JP2001250540A - Negative electrode material for nonaqueous electrolyte secondary battery - Google Patents

Negative electrode material for nonaqueous electrolyte secondary battery

Info

Publication number
JP2001250540A
JP2001250540A JP2000059855A JP2000059855A JP2001250540A JP 2001250540 A JP2001250540 A JP 2001250540A JP 2000059855 A JP2000059855 A JP 2000059855A JP 2000059855 A JP2000059855 A JP 2000059855A JP 2001250540 A JP2001250540 A JP 2001250540A
Authority
JP
Japan
Prior art keywords
negative electrode
phase
electrode material
heat treatment
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000059855A
Other languages
Japanese (ja)
Other versions
JP3567843B2 (en
Inventor
Hideya Kaminaka
秀哉 上仲
Noriyuki Negi
教之 禰宜
Yukiteru Takeshita
幸輝 竹下
Motoharu Obika
基治 小比賀
Mitsuharu Yonemura
光治 米村
Yoshiaki Nitta
芳明 新田
Harunari Shimamura
治成 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Panasonic Holdings Corp
Original Assignee
Sumitomo Metal Industries Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Matsushita Electric Industrial Co Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000059855A priority Critical patent/JP3567843B2/en
Publication of JP2001250540A publication Critical patent/JP2001250540A/en
Application granted granted Critical
Publication of JP3567843B2 publication Critical patent/JP3567843B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an alloy powder as a negative electrode material for a nonaqueous electrolyte secondary battery, having a capacity higher than that of a conventional carbonaceous negative electrode material, and to provide an improved cycle life. SOLUTION: The alloy powder, containing a phase of an element (for example, Si) having Li storage ability and a phase consisting of an intermetallic compound of this element is produced in an oxygen concentration reduced atmosphere with quench coagulation method. If required, the alloy powder is subjected to heat treatment in one of the following conditions (1)-(3), so that the thickness of a surface oxidized layer is 5 nm or less and/or the atomic ratio of oxygen/element (a) in the most outside surface layer portion of the surface oxidized layer is 0.35 or less: (1) heat treatment in an inactive gas atmosphere at an oxygen concentration of 500 ppm or less, (2) heat treatment in a vacuum of 10 Pa or less, and (3) heat treatment in an inactive gas containing a 0.5 vol.% or more hydrogen gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Li等のアルカリ金
属を多量に吸蔵・放出することができる非水電解質二次
電池用の負極材料に関する。本発明でいう非水電解質二
次電池は、支持電解質を有機溶媒に溶解した非水電解質
および高分子電解質やゲル電解質等の非水電解質を用い
た電池を包含する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode material for a non-aqueous electrolyte secondary battery capable of inserting and extracting a large amount of an alkali metal such as Li. The non-aqueous electrolyte secondary battery referred to in the present invention includes a battery using a non-aqueous electrolyte in which a supporting electrolyte is dissolved in an organic solvent and a non-aqueous electrolyte such as a polymer electrolyte or a gel electrolyte.

【0002】[0002]

【従来の技術】携帯可能な小型の電気・電子機器の普及
と性能向上に伴い、リチウムイオン二次電池で代表され
る非水電解質二次電池の生産量は大きく伸びており、そ
の容量やサイクル寿命の向上が引き続き求められてい
る。
2. Description of the Related Art Production of non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries has greatly increased with the spread of portable and small-sized electric and electronic devices and the performance thereof. There is a continuing need for longer life.

【0003】現在の一般的な非水電解質二次電池では、
負極材料として主に炭素材が使用されている。しかし、
炭素材からなる負極では、LiC6の組成までしかLiを吸蔵
できないため、容量の理論的最大値は372 mAh/g と、金
属リチウムの場合の約1/10に過ぎず、電池容量の向上に
は限界がある。
[0003] In the current general non-aqueous electrolyte secondary battery,
A carbon material is mainly used as a negative electrode material. But,
In the negative electrode made of carbon material, because it can not absorb only Li until the composition of LiC 6, and theoretical maximum 372 mAh / g of capacity, only about 1/10 of the case of metallic lithium, the improvement of the battery capacity Has limitations.

【0004】負極材料として当初使用された金属リチウ
ムは、高容量を得ることができるものの、電池の充電・
放電を繰り返すとデンドライトが析出して短絡が発生す
るため、充電・放電のサイクル寿命が短く、実用的では
なかった。
[0004] Although lithium metal, which was initially used as a negative electrode material, can provide a high capacity, it does not charge or charge a battery.
When the discharge is repeated, dendrite is deposited and a short circuit occurs, so that the cycle life of charge / discharge is short, which is not practical.

【0005】高容量化を図るため、金属間化合物の形成
によりLiを可逆的に吸蔵・放出することができる、Alと
いった元素を負極材料に用いる提案もあったが、吸蔵・
放出に伴う体積変化により割れが生じ、微粉化する。そ
のため、この負極材料を用いた二次電池は、充電・放電
のサイクルが進むと急激に容量が低下し、サイクル寿命
が短いものになる。
To increase the capacity, there has been a proposal to use an element such as Al, which can reversibly occlude and release Li by forming an intermetallic compound, as a negative electrode material.
Cracks occur due to the volume change associated with the release, resulting in pulverization. Therefore, in a secondary battery using this negative electrode material, as the charge / discharge cycle progresses, the capacity rapidly decreases, and the cycle life becomes short.

【0006】この体積変化による負極材料の微粉化を防
止するため対策として、電極材料としてのAlにLi、Si、
B等を添加してAl材の格子定数を予め大きくすることが
提案された (特開平3−280363号公報) 。しかし、効果
が不十分で、サイクル寿命を十分に向上させることがで
きない。
As a countermeasure to prevent the negative electrode material from being pulverized due to the volume change, Al, Li, Si,
It has been proposed to add B or the like to increase the lattice constant of the Al material in advance (JP-A-3-280363). However, the effect is insufficient and the cycle life cannot be sufficiently improved.

【0007】また、珪化物の他の金属間化合物の格子間
にLiを吸蔵・放出させる提案もなされているが (特開平
7−240201号、同9−63651 号各公報等) 、何れも大き
な効果があるものではなかった。
[0007] In addition, although proposals have been made to occlude and release Li between lattices of other intermetallic compounds of silicides (JP-A-7-240201, JP-A-9-63651, etc.), all of them are large. It was not effective.

【0008】さらに、各種の非水電解質二次電池用負極
材料やその材料を備えた負極電極の提案はあっても、そ
の材料の性能を最もよく発揮させるための製造方法の提
案はなかった。
Further, although there have been proposals for various negative electrode materials for nonaqueous electrolyte secondary batteries and negative electrodes provided with the materials, there has been no proposal for a manufacturing method for maximizing the performance of the materials.

【0009】[0009]

【発明が解決しようとする課題】本発明は、Liを吸蔵・
放出する量が大きく、従って非水電解質二次電池の負極
材料として用いた場合の充電・放電容量が大きく、しか
も充電・放電を繰り返すことによる容量低下が少なく、
サイクル寿命に優れている、非水電解質二次電池用負極
材料を提供することを目的とする。本発明の別の目的
は、この負極材料からなる負極を備えた非水電解質二次
電池が最もよく性能を発揮するような負極材料の製造方
法を提供することである。
SUMMARY OF THE INVENTION The present invention relates to a method for storing and storing Li.
The amount released is large, so the charge / discharge capacity when used as a negative electrode material of a non-aqueous electrolyte secondary battery is large, and the capacity decrease due to repeated charge / discharge is small,
An object of the present invention is to provide a negative electrode material for a non-aqueous electrolyte secondary battery, which has an excellent cycle life. Another object of the present invention is to provide a method for producing a negative electrode material in which a nonaqueous electrolyte secondary battery provided with a negative electrode composed of the negative electrode material exhibits the best performance.

【0010】[0010]

【課題を解決するための手段】シリコン(Si)は、Liと可
逆的に化合・解離することによりLiを吸蔵・放出するこ
とができる。Siを非水電解質二次電池の負極材料に用い
た場合のSiの充電・放電容量は、理論的には4200 mAh/g
(9800 mAh/cc:比重2.33) もの大きさとなる。このSiの
理論最大容量は、現在実用化されている炭素材の理論最
大容量の372 mAh/g (844mAh/cc:比重2.27として) より
はるかに大きく、金属リチウムの理論最大容量の3900 m
Ah/g (2100 mAh/cc:比重0.53) と比較しても、電池の小
型化という観点から重要な単位体積あたりの放電容量で
は、Siの方が著しく大きくなる。従って、Siは高容量の
負極材料となりうる。
Means for Solving the Problems Silicon (Si) can occlude and release Li by reversibly combining and dissociating with Li. The theoretical charge / discharge capacity of Si when used as a negative electrode material for non-aqueous electrolyte secondary batteries is 4200 mAh / g
(9800 mAh / cc: specific gravity 2.33). The theoretical maximum capacity of this Si is much larger than the theoretical maximum capacity of carbon materials currently in practical use, 372 mAh / g (844 mAh / cc: specific gravity 2.27), and the maximum theoretical capacity of metallic lithium is 3900 m
Compared with Ah / g (2100 mAh / cc: specific gravity 0.53), Si has a significantly larger discharge capacity per unit volume, which is important from the viewpoint of battery miniaturization. Therefore, Si can be a high capacity negative electrode material.

【0011】しかし、Siからなる負極材料は、Alの場合
と同様に、Liの吸蔵・放出に伴う体積変化が大きいた
め、割れにより微粉化し易い。そのため、充電・放電サ
イクルに伴う容量の低下が甚だしく、サイクル寿命が極
端に短くなるため、Siを負極材料にする試みはこれまで
ほとんどなされたことがない。
However, as in the case of Al, the negative electrode material made of Si has a large volume change due to the occlusion and release of Li, so that it is easy to pulverize due to cracking. For this reason, the capacity is significantly reduced due to the charge / discharge cycle, and the cycle life is extremely shortened. Thus, almost no attempt has been made to use Si as a negative electrode material.

【0012】本発明者らは、Siからなる負極材料の持
つ、著しく高い理論容量という特性に着目し、そのサイ
クル寿命を向上させるべく検討を重ねた結果、体積膨張
・収縮による微粉化を防止する対策をとることに加え、
負極材料の表面に必然的に存在している酸化膜 (表面酸
化層) が充電・放電特性に大きな影響を与えているの
で、この点の対策も必要であることを見出した。
The present inventors have paid attention to the characteristic of an extremely high theoretical capacity of a negative electrode material made of Si, and have repeatedly studied to improve the cycle life thereof. As a result, it is possible to prevent pulverization due to volume expansion and contraction. In addition to taking measures,
Since the oxide film (surface oxide layer) inevitably existing on the surface of the negative electrode material has a great influence on the charge / discharge characteristics, it has been found that it is necessary to take measures against this point.

【0013】具体的には、充電・放電の際に、合金表面
にLi−Si−O結合から主に構成される反応阻害膜が生成
し、この膜が不可逆電気容量 (充電に要した電気量中の
放電されない電気量) の原因となっている。従って、こ
の反応阻害膜が厚くなるにつれてLiの吸蔵・放出の阻害
の程度も大きくなり、放電容量が著しく低下し、サイク
ル寿命が低下する。
Specifically, during charge / discharge, a reaction inhibition film mainly composed of Li—Si—O bonds is formed on the alloy surface, and this film has an irreversible electric capacity (electricity required for charging). (The amount of electricity that is not discharged inside). Therefore, as the thickness of the reaction inhibition film increases, the degree of inhibition of the occlusion and release of Li also increases, and the discharge capacity decreases significantly and the cycle life decreases.

【0014】この反応阻害膜による悪影響を防ぐには、
負極材料の表面酸化層の厚みを一定値以下に制御し、好
ましくはさらに表面酸化層の最表層の酸素濃度を一定値
以下に制御することが有効であり、それにより充電・放
電に伴う反応阻害膜の生成が抑制され、サイクル寿命、
初充電・放電における不可逆電気容量、充放電効率など
の電極特性を改善することができることが判明し、本発
明に到達した。
To prevent the adverse effect of the reaction inhibition film,
It is effective to control the thickness of the surface oxide layer of the negative electrode material to a certain value or less, and more preferably to control the oxygen concentration of the outermost layer of the surface oxide layer to a certain value or less, thereby inhibiting the reaction accompanying charge / discharge. Film formation is suppressed, cycle life,
It has been found that electrode characteristics such as irreversible electric capacity and charge / discharge efficiency in initial charge / discharge can be improved, and the present invention has been achieved.

【0015】ここに、本発明により、Liと可逆的に化合
・解離することができる1種以上の元素aの相と該元素
の少なくとも1種を含む金属間化合物の相とを含む合金
の粉末からなり、この合金粉末の表面酸化層の厚みが5
nm以下であるか、この合金粉末の表面酸化層の最表層部
での酸素/元素aの原子比が0.35以下である、ことを特
徴とする非水電解質二次電池用負極材料が提供される。
According to the present invention, there is provided an alloy powder comprising at least one phase of an element a capable of reversibly combining and dissociating with Li and a phase of an intermetallic compound containing at least one of said elements. And the thickness of the surface oxide layer of this alloy powder is 5
a negative electrode material for a non-aqueous electrolyte secondary battery, wherein the atomic ratio of oxygen / element a at the outermost layer portion of the surface oxide layer of the alloy powder is 0.35 or less. .

【0016】本発明の非水電解質二次電池用負極材料の
製造方法は特に制限されないが、熱処理を利用して製造
することができる。その場合には、Liと可逆的に化合・
解離することができる1種以上の元素aの相と元素aの
少なくとも1種を含む金属間化合物の相とを含む合金の
粉末に、この合金の固相線温度より低温において、下記
(1)〜(3) のうちの1つ以上の熱処理を施すことを特徴
とする方法を採用することができる: (1) 酸素濃度500 ppm 以下の不活性ガス雰囲気下での熱
処理; (2) 10 Pa 以下の真空下での熱処理;および (3) 0.5 vol%以上の水素ガスを含む不活性ガス中での熱
処理。
Although the method for producing the negative electrode material for a non-aqueous electrolyte secondary battery of the present invention is not particularly limited, it can be produced by utilizing heat treatment. In that case, the compound is reversibly combined with Li
At a temperature lower than the solidus temperature of the alloy, a powder of an alloy containing at least one phase of element a that can be dissociated and a phase of an intermetallic compound containing at least one element a is added to
A method characterized by applying one or more heat treatments of (1) to (3) can be adopted: (1) heat treatment in an inert gas atmosphere having an oxygen concentration of 500 ppm or less; (2) ) Heat treatment in a vacuum of 10 Pa or less; and (3) heat treatment in an inert gas containing 0.5 vol% or more of hydrogen gas.

【0017】[0017]

【発明の実施の形態】本発明の非水電解質二次電池負極
材料は、Liと可逆的に化合・解離することのできる1種
以上の元素aの相 (以下、A相とする) と、元素aの少
なくとも1種を含む金属間化合物の相 (以下、B相とす
る) 、とを含む合金の粉末からなる。
BEST MODE FOR CARRYING OUT THE INVENTION A negative electrode material of a non-aqueous electrolyte secondary battery of the present invention comprises a phase of one or more elements a capable of reversibly combining and dissociating with Li (hereinafter referred to as A phase), And a phase of an intermetallic compound containing at least one element a (hereinafter referred to as a B phase).

【0018】Liと化合・解離できるA相が主なLi吸蔵相
である。金属間化合物のB相は、A相に比べてLi吸蔵能
は著しく小さいか、あるいはLi吸蔵能を持たない。しか
し、このB相がA相に接して存在することで、Li吸蔵・
放出時にA相が受ける体積変化 (膨張・収縮) がB相で
拘束されて抑制され、合金粉末の割れや微粉化が防止さ
れるので、サイクル寿命が著しく改善される。
The A phase that can be combined and dissociated with Li is the main Li storage phase. The B phase of the intermetallic compound has a remarkably small Li storage capacity or no Li storage capacity as compared with the A phase. However, the presence of this B phase in contact with the A phase leads to
The phase change (expansion / shrinkage) of the phase A upon release is restrained by the phase B, which is restrained and cracking and pulverization of the alloy powder are prevented, so that the cycle life is remarkably improved.

【0019】A相を構成する、Liと可逆的に化合・解離
することのできる元素aの例としては、C、Si、Ge、S
n、Pb、P、Al等が挙げられる。このうち好ましいの
は、Li吸蔵量が大きいSi、Al、Snであり、特にSiが好ま
しい。なお、以下の説明では、A相がSi相(元素aがS
i)である場合を例にとって説明するが、元素aが他のL
i吸蔵元素である場合も原理的には同様である。
Examples of the element a constituting the A phase, which can be reversibly combined and dissociated with Li, include C, Si, Ge, S
n, Pb, P, Al and the like. Of these, Si, Al, and Sn having a large Li storage amount are preferable, and Si is particularly preferable. In the following description, the A phase is the Si phase (the element a is the S phase).
i) will be described as an example, where the element a is other L
The same applies in principle when the element is an occlusion element.

【0020】この元素aの少なくとも1種を含む金属間
化合物の相 (B相) の種類は特に制限されない。B相
は、原理的にはLiの吸蔵能がないか、非常に小さい相で
あれば、A相を体積変化に対して拘束することができ
る。しかし、B相がA相から剥離すると、この拘束の作
用が失われる。そこで、凝固中にB相がA相と強固に結
合することができるように、B相は、A相を構成する元
素aを含む金属間化合物の相とする。この金属間化合物
は、元素aと、周期表の2族 (IIA族) 元素、遷移元
素、13族 (IIIB族) 元素および14族 (IVB族) 元素から
選ばれた1以上の元素bとの金属間化合物であることが
好ましい。
The type of the phase (B phase) of the intermetallic compound containing at least one kind of the element a is not particularly limited. If the B phase has no or a very small Li storage capacity in principle, the A phase can be restricted to a volume change. However, when the B phase is separated from the A phase, the effect of this constraint is lost. Therefore, the B phase is an intermetallic compound phase containing the element a constituting the A phase so that the B phase can be strongly bonded to the A phase during solidification. This intermetallic compound is composed of an element a and one or more elements b selected from Group 2 (IIA), transition, Group 13 (IIIB) and Group 14 (IVB) elements of the periodic table. It is preferably an intermetallic compound.

【0021】上記金属間化合物(B相)を構成する元素
bの例を次に例示する: 2族元素:Be、Mg、Ca、Sr、Ba、Ra; 遷移元素:Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Zn、Y、
Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、ランタノイド
(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、T
m、Yb、Lu) 、Hf、Ta、W、Re、Os、Ir、Pr、Au、Hg、
アクチノイド (Ac、Th、Pa、U、Np、Pu、Am、Cm、Bk、
Cf、Es、Fm、Md、No、Lr) ; 13族元素:B、Al、Ga、In、Tl; 14族元素:C、Si、Ge、Sn、Pb。
Examples of the element b constituting the intermetallic compound (B phase) are as follows: Group 2 elements: Be, Mg, Ca, Sr, Ba, Ra; Transition elements: Sc, Ti, V, Cr , Mn, Fe, Co, Ni, Zn, Y,
Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, lanthanoid
(La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
m, Yb, Lu), Hf, Ta, W, Re, Os, Ir, Pr, Au, Hg,
Actinoids (Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk,
Cf, Es, Fm, Md, No, Lr); Group 13 elements: B, Al, Ga, In, Tl; Group 14 elements: C, Si, Ge, Sn, Pb.

【0022】上記元素のうち好ましいのは、2族元素で
はMg;遷移元素では、Ti、V、Cr、Mn、Fe、Co、Ni、Z
n、および希土類元素 (特にNd等のランタノイド) ;13
族元素ではAl;14族元素ではC、Si、Ge、Sn、Pbであ
る。
Among the above elements, preferred are Mg for Group 2 elements; Ti, V, Cr, Mn, Fe, Co, Ni, and Z for transition elements.
n, and rare earth elements (particularly lanthanides such as Nd); 13
A group 14 element is Al; a group 14 element is C, Si, Ge, Sn, and Pb.

【0023】本発明で負極材料として使用する合金粉末
は、主要なLi吸蔵相であるA相と、A相の元素の金属間
化合物の相であるB相のみからなる組織を持つものが好
ましいが、他の相が共存していてもよい。
The alloy powder used as a negative electrode material in the present invention preferably has a structure composed of only A phase, which is the main Li storage phase, and B phase, which is the phase of the intermetallic compound of the A phase element. , And other phases may coexist.

【0024】本発明の非水電解質二次電池用負極材料
は、上記A相とB相とを含む合金粉末からなり、この合
金粉末の表面酸化層の厚みが5nm (=50Å) 以下であ
り、好ましくはこの合金粉末の表面酸化層の最表層部で
のO/Si(酸素/元素a)の原子比が0.35以下である。
合金粉末の表面酸化層について、このように限定した理
由を次に述べる。
The negative electrode material for a non-aqueous electrolyte secondary battery of the present invention comprises an alloy powder containing the above-mentioned A phase and B phase, and the surface oxide layer of this alloy powder has a thickness of 5 nm (= 50 °) or less; Preferably, the atomic ratio of O / Si (oxygen / element a) in the outermost layer of the surface oxide layer of this alloy powder is 0.35 or less.
The reason for limiting the surface oxide layer of the alloy powder in this way will be described below.

【0025】表面酸化層の厚み:酸素がLi、Siと反応す
ることにより合金粉末の表面に生成するLi−Si−O系の
反応阻害膜が厚くなるほど、充電・放電に伴うLiイオン
の移動が困難となり、充電・放電特性が悪化する。合金
粉末の表面の酸素富化層である表面酸化層が厚いと、サ
イクルを重ねるにつれて、表面酸化層中の酸素とLi、Si
とが反応し、上記の反応阻害膜が成長して厚くなるた
め、充電・放電特性が急激に低下し、サイクル寿命が低
くなる。
The thickness of the surface oxide layer : As the thickness of the Li-Si-O-based reaction inhibiting film formed on the surface of the alloy powder by the reaction of oxygen with Li and Si increases, the movement of Li ions accompanying charge / discharge increases. It becomes difficult and the charge / discharge characteristics deteriorate. If the surface oxide layer, which is the oxygen-enriched layer on the surface of the alloy powder, is thick, the oxygen and Li, Si
Reacts, and the above-mentioned reaction inhibiting film grows and becomes thicker, so that the charge / discharge characteristics are rapidly lowered and the cycle life is shortened.

【0026】しかし、酸素供給源となる表面酸化層の厚
みが5nmより小さいと、酸素が十分に供給されないた
め、酸素とLi、Siとの反応で生成するLi−Si−O系反応
阻害膜の成長が抑えられ、充電・放電特性の急激な悪化
によるサイクル寿命の低下を防止することができる。こ
の表面酸化層の厚みは好ましくは3nm以下である。
However, if the thickness of the surface oxide layer serving as an oxygen supply source is smaller than 5 nm, oxygen is not supplied sufficiently, so that the Li—Si—O-based reaction inhibition film formed by the reaction of oxygen with Li and Si is not formed. Growth can be suppressed, and a decrease in cycle life due to rapid deterioration of charge / discharge characteristics can be prevented. The thickness of this surface oxide layer is preferably 3 nm or less.

【0027】表面酸化層の最表層部のO/Siの原子比
合金粉末の表面酸化層の酸素濃度は、通常は酸化層全体
で一定ではなく、粉末外面で最も高く、内部にいくにつ
れて低くなる濃度勾配を示す。従って、表面酸化層の最
表層部の酸素濃度が高いと、Li−Si−O系の反応阻害膜
の形成に十分な酸素が表面酸化膜から供給されるため、
サイクルを重ねるにつれて反応阻害膜が成長し、充電・
放電特性が悪化してサイクル寿命の低下をもたらす。こ
の点から検討した結果、表面酸化層の最表層部の酸素濃
度が、O/Si原子比で0.35以下であれば、反応阻害膜の
成長に必要な酸素が十分に供給されず、サイクル寿命を
改善できることがわかった。望ましくは、このO/Si原
子比は0.25以下である。
O / Si atomic ratio of the outermost layer of the surface oxide layer :
The oxygen concentration in the surface oxide layer of the alloy powder is usually not constant throughout the oxide layer, but exhibits a concentration gradient that is highest on the outer surface of the powder and decreases toward the inside. Therefore, when the oxygen concentration in the outermost layer portion of the surface oxide layer is high, oxygen sufficient for forming a Li-Si-O-based reaction inhibition film is supplied from the surface oxide film,
As the cycle is repeated, the reaction inhibition film grows,
Discharge characteristics deteriorate, resulting in a decrease in cycle life. As a result of examination from this point, if the oxygen concentration in the outermost layer portion of the surface oxide layer is 0.35 or less in O / Si atomic ratio, oxygen required for growing the reaction inhibition film is not sufficiently supplied, and the cycle life is shortened. I found that it could be improved. Desirably, the O / Si atomic ratio is 0.25 or less.

【0028】本発明において、表面酸化層の厚みとは、
合金粉末を表面から深さ方向に酸素について定量分析し
た場合に、酸素濃度が一定になるまでの部分の厚みを意
味する。また、最表層部のO/Siの原子比は、表面分析
装置により求めたO/Siの原子比とする。なお、前記元
素aがSi以外の元素であっても、この最表層の酸素濃度
を示すO/元素aの原子比の値は、aがSiである場合と
同様でよい。
In the present invention, the thickness of the surface oxide layer means
When the alloy powder is quantitatively analyzed for oxygen in the depth direction from the surface, it means the thickness of the portion until the oxygen concentration becomes constant. The O / Si atomic ratio of the outermost layer is the O / Si atomic ratio determined by a surface analyzer. Even if the element a is an element other than Si, the value of the atomic ratio of O / element a indicating the oxygen concentration in the outermost layer may be the same as when a is Si.

【0029】本発明の非水電解質二次電池負極材料は、
合金原料を溶解し、得られた合金の溶湯を凝固し、必要
に応じて粉砕することにより製造することができる。凝
固方法としては、Li吸蔵相であるA相と体積変化を拘束
するための金属間化合物相であるB相とが微細に混在す
る組織が得られるように、急冷凝固法を採用することが
好ましい。好ましい急冷凝固法としては、アトマイズ
法、特にガスアトマイズ法、回転電極法、ロール急冷法
(単ロールおよび双ロールのいずれも可能) 、遠心鋳造
法などが挙げられる。アトマイズ法や回転電極法では粉
末状の合金が得られるので、粉砕は必要ない場合もあ
る。ロール急冷法や遠心鋳造法では薄片状の合金が得ら
れるので、粉砕して粉末化する。
The non-aqueous electrolyte secondary battery negative electrode material of the present invention comprises:
It can be produced by melting the alloy raw material, solidifying the obtained molten alloy, and pulverizing as necessary. As a solidification method, it is preferable to employ a rapid solidification method so as to obtain a structure in which an A phase which is a Li storage phase and a B phase which is an intermetallic compound phase for restraining a change in volume are finely mixed. . Preferred quenching and solidifying methods include atomizing, particularly gas atomizing, rotating electrode, and roll quenching.
(Both single and twin rolls are possible), and centrifugal casting. Since a powdery alloy is obtained by the atomizing method or the rotating electrode method, pulverization may not be necessary in some cases. Since a flaky alloy is obtained by the roll quenching method or the centrifugal casting method, the alloy is pulverized and powdered.

【0030】融解に供する合金原料は、金属間化合物の
相 (B相) に比べて、Li吸蔵相 (A相) の元素が過剰に
なるように調整する。例えば、Ni−Si二元系では、金属
間化合物はNiSi2 およびNiSiであるので、NiSi2 に対応
する組成(Si:約49wt%) よりSiリッチとなるように原料
の組成を選択する。それにより、凝固中にSi相と金属間
化合物相 (NiSi相および/またはNiSi2 相) が析出す
る。合金系によっては、金属間化合物相とLi吸蔵相が共
晶を形成することもある。Li吸蔵相と金属間化合物相が
存在していれば、各相の析出形態は特に制限されない。
The alloy raw material to be melted is adjusted so that the element of the Li storage phase (A phase) is in excess of the phase of the intermetallic compound (B phase). For example, in the NiSi binary intermetallic compound since it is NiSi 2 and NiSi, composition corresponding to NiSi 2: selecting the composition of the raw material so that (Si about 49 wt%) of Si-rich. Thereby, a Si phase and an intermetallic compound phase (NiSi phase and / or NiSi 2 phase) precipitate during solidification. In some alloy systems, the intermetallic compound phase and the Li storage phase may form a eutectic. As long as the Li storage phase and the intermetallic compound phase are present, the precipitation form of each phase is not particularly limited.

【0031】本発明では、上述したように、表面酸化層
が薄く、および/または表層部の酸素濃度の低い合金粉
末を製造するので、合金原料の溶解時にも合金中への酸
素の溶存を可及的に抑制することが有利である。その意
味で、合金原料の溶解雰囲気ガス中の酸素含有量を500
ppm 以下に制限することが好ましい。望ましくは、この
酸素含有量は、100 ppm 以下である。
According to the present invention, as described above, an alloy powder having a thin surface oxide layer and / or a low oxygen concentration in the surface layer is manufactured, so that oxygen can be dissolved in the alloy even when the alloy material is melted. It is advantageous to suppress as far as possible. In that sense, the oxygen content in the melting atmosphere gas of the alloy raw material is set to 500
It is preferable to limit to ppm or less. Desirably, the oxygen content is less than 100 ppm.

【0032】また、凝固雰囲気も真空または不活性ガス
雰囲気とし、その酸素含有量を可及的に低減することが
好ましい。さらに、粉砕を実施する場合には、粉砕雰囲
気も酸素含有量の少ない不活性ガス雰囲気とすることが
好ましい。
It is preferable that the coagulation atmosphere is also a vacuum or an inert gas atmosphere, and its oxygen content is reduced as much as possible. Further, when the pulverization is performed, it is preferable that the pulverization atmosphere is also an inert gas atmosphere having a low oxygen content.

【0033】このような急冷凝固により合金を製造した
場合には、格子歪を除去するために得られた合金を熱処
理してもよい。熱処理を施す場合、熱処理中に合金の溶
融が全く起こらないように、その合金の固相線温度より
低温で行う。好ましい熱処理温度は、該固相線温度より
100 ℃以上低温、より好ましくは200 ℃以上低温であ
る。それにより、熱処理中の組織の粗大化を最小限に抑
制することができる。
When an alloy is manufactured by such rapid solidification, the obtained alloy may be subjected to a heat treatment in order to remove lattice distortion. The heat treatment is performed at a temperature lower than the solidus temperature of the alloy so that no melting of the alloy occurs during the heat treatment. A preferred heat treatment temperature is higher than the solidus temperature.
The temperature is 100 ° C. or higher, more preferably 200 ° C. or higher. Thereby, coarsening of the structure during the heat treatment can be suppressed to a minimum.

【0034】この熱処理中に合金粉末の表面が酸化を受
け、表面酸化層の厚みが増大し、および/または最表層
部の酸素濃度が増大して、それにより前述した表面酸化
層の厚みおよび/または最表層部の酸素濃度を外れてし
まう可能性がある。それを防ぐため、下記 (1)〜(3) の
いずれかを満たす条件で熱処理を行って、合金粉末の表
面の酸化を可及的に抑制し、場合によっては既に生成し
てしまった酸化層の厚みや表層部酸素濃度を低減させる
ことができる。
During the heat treatment, the surface of the alloy powder is oxidized, and the thickness of the surface oxide layer increases, and / or the oxygen concentration in the outermost layer increases, whereby the thickness and / or the thickness of the above-described surface oxide layer increase. Alternatively, there is a possibility that the oxygen concentration in the outermost layer portion is deviated. To prevent this, heat treatment is performed under the conditions that satisfy any of the following (1) to (3) to minimize the oxidation of the surface of the alloy powder as much as possible, and in some cases, the oxide layer that has already been formed And the oxygen concentration in the surface layer can be reduced.

【0035】(1) 不活性ガス雰囲気 熱処理を不活性ガス雰囲気中で行う場合には、雰囲気中
の酸素濃度を500 ppm以下の不活性ガス雰囲気で熱処理
工程を行うことで、酸化層厚みが5 nm以下とすることが
できる。この酸素濃度は好ましくは100 ppm 以下、さら
に好ましくは50ppm以下である。
(1) Inert gas atmosphere When the heat treatment is performed in an inert gas atmosphere, the heat treatment step is performed in an inert gas atmosphere having an oxygen concentration of 500 ppm or less in the atmosphere to reduce the thickness of the oxide layer by 5%. nm or less. This oxygen concentration is preferably at most 100 ppm, more preferably at most 50 ppm.

【0036】(2) 真空雰囲気 熱処理を真空雰囲気中で行う場合には、圧力10 Pa 以下
の高真空下で熱処理を行う。圧力は好ましくは1Pa以下
である。
(2) Vacuum Atmosphere When the heat treatment is performed in a vacuum atmosphere, the heat treatment is performed under a high vacuum at a pressure of 10 Pa or less. The pressure is preferably 1 Pa or less.

【0037】(3) 水素含有熱処理雰囲気 表面酸化の防止には、熱処理を還元性雰囲気で行うこと
が効果的である。そのためには、0.5 vol%以上の水素ガ
スを含む不活性ガス雰囲気中で熱処理を行う。水素ガス
濃度がこれより低い場合には、不活性ガスのみと実質的
に同じことになるので、酸素濃度を(1) のように低くす
る必要がある。水素ガス濃度は好ましくは1.0 vol%以上
とする。水素ガス濃度の上限は特に規定されないが、爆
発の危険性等を考慮すると、10 vol% より高くすること
は好ましくない。上記 (1)〜(3) の熱処理は、いずれか
1つを実施すればよいが、2つまたは3つを併用して実
施することもできる。
(3) Hydrogen-containing heat treatment atmosphere To prevent surface oxidation, it is effective to perform heat treatment in a reducing atmosphere. For this purpose, heat treatment is performed in an inert gas atmosphere containing 0.5 vol% or more of hydrogen gas. If the hydrogen gas concentration is lower than this, it is substantially the same as the inert gas alone, so the oxygen concentration needs to be reduced as in (1). The hydrogen gas concentration is preferably set to 1.0 vol% or more. The upper limit of the hydrogen gas concentration is not particularly specified, but considering the danger of explosion, it is not preferable to make the concentration higher than 10 vol%. Any one of the heat treatments (1) to (3) may be carried out, but two or three heat treatments may be carried out in combination.

【0038】また、熱処理中の合金粉末の表面酸化をさ
らに低減するため、該合金より酸化され易い、易酸化性
元素を含む合金材料を酸素ゲッターとして熱処理炉内に
設置してもよい。それにより、この酸素ゲッターが酸素
と優先的に反応して酸素を捕捉するため、炉内の酸素濃
度が低減し、本発明で製造する合金粉末の表面酸化のが
抑制がより効果的となる。合金粉末がSi相を含有する場
合、易酸化性材料としては、Siより酸化物生成の自由エ
ネルギーが低い、TiまたはZr金属、またはこれらの金属
の合金を用いることが望ましい。
In order to further reduce the surface oxidation of the alloy powder during the heat treatment, an alloy material containing an easily oxidizable element which is easily oxidized by the alloy may be provided in the heat treatment furnace as an oxygen getter. Thereby, the oxygen getter preferentially reacts with oxygen to capture oxygen, so that the oxygen concentration in the furnace is reduced, and the suppression of surface oxidation of the alloy powder produced in the present invention becomes more effective. When the alloy powder contains a Si phase, it is desirable to use, as the easily oxidizable material, a Ti or Zr metal having a lower free energy of oxide formation than Si, or an alloy of these metals.

【0039】本発明に係る合金粉末を負極材料として用
いて、当業者には周知の電極の製造方法に従って、非水
電解質二次電池用負極を製造することができる。例え
ば、負極材料の合金粉末に、適当な結着剤とその溶媒
を、必要に応じて導電性向上のために導電粉と一緒に混
合する。この混合物を、ホモジナイザー、ガラスビーズ
等を適宜用いて充分に攪拌し、スラリー状にする。この
スラリーを圧延銅箔、銅電析銅箔などの電極基板 (集電
体) に、ドクターブレード等を用いて塗布し、乾燥した
後、ロール圧延等で圧密化させ、必要であれば適当な大
きさに切断して、負極が製造される。
Using the alloy powder according to the present invention as a negative electrode material, a negative electrode for a non-aqueous electrolyte secondary battery can be manufactured according to a method for manufacturing an electrode well known to those skilled in the art. For example, an appropriate binder and a solvent thereof are mixed with the alloy powder of the negative electrode material together with the conductive powder as needed to improve conductivity. This mixture is sufficiently stirred using a homogenizer, glass beads, or the like as appropriate to form a slurry. This slurry is applied to an electrode substrate (current collector) such as a rolled copper foil or a copper electrodeposited copper foil using a doctor blade or the like, dried, and then consolidated by roll rolling or the like. The negative electrode is cut to a size.

【0040】結着剤としては、PVDF(ポリフッ化ビニリ
デン)、PMMA(ポリメチルメタクリレート)、PTFE(ポ
リテトラフルオロエチレン)等の非水溶性の樹脂、並び
にCMC(カルボキシメチルセルロース) 、PVA(ポリビニル
アルコール) などの水溶性樹脂が例示される。溶媒とし
ては、結着剤に応じて、NMP(N-メチルピロリドン) 、DM
F(ジメチルホルムアミド) 等の有機溶媒、または水を使
用する。
Examples of the binder include water-insoluble resins such as PVDF (polyvinylidene fluoride), PMMA (polymethyl methacrylate), and PTFE (polytetrafluoroethylene); CMC (carboxymethyl cellulose); and PVA (polyvinyl alcohol). And the like. As the solvent, depending on the binder, NMP (N-methylpyrrolidone), DM
Use an organic solvent such as F (dimethylformamide) or water.

【0041】導電粉としては、炭素質材料 (例、カーボ
ンブラック、黒鉛) および金属(例、Ni)のいずれも使
用できるが、好ましいのは炭素質材料である。炭素質材
料は、その層間にLiイオンを吸蔵することができるの
で、導電性に加えて、負極の容量にも寄与することがで
き、また保液性にも富んでいる。
As the conductive powder, any of carbonaceous materials (eg, carbon black, graphite) and metals (eg, Ni) can be used, but carbonaceous materials are preferred. Since the carbonaceous material can occlude Li ions between the layers, in addition to conductivity, it can contribute to the capacity of the negative electrode, and is rich in liquid retention.

【0042】負極に炭素質材料を配合する場合、本発明
の負極材料に対して5wt%以上、80wt%以下の量で炭素
材料を使用することが好ましい。この量が5wt%未満で
は十分な導電性を付与することができず、80wt%を超え
ると負極の容量が低下する。より好ましい配合量は20wt
%以上、50wt%以下である。
When a carbonaceous material is compounded in the negative electrode, it is preferable to use the carbon material in an amount of 5% by weight or more and 80% by weight or less with respect to the negative electrode material of the present invention. If the amount is less than 5 wt%, sufficient conductivity cannot be provided, and if it exceeds 80 wt%, the capacity of the negative electrode decreases. More preferred blending amount is 20wt
% Or more and 50 wt% or less.

【0043】この負極を用いて、非水電解質二次電池を
作製する。非水電解質二次電池の代表例はリチウムイオ
ン二次電池であり、本発明に係る負極材料および負極
は、リチウムイオン二次電池の負極材料および負極とし
て好適である。但し、理論的には、他の非水電解質二次
電池にも適用できる。
Using this negative electrode, a non-aqueous electrolyte secondary battery is manufactured. A typical example of the nonaqueous electrolyte secondary battery is a lithium ion secondary battery, and the negative electrode material and the negative electrode according to the present invention are suitable as the negative electrode material and the negative electrode of the lithium ion secondary battery. However, it is theoretically applicable to other non-aqueous electrolyte secondary batteries.

【0044】非水電解質二次電池は、基本構造として、
負極、正極、セパレーター、非水系の電解質を含んでい
る。負極は本発明の負極材料から製造したものを使用す
るが、他の正極、セパレーター、電解質については特に
制限されず、従来より公知のもの、或いは今後開発され
る材料を適当に使用すればよい。非水電解質二次電池の
形状も特に制限されず、円筒型、角形、コイン型、シー
ル型等何れの形でもよい。
The non-aqueous electrolyte secondary battery has the following basic structure:
It contains a negative electrode, a positive electrode, a separator, and a non-aqueous electrolyte. As the negative electrode, one manufactured from the negative electrode material of the present invention is used, but other positive electrodes, separators, and electrolytes are not particularly limited, and conventionally known materials or materials to be developed in the future may be appropriately used. The shape of the nonaqueous electrolyte secondary battery is not particularly limited, and may be any shape such as a cylindrical shape, a square shape, a coin shape, and a seal shape.

【0045】リチウムイオン二次電池とする場合、正極
は、Li含有遷移金属化合物を正極活物質とするものが好
ましい。Li含有遷移金属化合物の例は、LiM1-XM'X O2
または LiM2yM'y O4 (式中、0≦X, Y≦1、M とM'は
それぞれBa、Co、Ni、Mn、Cr、Ti、V、Fe、Zn、Al、I
n、Sn、Sc、Yの少なくとも1種) で示される化合物で
ある。但し、遷移金属カルコゲン化物;バナジウム酸化
物およびそのLi化合物;ニオブ酸化物およびそのLi化合
物;有機導電性物質を用いた共役系ポリマー;シェブレ
ル相化合物;活性炭、活性炭素繊維等といった、他の正
極材料を用いることも可能である。
In the case of a lithium ion secondary battery, the positive electrode preferably uses a Li-containing transition metal compound as a positive electrode active material. Examples of Li-containing transition metal compounds are LiM 1-X M ' X O 2
Or LiM 2y M ' y O 4 (where 0 ≦ X, Y ≦ 1, M and M ′ are each Ba, Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, I
at least one of n, Sn, Sc, and Y). However, other positive electrode materials such as transition metal chalcogenides; vanadium oxides and their Li compounds; niobium oxides and their Li compounds; conjugated polymers using organic conductive substances; chevrel phase compounds; Can also be used.

【0046】リチウムイオン二次電池の電解質は、一般
に支持電解としてのリチウム塩を有機溶媒に溶解させた
非水系電解質である。リチウム塩としては、例えば、Li
ClO4、LiBF4 、LiPF6 、LiAsF6、LiB(C6H5) 、LiCF3S
O3、LiCH3SO3、Li(CF3SO2)2N、LiC4F9SO3 、Li(CF2SO2)
2 、LiCl、LiBr、LiI 等が例示され、1種もしくは2種
以上を使用することができる。
The electrolyte of the lithium ion secondary battery is generally a non-aqueous electrolyte in which a lithium salt as a supporting electrolyte is dissolved in an organic solvent. As the lithium salt, for example, Li
ClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiB (C 6 H 5 ), LiCF 3 S
O 3 , LiCH 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , Li (CF 2 SO 2 )
2 , LiCl, LiBr, LiI, etc., and one or more of them can be used.

【0047】有機溶媒としては、プロピレンカーボネー
ト、エチレンカーボネート、エチルメチルカーボネー
ト、ジメチルカーボネート、ジエチルカーボネートなど
の炭酸エステル類が好ましい。但し、カルボン酸エステ
ル、エーテルをはじめとする他の各種の有機溶媒も使用
可能である。
As the organic solvent, carbonates such as propylene carbonate, ethylene carbonate, ethyl methyl carbonate, dimethyl carbonate and diethyl carbonate are preferred. However, other various organic solvents including carboxylic acid esters and ethers can also be used.

【0048】セパレーターは、正極・負極の間に設置し
た絶縁体としての役割を果たす他、電解質の保持にも大
きく寄与する。通常は、ポリプロピレン、ポリエチレ
ン、またはその両者の混合布、ガラスフィルターなどの
多孔体が一般に使用される。
The separator plays a role as an insulator provided between the positive electrode and the negative electrode, and also greatly contributes to the retention of the electrolyte. Usually, a porous body such as polypropylene, polyethylene or a mixed cloth of both, or a glass filter is generally used.

【0049】[0049]

【実施例】【Example】

【実施例1】表1、表2に示す組成を持つ合金粉末を、
次に述べるようにしてガスアトマイズ法により作製し
た。表1、表2に示した合金組成では、Li吸蔵相はいず
れもSiであり、凝固中に析出する金属間化合物相は、Ni
−52SiではNiSi+NiSi2 、Co−54SiではCoSi2 、Ti−60
SiではTiSi2 、V−59SiではVSi2 である。
Example 1 An alloy powder having the composition shown in Tables 1 and 2 was
It was produced by a gas atomizing method as described below. In the alloy compositions shown in Tables 1 and 2, the Li storage phase is Si, and the intermetallic compound phase precipitated during solidification is Ni.
In -52Si NiSi + NiSi 2, the Co-54Si CoSi 2, Ti- 60
It is TiSi 2 for Si and VSi 2 for V-59Si.

【0050】所定組成の原料をアルゴン雰囲気中で高周
波溶解して溶湯を形成し、この溶湯をタンディッシュに
注湯後、タンディッシュ底部に設けた細孔を通して溶湯
細流を形成し、この溶湯細流に高圧の噴霧ガスを噴霧し
て、粉末化した。噴霧ガスとしてはアルゴンガスを用い
た。室温まで冷却してから、合金粉末を取り出し、一部
の合金粉末にはアルゴンガス雰囲気中で熱処理を施し
た。溶解雰囲気と熱処理雰囲気のの酸素濃度および熱処
理条件も表1、表2に併せて示す。
A raw material having a predetermined composition is melted at a high frequency in an argon atmosphere to form a molten metal. After the molten metal is poured into a tundish, a fine stream of the molten metal is formed through pores provided at the bottom of the tundish. The powder was atomized by spraying a high-pressure atomizing gas. Argon gas was used as the spray gas. After cooling to room temperature, the alloy powder was taken out, and a part of the alloy powder was subjected to a heat treatment in an argon gas atmosphere. Tables 1 and 2 also show the oxygen concentration in the melting atmosphere and the heat treatment atmosphere and the heat treatment conditions.

【0051】得られた合金粉末の表面酸化層の厚みと最
表層部のO/Si原子比を求めるために、この合金粉末を
マイクロオージェ装置を用いて下記条件で分析した。
In order to determine the thickness of the surface oxide layer of the obtained alloy powder and the O / Si atomic ratio of the outermost layer, this alloy powder was analyzed using a micro Auger apparatus under the following conditions.

【0052】まず、表面の定量分析結果から、O/Si原
子比を計算した。また、Arスパッタをしながら、深さ方
向の酸素の定量分析を行い、酸素濃度が一定になるまで
の深さを表面酸化層の厚みとした。
First, the O / Si atomic ratio was calculated from the results of the quantitative analysis of the surface. Further, quantitative analysis of oxygen in the depth direction was performed while performing Ar sputtering, and the depth until the oxygen concentration became constant was defined as the thickness of the surface oxide layer.

【0053】別に、これらの合金粉末の負極材料として
の特性を次のようにして評価した。各合金粉末を63μm
の篩で分級して得た、平均粒径30μmの粉末を用い、こ
の粉末に結着剤としてポリフッ化ビニリデンを粉末重量
の10wt%、溶媒のN−メチルピロリドンを同じく10wt%
添加して混合した。次に、導電粉として炭素材 (アセチ
レンブラック) の粉末を混合物の10wt%の量で加え、混
練して均一なスラリーとした。このスラリーを30μm厚
の電解銅箔に塗布し、乾燥させ、ロール圧延して圧密化
させた後、直径13 mm のポンチを用いて打ち抜きして得
た円板部材を負極とした。銅箔上の負極材料層の厚みは
約100 μmであった。
Separately, the characteristics of these alloy powders as negative electrode materials were evaluated as follows. 63 μm of each alloy powder
A powder having an average particle size of 30 μm, obtained by classification with a sieve, is used. 10 wt% of polyvinylidene fluoride as a binder and 10 wt% of N-methylpyrrolidone as a solvent are added to the powder.
Added and mixed. Next, carbon material (acetylene black) powder was added as conductive powder in an amount of 10% by weight of the mixture, and kneaded to form a uniform slurry. This slurry was applied to an electrolytic copper foil having a thickness of 30 μm, dried, rolled and consolidated, and then punched out using a punch having a diameter of 13 mm to obtain a disk member, which was used as a negative electrode. The thickness of the negative electrode material layer on the copper foil was about 100 μm.

【0054】上記負極の単極での性能を、対極、参照極
にLi金属を用いた、いわゆる3極式セルを用いて評価し
た。電解液にはエチレンカーボネートとジメトキシエタ
ンの1:1混合溶媒中に、支持電解質のLiPF6 を1M 濃
度で溶解させた溶液を使用した。測定は25℃で行い、グ
ローブボックスのように不活性雰囲気を維持できる装置
を用いて、雰囲気の露点が−70℃程度である条件で充電
と放電を実施した。
The performance of the negative electrode as a single electrode was evaluated using a so-called three-electrode cell using Li metal for the counter electrode and the reference electrode. The electrolyte used was a solution in which LiPF 6 as a supporting electrolyte was dissolved at a concentration of 1 M in a 1: 1 mixed solvent of ethylene carbonate and dimethoxyethane. The measurement was performed at 25 ° C., and charging and discharging were performed using a device capable of maintaining an inert atmosphere such as a glove box under the condition that the dew point of the atmosphere was about −70 ° C.

【0055】まず、1/10充電 (10時間で満充電になるよ
うな条件) で参照極の電位に対して負極の電位が0Vに
なるまで充電を行い、同じ電流値で参照極の電位が負極
の電位に対して2Vになるまで放電を行って、このとき
の1サイクル目の放電容量をその負極材料を用いた負極
の放電容量とした。この充電・放電のサイクルを繰り返
し、300 サイクル目の放電容量を測定した。放電容量は
mAh/ccの単位 (ccは負極板の容積、負極板の面積と負極
材料層の厚みで算出) で示す。
First, the battery is charged by 1/10 charge (condition that the battery is fully charged in 10 hours) until the potential of the negative electrode becomes 0 V with respect to the potential of the reference electrode. The discharge was performed until the potential of the negative electrode became 2 V, and the discharge capacity in the first cycle at this time was defined as the discharge capacity of the negative electrode using the negative electrode material. This charge / discharge cycle was repeated, and the discharge capacity at the 300th cycle was measured. The discharge capacity is
It is expressed in units of mAh / cc (cc is calculated from the volume of the negative electrode plate, the area of the negative electrode plate and the thickness of the negative electrode material layer).

【0056】これらの放電容量の測定値から、次によう
にしてサイクル寿命と充放電効率を算出した。 (a) サイクル寿命 サイクル寿命(%) =(300サイクル目の放電容量) /(1サイクル目
の放電容量) ×100 但し1サイクル目の放電容量とは、第1回目の充電を行
い、次いで放電したときの放電容量を言う。また、300
サイクル目の放電容量とは、300 回目の充電を行い、放
電したときの放電容量を言う。このサイクル寿命が80%
以上であれば良好である。
From the measured values of the discharge capacities, the cycle life and charge / discharge efficiency were calculated as follows. (a) Cycle life Cycle life (%) = (discharge capacity at 300th cycle) / (discharge capacity at 1st cycle) x 100 where discharge capacity at 1st cycle is the first charge, then discharge The discharge capacity at the time of doing. Also, 300
The discharge capacity at the cycle refers to the discharge capacity at the time of performing the 300th charge and discharging. This cycle life is 80%
Above is good.

【0057】(b) 充放電効率 充放電効率を測定する前に電池の完全放電を行い、その
後のサイクルにて上記条件に従って充電および放電を連
続的に行う。その際の放電電気量と充電電気量を測定
し、次式により充放電効率を算出する。 充放電効率(%) = (放電電気量/放電直前の充電電気
量) ×100 本実施例では1サイクル目と3サイクル目の充放電効率
を測定した。1サイクル目の充放電効率は、初期活性化
の程度を示し、この充放電効率が高いと、初期より高い
容量を示し、電池の活性化のための充放電繰り返し操作
が不要になるか、軽減することができる。
(B) Charging / Discharging Efficiency The battery is completely discharged before measuring the charging / discharging efficiency, and charging and discharging are continuously performed in the subsequent cycle according to the above conditions. The amount of discharged electricity and the amount of charged electricity at that time are measured, and the charge / discharge efficiency is calculated by the following equation. Charge / discharge efficiency (%) = (discharged electricity / charged electricity immediately before discharge) × 100 In this example, the charge and discharge efficiencies at the first and third cycles were measured. The charge / discharge efficiency in the first cycle indicates the degree of initial activation. If the charge / discharge efficiency is high, the capacity is higher than the initial one, and the charge / discharge repeated operation for activating the battery becomes unnecessary or reduced. can do.

【0058】表1には、上記の表面分析により表面酸化
層の厚みが異なる値を示したいくつかの試料について、
合金組成、表面酸化層の厚み、ならびに負極特性 (放電
容量、充放電効率、サイクル寿命) の結果を示す。
Table 1 shows that several samples having different values of the thickness of the surface oxide layer by the surface analysis described above are shown.
The results of alloy composition, thickness of surface oxide layer, and negative electrode characteristics (discharge capacity, charge / discharge efficiency, cycle life) are shown.

【0059】[0059]

【表1】 [Table 1]

【0060】表1から次のことがわかる:表面酸化層の
厚みが5nmを超える合金粉末は、同組成で表面酸化層の
厚みが5nm以下の合金粉末より、放電容量が低く、また
第1サイクルの充放電効率が低い。即ち、充電した電気
量の一部が放電の際に取り出せない。また、サイクル寿
命も80%より低いという問題がある。
From Table 1, it can be seen that the alloy powder having a surface oxide layer thickness of more than 5 nm has a lower discharge capacity than the alloy powder having the same composition and a surface oxide layer thickness of 5 nm or less, and also has the first cycle. Low charge and discharge efficiency. That is, a part of the charged electricity cannot be taken out during discharging. There is also a problem that the cycle life is lower than 80%.

【0061】表面酸化層の厚みが5nm以下の合金粉末
は、第1サイクルの充放電効率が70%以上と高く、さら
にサイクル寿命は80%以上の高い値を示す。表面酸化層
の厚みが3nm以下の合金粉末は、第1サイクルの充放電
効率が90%以上と非常に高く、さらにサイクル寿命も90
%以上で良好な特性を有する。
The alloy powder having a surface oxide layer having a thickness of 5 nm or less has a high charge / discharge efficiency of 70% or more in the first cycle and a high cycle life of 80% or more. An alloy powder having a surface oxide layer thickness of 3 nm or less has a very high charge and discharge efficiency of 90% or more in the first cycle and a cycle life of 90% or more.
% Or more has good characteristics.

【0062】表2には、上記の表面分析により表面酸化
層の最表層部のO/Si原子比が異なる値を示したいくつ
かの試料について、合金組成、表面酸化層の厚みと最表
層部のO/Si原子比、ならびに負極特性 (放電容量、充
放電効率、サイクル寿命) の結果を示す。
Table 2 shows that the alloy composition, the thickness of the surface oxide layer, and the thickness of the outermost layer portion of some samples having different values of the O / Si atomic ratio of the outermost layer portion of the surface oxide layer by the surface analysis described above. 2 shows the results of the O / Si atomic ratio and the characteristics of the negative electrode (discharge capacity, charge / discharge efficiency, cycle life).

【0063】[0063]

【表2】 [Table 2]

【0064】表2から次のことがわかる:表面酸化層の
最表層部のO/Si原子比が0.35以下の合金粉末は、放電
容量と第1サイクルの充放電効率が高くなる。またサイ
クル寿命が85%以上と改善される。この原子比が0.25以
下になると、充放電効率、サイクル寿命ともさらに改善
される。
The following can be seen from Table 2: The alloy powder having an O / Si atomic ratio of 0.35 or less at the outermost layer of the surface oxide layer has a higher discharge capacity and higher charge / discharge efficiency in the first cycle. Also, the cycle life is improved to 85% or more. When the atomic ratio is 0.25 or less, the charge / discharge efficiency and the cycle life are further improved.

【0065】[0065]

【実施例2】表3に示す組成の合金を溶湯からの単ロー
ル急冷法により作製し、得られたリボン状合金を粉砕
し、60μmの篩で分級して、平均粒径30μmの合金粉末
を得た。これらの処理雰囲気はいずれもアルゴンガス雰
囲気とした。溶解雰囲気中の酸素濃を表3に示す。
Example 2 An alloy having a composition shown in Table 3 was prepared by a single roll quenching method from a molten metal, and the obtained ribbon-like alloy was pulverized and classified with a 60 μm sieve to obtain an alloy powder having an average particle diameter of 30 μm. Obtained. Each of these processing atmospheres was an argon gas atmosphere. Table 3 shows the oxygen concentration in the melting atmosphere.

【0066】得られた合金粉末を表3に示す各種条件下
で熱処理した。一部の合金粉末の熱処理は、酸素ゲッタ
ーとして易酸化性材料を熱処理炉内に設置して行った。
熱処理後の合金粉末の表面酸化層の厚みと負極特性を実
施例1と同様に調査し、その結果も表3に併記する。
The obtained alloy powder was heat-treated under various conditions shown in Table 3. The heat treatment of some alloy powders was performed by installing an easily oxidizable material as an oxygen getter in a heat treatment furnace.
The thickness of the surface oxide layer and the negative electrode properties of the heat-treated alloy powder were investigated in the same manner as in Example 1, and the results are also shown in Table 3.

【0067】[0067]

【表3】 [Table 3]

【0068】表3から次のことがわかる:熱処理雰囲気
を、酸素濃度500 ppm 以下の不活性ガス雰囲気とする
か、10 Pa以下の高真空にするか、または不活性ガスに
0.5vol%以上の水素ガスを混合した還元性ガスとする
と、熱処理中の合金粉末表面の酸化が防止され、表面酸
化層の厚みを5nm以下に制御することができ、良好なサ
イクル寿命が得られる。また、熱処理雰囲気にZr、Ti粉
末等の易酸化性材料からなる酸素ゲッターを設置する
と、還元性ガスにしなくても、酸化層厚みがさらに小さ
くなり、サイクル寿命の一層の改善を図ることができ
る。
Table 3 shows that the heat treatment atmosphere is an inert gas atmosphere having an oxygen concentration of 500 ppm or less, a high vacuum of 10 Pa or less, or an inert gas atmosphere.
When the reducing gas is mixed with a hydrogen gas of 0.5 vol% or more, oxidation of the alloy powder surface during the heat treatment is prevented, the thickness of the surface oxide layer can be controlled to 5 nm or less, and a good cycle life can be obtained. . Further, when an oxygen getter made of an easily oxidizable material such as Zr or Ti powder is provided in the heat treatment atmosphere, the thickness of the oxide layer can be further reduced without using a reducing gas, and the cycle life can be further improved. .

【0069】[0069]

【発明の効果】本発明により、従来の炭素材からなる雰
囲気材料に比べて放電容量が非常に高く、サイクル寿命
も80%以上と良好な非水電解質二次電池用負極材料を得
ることができ、リチウムイオン二次電池を始めとする非
水電解質二次電池の性能向上に寄与するものと期待され
る。
According to the present invention, it is possible to obtain a negative electrode material for a non-aqueous electrolyte secondary battery having a very high discharge capacity and a cycle life of 80% or more as compared with a conventional atmosphere material made of a carbon material. It is expected to contribute to improving the performance of non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 禰宜 教之 兵庫県尼崎市扶桑町1番8号 住友金属工 業株式会社エレクトロニクス技術研究所内 (72)発明者 竹下 幸輝 兵庫県尼崎市扶桑町1番8号 住友金属工 業株式会社エレクトロニクス技術研究所内 (72)発明者 小比賀 基治 兵庫県尼崎市扶桑町1番8号 住友金属工 業株式会社エレクトロニクス技術研究所内 (72)発明者 米村 光治 兵庫県尼崎市扶桑町1番8号 住友金属工 業株式会社エレクトロニクス技術研究所内 (72)発明者 新田 芳明 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 島村 治成 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H029 AJ05 AK03 AL01 AL11 AM03 AM04 AM05 AM07 DJ12 DJ16 HJ02 HJ04 5H050 AA07 BA17 CA07 CA08 CA09 CB01 CB02 DA03 FA12 FA18 HA02 HA04 HA12  ──────────────────────────────────────────────────の Continuing from the front page (72) Inventor Noriyuki Nego 1-8 Fuso-cho, Amagasaki City, Hyogo Prefecture Within Sumitomo Metal Industries, Ltd. Electronics Technology Research Laboratory (72) Inventor Yukiteru Takeshita 1-8 Fuso-cho, Amagasaki City, Hyogo Prefecture No. Sumitomo Metal Industries, Ltd. Electronics Technology Research Laboratory (72) Inventor Motoharu Kobiga 1-8 Fuso-cho, Amagasaki City, Hyogo Prefecture Sumitomo Metal Industries, Ltd. Electronics Technology Research Laboratory (72) Inventor Koji Yonemura Fuso, Amagasaki City, Hyogo Prefecture No. 1-8, Sumitomo Metal Industries, Ltd.Electronic Technology Research Laboratories (72) Inventor Yoshiaki Nitta 1006 Kadoma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Haruna Shimamura Kadoma, Osaka Pref. 1006 Kadoma Matsushita Electric Industrial Co., Ltd. F-term (reference) 5H029 AJ05 AK03 AL01 AL11 AM03 AM04 AM05 AM07 DJ12 DJ16 HJ02 HJ04 5H050 AA07 BA17 CA07 CA08 CA09 CB01 CB02 DA03 FA12 FA18 HA02 HA04 HA12

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Liと可逆的に化合・解離することができ
る1種以上の元素aの相と元素aの少なくとも1種を含
む金属間化合物の相とを含む合金の粉末からなり、この
合金粉末の表面酸化層の厚みが5nm以下であることを特
徴とする、非水電解質二次電池用負極材料。
1. An alloy powder comprising at least one phase of an element a capable of reversibly combining and dissociating with Li and a phase of an intermetallic compound containing at least one element a. A negative electrode material for a non-aqueous electrolyte secondary battery, wherein the thickness of the surface oxide layer of the powder is 5 nm or less.
【請求項2】 前記合金粉末の表面酸化層の最表層部で
の酸素/元素aの原子比が0.35以下である、請求項1に
記載の非水電解質二次電池用負極材料。
2. The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the atomic ratio of oxygen / element a at the outermost layer portion of the surface oxide layer of the alloy powder is 0.35 or less.
JP2000059855A 2000-03-06 2000-03-06 Anode materials for non-aqueous electrolyte secondary batteries Expired - Fee Related JP3567843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000059855A JP3567843B2 (en) 2000-03-06 2000-03-06 Anode materials for non-aqueous electrolyte secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000059855A JP3567843B2 (en) 2000-03-06 2000-03-06 Anode materials for non-aqueous electrolyte secondary batteries

Publications (2)

Publication Number Publication Date
JP2001250540A true JP2001250540A (en) 2001-09-14
JP3567843B2 JP3567843B2 (en) 2004-09-22

Family

ID=18580254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000059855A Expired - Fee Related JP3567843B2 (en) 2000-03-06 2000-03-06 Anode materials for non-aqueous electrolyte secondary batteries

Country Status (1)

Country Link
JP (1) JP3567843B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10163713A1 (en) * 2001-12-21 2003-07-10 Geesthacht Gkss Forschung Production of metal powders using a gas atomization comprises charging the metal with hydrogen after pulverization
JP2005166442A (en) * 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd Energy device and manufacturing method therefor
WO2007072704A1 (en) * 2005-12-19 2007-06-28 Matsushita Electric Industrial Co., Ltd. Nonaqueous-electrolyte secondary cell, negative-electrode material therefor, and process for producing negative-electrode material
KR100800395B1 (en) 2006-09-07 2008-02-04 한양대학교 산학협력단 Anode for rechargeable lithium secondary battery, method of preparing thereof, and rechargeable lithium secondary battery comprising the same
JP2011048992A (en) * 2009-08-26 2011-03-10 Sekisui Chem Co Ltd Carbon material, electrode material, and lithium ion secondary battery negative electrode material
CN103594691A (en) * 2012-12-14 2014-02-19 深圳市斯诺实业发展有限公司永丰县分公司 Preparation method of high-volume silicon-carbon negative electrode material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10163713A1 (en) * 2001-12-21 2003-07-10 Geesthacht Gkss Forschung Production of metal powders using a gas atomization comprises charging the metal with hydrogen after pulverization
JP2005166442A (en) * 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd Energy device and manufacturing method therefor
JP4526806B2 (en) * 2003-12-02 2010-08-18 パナソニック株式会社 Method for producing lithium ion secondary battery
WO2007072704A1 (en) * 2005-12-19 2007-06-28 Matsushita Electric Industrial Co., Ltd. Nonaqueous-electrolyte secondary cell, negative-electrode material therefor, and process for producing negative-electrode material
JP2007172858A (en) * 2005-12-19 2007-07-05 Matsushita Electric Ind Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery and its manufacturing method
US7754383B2 (en) 2005-12-19 2010-07-13 Panasonic Corporation Non-aqueous electrolyte secondary battery, negative electrode material therefor, and method of manufacturing the negative electrode material
KR100800395B1 (en) 2006-09-07 2008-02-04 한양대학교 산학협력단 Anode for rechargeable lithium secondary battery, method of preparing thereof, and rechargeable lithium secondary battery comprising the same
JP2011048992A (en) * 2009-08-26 2011-03-10 Sekisui Chem Co Ltd Carbon material, electrode material, and lithium ion secondary battery negative electrode material
CN103594691A (en) * 2012-12-14 2014-02-19 深圳市斯诺实业发展有限公司永丰县分公司 Preparation method of high-volume silicon-carbon negative electrode material

Also Published As

Publication number Publication date
JP3567843B2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
TWI235517B (en) Electrode material for lithium secondary battery and electrode structure having the electrode material
JP2001297757A (en) Negative electrode material for nonaqueous electrolyte secondary cell and its manufacturing method
KR20080032037A (en) Alloy for negative electrode of lithium secondary battery
KR20060004597A (en) Negative active material and method for production thereof, non-aqueous electrolyte secondary cell using the same
JP2001291514A (en) Negative electrode material for nonaqueous electrolyte secondary battery and its manufacturing method
JP2004362895A (en) Negative electrode material, and battery using it
JP3546798B2 (en) Non-aqueous electrolyte secondary battery, alloy for the battery, and method of manufacturing the same
JP3622631B2 (en) Nonaqueous electrolyte secondary battery, negative electrode material thereof, and method for producing the same
JP2000149937A (en) Negative electrode material for nonaqueous electrolyte secondary battery, and its manufacture
JP2002075351A (en) Alloy powder for negative electrode of nonaqueous electrolyte secondary battery and method for manufacturing the alloy powder
JP4144181B2 (en) Anode material for non-aqueous secondary battery and method for producing the same
JP2002093411A (en) Cathode material for nonaqueous electrolyte secondary battery
KR20050034530A (en) Electrode material for lithium secondary battery, lithium secondary battery and preparation method of the electrode material for lithium secondary battery
JP4997706B2 (en) Anode material for non-aqueous secondary battery and method for producing the same
JP3622629B2 (en) Method for producing negative electrode material for non-aqueous electrolyte secondary battery
JP4133116B2 (en) Negative electrode active material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP3659177B2 (en) Negative electrode material for non-aqueous secondary battery, method for producing the same, and negative electrode
JP3567843B2 (en) Anode materials for non-aqueous electrolyte secondary batteries
JP4836439B2 (en) Non-aqueous electrolyte battery electrode material, non-aqueous electrolyte battery electrode, and non-aqueous electrolyte battery
JP4032893B2 (en) Anode material for non-aqueous electrolyte secondary battery
JP2001148247A (en) Non-aqueous electrolyte secondary battery and alloy for battery and its manufacturing method
JP2001307723A (en) Negative electrode material for nonaqueous electrolyte secondary battery and its manufacturing method
JP2003272613A (en) Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2004356054A (en) Negative electrode material for nonaqueous electrolyte secondary battery, its manufacturing method, negative electrode for nonaqueous electrolyte secondary battery using it, and nonaqueous electrolyte secondary battery
JP2021150111A (en) Electrode active material layer for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees