JP3622629B2 - Method for producing negative electrode material for non-aqueous electrolyte secondary battery - Google Patents

Method for producing negative electrode material for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP3622629B2
JP3622629B2 JP2000104832A JP2000104832A JP3622629B2 JP 3622629 B2 JP3622629 B2 JP 3622629B2 JP 2000104832 A JP2000104832 A JP 2000104832A JP 2000104832 A JP2000104832 A JP 2000104832A JP 3622629 B2 JP3622629 B2 JP 3622629B2
Authority
JP
Japan
Prior art keywords
gas
alloy
negative electrode
phase
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000104832A
Other languages
Japanese (ja)
Other versions
JP2001291513A (en
Inventor
基治 小比賀
和孝 阿佐部
幸輝 竹下
教之 禰宜
祐義 山本
芳明 新田
治成 島村
一広 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Nippon Steel Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Sumitomo Metal Industries Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Sumitomo Metal Industries Ltd, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000104832A priority Critical patent/JP3622629B2/en
Publication of JP2001291513A publication Critical patent/JP2001291513A/en
Application granted granted Critical
Publication of JP3622629B2 publication Critical patent/JP3622629B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、充電・放電容量が高く、かつサイクル寿命にも優れた非水電解質二次電池用負極材料の製造方法に関する。
【0002】
なお、本発明における非水電解質二次電池は、支持電解質を有機溶媒に溶解した非水電解質または高分子電解質やゲル電解質等の非水電解質を用いた電池をも包含するものである。
【0003】
【従来の技術】
携帯電話やパソコン等の携帯可能な小型電気・電子機器の普及に伴い、高容量の小型二次電池としての非水電解質二次電池、特にリチウムイオン二次電池の生産量は急激に増加しつつある。
【0004】
現在実用化されている非水電解質二次電池では、負極材料として炭素質材料が使用されている。開発当初は金属リチウムを負極材料に使用した非水電解質二次電池が試みられたが、充電時に負極に析出する金属リチウムがデンドライト状となり、セパレータを突き破って短絡を起こし易いため、実用電池としては使用できなかった。そのため、層間にLiイオンを可逆的に吸蔵・放出できる炭素質材料を負極材料とし、Liイオンの炭素質材料への吸蔵・放出により充電・放電を行う、リチウムイオン二次電池と呼ばれる非水電解質二次電池が開発され、実用電池として使用可能になった。リチウムイオン二次電池では、充電・放電反応において金属リチウムの析出が起こらないので、デンドライトに起因する問題を避けることができる。
【0005】
炭素質材料を負極材料とする非水電解質二次電池は、ニッケル−カドミウム電池、ニッケル−水素電池といった他の小型二次電池と比べれば高容量であるが、炭素質材料の理論容量が金属リチウムのそれに比べて約1/10程度と低いため、炭素質材料を負極材料とする限り、高容量化には限界がある。
【0006】
そこで、非水電解質二次電池のさらなる高容量化を目指して、炭素質材料以外の負極材料、例えば、金属珪化物といった金属間化合物等を負極材料に用いる研究 (例、特開平7−240201号公報、同9−63651 号公報参照) や、Liと金属間化合物を形成できるAlといった金属、またはこの金属に他元素を添加した金属材料を負極材料に用いる研究、などが行われてきた。また、溶湯急冷法により作製した金属珪化物を負極に用いて非水電解質二次電池の充放電容量を改善することが特開平10−294112号公報に提案されている。
【0007】
【発明が解決しようとする課題】
しかし、いまのところ、これらの負極材料は実用化されていない。その主な原因は、金属間化合物では負極材料のLiの吸蔵量が少なく、高容量を得ることができないこと、また高容量を得ることができるAlといった負極材料にあっては、吸蔵・放出に伴う負極材料の体積変化が大きく、充電・放電サイクルの繰り返しに伴って負極材料が割れて、微粉化し、サイクル寿命が極端に低くなることにあると考えられる。
【0008】
本発明は、炭素質材料より高容量を示し、かつ微粉化が抑えられて、サイクル寿命も炭素質材料と同等かそれ以上となる、非水電解質二次電池用負極材料の製造方法を提供することを課題とする。
【0009】
【課題を解決するための手段】
シリコン(Si)は、Liと可逆的に化合・解離することによりLiを吸蔵・放出することができる。Siを非水電解質二次電池の負極材料に用いた場合のSiの充電・放電容量は、理論的には4200 mAh/g (体積当たりでは9800 mAh/cc:比重2.33) もの大きさとなる。このSiの理論最大容量は、現在実用化されている炭素材の理論最大容量の372 mAh/g (844mAh/cc:比重2.27として) よりはるかに大きく、金属リチウムの理論最大容量の3900 mAh/g (2100 mAh/cc:比重0.53) と比較しても、電池の小型化という観点から重要な単位体積あたりの放電容量では、Siの方が著しく大きくなる。従って、Siは高容量の負極材料となりうる。
【0010】
しかし、Siからなる負極材料は、Alの場合と同様に、Liの吸蔵・放出に伴う体積変化が大きいため、割れにより微粉化し易く、サイクル寿命が極端に短くなるため、Siを負極材料にする試みはこれまでほとんどなされたことがない。
【0011】
本発明者らは、Siからなる負極材料の持つ、著しく高い理論容量という特性に着目し、そのサイクル寿命を向上させるべく検討を重ねた結果、Liの吸蔵能力を持たないか、吸蔵能力が小さい別の相 (例えば、Siの金属間化合物の相) を、Si相と共存させた合金材料が有効であることを見いだした。このような合金材料は、Liの吸蔵能力が無いか小さい他の相(金属間化合物相)が共存することで、容量はその分だけ低くなるが、他の相がSi相を拘束する結果、Liの吸蔵・放出に伴うSi相の体積変化が抑制され、負極材料の微粉化が進行しにくくなり、サイクル寿命が改善される。その結果、炭素質材料に比べてなお高容量で、サイクル寿命も実用レベルに達した負極材料を得ることが可能となる。なお、Si以外の元素であっても、Liと可逆的に化合・解離することができる元素であれば、同じことがいえる。
【0012】
Si相をSi金属間化合物といった他の相で拘束して、Si相の体積変化を抑制するには、合金組織が微細である方が有利である。Si相の結晶粒径が大きいと、その周囲に配した他の相による拘束がSi相の内部まで効きにくくなるからである。微細な組織を持つ合金材料は、アトマイズ法やロール急冷法といった急冷・凝固が可能な鋳造方法により製造することができる。特に、ガスアトマイズ法は、球形粉末を製造することができるので粉砕工程が不要になる点と、得られた球形粉末形態の負極材料は、充填性に優れているので、充填密度の高い負極を作製できる点で有利である。また、ガスアトマイズ法は量産技術が確立しており、各種の金属質球形粉末の工業的製造に既に利用されている。
【0013】
しかし、本発明者等が調査したところ、ガスアトマイズ法を用いて作製した上記合金の粉末を非水電解質二次電池の負極材料に用いても、必ずしもサイクル寿命が長いものになるとは限らなかった。
【0014】
さらなる調査の結果、ガスアトマイズ法を採用しても、条件によっては凝固時の合金の冷却速度が遅く、合金組織が十分に微細にならないため、サイクル寿命の低い合金粉末となること、そして冷却速度はガスアトマイズ法に噴霧ガスとして用いる不活性ガスのガス種によって影響を受け、熱容量や音速の小さいガス種ほど冷却能が小さくなるので、合金粉末の粒径を小さくしないと冷却速度が不十分となることを見出し、本発明に到達した。
【0015】
この知見に基づいて完成した本発明は、Liと可逆的に化合・解離することができる1種以上の元素の相と該元素の少なくとも1種を含む金属間化合物の相とを含む合金の粉末からなる非水電解質二次電池用負極材料を合金原料の溶融物からガスアトマイズ法により製造する方法であって、
(1) ガスアトマイズ法に供する合金原料の溶融物の温度が (合金の液相線温度+500 ℃) 以下であり、
(2) ガスアトマイズ法に用いる噴霧ガスがAr、HeおよびNから選ばれた1種以上からなり、
(3) 流下する合金の溶融物と噴霧ガスが最初に衝突する位置での噴霧ガスの流速が、そのガス種の293 K, 1.013×10Paにおける音速に対してマッハ1以上であり、
(4) ガスアトマイズ法で得られた合金粉末の80体積%以上の粒子の粉末粒径D (μm)が下記(I) 式を満たすことを特徴とする、非水電解質二次電池用負極材料の製造方法である。
【0016】
D≦[(2.5a + 10b + 3.8c)×101/1.5 ・・・ (I)
但し、a、bおよびcはそれぞれ噴霧ガス中のAr、HeおよびNガスの体積分率を示し、a+b+c=1である。
【0017】
ガスアトマイズ法では、チャンバー上部から流下させた合金原料の溶融物が噴霧ガスと接触して飛散し、融滴となり、この融滴が噴霧ガスとほぼ同じ組成の雰囲気中で落下中に冷却されて凝固し、凝固した粉末がチャンバー底部に堆積する。通常は堆積前に凝固が完了するように、チャンバーの長さを設定する。そうしないと、堆積した粉末が融着する可能性があるからである。
【0018】
本発明者らは、Ar、NまたはHeガスを噴霧ガスとし、通常よく用いられている拘束式や自然落下式等のアトマイズノズルを用いて、組成が質量%で 4%Fe−3.6%Nb−21%Cr−9%Mo−Niである合金のガスアトマイズ粉末を作製し、粉末粒径と凝固時の冷却速度の定量的な関係を調査した。凝固時の冷却速度は、作製した粉末のデンドライト組織の二次アーム間距離を測定して求めた。流下する合金の溶融物とガスが最初に衝突する位置 (流下する溶融物の外周部とアトマイズガス流心との交点を図面上で求めた位置) でのアトマイズガスの流速は、アトマイズガス種の293 K, 1.013×10Paにおける音速に対してマッハ1以上であった。アトマイズガスの流速は、合金の溶融物を流下させずにガスのみを流した状態でピトー管により測定した。
【0019】
結果を図1に示す。粉末粒径が同じ場合、アトマイズガスとしてHeガスを用いた場合が最も凝固速度が大きくなっており、次いでN、Arの順であった。熱容量および音速は、次に示すように、Heが最も大きく、Arが最も小さい。上記の結果となったのは、定性的には熱容量の大きなガスは抜熱効果が大きく、また音速が速いガスは流速が速くなるためと推測しているが、詳細は不明である。少なくとも、本発明者らの実験結果によれば、それぞれのガスをマッハ1以上の速度を用いてガスアトマイズした場合は、アトマイズノズルの形式等の他のアトマイズ条件にかかわらず、図1の関係は成立する。
【0020】

Figure 0003622629
図1から決定した上記(I) 式を満たす条件で製造した合金粉末は、溶融物からの凝固中の冷却速度が10[K/s] 以上といった急冷凝固となり、微細な合金組織を持つ。そのため、他の相によるSi相の拘束が効果的に機能し、充電・放電中のSi相の体積変化が抑えられるので、微粉化が抑制され、サイクル寿命が改善される。但し、ガスアトマイズ法に供する合金原料の溶融物の温度が高過ぎると、凝固に時間がかかり、微細な組織を得ることが困難となるので、この溶融物の温度も上記のように規定する。
【0021】
本発明の製造方法において、必要であれば、ガスアトマイズ法で得られた合金粉末を分級し、合金粉末の80体積%以上の粒子の粉末粒径D (μm) が上記(I) 式を満たすようにする。
【0022】
【発明の実施の形態】
本発明の方法により製造する非水電解質二次電池負極材料は、Liと可逆的に化合・解離することのできる1種以上の元素の相 (以下、A相とする) とこの元素の少なくとも1種を含む金属間化合物の相 (以下、B相とする) とを含む合金の粉末からなる。
【0023】
Liと化合・解離できるA相が主なLi吸蔵相である。金属間化合物のB相は、A相に比べてLi吸蔵能は著しく小さいか、あるいはLi吸蔵能を持たない。しかし、このB相がA相に接して存在することで、Li吸蔵・放出時にA相が受ける体積変化 (膨張・収縮) がB相で拘束されて抑制され、合金粉末の割れや微粉化が防止されるので、サイクル寿命が著しく改善される。
【0024】
A相を構成する、Liと可逆的に化合・解離することのできる元素の例としては、C、Si、Ge、Sn、Pb、P、Al等が挙げられる。このうち好ましいのは、Li吸蔵量が大きいSi、Al、Snであり、特にSiが好ましい。
【0025】
この元素を含む金属間化合物の相 (B相) の種類は特に制限されない。B相は、原理的にはLiの吸蔵能がないか、非常に小さい相であれば、A相を体積変化に対して拘束することができる。しかし、B相がA相から剥離すると、この拘束の作用が失われる。そこで、凝固中にB相がA相と強固に結合することができるように、B相は、A相を構成する元素を含む金属間化合物の相とする。この金属間化合物は、A相の元素aと、周期表の2族 (IIA族) 元素、遷移元素、13族 (IIIB族) 元素および14族 (IVB族) 元素から選ばれた1以上の元素bとの金属間化合物であることが好ましい。
【0026】
上記金属間化合物(B相)を構成する元素bの例を次に例示する:
2族元素:Be、Mg、Ca、Sr、Ba、Ra;
遷移元素:Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Zn、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、ランタノイド (La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu) 、Hf、Ta、W、Re、Os、Ir、Pr、Au、Hg、アクチノイド (Ac、Th、Pa、U、Np、Pu、Am、Cm、Bk、Cf、Es、Fm、Md、No、Lr) ;
13族元素:B、Al、Ga、In、Tl;
14族元素:C、Si、Ge、Sn、Pb。
【0027】
上記元素のうち好ましいのは、2族元素ではMg;遷移元素では、Ti、V、Cr、Mn、Fe、Co、Ni、Zn、および希土類元素 (特にNd等のランタノイド) ;13族元素ではAl;14族元素ではC、Si、Ge、Sn、Pbである。これらのうち、特に好ましいのはNi、CoおよびTiである。
【0028】
本発明により製造する非水電解質二次電池用負極材料として使用する合金粉末は、主要なLi吸蔵相であるA相と、A相の元素の金属間化合物の相であるB相のみからなる組織を持つものが好ましいが、他の相が共存していてもよい。
【0029】
本発明によれば、上記A相とB相とを含む合金粉末は、Ar、He、Nから選ばれた1種以上を噴霧ガスとするガスアトマイズ法により製造する。即ち、合金原料の溶融物を形成し、この溶融物を上記噴霧ガスを用いたガスアトマイズ法により凝固させる。その際に、流下する合金の溶融物と噴霧ガスが最初に衝突する位置での噴霧ガスの流速を、そのガス種の293 K, 1.013×10Paにおける音速に対してマッハ1以上とし、かつガスアトマイズ法で得られた合金粉末の80体積%以上の粒子の粉末粒径D (μm)が下記(I) 式を満たすようにする。
【0030】
D≦[(2.5a + 10b + 3.8c)×101/1.5 ・・・ (I)
但し、a、bおよびcはそれぞれ噴霧ガス中のAr、HeおよびNガスの体積分率を示し、a+b+c=1である。
【0031】
上記(I) 式は、前述したように、本発明者らが実験結果から導き出したものである。粉末粒径は、全数を調査することは実際には不可能であり、また分級により粒度調整する場合でも、厳密に一定粒径以下の粉末を得ることは工業的には困難であるので、本発明では80体積%以上の粒子の粉末粒径Dにより粉末粒径を規定する。マッハ1以上の流速の噴霧ガスでアトマイズした場合、80体積%以上の粒子の粉末粒径が上記(I) 式を満たすと、サイクル寿命のすぐれた合金粉末を得ることができる。
【0032】
(I) 式について具体的に説明すると、ガスアトマイズ法に用いる噴霧ガスが熱容量や音速の大きい純Heガスである場合には、粉末粒径Dが100 μm以下であれば、微細な合金組織とするのに十分な冷却速度が得られる。一方、同じような微細な組織を持つ合金粉末は、噴霧ガスが純Nガスの場合には粉末粒径Dが52μm以下の場合にしか得られず、純Arガスの場合には粉末粒径が40μm以下の場合にしか得られない。2種以上の混合ガスを噴霧ガスとする場合には、上記(I) 式を満たすように粉末粒径Dを選択する。
【0033】
ガスアトマイズ法で作製される粉末の粒径は、ガス噴霧方式の種類や噴霧ガスの流量、流下する溶融物の直径、温度(動粘性係数)、流量等により影響を受ける。従って、使用する噴霧ガスの組成が決まったら、ガスアトマイズ条件を上記(I) 式を満たすように設定することで、上記(I) 式を満たす合金粉末を製造することができる。但し、ガスアトマイズ法で得られた合金粉末が上記(I) 式を満たしていない場合には、分級による粒度調整で粗大な粉末を除外することにより、上記(I) 式を満たす合金粉末を得ることができる。その場合には、製品収率が除外する粉末の分だけ悪くなるので、分級しないでも(I) 式を満たす粉末が得られようにガスアトマイズ条件を設定する方が好ましい。
【0034】
Dの下限については特に限定されない。しかし、合金粉末の取扱時の酸化等を考慮すれば、いかなる組成の噴霧ガスを用いた場合であっても、Dが1μm以上となる粒径のものが好ましい。Dが上記(I) 式の範囲より大きくなると、合金組織が粗大となり、非水電解質二次電池用負極材料として用いた場合、充・放電のサイクルを繰り返すと割れが発生して、容量が小さくなり、サイクル寿命が短いものとなる。
【0035】
ガスアトマイズ法におけるガス噴霧方式は、丸善発行「金属便覧」の粉末製造各論の項にも説明されているように、自然落下式と拘束式がある。拘束式は、溶融物の流下口のすぐ近くで噴霧ガスを噴霧するため、より効果的にガスのエネルギーを溶融物に与えることができ、冷却速度が大きくなり、微細組織を得るのに有利である。従って、本発明においては拘束式のガス噴霧方式を採用することが好ましい。
【0036】
噴霧ガスは、Arガス、HeガスおよびNガスのうちの1種か、2種以上からなるガスであるが、水素ガス等の他のガスも少量であれば混合して用いることができる。この混合ガスとしては、非酸化性のガスが好ましい。その場合、他のガスの混合比率は上記3種類のガスの合計体積に対し体積比で0.1 以下の割合にすべきである。これを超えて他のガスを混合すると、噴霧ガスの組成と粒径を規定した(I) 式からの逸脱が大きくなることがある。但し、その場合には、(I) 式に基づいて、微細な組織が得られる新たな式を求めることは可能であろう。
【0037】
ガスアトマイズに供する合金原料は、金属間化合物の相 (B相) に比べて、Li吸蔵相 (A相) の元素が過剰になるように調整する。例えば、Ni−Si二元系では、金属間化合物はNiSiおよびNiSiであるので、NiSiに対応する組成(Si:約49wt%) よりSiリッチとなるように原料の組成を選択する。それにより、凝固中にSi相と金属間化合物相 (NiSi相および/またはNiSi相) が析出する。合金系によっては、金属間化合物相とLi吸蔵相が共晶を形成することもある。Li吸蔵相と金属間化合物相が存在していれば、各相の析出形態は特に制限されない。
【0038】
ガスアトマイズ法に供する合金原料の溶融物の温度は、(合金の液相線温度+500 ℃)以下の温度にする。溶融物の温度がこれより高いと、凝固時の冷却速度が遅くなり、粒径が(I) 式の範囲に入っていても、組織が粗大化して目的のサイクル寿命が得られないことがあり、また溶融物中の酸素の溶存量が増加し、サイクル寿命が低下することがある。好ましくは、この温度は(合金の液相線温度+300 ℃)以下である。
【0039】
前述したように、ガスアトマイズ法で製造された合金粉末の粒径が前記(I) 式を満たさない場合には、篩いや風力分級機等の分級機を用いて分級し、粗大な粉末を除去することによって、(I) 式を満たすように粉末の粒度調整を行う。こうして集められた粉末は、(I) 式を満たしていれば、高い冷却速度で凝固しており、微細な合金組織を有している。また、本発明の負極材料では合金粉末の最大粒径が規制されているので、粉砕は必要ないが、粉砕して負極材料として使用することも可能である。
【0040】
本発明により製造された合金粉末は、そのまま負極材料として使用することができる。ガスアトマイズ法により製造された粉末は急冷凝固を受けているが、通常は特に熱処理をせずに使用することができる。しかし、急冷による格子歪みを除去する目的で熱処理を行うことも可能である。その場合には、熱処理中に合金粉末が酸化されたり、合金組織が過度に粗大化しないように留意する。熱処理温度は、合金の固相線温度より10℃以上低い温度、好ましくは100 ℃以上低い温度とすることが好ましい。
【0041】
本発明の負極材料から、例えば、次に説明するようにして非水電解質二次電池用負極を製造することができる。まず、負極材料の合金粉末に、適当な結着剤とその溶媒を、必要に応じて導電性向上のために導電粉と一緒に混合する。この混合物を、ホモジナイザー、ガラスビーズ等を適宜用いて充分に攪拌し、スラリー状にする。このスラリーを圧延銅箔、銅電析銅箔などの電極基板 (集電体) に、ドクターブレード等を用いて塗布し、乾燥した後、ロール圧延等で圧密化させ、必要であれば適当な大きさに切断して、負極が製造される。
【0042】
結着剤としては、PVDF(ポリフッ化ビニリデン)、PMMA(ポリメチルメタクリレート)、PTFE(ポリテトラフルオロエチレン)等の非水溶性の樹脂、並びにCMC(カルボキシメチルセルロース) 、PVA(ポリビニルアルコール) などの水溶性樹脂が例示される。溶媒としては、結着剤に応じて、NMP(N−メチルピロリドン) 、DMF(ジメチルホルムアミド) 等の有機溶媒、または水を使用する。
【0043】
導電粉としては、炭素質材料 (例、カーボンブラック、黒鉛) および金属(例、Ni)のいずれも使用できるが、好ましいのは炭素質材料である。炭素質材料は、その層間にLiイオンを吸蔵することができるので、導電性に加えて、負極の容量にも寄与することができ、また保液性にも富んでいる。
【0044】
負極に炭素質材料を配合する場合、本発明の負極材料に対して5wt%以上、80wt%以下の量で炭素材料を使用することが好ましい。この量が5wt%未満では十分な導電性を付与することができず、80wt%を超えると負極の容量が低下する。より好ましい配合量は20wt%以上、50wt%以下である。
【0045】
この負極を用いて、非水電解質二次電池を作製する。非水電解質二次電池の代表例はリチウムイオン二次電池であり、本発明に係る負極材料および負極は、リチウムイオン二次電池の負極材料および負極として好適である。但し、理論的には、他の非水電解質二次電池にも適用できる。
【0046】
非水電解質二次電池は、基本構造として、負極、正極、セパレーター、非水系の電解質を含んでいる。負極は本発明の負極材料から製造したものを使用するが、他の正極、セパレーター、電解質については特に制限されず、従来より公知のもの、或いは今後開発される材料を適当に使用すればよい。非水電解質二次電池の形状も特に制限されず、円筒型、角形、コイン型、シール型等何れの形でもよい。
【0047】
リチウムイオン二次電池とする場合、正極は、Li含有遷移金属化合物を正極活物質とするものが好ましい。Li含有遷移金属化合物の例は、LiM1−XM’ または LiM2yM’ (式中、0≦X, Y≦1、M とM’はそれぞれBa、Co、Ni、Mn、Cr、Ti、V、Fe、Zn、Al、In、Sn、Sc、Yの少なくとも1種) で示される化合物である。但し、遷移金属カルコゲン化物;バナジウム酸化物およびそのLi化合物;ニオブ酸化物およびそのLi化合物;有機導電性物質を用いた共役系ポリマー;シェブレル相化合物;活性炭、活性炭素繊維等といった、他の正極材料を用いることも可能である。
【0048】
リチウムイオン二次電池の電解質は、一般に支持電解としてのリチウム塩を有機溶媒に溶解させた非水系電解質である。リチウム塩としては、例えば、LiClO、LiBF、LiPF、LiAsF、LiB(C) 、LiCFSO、LiCHSO、Li(CFSON、LiCSO、Li(CFSO、LiCl、LiBr、LiI 等が例示され、1種もしくは2種以上を使用することができる。固体電解質も使用できる。
【0049】
有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネートなどの炭酸エステル類が好ましい。但し、カルボン酸エステル、エーテルをはじめとする他の各種の有機溶媒も使用可能である。
【0050】
セパレーターは、正極・負極の間に設置した絶縁体としての役割を果たす他、電解質の保持にも大きく寄与する。通常は、ポリプロピレン、ポリエチレン、またはその両者の混合布、ガラスフィルターなどの多孔体が一般に使用される。
【0051】
【実施例】
表1に示す組成を持つ合金粉末からなる負極材料を、次に述べるようにしてガスアトマイズ法により作製した。なお、表1に示した合金組成では、Li吸蔵相はいずれもSiであり、凝固中に析出する金属間化合物相および液相線温度は、Ni−52SiではNiSi+NiSiおよび1150℃、Co−58SiではCoSiおよび1310℃、Ti−61SiではTiSiおよび1450℃であった。
【0052】
所定組成の合金原料をアルゴン雰囲気中で高周波溶解して合金溶融物を形成し、この溶融物をタンディッシュに注湯した後、タンディッシュの底部に設けた細孔を通して溶融流を形成し、この溶湯流に拘束方式の噴霧ノズルから、所定組成の噴霧ガスを噴霧して、ガスアトマイズ粉末を作製した。溶融流の流量は各試験で同一とし、ガス流量を変化させてアトマイズ粉末の粒径を変化させた。流下する合金の溶融物とガスが最初に衝突する位置 (流下する溶融物の外周部とアトマイズガス流心との交点を図面上で求めた位置) でのアトマイズガスの流速を測定したところ、すべてのガス流量について、そのアトマイズガス種の293 K, 1.013×10Paにおける音速に対してマッハ1以上であった。
【0053】
タンディッシュ内の合金原料の溶融物の温度を熱電対により測定した結果を表1に示す。また、得られた合金粉末をレーザー回折式粒度分布測定装置により粒度分布を調べ、粉末の80体積%の最大粒径としてD値を求めた。このD値を(I) 式で規定される最大粉末粒径 (最大許容値) と一緒に表1に示す。
【0054】
合金粉末の負極性能を評価するため、各合金粉末を分級し、必要に応じて粉砕して、次のようにして負極を作製した。比較のために、従来の炭素材 (石油系ピッチをメソフェーズ化、炭化、および黒鉛化して得た、D値が15μmのの黒鉛粉末) を用いて、同様に負極を作製した。
【0055】
負極を作製するため、負極材料の合金粉末に結着剤としてポリフッ化ビニリデンを粉末重量の10wt%、溶媒のN−メチルピロリドンを同じく10wt%、導電材としての炭素材 (アセチレンブラック) の粉末を同じく10wt%の量で加え、混練して均一なスラリーとした。このスラリーを30μm厚の電解銅箔に塗布し、乾燥させ、ロール圧延して圧密化させた後、直径13 mm のポンチで打ち抜きして得た円板部材を負極とした。銅箔上の負極材料層の厚みは約100 μmであった。
【0056】
上記負極の単極での性能を、対極、参照極にLi金属を用いた、いわゆる3極式セルを用いて評価した。電解液にはエチレンカーボネートとジメトキシエタンの1:1混合溶媒中に、支持電解質のLiPFを1M 濃度で溶解させた溶液を使用した。測定は25℃で行い、グローブボックスのように不活性雰囲気を維持できる装置を用いて、雰囲気の露点が−70℃程度である条件で充電と放電を実施した。
【0057】
まず、1/10C (10時間で満充電になる電流値) で負極の電位が参照極の電位に対して0Vになるまで充電を行い、同じ電流値で参照極の電位が負極の電位に対して2Vになるまで放電を行って、この時の1サイクル目の放電容量をその負極の放電容量とした。この充電・放電のサイクルを繰り返し、300 サイクル目の放電容量を測定して、次式よりサイクル寿命を算出した。
【0058】
サイクル寿命=(300サイクル目の放電容量) /(1サイクル目の放電容量) ×100(%)
こうして求めた放電容量とサイクル寿命の結果も表1に一緒に示す。なお、放電容量は合金組成により大きく変動するが、サイクル寿命については95%以上が合格ラインである。
【0059】
【表1】
Figure 0003622629
表1からわかるように、本発明に従って粉末粒径Dが(I) 式を満たす合金粉末は、放電容量が高く、しかも300 サイクル目でも初期容量の95%以上の放電容量を維持するというすぐれたサイクル寿命を示す。一方、粉末粒径Dの値が大きく、(I) 式を満たしていない比較例の合金粉末は、初期容量は高くても、サイクル寿命が95%以上にはならなかった。
【0060】
【発明の効果】
本発明により、従来の炭素質材料に比べて放電容量が高く、サイクル寿命も非常に高い非水電解質二次電池用負極材料を、比較的安価に確実かつ大量に製造することができるので、本発明は非水電解質二次電池の高性能化に寄与する。
【図面の簡単な説明】
【図1】ガスアトマイズ法により製造された合金粉末の粒径と冷却速度との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a negative electrode material for a non-aqueous electrolyte secondary battery having a high charge / discharge capacity and excellent cycle life.
[0002]
The nonaqueous electrolyte secondary battery in the present invention includes a battery using a nonaqueous electrolyte in which a supporting electrolyte is dissolved in an organic solvent or a nonaqueous electrolyte such as a polymer electrolyte or a gel electrolyte.
[0003]
[Prior art]
With the spread of portable small-sized electrical and electronic devices such as mobile phones and personal computers, the production volume of non-aqueous electrolyte secondary batteries, especially lithium ion secondary batteries, as high-capacity small-sized secondary batteries is rapidly increasing. is there.
[0004]
In non-aqueous electrolyte secondary batteries currently in practical use, a carbonaceous material is used as a negative electrode material. At the beginning of development, a non-aqueous electrolyte secondary battery using metallic lithium as a negative electrode material was tried, but the metallic lithium deposited on the negative electrode during charging becomes dendritic and easily breaks through the separator. Could not be used. Therefore, a non-aqueous electrolyte called a lithium ion secondary battery that uses a carbonaceous material capable of reversibly occluding and releasing Li ions between layers as a negative electrode material and charging and discharging by occluding and releasing Li ions into the carbonaceous material. Secondary batteries have been developed and can be used as practical batteries. In lithium ion secondary batteries, metal lithium does not precipitate in the charge / discharge reaction, so problems due to dendrites can be avoided.
[0005]
Nonaqueous electrolyte secondary batteries using a carbonaceous material as a negative electrode material have a higher capacity than other small secondary batteries such as nickel-cadmium batteries and nickel-hydrogen batteries, but the theoretical capacity of carbonaceous materials is metal lithium. Therefore, as long as the carbonaceous material is a negative electrode material, there is a limit to increasing the capacity.
[0006]
Therefore, with the aim of further increasing the capacity of non-aqueous electrolyte secondary batteries, research using negative electrode materials other than carbonaceous materials, for example, intermetallic compounds such as metal silicides, as negative electrode materials (eg, JP-A-7-240201). Research has been conducted using a metal such as Al capable of forming an intermetallic compound with Li, or a metal material obtained by adding other elements to this metal as a negative electrode material. JP-A-10-294112 proposes to improve the charge / discharge capacity of a nonaqueous electrolyte secondary battery using a metal silicide produced by a molten metal quenching method as a negative electrode.
[0007]
[Problems to be solved by the invention]
However, at present, these negative electrode materials have not been put into practical use. The main reason is that the intermetallic compound has a small amount of occlusion of Li in the negative electrode material, so that a high capacity cannot be obtained, and in the case of a negative electrode material such as Al that can obtain a high capacity, The accompanying volume change of the negative electrode material is large, and it is considered that the negative electrode material is cracked and pulverized as the charge / discharge cycle is repeated, and the cycle life is extremely reduced.
[0008]
The present invention provides a method for producing a negative electrode material for a non-aqueous electrolyte secondary battery that exhibits a higher capacity than a carbonaceous material, has reduced pulverization, and has a cycle life equal to or longer than that of the carbonaceous material. This is the issue.
[0009]
[Means for Solving the Problems]
Silicon (Si) can occlude and release Li by reversibly combining and dissociating with Li. When Si is used as a negative electrode material for a non-aqueous electrolyte secondary battery, the charge / discharge capacity of Si is theoretically 4200 mAh / g (9800 mAh / cc per volume: specific gravity 2.33). . The theoretical maximum capacity of Si is much larger than the theoretical maximum capacity of 372 mAh / g (844 mAh / cc: specific gravity 2.27) of the carbon material currently in practical use, and the theoretical maximum capacity of metallic lithium is 3900 mAh. Even when compared with / g (2100 mAh / cc: specific gravity 0.53), Si is significantly larger in discharge capacity per unit volume, which is important from the viewpoint of battery miniaturization. Therefore, Si can be a high capacity negative electrode material.
[0010]
However, the negative electrode material made of Si, like the case of Al, has a large volume change due to insertion and extraction of Li, so it is easy to be pulverized by cracking, and the cycle life is extremely shortened, so Si is used as the negative electrode material. Attempts have never been made before.
[0011]
The inventors of the present invention have paid attention to the characteristic of a remarkably high theoretical capacity possessed by the negative electrode material made of Si, and as a result of repeated studies to improve the cycle life, the present inventors have no Li occlusion ability or little occlusion ability. It has been found that an alloy material in which another phase (for example, a phase of Si intermetallic compound) coexists with the Si phase is effective. In such an alloy material, the capacity is lowered by the presence of another phase (intermetallic compound phase) that has no or a small capacity to absorb Li, but as a result of the other phase constraining the Si phase, The volume change of the Si phase accompanying the insertion / release of Li is suppressed, the pulverization of the negative electrode material is difficult to proceed, and the cycle life is improved. As a result, it is possible to obtain a negative electrode material having a higher capacity than that of the carbonaceous material and a cycle life reaching a practical level. The same applies to elements other than Si as long as they can reversibly combine and dissociate with Li.
[0012]
In order to restrain the volume change of the Si phase by restraining the Si phase with another phase such as an Si intermetallic compound, it is advantageous that the alloy structure is fine. This is because if the crystal grain size of the Si phase is large, the restraint due to other phases arranged around the Si phase becomes difficult to reach the inside of the Si phase. An alloy material having a fine structure can be produced by a casting method capable of rapid cooling and solidification, such as an atomizing method or a roll rapid cooling method. In particular, the gas atomization method makes it possible to produce a spherical powder, eliminating the need for a pulverization step, and the obtained negative electrode material in the form of a spherical powder is excellent in filling properties, so that a negative electrode with a high packing density is produced. This is advantageous. The gas atomization method has established mass production technology and has already been used for industrial production of various metallic spherical powders.
[0013]
However, as a result of investigation by the present inventors, even when the powder of the above alloy produced by using the gas atomizing method is used as the negative electrode material of the non-aqueous electrolyte secondary battery, the cycle life is not always long.
[0014]
As a result of further investigation, even if the gas atomization method is adopted, depending on the conditions, the cooling rate of the alloy at the time of solidification is slow, and the alloy structure does not become sufficiently fine, so the alloy powder has a low cycle life, and the cooling rate is It is affected by the gas type of the inert gas used as the atomizing gas in the gas atomization method, and the cooling capacity becomes smaller as the gas type has a smaller heat capacity or sound speed, so the cooling rate will be insufficient unless the particle size of the alloy powder is reduced. And reached the present invention.
[0015]
The present invention completed on the basis of this finding is an alloy powder comprising a phase of one or more elements capable of reversibly compounding and dissociating with Li and a phase of an intermetallic compound containing at least one of the elements. A method for producing a negative electrode material for a non-aqueous electrolyte secondary battery comprising a melt of an alloy raw material by a gas atomization method,
(1) The temperature of the melt of the alloy raw material used for the gas atomization method is (the liquidus temperature of the alloy + 500 ° C.) or less,
(2) The atomizing gas used in the gas atomization method is composed of one or more selected from Ar, He and N 2 ,
(3) The flow velocity of the spray gas at the position where the molten alloy melt flowing down and the spray gas first collides is Mach 1 or more with respect to the speed of sound at the gas type 293 K, 1.013 × 10 5 Pa. ,
(4) A negative electrode material for a non-aqueous electrolyte secondary battery, wherein the particle diameter D (μm) of particles of 80% by volume or more of the alloy powder obtained by the gas atomization method satisfies the following formula (I): It is a manufacturing method.
[0016]
D ≦ [(2.5a + 10b + 3.8c) × 10 2 ] 1 / 1.5 (I)
However, a, b and c respectively Ar in the spray gas, the volume fraction of He and N 2 gas, it is a + b + c = 1.
[0017]
In the gas atomization method, the melt of alloy raw material that has flowed down from the upper part of the chamber comes into contact with the spray gas and scatters to form molten droplets, which are cooled while dropping in an atmosphere of almost the same composition as the spray gas and solidify. Then, the solidified powder is deposited on the bottom of the chamber. Usually, the length of the chamber is set so that solidification is completed before deposition. Otherwise, the deposited powder may be fused.
[0018]
The present inventors use Ar, N 2 or He gas as the atomizing gas, and use a normally used atomizing nozzle such as a constraining type or a natural falling type, and the composition is 4% Fe-3.6% by mass. A gas atomized powder of an alloy of% Nb-21% Cr-9% Mo-Ni was produced, and the quantitative relationship between the powder particle size and the cooling rate during solidification was investigated. The cooling rate during solidification was determined by measuring the distance between the secondary arms of the dendritic structure of the produced powder. The velocity of the atomizing gas at the position where the molten alloy melt and the gas collide first (the position where the outer periphery of the flowing melt intersects the atomizing gas flow center on the drawing) It was Mach 1 or more with respect to the sound speed at 293 K, 1.013 × 10 5 Pa. The flow rate of the atomized gas was measured with a Pitot tube in a state where only the gas was allowed to flow without causing the molten alloy to flow down.
[0019]
The results are shown in FIG. When the powder particle size was the same, the solidification rate was highest when He gas was used as the atomizing gas, followed by N 2 and Ar. As shown below, the heat capacity and sound velocity are the largest for He and the smallest for Ar. Qualitatively, it is assumed that a gas with a large heat capacity has a large heat removal effect and a gas with a high sound speed has a high flow velocity, but the details are unknown. At least, according to the experimental results of the present inventors, when each gas is gas atomized at a speed of Mach 1 or higher, the relationship of FIG. 1 is established regardless of other atomizing conditions such as the atomizing nozzle type. To do.
[0020]
Figure 0003622629
The alloy powder produced under the condition satisfying the above formula (I) determined from FIG. 1 is rapidly solidified with a cooling rate of 10 5 [K / s] or more during solidification from the melt, and has a fine alloy structure. For this reason, the restraint of the Si phase by other phases functions effectively, and the volume change of the Si phase during charging / discharging is suppressed, so that pulverization is suppressed and the cycle life is improved. However, if the temperature of the melt of the alloy raw material used for the gas atomization method is too high, solidification takes time and it becomes difficult to obtain a fine structure. Therefore, the temperature of the melt is also defined as described above.
[0021]
In the production method of the present invention, if necessary, the alloy powder obtained by the gas atomization method is classified so that the particle diameter D (μm) of particles of 80% by volume or more of the alloy powder satisfies the above formula (I). To.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
The non-aqueous electrolyte secondary battery negative electrode material produced by the method of the present invention comprises at least one element phase (hereinafter referred to as A phase) capable of reversibly combining and dissociating with Li and at least one of these elements. And a powder of an alloy containing a phase of an intermetallic compound containing seeds (hereinafter referred to as B phase).
[0023]
A phase that can be combined and dissociated with Li is the main Li storage phase. The B phase of the intermetallic compound has significantly smaller Li storage capacity than the A phase, or does not have Li storage capacity. However, since the B phase is in contact with the A phase, volume change (expansion / shrinkage) experienced by the A phase during Li occlusion / release is restrained by the B phase, and cracking and pulverization of the alloy powder is prevented. As a result, the cycle life is significantly improved.
[0024]
Examples of elements constituting the A phase that can be reversibly combined and dissociated with Li include C, Si, Ge, Sn, Pb, P, and Al. Among these, Si, Al, and Sn having a large Li storage amount are preferable, and Si is particularly preferable.
[0025]
The type of phase (B phase) of the intermetallic compound containing this element is not particularly limited. If the B phase has no Li storage capacity in principle or is a very small phase, the A phase can be restrained against volume change. However, when the B phase is separated from the A phase, the restraining action is lost. Therefore, the B phase is a phase of an intermetallic compound containing an element constituting the A phase so that the B phase can be firmly bonded to the A phase during solidification. This intermetallic compound includes one or more elements selected from the element a of the A phase, the Group 2 (Group IIA) element, the transition element, the Group 13 (Group IIIB) element, and the Group 14 (Group IVB) element of the periodic table. It is preferably an intermetallic compound with b.
[0026]
Examples of the element b constituting the intermetallic compound (B phase) are exemplified below:
Group 2 elements: Be, Mg, Ca, Sr, Ba, Ra;
Transition elements: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, lanthanoid (La, Ce, Pr, Nd , Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), Hf, Ta, W, Re, Os, Ir, Pr, Au, Hg, actinides (Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr);
Group 13 elements: B, Al, Ga, In, Tl;
Group 14 element: C, Si, Ge, Sn, Pb.
[0027]
Among the above elements, Mg is preferable for group 2 elements; Ti, V, Cr, Mn, Fe, Co, Ni, Zn, and rare earth elements (especially lanthanoids such as Nd) for transition elements; Al for group 13 elements ; C, Si, Ge, Sn, and Pb are group 14 elements. Of these, Ni, Co and Ti are particularly preferred.
[0028]
The alloy powder used as a negative electrode material for a non-aqueous electrolyte secondary battery manufactured according to the present invention is composed of a phase A that is the main Li storage phase and a phase B that is an intermetallic compound phase element of the phase A. However, other phases may coexist.
[0029]
According to the present invention, the alloy powder containing the A phase and the B phase is produced by a gas atomizing method using one or more selected from Ar, He, and N 2 as a spray gas. That is, a melt of the alloy raw material is formed, and this melt is solidified by a gas atomizing method using the spray gas. At that time, the flow velocity of the spray gas at the position where the molten alloy melt flowing down and the spray gas first collides is set to Mach 1 or more with respect to the sound velocity at the gas type 293 K, 1.013 × 10 5 Pa. In addition, the particle size D (μm) of particles of 80% by volume or more of the alloy powder obtained by the gas atomization method satisfies the following formula (I).
[0030]
D ≦ [(2.5a + 10b + 3.8c) × 10 2 ] 1 / 1.5 (I)
However, a, b and c respectively Ar in the spray gas, the volume fraction of He and N 2 gas, it is a + b + c = 1.
[0031]
The above formula (I) is derived from the experimental results by the inventors as described above. It is actually impossible to investigate the total number of powder particles, and even when adjusting the particle size by classification, it is industrially difficult to obtain a powder having a specific particle size or less. In the invention, the powder particle diameter is defined by the powder particle diameter D of particles of 80 volume% or more. When atomization is performed with a spray gas having a flow rate of Mach 1 or more, an alloy powder having an excellent cycle life can be obtained when the particle size of particles of 80% by volume or more satisfies the above formula (I).
[0032]
The formula (I) will be specifically described. When the atomizing gas used in the gas atomizing method is pure He gas having a large heat capacity and sound speed, a fine alloy structure can be obtained if the powder particle diameter D is 100 μm or less. A sufficient cooling rate is obtained. On the other hand, an alloy powder having a similar fine structure can be obtained only when the atomizing gas is pure N 2 gas and the powder particle diameter D is 52 μm or less, and in the case of pure Ar gas, the powder particle diameter is obtained. Can be obtained only when the thickness is 40 μm or less. When two or more mixed gases are used as the spray gas, the powder particle size D is selected so as to satisfy the above formula (I).
[0033]
The particle size of the powder produced by the gas atomization method is affected by the type of gas spraying method, the flow rate of the spray gas, the diameter of the melt flowing down, the temperature (kinematic viscosity coefficient), the flow rate, and the like. Therefore, when the composition of the spray gas to be used is determined, the alloy powder satisfying the above formula (I) can be manufactured by setting the gas atomizing conditions so as to satisfy the above formula (I). However, when the alloy powder obtained by the gas atomization method does not satisfy the above formula (I), an alloy powder satisfying the above formula (I) is obtained by excluding coarse powder by particle size adjustment by classification. Can do. In that case, since the product yield is deteriorated by the amount of the powder to be excluded, it is preferable to set the gas atomizing conditions so that a powder satisfying the formula (I) can be obtained without classification.
[0034]
The lower limit of D is not particularly limited. However, considering the oxidation during the handling of the alloy powder, it is preferable that the particle diameter is such that D is 1 μm or more regardless of the spray gas having any composition. When D is larger than the range of the above formula (I), the alloy structure becomes coarse, and when used as a negative electrode material for a non-aqueous electrolyte secondary battery, cracking occurs when the charge / discharge cycle is repeated, resulting in a small capacity. Thus, the cycle life is short.
[0035]
The gas atomization method in the gas atomization method includes a natural fall type and a constraining type as described in the section on powder production in Maruzen's “Metal Handbook”. The restraint type sprays the atomizing gas in the immediate vicinity of the melt flow-down port, so that the energy of the gas can be given to the melt more effectively, the cooling rate is increased, and it is advantageous for obtaining a fine structure. is there. Therefore, in the present invention, it is preferable to employ a constrained gas spraying method.
[0036]
The atomizing gas is a gas composed of one or more of Ar gas, He gas, and N 2 gas, but other gases such as hydrogen gas can be mixed and used as long as they are in a small amount. As this mixed gas, a non-oxidizing gas is preferable. In that case, the mixing ratio of the other gases should be a ratio of 0.1 or less in volume ratio to the total volume of the above three gases. If other gases are mixed in excess of this, deviation from the formula (I) that defines the composition and particle size of the spray gas may become large. However, in that case, it will be possible to obtain a new equation that can obtain a fine structure based on the equation (I).
[0037]
The alloy raw material used for gas atomization is adjusted so that the element of the Li occlusion phase (A phase) becomes excessive as compared with the phase of the intermetallic compound (B phase). For example, in the Ni—Si binary system, the intermetallic compounds are NiSi 2 and NiSi, so the composition of the raw material is selected so as to be Si richer than the composition corresponding to NiSi 2 (Si: about 49 wt%). Thereby, the Si phase and the intermetallic compound phase (NiSi phase and / or NiSi 2 phase) precipitate during solidification. Depending on the alloy system, the intermetallic compound phase and the Li storage phase may form a eutectic. If the Li storage phase and the intermetallic compound phase exist, the precipitation form of each phase is not particularly limited.
[0038]
The temperature of the melt of the alloy raw material used for the gas atomization method is set to a temperature equal to or lower than (alloy liquidus temperature + 500 ° C.). If the temperature of the melt is higher than this, the cooling rate during solidification will be slow, and even if the particle size is within the range of formula (I), the structure may become coarse and the desired cycle life may not be obtained. In addition, the dissolved amount of oxygen in the melt may increase and the cycle life may decrease. Preferably, this temperature is equal to or less than (liquidus temperature of the alloy + 300 ° C.).
[0039]
As described above, when the particle size of the alloy powder produced by the gas atomizing method does not satisfy the above formula (I), classification is performed using a classifier such as a sieve or an air classifier, and coarse powder is removed. Thus, the particle size of the powder is adjusted so as to satisfy the formula (I). The powder collected in this way is solidified at a high cooling rate and has a fine alloy structure as long as the formula (I) is satisfied. Moreover, since the maximum particle size of the alloy powder is regulated in the negative electrode material of the present invention, pulverization is not necessary, but it can be pulverized and used as the negative electrode material.
[0040]
The alloy powder produced according to the present invention can be used as a negative electrode material as it is. Although the powder produced by the gas atomization method has undergone rapid solidification, it can usually be used without any heat treatment. However, it is also possible to perform heat treatment for the purpose of removing lattice distortion due to rapid cooling. In that case, care should be taken not to oxidize the alloy powder or excessively coarsen the alloy structure during the heat treatment. The heat treatment temperature is preferably 10 ° C. or more lower than the solidus temperature of the alloy, preferably 100 ° C. or more.
[0041]
From the negative electrode material of the present invention, for example, a negative electrode for a nonaqueous electrolyte secondary battery can be produced as described below. First, an appropriate binder and its solvent are mixed with the alloy powder of the negative electrode material together with the conductive powder to improve the conductivity, if necessary. The mixture is sufficiently stirred using a homogenizer, glass beads or the like as appropriate to form a slurry. This slurry is applied to an electrode substrate (current collector) such as a rolled copper foil or copper electrodeposited copper foil using a doctor blade or the like, dried, and then consolidated by roll rolling or the like. The negative electrode is manufactured by cutting into a size.
[0042]
Examples of the binder include water-insoluble resins such as PVDF (polyvinylidene fluoride), PMMA (polymethyl methacrylate), and PTFE (polytetrafluoroethylene), and water-soluble resins such as CMC (carboxymethylcellulose) and PVA (polyvinyl alcohol). An example is a functional resin. As the solvent, an organic solvent such as NMP (N-methylpyrrolidone) or DMF (dimethylformamide) or water is used depending on the binder.
[0043]
As the conductive powder, a carbonaceous material (eg, carbon black, graphite) and a metal (eg, Ni) can be used, but a carbonaceous material is preferred. Since the carbonaceous material can occlude Li ions between the layers, the carbonaceous material can contribute to the capacity of the negative electrode in addition to the conductivity, and is also excellent in liquid retention.
[0044]
When a carbonaceous material is blended in the negative electrode, it is preferable to use the carbon material in an amount of 5 wt% or more and 80 wt% or less with respect to the negative electrode material of the present invention. If this amount is less than 5 wt%, sufficient conductivity cannot be imparted, and if it exceeds 80 wt%, the capacity of the negative electrode is reduced. A more preferable blending amount is 20 wt% or more and 50 wt% or less.
[0045]
A non-aqueous electrolyte secondary battery is produced using this negative electrode. A typical example of the nonaqueous electrolyte secondary battery is a lithium ion secondary battery, and the negative electrode material and the negative electrode according to the present invention are suitable as the negative electrode material and the negative electrode of the lithium ion secondary battery. However, theoretically, it can also be applied to other nonaqueous electrolyte secondary batteries.
[0046]
The nonaqueous electrolyte secondary battery includes a negative electrode, a positive electrode, a separator, and a nonaqueous electrolyte as a basic structure. Although what was manufactured from the negative electrode material of this invention is used for a negative electrode, it does not restrict | limit especially about another positive electrode, a separator, and electrolyte, What is necessary is just to use a conventionally well-known thing or the material developed in the future suitably. The shape of the nonaqueous electrolyte secondary battery is not particularly limited, and may be any shape such as a cylindrical shape, a square shape, a coin shape, or a seal shape.
[0047]
In the case of a lithium ion secondary battery, the positive electrode preferably uses a Li-containing transition metal compound as a positive electrode active material. Examples of Li-containing transition metal compounds are LiM 1-X M ′ X O 2 or LiM 2y M ′ y O 4 (where 0 ≦ X, Y ≦ 1, M and M ′ are Ba, Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, In, Sn, Sc, and Y). However, transition metal chalcogenides; vanadium oxide and its Li compound; niobium oxide and its Li compound; conjugated polymer using organic conductive material; chevrel phase compound; activated carbon, activated carbon fiber, etc. It is also possible to use.
[0048]
The electrolyte of a lithium ion secondary battery is generally a non-aqueous electrolyte in which a lithium salt as supporting electrolysis is dissolved in an organic solvent. Examples of the lithium salt include LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiB (C 6 H 5 ), LiCF 3 SO 3 , LiCH 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F Examples include 9 SO 3 , Li (CF 2 SO 2 ) 2 , LiCl, LiBr, LiI and the like, and one or more can be used. Solid electrolytes can also be used.
[0049]
As the organic solvent, carbonates such as propylene carbonate, ethylene carbonate, ethyl methyl carbonate, dimethyl carbonate, and diethyl carbonate are preferable. However, various other organic solvents including carboxylic acid esters and ethers can also be used.
[0050]
The separator not only plays a role as an insulator placed between the positive electrode and the negative electrode, but also greatly contributes to the retention of the electrolyte. Usually, a porous body such as polypropylene, polyethylene, a mixed cloth of both, or a glass filter is generally used.
[0051]
【Example】
A negative electrode material made of an alloy powder having the composition shown in Table 1 was prepared by a gas atomization method as described below. In the alloy composition shown in Table 1, the Li storage phase is Si, and the intermetallic compound phase and liquidus temperature precipitated during solidification are NiSi + NiSi 2 and 1150 ° C. for Co-58Si in Ni-52Si. In CoSi 2 and 1310 ° C., in Ti-61Si, TiSi 2 and 1450 ° C.
[0052]
An alloy raw material having a predetermined composition is melted at a high frequency in an argon atmosphere to form an alloy melt. After pouring the melt into a tundish, a melt flow is formed through pores provided at the bottom of the tundish. A gas atomized powder was produced by spraying a spray gas having a predetermined composition from a restraint type spray nozzle in the molten metal flow. The flow rate of the melt flow was the same in each test, and the particle size of the atomized powder was changed by changing the gas flow rate. The atomized gas flow velocity at the position where the molten alloy melt and gas first collide (position where the outer periphery of the flowing melt and the atomized gas flow center intersected) was measured. The gas flow rate was Mach 1 or more with respect to the speed of sound at 293 K, 1.013 × 10 5 Pa of the atomized gas type.
[0053]
Table 1 shows the results of measuring the temperature of the alloy raw material melt in the tundish with a thermocouple. Further, the particle size distribution of the obtained alloy powder was examined with a laser diffraction particle size distribution measuring device, and the D value was determined as the maximum particle size of 80% by volume of the powder. This D value is shown in Table 1 together with the maximum powder particle size (maximum allowable value) defined by the formula (I).
[0054]
In order to evaluate the negative electrode performance of the alloy powder, each alloy powder was classified and pulverized as necessary to produce a negative electrode as follows. For comparison, a negative electrode was similarly prepared using a conventional carbon material (graphite powder having a D value of 15 μm obtained by mesophaseizing, carbonizing, and graphitizing petroleum pitch).
[0055]
In order to produce a negative electrode, a powder of 10 wt% of polyvinylidene fluoride as a binder and 10 wt% of N-methylpyrrolidone as a solvent and a carbon material (acetylene black) as a conductive material are used as an anode material alloy powder. Similarly, it was added in an amount of 10 wt% and kneaded to obtain a uniform slurry. The slurry was applied to an electrolytic copper foil having a thickness of 30 μm, dried, rolled and consolidated, and then a disk member obtained by punching with a punch having a diameter of 13 mm was used as a negative electrode. The thickness of the negative electrode material layer on the copper foil was about 100 μm.
[0056]
The performance of the negative electrode as a single electrode was evaluated using a so-called tripolar cell using Li metal as a counter electrode and a reference electrode. As the electrolytic solution, a solution in which LiPF 6 as a supporting electrolyte was dissolved at a concentration of 1M in a 1: 1 mixed solvent of ethylene carbonate and dimethoxyethane was used. The measurement was performed at 25 ° C., and charging and discharging were performed using an apparatus capable of maintaining an inert atmosphere such as a glove box under conditions where the dew point of the atmosphere was about −70 ° C.
[0057]
First, charging is performed at 1/10 C (current value that becomes fully charged in 10 hours) until the potential of the negative electrode becomes 0 V with respect to the potential of the reference electrode, and the potential of the reference electrode is compared with the potential of the negative electrode with the same current value. Discharge was performed until the voltage reached 2 V, and the discharge capacity at the first cycle at this time was defined as the discharge capacity of the negative electrode. This charge / discharge cycle was repeated, the discharge capacity at the 300th cycle was measured, and the cycle life was calculated from the following equation.
[0058]
Cycle life = (discharge capacity at the 300th cycle) / (discharge capacity at the first cycle) × 100 (%)
The discharge capacity and cycle life results thus obtained are also shown in Table 1. Although the discharge capacity varies greatly depending on the alloy composition, 95% or more of the cycle life is a pass line.
[0059]
[Table 1]
Figure 0003622629
As can be seen from Table 1, according to the present invention, the alloy powder satisfying the formula (I) has a high discharge capacity and is excellent in maintaining a discharge capacity of 95% or more of the initial capacity even at the 300th cycle. Indicates cycle life. On the other hand, the alloy powder of the comparative example having a large powder particle diameter D and not satisfying the formula (I) did not have a cycle life of 95% or more even though the initial capacity was high.
[0060]
【The invention's effect】
According to the present invention, a negative electrode material for a non-aqueous electrolyte secondary battery having a high discharge capacity and a very high cycle life as compared with conventional carbonaceous materials can be produced reliably and in large quantities at a relatively low cost. The invention contributes to high performance of the non-aqueous electrolyte secondary battery.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the particle size of an alloy powder produced by a gas atomizing method and the cooling rate.

Claims (2)

Liと可逆的に化合・解離することができるSi 相と Si 含む金属間化合物の相とを含む合金の粉末からなる非水電解質二次電池用負極材料を合金原料の溶融物からガスアトマイズ法により製造する方法であって、
(1) ガスアトマイズ法に供する合金原料の溶融物の温度が (合金の液相線温度+500 ℃) 以下であり、
(2) ガスアトマイズ法に用いる噴霧ガスがAr、HeおよびN2から選ばれた1種以上からなり、
(3) 流下する合金の溶融物と噴霧ガスが最初に衝突する位置での噴霧ガスの流速が、そのガス種の293 K, 1.013×105 Paにおける音速に対してマッハ1以上であり、
(4) ガスアトマイズ法で得られた合金粉末の80体積%以上の粒子の粉末粒径D (μm)が下記(I) 式を満たすことを特徴とする、非水電解質二次電池用負極材料の製造方法。
D≦[(2.5a + 10b + 3.8c)×102]1/1.5 ・・・ (I)
但し、a、bおよびcはそれぞれ噴霧ガス中のAr、HeおよびN2ガスの体積分率を示し、a+b+c=1である。
By a gas atomizing method a negative electrode material for a non-aqueous electrolyte secondary battery comprising a powder of an alloy containing a phase of intermetallic compounds from a melt of an alloy material containing Si phase and Si capable of reversibly compound and dissociation and Li A method of manufacturing comprising:
(1) The temperature of the melt of the alloy raw material used for the gas atomization method is (alloy liquidus temperature + 500 ° C) or less,
(2) The atomizing gas used in the gas atomization method is composed of one or more selected from Ar, He and N 2 ,
(3) The flow velocity of the atomizing gas at the position where the molten alloy melt flowing down and the atomizing gas first collides is Mach 1 or more with respect to the speed of sound at 293 K, 1.013 × 10 5 Pa of the gas species,
(4) A negative electrode material for a non-aqueous electrolyte secondary battery, wherein the particle size D (μm) of particles of 80% by volume or more of the alloy powder obtained by the gas atomization method satisfies the following formula (I): Production method.
D≤ [(2.5a + 10b + 3.8c) x 10 2 ] 1 / 1.5 ... (I)
However, a, b and c respectively Ar in the spray gas, the volume fraction of He and N 2 gas, it is a + b + c = 1.
Liと可逆的に化合・解離することができるSi 相と Si 含む金属間化合物の相とを含む合金の粉末からなる非水電解質二次電池用負極材料を合金原料の溶融物からガスアトマイズ法により製造する方法であって、
(1) ガスアトマイズ法に供する合金原料の溶融物の温度が (合金の液相線温度+500 ℃) 以下であり、
(2) ガスアトマイズ法に用いる噴霧ガスがAr、HeおよびN2から選ばれた1種以上からなり、
(3) 流下する合金の溶融物と噴霧ガスが最初に衝突する位置での噴霧ガスの流速が、そのガス種の293 K, 1.013×105 Paにおける音速に対してマッハ1以上であり、
(4) ガスアトマイズ法で得られた合金粉末を分級することにより、合金粉末の80体積%以上の粒子の粉末粒径D (μm)が下記(I) 式を満たすようにする
ことを特徴とする、非水電解質二次電池用負極材料の製造方法。
D≦[(2.5a + 10b + 3.8c)×102]1/1.5 ・・・ (I)
但し、a、bおよびcはそれぞれ噴霧ガス中のAr、HeおよびN2ガスの体積分率を示し、a+b+c=1である。
By a gas atomizing method a negative electrode material for a non-aqueous electrolyte secondary battery comprising a powder of an alloy containing a phase of intermetallic compounds from a melt of an alloy material containing Si phase and Si capable of reversibly compound and dissociation and Li A method of manufacturing comprising:
(1) The temperature of the melt of the alloy raw material used for the gas atomization method is (alloy liquidus temperature + 500 ° C) or less,
(2) The atomizing gas used in the gas atomization method is composed of one or more selected from Ar, He and N 2 ,
(3) The flow velocity of the atomizing gas at the position where the molten alloy melt flowing down and the atomizing gas first collides is Mach 1 or more with respect to the speed of sound at 293 K, 1.013 × 10 5 Pa of the gas species,
(4) By classifying the alloy powder obtained by the gas atomization method, the particle diameter D (μm) of particles of 80% by volume or more of the alloy powder satisfies the following formula (I): The manufacturing method of the negative electrode material for nonaqueous electrolyte secondary batteries.
D≤ [(2.5a + 10b + 3.8c) x 10 2 ] 1 / 1.5 ... (I)
However, a, b and c respectively Ar in the spray gas, the volume fraction of He and N 2 gas, it is a + b + c = 1.
JP2000104832A 2000-04-06 2000-04-06 Method for producing negative electrode material for non-aqueous electrolyte secondary battery Expired - Fee Related JP3622629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000104832A JP3622629B2 (en) 2000-04-06 2000-04-06 Method for producing negative electrode material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000104832A JP3622629B2 (en) 2000-04-06 2000-04-06 Method for producing negative electrode material for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2001291513A JP2001291513A (en) 2001-10-19
JP3622629B2 true JP3622629B2 (en) 2005-02-23

Family

ID=18618308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000104832A Expired - Fee Related JP3622629B2 (en) 2000-04-06 2000-04-06 Method for producing negative electrode material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3622629B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2104175A2 (en) 2008-03-17 2009-09-23 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
EP2509139A1 (en) 2011-04-08 2012-10-10 Shin-Etsu Chemical Co., Ltd. Method for manufacturing negative electrode active material for use in non-aqueous electrolyte secondary battery, negative electrode material for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US8734991B2 (en) 2007-11-12 2014-05-27 Sanyo Electric Co., Ltd. Negative electrode material for nonaqueous electrolyte secondary battery
WO2015097990A1 (en) 2013-12-25 2015-07-02 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
US9142858B2 (en) 2008-08-26 2015-09-22 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode, negative electrode material, and preparation of Si—O—Al composite

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4685192B1 (en) 2010-07-27 2011-05-18 富久代 市村 Solid-state secondary battery using silicon compound and method for manufacturing the same
JP4800440B1 (en) 2010-12-22 2011-10-26 富久代 市村 Solid-state secondary battery using silicon compound and method for manufacturing the same
JP2012178344A (en) * 2011-02-02 2012-09-13 Hitachi Chem Co Ltd Compound material and method for manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2013168328A (en) * 2012-02-16 2013-08-29 Hitachi Chemical Co Ltd Anode material, method for producing the same, anode for lithium-ion secondary battery, and lithium-ion secondary battery
JP6459154B2 (en) * 2015-06-19 2019-01-30 株式会社村田製作所 Magnetic powder and manufacturing method thereof, magnetic core and manufacturing method thereof, and coil component

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8734991B2 (en) 2007-11-12 2014-05-27 Sanyo Electric Co., Ltd. Negative electrode material for nonaqueous electrolyte secondary battery
EP2104175A2 (en) 2008-03-17 2009-09-23 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
US8105718B2 (en) 2008-03-17 2012-01-31 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
US9142858B2 (en) 2008-08-26 2015-09-22 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode, negative electrode material, and preparation of Si—O—Al composite
EP2509139A1 (en) 2011-04-08 2012-10-10 Shin-Etsu Chemical Co., Ltd. Method for manufacturing negative electrode active material for use in non-aqueous electrolyte secondary battery, negative electrode material for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2015097990A1 (en) 2013-12-25 2015-07-02 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
KR20160101932A (en) 2013-12-25 2016-08-26 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
US10050272B2 (en) 2013-12-25 2018-08-14 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electolyte secondary battery and method of producing the same

Also Published As

Publication number Publication date
JP2001291513A (en) 2001-10-19

Similar Documents

Publication Publication Date Title
KR100366978B1 (en) Negative electrode material for nonaqueous electrode secondary battery and method for producing the same
JP3562398B2 (en) Method for producing negative electrode material for non-aqueous electrolyte secondary battery and secondary battery
JP2001297757A (en) Negative electrode material for nonaqueous electrolyte secondary cell and its manufacturing method
KR20080032037A (en) Alloy for negative electrode of lithium secondary battery
TW200425569A (en) Electrode material for lithium secondary battery and electrode structure having the electrode material
KR20060051615A (en) Negative electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP3546798B2 (en) Non-aqueous electrolyte secondary battery, alloy for the battery, and method of manufacturing the same
JP3622631B2 (en) Nonaqueous electrolyte secondary battery, negative electrode material thereof, and method for producing the same
KR101612066B1 (en) Negative electrode active material for nonaqueous electrolyte secondary batteries
JP6601937B2 (en) Negative electrode active material, negative electrode employing the same, lithium battery, and method for producing the negative electrode active material
JP2002075351A (en) Alloy powder for negative electrode of nonaqueous electrolyte secondary battery and method for manufacturing the alloy powder
JP2004006206A (en) Negative electrode material for nonaqueous electrolyte battery, negative electrode, nonaqueous electrolyte battery, and manufacturing method of negative electrode material
JP3622629B2 (en) Method for producing negative electrode material for non-aqueous electrolyte secondary battery
JP2002170560A (en) Negative electrode material for nonaqueous system secondary battery and method for manufacturing the same
JP3659177B2 (en) Negative electrode material for non-aqueous secondary battery, method for producing the same, and negative electrode
JP5318129B2 (en) Electrode material for nonaqueous electrolyte battery and method for producing the same, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP3848187B2 (en) Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4836439B2 (en) Non-aqueous electrolyte battery electrode material, non-aqueous electrolyte battery electrode, and non-aqueous electrolyte battery
JP3567843B2 (en) Anode materials for non-aqueous electrolyte secondary batteries
JP4763970B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4032893B2 (en) Anode material for non-aqueous electrolyte secondary battery
JP4703110B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US11831007B2 (en) Si-based negative electrode active material
JP2001307723A (en) Negative electrode material for nonaqueous electrolyte secondary battery and its manufacturing method
JP3730160B2 (en) Lithium ion secondary battery and negative electrode material thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees