSCとしたとき、(OC/SC)×100をR(%)とする。このRはシリコン薄膜内部での酸化の程度を示す指標である。 Further, when the silicon concentration in the portion of the silicon thin film where the silicon concentration distribution in the depth direction can be regarded as substantially constant is S C , (O C / S C ) × 100 is R (%). This R is an index indicating the degree of oxidation inside the silicon thin film.

上記の参考例1〜8及び比較例1のシリコン薄膜について、上記のサイクル試験を行う前に、T2、Rを測定した。測定では、分析機器によるばらつきを防ぐ為に、SiO2をオージェデプスプロファイルで分析したときにOC/SC=2となるように測定結果を補正した。測定結果を成膜条件とともに表2に示す。 The silicon thin film in the above Reference Examples 1 to 8 and Comparative Example 1, before the cycle test described above to measure T 2, R. In the measurement, in order to prevent variation due to an analytical instrument, the measurement result was corrected so that O C / S C = 2 when SiO 2 was analyzed with an Auger depth profile. The measurement results are shown in Table 2 together with the film formation conditions.

Figure 0004526806
表2から分かるように、シリコン薄膜の形成に先立って還元雰囲気で負極集電体5に対してプラズマ処理を行うことによりT2すなわちシリコン薄膜と負極集電体5との界面近傍での酸化層が薄くなっていることが分かる。また、還元ガスを導入しながらシリコン薄膜を成膜することによりRすなわちシリコン薄膜内部の酸素含有量が低下していることが分かる。
Figure 0004526806
As can be seen from Table 2, by performing plasma treatment on the negative electrode current collector 5 in a reducing atmosphere prior to formation of the silicon thin film, T 2, that is, an oxide layer in the vicinity of the interface between the silicon thin film and the negative electrode current collector 5 is obtained. Can be seen to be thinner. In addition, it can be seen that R, that is, the oxygen content inside the silicon thin film is lowered by forming the silicon thin film while introducing the reducing gas.

表1及び表2より、電池容量維持率(サイクル特性)は、T2≦5nm及びR≦0.5%のうちの一方を満足する場合には良好な結果が得られており、両方を満足する場合には更に良好な結果が得られている。これは、以下の理由によると思われる。 From Table 1 and Table 2, when the battery capacity retention rate (cycle characteristic) satisfies one of T 2 ≦ 5 nm and R ≦ 0.5%, good results are obtained, and both are satisfied. In this case, a better result is obtained. This seems to be due to the following reasons.

シリコン薄膜と負極集電体5との界面近傍での酸化層の厚みの指標であるT2が小さいと、リチウムイオンの移動及び電子の移動(集電)が容易になるため、サイクル特性が向上したと考えられる。また、充放電時のシリコン粒子の膨張/収縮に対する耐性が向上する(界面近傍の脆性が改善する)ので、界面での両層の付着強度が向上するため、サイクル特性が向上したと考えられる。 When T 2, which is an index of the thickness of the oxide layer in the vicinity of the interface between the silicon thin film and the negative electrode current collector 5, is small, the movement of lithium ions and the movement of electrons (current collection) are facilitated, so the cycle characteristics are improved. It is thought that. Further, since the resistance to expansion / contraction of silicon particles during charge / discharge is improved (brittleness in the vicinity of the interface is improved), the adhesion strength of both layers at the interface is improved, and thus it is considered that the cycle characteristics are improved.

シリコン薄膜内部での酸化の程度を示す指標であるRが小さい、即ち、シリコン薄膜中の酸素(酸化物)が少ないと、リチウムイオン及び電子の移動が容易になるため、サイクル特性が向上したと考えられる。   When R, which is an index indicating the degree of oxidation inside the silicon thin film, is small, that is, when oxygen (oxide) in the silicon thin film is small, the movement of lithium ions and electrons is facilitated. Conceivable.

[実施例1,2,参考例9〜11,比較例2〜3]
まず、正極の作製方法を述べる。Li2CO3とCoCO3とを所定のモル比で混合し、大気中において900℃で加熱することによって合成してLiCoO2を得た。これを100メッシュ以下に分級して正極活物質を得た。この正極活物質100g、導電剤として炭素粉末12g、結着剤としてポリ4フッ化エチレンディスパージョン10g、及び純水を混ぜ合わせてペースト状にした。この正極活物質含有ペーストを、正極集電体としての厚さ25μmの帯状のアルミニウム箔の両面に塗布し、乾燥して正極を得た。
[Examples 1, 2, Reference Examples 9-11 , Comparative Examples 2-3]
First, a method for manufacturing a positive electrode will be described. Li 2 CO 3 and CoCO 3 were mixed at a predetermined molar ratio and synthesized by heating at 900 ° C. in the atmosphere to obtain LiCoO 2 . This was classified to 100 mesh or less to obtain a positive electrode active material. 100 g of this positive electrode active material, 12 g of carbon powder as a conductive agent, 10 g of polytetrafluoroethylene dispersion as a binder, and pure water were mixed to form a paste. This positive electrode active material-containing paste was applied to both sides of a strip-shaped aluminum foil having a thickness of 25 μm as a positive electrode current collector and dried to obtain a positive electrode.

負極集電体として厚さ30μmの帯状の銅箔を用い、その両面に負極活物質としてシリコン薄膜を蒸着法により形成した。詳細は後述する。一部の例では、銅箔の両表面に下地層としてクロメート処理層を形成した。   A strip-shaped copper foil having a thickness of 30 μm was used as a negative electrode current collector, and a silicon thin film was formed as a negative electrode active material on both surfaces thereof by vapor deposition. Details will be described later. In some examples, a chromate treatment layer was formed as an underlayer on both surfaces of the copper foil.

セパレータとして、厚さ35μmで、正極集電体及び負極集電体よりも広幅の帯状の多孔性ポリエチレンを用いた。   As the separator, a belt-shaped porous polyethylene having a thickness of 35 μm and wider than the positive electrode current collector and the negative electrode current collector was used.

正極集電体にこれと同材質の正極リードをスポット溶接にて取り付けた。また、負極集電体にこれと同材質の負極リードをスポット溶接にて取り付けた。   A positive electrode lead made of the same material was attached to the positive electrode current collector by spot welding. Further, a negative electrode lead made of the same material as the negative electrode current collector was attached by spot welding.

上記によって得た正極と負極との間にセパレータが介在するようにこれらを重ね合わせて渦巻き状に巻回した。この円筒状巻回物の上下面に、ポリプロピレン製の絶縁板をそれぞれ配して有底の円筒状電池缶内に収納し、電池缶の開口近傍に段部を形成した後、非水電解液として、LiPF6を濃度1×103モル/m3で溶解したエチレンカーボネートとジエチルカーボネートの等比体積混合溶液を電池缶に注入し、封口板で開口を密閉してリチウムイオン二次電池を得た。 These were overlapped so that a separator was interposed between the positive electrode and the negative electrode obtained as described above, and wound in a spiral shape. Polypropylene insulation plates are arranged on the upper and lower surfaces of this cylindrical wound product, respectively, and housed in a bottomed cylindrical battery can, and a step is formed in the vicinity of the opening of the battery can. Then, an equal volume mixed solution of ethylene carbonate and diethyl carbonate in which LiPF 6 was dissolved at a concentration of 1 × 10 3 mol / m 3 was poured into a battery can, and the opening was sealed with a sealing plate to obtain a lithium ion secondary battery. It was.

負極活物質としてのシリコン薄膜の形成方法を説明する。   A method for forming a silicon thin film as a negative electrode active material will be described.

シリコン薄膜の形成に先立ち、帯状の銅箔からなる負極集電体に対して図1に示すプラズマ処理装置50を用いてプラズマ処理を行った。プラズマ発生装置55にて100kHzの高周波プラズマを発生させ、これにガス導入管56によりアルゴンガスと水素ガスとを導入した。これを通過する負極集電体5は、還元ガス雰囲気下でプラズマの照射を受けて還元プラズマ処理される。プラズマ発生装置55へのアルゴンガスの導入量は0.14Pa・m3/sとし、還元ガスとしての水素ガスの導入量は0Pa・m3/s(導入無し)、0.07Pa・m3/sの2通りとした。クロメート処理層を形成した負極集電体5に対してもその表面にプラズマ処理を行った。 Prior to the formation of the silicon thin film, the negative electrode current collector made of a strip-shaped copper foil was subjected to plasma processing using the plasma processing apparatus 50 shown in FIG. A high frequency plasma of 100 kHz was generated by the plasma generator 55, and argon gas and hydrogen gas were introduced into the plasma through a gas introduction pipe 56. The negative electrode current collector 5 passing through this is subjected to a reduction plasma treatment by receiving plasma irradiation in a reducing gas atmosphere. The amount of argon gas introduced into the plasma generator 55 is 0.14 Pa · m 3 / s, and the amount of hydrogen gas as a reducing gas is 0 Pa · m 3 / s (no introduction), 0.07 Pa · m 3 / s. Two types of s were used. Plasma treatment was also performed on the surface of the negative electrode current collector 5 on which the chromate treatment layer was formed.

プラズマ処理した負極集電体5に対して図4の真空成膜装置10を用いて負極集電体としてのシリコン薄膜を蒸着法により形成した。   A silicon thin film serving as a negative electrode current collector was formed by vapor deposition on the plasma-treated negative electrode current collector 5 using the vacuum film forming apparatus 10 shown in FIG.

図4の装置では、薄膜形成室1cに、スパッタ成膜源21に代えて、蒸着源31、補助蒸着源32、及び遮蔽板35が配置されている点で図2の装置と異なる。図4において図2と同一の構成要素には同一の符号を付してそれらについての説明を省略する。   The apparatus of FIG. 4 differs from the apparatus of FIG. 2 in that a deposition source 31, an auxiliary deposition source 32, and a shielding plate 35 are disposed in the thin film formation chamber 1c instead of the sputter deposition source 21. 4, the same components as those in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted.

キャンロール13に沿って搬送される負極集電体5の走行方向に沿って、その上流側から下流側に向かって、蒸着源31、遮蔽板35、及び補助蒸着源32がこの順に配置されている。   The vapor deposition source 31, the shielding plate 35, and the auxiliary vapor deposition source 32 are arranged in this order from the upstream side to the downstream side along the traveling direction of the negative electrode current collector 5 conveyed along the can roll 13. Yes.

捲き出しロール11から捲き出された帯状の負極集電体5は、搬送ロール12a、キャンロール13、搬送ロール12bによって順に搬送され、捲き取りロール14に捲き取られる。この過程で、蒸着源31及び補助蒸着源32から生成された原子、分子、又はクラスタなどの粒子(以下、「蒸発粒子」という)が隔壁1aのマスク4を通過して、キャンロール13上を走行している負極集電体5の表面上に付着して薄膜6を形成する。負極集電体5に対向して、その搬送方向の上流側から下流側に向かって、蒸着源31及び補助蒸着源32が配置されている。蒸着源31からの蒸発粒子の一部と補助蒸着源32からの蒸発粒子の一部とが、キャンロール13の外周面の近傍にて相互に混ざり合うように、遮蔽板35のキャンロール13の外周面からの距離が調整されている。従って、負極集電体5の表面には、最初に蒸着源31から蒸発粒子が主として堆積し、その後、徐々に補助蒸着源32からの蒸発粒子の比率が増加し、最後には、蒸着源31からの蒸発粒子及び補助蒸着源32からの蒸発粒子が混合して堆積する。この際、蒸発源31を挟むように配置されたガス導入ノズル23a,23bより負極集電体5の蒸発粒子の被付着領域に向けて還元ガスが導入される。   The strip-shaped negative electrode current collector 5 squeezed out from the scooping roll 11 is sequentially transported by the transporting roll 12 a, the can roll 13, and the transporting roll 12 b, and scraped off by the scooping roll 14. In this process, particles such as atoms, molecules, or clusters (hereinafter referred to as “evaporated particles”) generated from the vapor deposition source 31 and the auxiliary vapor deposition source 32 pass through the mask 4 of the partition wall 1 a and pass over the can roll 13. A thin film 6 is formed by adhering to the surface of the traveling negative electrode current collector 5. The vapor deposition source 31 and the auxiliary vapor deposition source 32 are arranged facing the negative electrode current collector 5 from the upstream side to the downstream side in the transport direction. The can roll 13 of the shielding plate 35 is mixed so that a part of the evaporated particles from the deposition source 31 and a part of the evaporated particles from the auxiliary deposition source 32 are mixed in the vicinity of the outer peripheral surface of the can roll 13. The distance from the outer peripheral surface is adjusted. Accordingly, the evaporation particles are primarily deposited from the evaporation source 31 first on the surface of the negative electrode current collector 5, and thereafter, the ratio of the evaporation particles from the auxiliary evaporation source 32 gradually increases, and finally, the evaporation source 31. The evaporated particles from the auxiliary vapor source and the evaporated particles from the auxiliary vapor deposition source 32 are mixed and deposited. At this time, the reducing gas is introduced from the gas introduction nozzles 23 a and 23 b arranged so as to sandwich the evaporation source 31 toward the evaporated particle adhesion region of the negative electrode current collector 5.

このような装置を用いて、蒸発源31からシリコンを蒸発させて、負極集電体5としての銅箔上に厚さ8μmのシリコン薄膜を形成した。シリコン薄膜の堆積速度を概ね0.15μm/sに設定した。ガス導入前の真空度は5×10-3Paとした。ガス導入ノズル23a,23bからの還元ガスとしての水素ガスの導入量は0Pa・m3/s(導入無し)、0.09Pa・m3/sの2通りとした。一部の例では、シリコン蒸着の際に、補助蒸発源32からチタンを蒸着した。蒸着源31及び補助蒸着源32として電子ビーム蒸発源を使用した。 Using such an apparatus, silicon was evaporated from the evaporation source 31 to form a silicon thin film having a thickness of 8 μm on the copper foil as the negative electrode current collector 5. The deposition rate of the silicon thin film was set to approximately 0.15 μm / s. The degree of vacuum before gas introduction was 5 × 10 −3 Pa. The amount of hydrogen gas introduced as the reducing gas from the gas introduction nozzles 23a and 23b was set to two types of 0 Pa · m 3 / s (no introduction) and 0.09 Pa · m 3 / s. In some examples, titanium was deposited from the auxiliary evaporation source 32 during silicon deposition. An electron beam evaporation source was used as the evaporation source 31 and the auxiliary evaporation source 32.

負極集電体5に対するプラズマ処理時に水素ガス導入を行ったものに対して、シリコン薄膜形成時の水素ガス導入を有り/無しの2通りに変え、さらにプラズマ処理時及びシリコン薄膜形成時に水素ガス導入を行ったものに対してチタンの混合蒸着を有り/無しの2通りに変えて、リチウムイオン二次電池を作製した。また、シリコン薄膜形成時の水素ガス導入を行わないものに対して、負極集電体5のクロメート処理層が有り/無しの2通りに変えて、リチウムイオン二次電池を作製した。比較例として、プラズマ処理時及びシリコン薄膜形成時の両方で水素ガスを導入せず、チタンの混合蒸着も行わないものに対して、クロメート処理層が有り/無しの2通りに変えて、リチウムイオン二次電池を作製した。   Hydrogen gas was introduced at the time of plasma processing for the negative electrode current collector 5, and hydrogen gas introduction at the time of silicon thin film formation was changed to the presence / absence of the hydrogen gas introduction at the time of plasma treatment and silicon thin film formation. The lithium ion secondary battery was fabricated by changing the titanium vapor deposition to two with or without the mixed deposition. In addition, a lithium ion secondary battery was manufactured by changing to the case where the chromate treatment layer of the negative electrode current collector 5 was present or not with respect to the case where the hydrogen gas was not introduced when forming the silicon thin film. As a comparative example, lithium ion was changed to one with or without a chromate treatment layer for the case where hydrogen gas was not introduced both during the plasma treatment and during the formation of the silicon thin film and no titanium mixed vapor deposition was performed. A secondary battery was produced.

作製した各リチウムイオン二次電池について、試験温度20℃で、充放電電流3mA/cm2、充放電電圧範囲4.2V〜2.5Vで充放電サイクル試験を行った。初回放電容量に対する100サイクル後の放電容量の割合を電池容量維持率(サイクル特性)として求めた。表3に、結果を製造条件とともに示す。 About each produced lithium ion secondary battery, the charging / discharging cycle test was done by the test temperature of 20 degreeC, charging / discharging electric current of 3 mA / cm < 2 >, and the charging / discharging voltage range 4.2V-2.5V. The ratio of the discharge capacity after 100 cycles to the initial discharge capacity was determined as the battery capacity retention rate (cycle characteristics). Table 3 shows the results together with the production conditions.

Figure 0004526806
表3から分かるように、負極活物質薄膜として蒸着法でシリコン薄膜を形成する場合にも、シリコン薄膜の形成に先立って還元雰囲気で負極集電体5に対してプラズマ処理を行うことや、還元ガスを導入しながらシリコン薄膜を成膜することがサイクル特性に有効であることが分かった。
Figure 0004526806
As can be seen from Table 3, when a silicon thin film is formed as a negative electrode active material thin film by vapor deposition, plasma treatment is performed on the negative electrode current collector 5 in a reducing atmosphere prior to the formation of the silicon thin film, It was found that forming a silicon thin film while introducing gas is effective for cycle characteristics.

さらに、実施例、実施例で示されるように、シリコン薄膜の成膜期間の終了側でチタン蒸発粒子を堆積させることでサイクル特性が向上することが分かった。実施例、実施例ではシリコンと混合蒸着する材料としてチタンを用いたが、チタンの代わりにZr、La、Ce、Sc、Yを用いた場合にも同様の効果が得られた。 Furthermore, as shown in Example 1 and Example 2 , it was found that the cycle characteristics were improved by depositing titanium evaporated particles on the end side of the film formation period of the silicon thin film. In Example 1 and Example 2 , titanium was used as a material to be vapor-deposited with silicon, but the same effect was obtained when Zr, La, Ce, Sc, Y was used instead of titanium.

シリコン薄膜(負極活物質薄膜)が形成された負極集電体5のオージェデプスプロファイルを測定し、プラズマ処理やシリコン薄膜の成膜中の還元ガス導入、シリコン薄膜の表面へのチタンなどの材料の付与がシリコン薄膜に及ぼす化学的影響を調べた。 Auger depth profile of the silicon thin film (negative electrode active material thin film) anode current collector 5 which is formed is measured, the reducing gas introduced during film formation of the plasma treatment or a silicon thin film, of material such as titanium on the surface of the silicon thin film The chemical effect of application on silicon thin film was investigated.

蒸着法によりシリコン薄膜を形成する場合であっても、参考例1〜8の結果と同様に、シリコン薄膜の形成に先立つ還元雰囲気での負極集電体5に対するプラズマ処理や、シリコン薄膜の成膜中の還元ガス導入により、シリコン薄膜と負極集電体との界面近傍及びシリコン薄膜内部での酸素濃度が少なくなることを確認した。 Even when the silicon thin film is formed by the vapor deposition method, the plasma treatment for the negative electrode current collector 5 in the reducing atmosphere prior to the formation of the silicon thin film or the film formation of the silicon thin film is performed as in the results of Reference Examples 1 to 8. It was confirmed that the oxygen concentration in the vicinity of the interface between the silicon thin film and the negative electrode current collector and in the silicon thin film was reduced by introducing the reducing gas therein.

図5は参考例11、図6は実施例のシリコン薄膜の表面近傍でのオージェデプスプロファイルの模式図である。実施例ではシリコン薄膜の形成期間の終了側でチタンの混合蒸着を行ったことにより、シリコン薄膜の表面近傍にチタンが分布していることが分かる。 5 Reference Example 11, FIG 6 is a schematic diagram of the Auger depth profile in the vicinity of the surface of the silicon thin film of Example 2. In Example 2 , it can be seen that titanium was distributed in the vicinity of the surface of the silicon thin film by performing titanium mixed vapor deposition at the end of the formation period of the silicon thin film.

上述したシリコン薄膜の表面近傍での酸化層の厚みを示す指標であるT1を測定したところ、比較例2及び参考例9ではT1=40nmであったのに対し、参考例11ではT1=20nm、実施例ではT1=12nmであった。この結果から、シリコン薄膜の成膜中の還元ガス導入やシリコン薄膜の表面近傍へのチタンなどの材料の付与により、シリコン薄膜の表面近傍での酸化層の厚みの指標であるT1が減少することがわかった。そして、T1が小さいほどサイクル特性が向上している。この理由は、シリコン薄膜の表面近傍での酸化層の厚みの指標であるT1が小さい(即ち、酸素(酸化物)が少ない)と、リチウムイオンの移動が容易になるため、サイクル特性が向上したと考えられる。 When T 1 , which is an index indicating the thickness of the oxide layer in the vicinity of the surface of the silicon thin film, was measured, T 1 = 40 nm in Comparative Example 2 and Reference Example 9 , whereas T 1 in Reference Example 11 was measured. = 20 nm. In Example 2 , T 1 = 12 nm. From this result, T 1, which is an index of the thickness of the oxide layer near the surface of the silicon thin film, is reduced by introducing a reducing gas during film formation of the silicon thin film and applying a material such as titanium to the surface of the silicon thin film. I understood it. The cycle characteristics are improved as T 1 is smaller. The reason for this is that when T 1, which is an index of the thickness of the oxide layer near the surface of the silicon thin film, is small (that is, oxygen (oxide) is small), lithium ions can be easily transferred, so that cycle characteristics are improved. It is thought that.

上記の実施例及び参考例では、負極活物質薄膜(シリコン薄膜)をスパッタ法又は蒸着法により形成する例を示したが、本発明はこれに限定されず、CVD法をはじめとする他の真空成膜法を用いてもよく、その場合であっても同様の効果が得られる。 In the above examples and reference examples , an example in which a negative electrode active material thin film (silicon thin film) is formed by a sputtering method or a vapor deposition method is shown, but the present invention is not limited to this, and other vacuums such as a CVD method are used. A film forming method may be used, and even in this case, the same effect can be obtained.

本発明のリチウムイオン二次電池の利用分野は特に限定されないが、例えば薄型、軽量の小型携帯機器の次電池として利用することができる。 FIELD lithium ion secondary battery of the present invention is not particularly limited, for example, can be used thin, as a secondary battery of lightweight small portable devices.

極集電体に対するプラズマ処理装置の概略構成を示した断面図である。It is sectional drawing which showed schematic structure of the plasma processing apparatus with respect to a negative electrode collector. 本発明のリチウムイオン二次電池の製造に使用される装置の一例の概略構成を示した断面図である。It is sectional drawing which showed schematic structure of an example of the apparatus used for manufacture of the lithium ion secondary battery of this invention. シリコン薄膜が形成された負極集電体のオージェデプスプロファイルの一例を示した図である。It is the figure which showed an example of the Auger depth profile of the negative electrode electrical power collector in which the silicon thin film was formed. 本発明のリチウムイオン二次電池の製造に使用される装置の実施形態の概略構成を示した断面図である。It is sectional drawing which showed schematic structure of one Embodiment of the apparatus used for manufacture of the lithium ion secondary battery of this invention. 本発明の参考例11に係るリチウムイオン二次電池において、シリコン薄膜の表面近傍での厚み方向の元素分布図である。In the lithium ion secondary battery which concerns on the reference example 11 of this invention, it is the element distribution map of the thickness direction in the surface vicinity of the silicon thin film. 本発明の実施例に係るリチウムイオン二次電池において、シリコン薄膜の表面近傍での厚み方向の元素分布図である。In the lithium ion secondary battery which concerns on Example 2 of this invention, it is an element distribution map of the thickness direction in the surface vicinity of the silicon thin film.

1・・・真空槽
1a・・・隔壁
1b・・・搬送室
1c・・・薄膜形成室
4・・・・マスク
5・・・・負極集電体
6・・・・薄膜
10・・・真空成膜装置
11・・・巻き出しロール
12a,12b・・・搬送ロール
13・・・キャンロール
14・・・巻き取りロール
16・・・真空ポンプ
21・・・スパッタ成膜源
23a,23b・・・ガス導入ノズル
31・・・蒸着源
32・・・補助蒸着源
35・・・遮蔽板
50・・・プラズマ処理装置
51・・・真空槽
52・・・巻き出しロール
53・・・巻き取りロール
54・・・搬送ロール
55・・・プラズマ発生装置
56・・・ガス導入管
59・・・真空ポンプ
DESCRIPTION OF SYMBOLS 1 ... Vacuum chamber 1a ... Partition 1b ... Transfer chamber 1c ... Thin film formation chamber 4 ... Mask 5 ... Negative electrode collector 6 ... Thin film 10 ... Vacuum Deposition apparatus 11 ... Unwinding rolls 12a, 12b ... Conveying roll 13 ... Can roll 14 ... Winding roll 16 ... Vacuum pump 21 ... Sputter film forming sources 23a, 23b ... Gas introduction nozzle 31 ... deposition source 32 ... auxiliary deposition source 35 ... shielding plate 50 ... plasma treatment device 51 ... vacuum tank 52 ... unwinding roll 53 ... winding roll 54 ... Transport roll 55 ... Plasma generator 56 ... Gas introduction pipe 59 ... Vacuum pump

Claims (4)

集電体上に直接あるいは下地層を介して、負極活物質薄膜としてシリコンを主成分として含む非晶質シリコン薄膜を真空成膜法で形成する工程を有するリチウムイオン二次電池の製造方法において、前記工程は、
最初にシリコンからなる第1の蒸着源からの第1の蒸発粒子が主として堆積し、
その後、徐々に第2の蒸着源からの第2の蒸発粒子の比率を増加し、
最後に第1の蒸発粒子および第2の蒸発粒子を混合して堆積する工程であり、
前記第2の蒸発源は、Ti、Zr、La、Ce、Sc、及びYのいずれかである、リチウムイオン二次電池の製造方法。
In a method of manufacturing a lithium ion secondary battery, which has a step of forming an amorphous silicon thin film containing silicon as a main component as a negative electrode active material thin film by a vacuum film forming method directly on a current collector or through an underlayer, The process includes
First evaporating particles from a first evaporation source consisting of silicon primarily deposit,
Thereafter, gradually increase the ratio of the second evaporation particles from the second deposition source,
Finally, a step of mixing and depositing the first vaporized particles and the second vaporized particles,
The method for manufacturing a lithium ion secondary battery, wherein the second evaporation source is any one of Ti, Zr, La, Ce, Sc, and Y.
前記工程は、還元雰囲気で前記負極活物質薄膜を形成する請求項1に記載のリチウムイオン二次電池の製造方法。 Wherein The method for manufacturing a lithium ion secondary battery according to claim 1 to form the anode active material thin film in a reducing atmosphere. 集電体の表面を還元雰囲気でプラズマ処理した後に、前記プラズマ処理された前記集電体の表面に前記負極活物質薄膜を形成する請求項1に記載のリチウムイオン二次電池の製造方法。 2. The method of manufacturing a lithium ion secondary battery according to claim 1, wherein the negative electrode active material thin film is formed on the surface of the plasma-treated current collector after the surface of the current collector is plasma-treated in a reducing atmosphere. 表面に下地層が形成された集電体の前記下地層の表面を還元雰囲気でプラズマ処理した後に、前記プラズマ処理された前記下地層の表面に前記負極活物質薄膜を形成する請求項1に記載のリチウムイオン二次電池の製造方法。 The surface of the underlying layer of the current collector base layer formed on the surface after the plasma treatment in a reducing atmosphere, according to claim 1 to form the anode active material thin film to the plasma treated surface of the underlying layer Method for producing a lithium ion secondary battery.
JP2003403537A 2003-12-02 2003-12-02 Method for producing lithium ion secondary battery Expired - Fee Related JP4526806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003403537A JP4526806B2 (en) 2003-12-02 2003-12-02 Method for producing lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003403537A JP4526806B2 (en) 2003-12-02 2003-12-02 Method for producing lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2005166442A JP2005166442A (en) 2005-06-23
JP4526806B2 true JP4526806B2 (en) 2010-08-18

Family

ID=34726824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003403537A Expired - Fee Related JP4526806B2 (en) 2003-12-02 2003-12-02 Method for producing lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4526806B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4815777B2 (en) * 2004-10-05 2011-11-16 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2007165293A (en) * 2005-11-16 2007-06-28 Jfe Chemical Corp Lithium-ion secondary battery anode, its manufacturing method, and lithium-ion secondary battery
JP2007213825A (en) * 2006-02-07 2007-08-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, anode activator and anode of the same, as well as manufacturing method of nonaqueous electrolyte secondary battery, anode activator, and anode of the same
JP5859746B2 (en) * 2010-05-28 2016-02-16 株式会社半導体エネルギー研究所 Power storage device and manufacturing method thereof
KR101874935B1 (en) * 2010-06-30 2018-07-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Energy storage device and method for manufacturing the same
GB2551191B (en) * 2016-06-10 2020-01-15 Imperial Innovations Ltd Electrically conductive composite coating with azole corrosion inhibitor

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001029913A1 (en) * 1999-10-22 2001-04-26 Sanyo Electric Co., Ltd. Method for producing material for electrode for lithium cell
JP2001250540A (en) * 2000-03-06 2001-09-14 Sumitomo Metal Ind Ltd Negative electrode material for nonaqueous electrolyte secondary battery
JP2001297766A (en) * 2000-04-14 2001-10-26 Sumitomo Metal Ind Ltd Nonaqueous electrolyte secondary cell, negative electrode material of the same and manufacturing method of negative electrode material
JP2002075351A (en) * 2000-09-04 2002-03-15 Sumitomo Metal Ind Ltd Alloy powder for negative electrode of nonaqueous electrolyte secondary battery and method for manufacturing the alloy powder
JP2002157999A (en) * 2000-11-20 2002-05-31 Sanyo Electric Co Ltd Method of manufacturing electrode for secondary battery
JP2002190298A (en) * 2000-12-22 2002-07-05 Sanyo Electric Co Ltd Method for manufacturing electrode for secondary cell
JP2002237294A (en) * 2001-02-08 2002-08-23 Tokuyama Corp Negative electrode for lithium secondary battery
JP2002246017A (en) * 2001-02-19 2002-08-30 Sumitomo Metal Ind Ltd Negative electrode material for non-aqueous secondary battery and its producing method and negative electrode
JP2002289181A (en) * 2001-03-28 2002-10-04 Sanyo Electric Co Ltd Manufacturing method of lithium secondary battery electrode
JP2002313326A (en) * 2001-04-19 2002-10-25 Sanyo Electric Co Ltd Manufacturing method of lithium secondary battery
JP2003157896A (en) * 2001-11-21 2003-05-30 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2003162997A (en) * 2001-11-27 2003-06-06 Nec Corp Negative electrode for secondary battery and secondary battery using the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001029913A1 (en) * 1999-10-22 2001-04-26 Sanyo Electric Co., Ltd. Method for producing material for electrode for lithium cell
JP2001250540A (en) * 2000-03-06 2001-09-14 Sumitomo Metal Ind Ltd Negative electrode material for nonaqueous electrolyte secondary battery
JP2001297766A (en) * 2000-04-14 2001-10-26 Sumitomo Metal Ind Ltd Nonaqueous electrolyte secondary cell, negative electrode material of the same and manufacturing method of negative electrode material
JP2002075351A (en) * 2000-09-04 2002-03-15 Sumitomo Metal Ind Ltd Alloy powder for negative electrode of nonaqueous electrolyte secondary battery and method for manufacturing the alloy powder
JP2002157999A (en) * 2000-11-20 2002-05-31 Sanyo Electric Co Ltd Method of manufacturing electrode for secondary battery
JP2002190298A (en) * 2000-12-22 2002-07-05 Sanyo Electric Co Ltd Method for manufacturing electrode for secondary cell
JP2002237294A (en) * 2001-02-08 2002-08-23 Tokuyama Corp Negative electrode for lithium secondary battery
JP2002246017A (en) * 2001-02-19 2002-08-30 Sumitomo Metal Ind Ltd Negative electrode material for non-aqueous secondary battery and its producing method and negative electrode
JP2002289181A (en) * 2001-03-28 2002-10-04 Sanyo Electric Co Ltd Manufacturing method of lithium secondary battery electrode
JP2002313326A (en) * 2001-04-19 2002-10-25 Sanyo Electric Co Ltd Manufacturing method of lithium secondary battery
JP2003157896A (en) * 2001-11-21 2003-05-30 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2003162997A (en) * 2001-11-27 2003-06-06 Nec Corp Negative electrode for secondary battery and secondary battery using the same

Also Published As

Publication number Publication date
JP2005166442A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
JP4850405B2 (en) Lithium ion secondary battery and manufacturing method thereof
US7816032B2 (en) Energy device and method for producing the same
US20100143583A1 (en) Energy device and method for producing the same
JP2022544754A (en) Silicon composition material for use as a battery anode
CN110267913B (en) Passivation of lithium metal by two-dimensional materials for rechargeable batteries
JP4802570B2 (en) Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the same
US7781101B2 (en) Electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery comprising such electrode for nonaqueous electrolyte secondary battery
JP3913490B2 (en) Method for producing electrode for lithium secondary battery
JP4045270B2 (en) Energy device and manufacturing method thereof
JP2010153346A (en) Negative electrode material for lithium ion secondary battery, its manufacturing method, and lithium-ion secondary battery
JP2008077993A (en) Electrode and non-aqueous secondary battery
JP2005183364A5 (en)
JP5194483B2 (en) Non-aqueous electrolyte secondary battery silicon negative electrode current collector, non-aqueous electrolyte secondary battery silicon negative electrode and method for producing the same, and non-aqueous electrolyte secondary battery
JP2008293970A (en) Electrode for electrochemical element and method of manufacturing the same
JP4526825B2 (en) Energy device
JP5351618B2 (en) Negative electrode material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
JP4748970B2 (en) Energy device and manufacturing method thereof
CN113994503A (en) Protective interface for lithium ion battery anode
JP4526806B2 (en) Method for producing lithium ion secondary battery
JP4326162B2 (en) Method for manufacturing lithium secondary battery
JP5089276B2 (en) Energy device and manufacturing method thereof
WO2022259871A1 (en) Negative electrode for lithium-ion secondary battery, manufacturing method and manufacturing device therefor, and lithium-ion secondary battery
JP2007207663A (en) Method of manufacturing negative electrode of lithium-ion secondary battery, and lithium-ion secondary battery including negative electrode obtained using its method
JP2007299764A5 (en)
JP2007188877A (en) Electrode, its manufacturing method, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees