JP2002075351A - Alloy powder for negative electrode of nonaqueous electrolyte secondary battery and method for manufacturing the alloy powder - Google Patents

Alloy powder for negative electrode of nonaqueous electrolyte secondary battery and method for manufacturing the alloy powder

Info

Publication number
JP2002075351A
JP2002075351A JP2000266962A JP2000266962A JP2002075351A JP 2002075351 A JP2002075351 A JP 2002075351A JP 2000266962 A JP2000266962 A JP 2000266962A JP 2000266962 A JP2000266962 A JP 2000266962A JP 2002075351 A JP2002075351 A JP 2002075351A
Authority
JP
Japan
Prior art keywords
alloy
negative electrode
alloy powder
secondary battery
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000266962A
Other languages
Japanese (ja)
Inventor
Toshitada Sato
俊忠 佐藤
Takayuki Nakamoto
貴之 中本
Harunari Shimamura
治成 島村
Koichi Kamishiro
光一 神代
Yukiteru Takeshita
幸輝 竹下
Noriyuki Negi
教之 禰宜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Panasonic Holdings Corp
Original Assignee
Sumitomo Metal Industries Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Matsushita Electric Industrial Co Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000266962A priority Critical patent/JP2002075351A/en
Publication of JP2002075351A publication Critical patent/JP2002075351A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Powder Metallurgy (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode material for nonaqueous electrolyte secondary battery excellent in the discharge capacity and cyclic lifetime. SOLUTION: A powder of Si-X alloy (X is one or more elements to form an inter-metal compound or solid solution together with Si) whose structure includes an Si-phase having a large Li-occluding ability is manufactured by a rapid cooling solidification method with a cooling speed of 100 deg.C/sec (gas atomizing method, rapid cool rolling method, etc.). One or more easy-to-oxidize elements selected among Li elements and those oxidized easier than Li (for example, Ca, Mg, rare earth elements) is included in an amount: 0.01-1 wt.% in the alloy so that a drop of the discharge capacity due to oxygen inclusion is precluded. It may also be accepted that the solidification is followed by a heat treatment at a temperature lower than the solid phase line temperature of the alloy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Liを多量に吸蔵・
放出することができる非水電解質二次電池負極用合金粉
末と、この合金粉末の製造方法とに関する。
TECHNICAL FIELD The present invention relates to a method for storing a large amount of Li.
The present invention relates to an alloy powder for a negative electrode of a non-aqueous electrolyte secondary battery which can be released, and a method for producing the alloy powder.

【0002】[0002]

【従来の技術】携帯可能な小型の電気・電子機器の普及
と性能向上に伴い、リチウムイオン二次電池で代表され
る非水電解質二次電池の生産量は大きく伸びており、そ
の容量やサイクル寿命の向上が引き続き求められてい
る。
2. Description of the Related Art Production of non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries has greatly increased with the spread of portable and small-sized electric and electronic devices and the performance thereof. There is a continuing need for longer life.

【0003】現在の一般的な非水電解質二次電池では、
負極材料として主に炭素材が使用されている。しかし、
炭素材からなる負極では、LiC6の組成までしかLiを吸蔵
できないため、容量の理論的最大値は372 mAh/g と、金
属リチウムの場合の約1/10に過ぎず、容量の向上に限界
がある。
[0003] In the current general non-aqueous electrolyte secondary battery,
A carbon material is mainly used as a negative electrode material. But,
In the negative electrode made of carbon material, it can not occlude Li only to the composition of LiC 6, the theoretical maximum value of the capacity and 372 mAh / g, only about 1/10 of the case of metallic lithium, a limit to the improvement of capacity There is.

【0004】負極材料として当初使用された金属リチウ
ムは、高容量を得ることができるものの、電池の充電・
放電を繰り返すとデンドライトが析出して短絡が発生す
るため、充電・放電のサイクル寿命が短く、実用的では
なかった。
[0004] Although lithium metal, which was initially used as a negative electrode material, can provide a high capacity, it does not charge or charge a battery.
When the discharge is repeated, dendrite is deposited and a short circuit occurs, so that the cycle life of charge / discharge is short, which is not practical.

【0005】デンドライト析出の問題がなく、かつ高容
量化が可能な非水電解質二次電池用負極材料として、例
えば、金属珪化物といった金属間化合物等を負極材料に
用いる提案 (例、特開平7−240201号公報、同9−6365
1 号公報参照) や、Liと金属間化合物を形成できるAlと
いった金属、またはこの金属にLi、Si、B等の他元素を
添加した金属材料を負極材料に用いる提案、などがあ
る。
As a negative electrode material for a non-aqueous electrolyte secondary battery which does not have a problem of dendrite precipitation and can increase the capacity, a proposal is made to use, for example, an intermetallic compound such as metal silicide as the negative electrode material (for example, see Japanese Patent Application Laid-Open No. -240201, 9-6365
No. 1), and a proposal to use a metal such as Al capable of forming an intermetallic compound with Li, or a metal material obtained by adding other elements such as Li, Si, and B to the metal as the negative electrode material.

【0006】[0006]

【発明が解決しようとする課題】しかし、いまのとこ
ろ、これらの負極材料は実用化されていない。その主な
理由は、金属間化合物の場合には、Liの吸蔵量が少な
く、高容量を得ることができないこと、高容量を得るこ
とができるAlといった負極材料にあっては、吸蔵・放出
に伴う負極材料の体積変化が大きく、充電・放電サイク
ルの繰り返しに伴って負極材料が割れて、微粉化し、サ
イクル寿命が極端に低くなることにあると考えられる。
However, at present, these negative electrode materials have not been put to practical use. The main reason is that in the case of intermetallic compounds, the amount of occluded Li is small and high capacity cannot be obtained. It is considered that the volume change of the negative electrode material is large, and the negative electrode material is cracked and pulverized with repetition of the charge / discharge cycle, resulting in an extremely short cycle life.

【0007】本発明は、Liを吸蔵・放出する量が大き
く、従って非水電解質二次電池の負極材料として用いた
場合の充電・放電容量が高く、かつサイクル寿命の点で
も満足できる、非水電解質二次電池の負極材料とその製
造方法を提供することを目的とする。
The present invention provides a non-aqueous electrolyte which has a large amount of absorbing and releasing Li, and therefore has a high charge / discharge capacity when used as a negative electrode material of a non-aqueous electrolyte secondary battery, and is satisfactory in terms of cycle life. An object of the present invention is to provide a negative electrode material for an electrolyte secondary battery and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】シリコン(Si)は、Liと可
逆的に化合・解離することによりLiを吸蔵・放出するこ
とができる。Siを非水電解質二次電池の負極材料に用い
た場合のSiの充電・放電容量は、理論的には4200 mAh/g
(9800 mAh/cc:比重2.33) と非常に大きい。このSiの理
論最大容量は、現在実用化されている炭素材の理論最大
容量である372mAh/g (844mAh/cc:比重2.27) よりはる
かに大きく、金属リチウムの理論最大容量の3900 mAh/g
(2100 mAh/cc:比重0.53) と比較しても、電池の小型化
という観点から重要な単位体積あたりの放電容量では、
Siの方が著しく大きくなる。従って、Siは高容量の負極
材料となりうる。
Means for Solving the Problems Silicon (Si) can occlude and release Li by reversibly combining and dissociating with Li. The theoretical charge / discharge capacity of Si when used as a negative electrode material for non-aqueous electrolyte secondary batteries is 4200 mAh / g
(9800 mAh / cc: specific gravity 2.33). The theoretical maximum capacity of this Si is much larger than the theoretical maximum capacity of carbon materials currently in practical use, 372 mAh / g (844 mAh / cc: specific gravity 2.27), and the theoretical maximum capacity of metallic lithium is 3900 mAh / g.
(2100 mAh / cc: specific gravity 0.53), the discharge capacity per unit volume, which is important from the viewpoint of battery miniaturization,
Si is significantly larger. Therefore, Si can be a high capacity negative electrode material.

【0009】しかし、Siからなる負極材料は、Alの場合
と同様に、Liの吸蔵・放出に伴う体積変化が大きいた
め、割れにより微粉化し易く、サイクル寿命が極端に短
くなるため、Siを負極材料にする試みはこれまでほとん
どなされたことがない。
However, as in the case of Al, the negative electrode material made of Si has a large volume change due to the occlusion and release of Li, so it is easy to be pulverized by cracking, and the cycle life becomes extremely short. Very few attempts have been made to make the material.

【0010】本発明者らは、Siからなる負極材料の持つ
著しく高い理論容量という特性に着目し、そのサイクル
寿命を向上させるべく検討を重ねた結果、SiをSi相が析
出するような組成にして他の元素と合金化し、Si相に加
えて、Siと他の元素との金属間化合物または固溶体から
なる相を持つ組織とすることが有効であることを見出し
た。
The present inventors have focused on the characteristic of the extremely high theoretical capacity of the negative electrode material made of Si, and as a result of repeated investigations to improve the cycle life thereof, as a result, Si was formed into a composition that would precipitate the Si phase. It has been found that it is effective to form a structure having a phase composed of an intermetallic compound of Si and another element or a solid solution in addition to the Si phase.

【0011】このSi合金では、Si相が主なLi吸蔵相とな
り、Siの金属間化合物または固溶体からなる他の相は、
Si相を体積変化に対して拘束する機能を果たす。この他
の相は、Liの吸蔵能力が全く無いか、Siに比べて非常に
小さいので、他の相が共存する分だけ充電・放電容量は
低くなるが、Si相の理論容量が上記のように著しく高い
ため、なお非常に高い放電容量を示す負極材料となる。
他の相がSi相を拘束する結果、Liの吸蔵・放出に伴うSi
相の体積変化が抑制され、負極材料の割れや微粉化が進
行しにくくなり、サイクル寿命が著しく改善される。そ
の結果、炭素質材料に比べて非常に高容量で、サイクル
寿命も実用レベルに達した負極材料を得ることが可能と
なる。
In this Si alloy, the Si phase is the main Li occlusion phase, and the other phase composed of the Si intermetallic compound or solid solution is
It functions to restrain the Si phase against volume change. This other phase has no Li storage capacity or is very small compared to Si, so the charge / discharge capacity is reduced by the coexistence of other phases, but the theoretical capacity of the Si phase is as described above. Therefore, the negative electrode material exhibits a very high discharge capacity.
As a result of other phases binding the Si phase,
The volume change of the phase is suppressed, the cracking and pulverization of the negative electrode material hardly progress, and the cycle life is remarkably improved. As a result, it is possible to obtain a negative electrode material having an extremely high capacity as compared with the carbonaceous material and having a cycle life at a practical level.

【0012】しかし、このようなSi相を含むSi合金を非
水電解質二次電池の負極材料に用いても、合金中のSi相
の量から想定される所定の放電容量が得られず、放電容
量がかなり低くなる場合があることが判明した。この点
について調査した結果、放電容量が低下した合金は、酸
素を多く含有することが判明した。酸素は合金の作製中
に不可避的に合金に混入するが、この酸素の混入による
合金の酸化が放電容量に悪影響を及ぼすようである。
However, even when such a Si alloy containing a Si phase is used as a negative electrode material of a nonaqueous electrolyte secondary battery, a predetermined discharge capacity assumed from the amount of the Si phase in the alloy cannot be obtained, and the It has been found that the capacity can be quite low. As a result of investigating this point, it was found that the alloy having the reduced discharge capacity contained a large amount of oxygen. Oxygen is inevitably mixed into the alloy during the production of the alloy, and oxidation of the alloy due to the mixing of oxygen seems to adversely affect the discharge capacity.

【0013】そこで、酸素による放電容量の低下を防止
すべくさらに検討したところ、合金中にLiおよび/また
はLiより酸化され易い易酸化性元素を含有させ、この元
素に優先的に酸素を捕捉させることにより、放電容量が
著しく向上した負極材料を得ることができることを見出
した。
[0013] Then, further investigation was carried out to prevent a decrease in the discharge capacity due to oxygen. As a result, the alloy contained Li and / or an easily oxidizable element which is more easily oxidized than Li, and this element preferentially captured oxygen. As a result, it has been found that a negative electrode material having significantly improved discharge capacity can be obtained.

【0014】この知見に基づき完成した本発明は、Si相
を含む合金の粉末であって、Li元素およびLiより酸化さ
れ易い元素よりなる群から選ばれた少なくとも1種の易
酸化性元素を含有することを特徴とする非水電解質二次
電池負極用合金粉末である。好適態様にあっては、易酸
化性元素は0.01質量%以上、1質量%以下で存在し、L
i、Ca、Mg、および希土類元素よりなる群から選ばれ
る。
The present invention, which has been completed based on this finding, is an alloy powder containing a Si phase, which contains at least one kind of easily oxidizable element selected from the group consisting of Li element and elements that are more easily oxidized than Li. This is an alloy powder for a negative electrode of a non-aqueous electrolyte secondary battery. In a preferred embodiment, the oxidizable element is present at 0.01% by mass or more and 1% by mass or less,
It is selected from the group consisting of i, Ca, Mg, and rare earth elements.

【0015】本発明の非水電解質二次電池負極用合金粉
末は、合金原料の溶融物を冷却速度が100 ℃/sec以上と
なる方法、好ましくはアトマイズ法、ロール急冷法、ま
たは回転電極法、により凝固させる工程を含むことを特
徴とする方法により製造することができる。この製造方
法は、凝固した合金に該合金の固相線温度より低い温度
で熱処理を施す工程をさらに含むことができる。
The alloy powder for a negative electrode of a non-aqueous electrolyte secondary battery of the present invention can be prepared by a method of cooling a molten alloy material at a cooling rate of 100 ° C./sec or more, preferably an atomizing method, a roll quenching method, or a rotating electrode method. The solidification can be performed by a method characterized by including a step of coagulation. This manufacturing method can further include a step of subjecting the solidified alloy to a heat treatment at a temperature lower than the solidus temperature of the alloy.

【0016】本発明によれば、多量のLiを可逆的に吸蔵
・放出することができ、高容量化が可能な、Si相を含む
合金粉末を非水電解質二次電池の負極材料として用いた
場合の放電容量の低下が、合金中にLiおよび/またはLi
より酸化物を生成し易い易酸化性元素 (Liも含む) を含
有させることで防止できる。そのメカニズムは完全には
解明されていないが、現時点では次のように推測され
る。
According to the present invention, an alloy powder containing a Si phase, which can reversibly occlude and release a large amount of Li and can increase the capacity, is used as a negative electrode material of a nonaqueous electrolyte secondary battery. If the discharge capacity decreases when the Li and / or Li
This can be prevented by adding an easily oxidizable element (including Li) that easily forms an oxide. The mechanism has not been completely elucidated, but at present it is speculated as follows.

【0017】一般的に、合金粉末の製造は、溶解、粉末
製造、熱処理等の工程で構成されるが、工業的実施では
各工程において酸素の混入による合金の酸化を回避する
ことができない。そのため、合金粉末の粒内および表面
に化学的に安定な酸化物が生成する。Si相を有する合金
も例外ではない。
Generally, the production of an alloy powder is composed of steps such as melting, powder production, and heat treatment. However, in industrial practice, oxidation of the alloy due to mixing of oxygen cannot be avoided in each step. As a result, chemically stable oxides are generated in the grains and on the surface of the alloy powder. Alloys having a Si phase are no exception.

【0018】Si相を含む合金は、酸化物生成自由エネル
ギーが低いSiを含有するため、特に酸化物が生成し易
く、この合金粉末を非水電解質二次電池の負極材料とし
て用いた場合は、合金粉末の粒内および表面に生成した
酸化物が次に説明するように放電容量の低下をもたら
す。
An alloy containing a Si phase contains Si, which has a low free energy of oxide formation, and thus is particularly prone to form an oxide. When this alloy powder is used as a negative electrode material of a nonaqueous electrolyte secondary battery, The oxides formed in the grains and on the surface of the alloy powder reduce the discharge capacity as described below.

【0019】Si相を含む合金は、Siと他の少なくとも1
種の元素Xとから構成され、組織的にはSi相とX−Si相
(元素XとSiの金属間化合物または固溶体) からなる。
前述したように、製造時に不可避的に混入する酸素によ
り、この合金の構成元素の中で酸化物生成自由エネルギ
ーが最も低い元素が優先的に酸化され、その元素の酸化
物が生成する。酸化物生成自由エネルギーが最も低い元
素がSiであればSi相とX−Si相のSiが酸化されてSi酸化
物が生成し、該元素がXであればX−Si相のX元素が酸
化されてX酸化物が生成し、この酸化物が合金の粒内ま
たは表面に存在する。
The alloy containing the Si phase is composed of Si and at least one other.
It is composed of a kind of element X and is structurally Si phase and X-Si phase.
(Intermetallic compound or solid solution of element X and Si).
As described above, the element having the lowest oxide free energy among the constituent elements of this alloy is preferentially oxidized by oxygen inevitably mixed during the production, and an oxide of the element is generated. If the element having the lowest free energy of oxide generation is Si, Si in the Si phase and the X-Si phase is oxidized to form a Si oxide. If the element is X, the X element in the X-Si phase is oxidized. To form X oxide, which is present in the grains or on the surface of the alloy.

【0020】Si相をLi吸蔵相とする負極材料では、充電
時には充電エネルギーによりLiがSiと化合して金属間化
合物および/またはアモルファスを形成することでSi相
に吸蔵される。しかし、Si相を含む合金中に酸化物が存
在すると、Liはこの酸化物 (Si酸化物またはX酸化物)
より酸化物生成自由エネルギーが低いため、充電エネル
ギーは、まず合金中に存在する酸化物のLiによる還元に
消費されてしまい、化学的に安定なLi酸化物が不可逆的
に生成するので、その分だけSi相へのLiの吸蔵量は減少
する。その結果、その後の放電時にSi相から放出される
Li量も(吸蔵量が少ないため)減少するので、電池の放
電容量が低下することになる。
In the negative electrode material having the Si phase as the Li occlusion phase, at the time of charging, Li is combined with Si by the charging energy to form an intermetallic compound and / or an amorphous phase, so that it is occluded in the Si phase. However, when an oxide is present in an alloy containing a Si phase, Li is converted to this oxide (Si oxide or X oxide).
Since the oxide formation free energy is lower, the charging energy is first consumed by the reduction of the oxide present in the alloy with Li, and a chemically stable Li oxide is irreversibly generated. However, the amount of Li absorbed in the Si phase decreases. As a result, it is released from the Si phase during the subsequent discharge
Since the Li amount also decreases (because the occlusion amount is small), the discharge capacity of the battery decreases.

【0021】この現象は、酸化物が合金粉末の粒界と表
面のどちらに存在していても基本的には同じである。し
かし、表面に存在する酸化物の場合は、表面酸化物層を
形成するため、別の悪影響がある。つまり、充電初期に
Liが表面酸化物相を還元し、合金粉末表面を化学的に安
定で不可逆なLi酸化物の層で覆ってしまう。この粉末表
面を覆うLi酸化物層が、その後の粒内へのLi拡散の障壁
となり、粒内Si相へのLiの吸蔵を阻害するので、Si相へ
のLiの吸蔵量が減少する。その結果、放電時のSi相から
のLi放出量が減少し、電池の放電容量が低下する。
This phenomenon is basically the same regardless of whether the oxide exists at the grain boundary or the surface of the alloy powder. However, in the case of an oxide present on the surface, another adverse effect is caused because a surface oxide layer is formed. In other words, at the beginning of charging
Li reduces the surface oxide phase and covers the alloy powder surface with a chemically stable and irreversible layer of Li oxide. The Li oxide layer covering the surface of the powder acts as a barrier for the subsequent diffusion of Li into the grains and hinders the absorption of Li into the intragranular Si phase, so that the amount of Li absorbed in the Si phase decreases. As a result, the amount of Li released from the Si phase during discharge decreases, and the discharge capacity of the battery decreases.

【0022】本発明に従って、LiおよびLiより酸化され
易い元素から選んだ易酸化性元素をSi相を含む合金中に
含有させると、合金粉末の製造過程で避けることができ
ない酸化時に、この易酸化性元素(Liを含む)が優先的
に酸化されて、該元素の化学的に安定で不可逆的な酸化
物が生成する。易酸化性元素の酸化物生成自由エネルギ
ーは、Siより低く、多くの場合には合金の全ての構成元
素(SiとX)より低いからである。生成した易酸化性元
素の安定な酸化物は、充電時にも還元されないので、粒
内や表面の酸化物の還元のためにLiが消費されてLi酸化
物を形成しLi吸蔵量が減少するのを防ぐことができる。
また、この易酸化性元素の酸化物は合金粉末の製造過程
で粒内や粉末表面に生成するので、充電初期に粉末表面
にLi拡散を阻害する障壁となるLi酸化物層が形成されて
Li吸蔵量とLi放出量が減少するのも防止できる。
According to the present invention, when an oxidizable element selected from Li and an element which is more easily oxidized than Li is contained in the alloy containing the Si phase, the oxidizable element is oxidized during the oxidization which cannot be avoided in the production process of the alloy powder. The oxidizable element (including Li) is preferentially oxidized to form a chemically stable and irreversible oxide of the element. This is because the oxidizable element has a lower oxide formation free energy than Si, and often lower than all the constituent elements (Si and X) of the alloy. Since the stable oxide of the easily oxidizable element is not reduced during charging, Li is consumed for the reduction of intragranular and surface oxides, forming Li oxide and reducing the amount of Li occluded. Can be prevented.
In addition, since the oxide of this easily oxidizable element is generated in the grains and on the surface of the powder during the manufacturing process of the alloy powder, a Li oxide layer serving as a barrier to inhibit Li diffusion is formed on the surface of the powder at an early stage of charging.
A decrease in the amount of Li occluded and the amount of released Li can also be prevented.

【0023】以上の結果、Si相を含む合金粉末の製造過
程で混入する酸素による放電容量の減少がほぼ完全に抑
えられるので、合金中のSi相の量から想定される所定の
充電・放電容量が得られるようになり、非水電解質二次
電池の高容量化を図ることが可能となる。
As a result, the decrease in the discharge capacity due to oxygen mixed in the production process of the alloy powder containing the Si phase can be almost completely suppressed, so that the predetermined charge / discharge capacity estimated from the amount of the Si phase in the alloy is obtained. Can be obtained, and the capacity of the nonaqueous electrolyte secondary battery can be increased.

【0024】[0024]

【発明の実施の形態】本発明の非水電解質二次電池負極
用合金粉末は、Siと少なくとも1種の他の元素Xとの合
金(Si−X合金)からなる。この合金はSi相を含み、こ
のSi相がLiと可逆的に化合・解離することにより、合金
がLiを吸蔵・放出する。Si相のLi吸蔵能力が非常に高い
ため、他の相が共存していても、高いLi吸蔵能力、従っ
て高い放電容量を示す負極材料となる。
BEST MODE FOR CARRYING OUT THE INVENTION The alloy powder for a negative electrode of a non-aqueous electrolyte secondary battery of the present invention comprises an alloy of Si and at least one other element X (Si-X alloy). This alloy contains a Si phase, and the Si phase reversibly combines and dissociates with Li, whereby the alloy stores and releases Li. Since the Li storage capacity of the Si phase is very high, the negative electrode material exhibits a high Li storage capacity and thus a high discharge capacity even when other phases coexist.

【0025】他の元素Xは、合金中でSiとの金属間化合
物および/または固溶体の相を形成している。この金属
間化合物および/または固溶体の相が、Liの吸蔵・放出
時にSi相が膨張・収縮することで起こるSi相の体積変化
を抑制するようにSi相を拘束するため、充電・放電を繰
り返した場合の合金粉末の体積変化が抑えられ、この体
積変化に起因する合金粉末の割れや微粉化が起こりにく
くなり、負極材料の微粉化が主な原因であるサイクル寿
命の劣化が抑制される。
The other element X forms an intermetallic compound and / or a solid solution phase with Si in the alloy. This intermetallic compound and / or solid solution phase restricts the Si phase to suppress the volume change of the Si phase caused by the expansion and contraction of the Si phase during occlusion and release of Li. In this case, the change in the volume of the alloy powder is suppressed, and the cracking and pulverization of the alloy powder due to the change in volume are less likely to occur, and the deterioration of the cycle life mainly caused by the pulverization of the negative electrode material is suppressed.

【0026】本発明の合金粉末においてSiと合金化させ
る他の元素Xは、特に制限されるものではない。他の元
素Xの例としては、Co、Ni、Ti、V、Cr、Mn、Fe、Zn、
Al、Sn、Pb、Cu、Mo、Nbなどを挙げることができる。こ
のうち特に好ましい他の元素は、W、Zr、Co、Ni、Tiで
ある。
The other element X to be alloyed with Si in the alloy powder of the present invention is not particularly limited. Examples of other elements X include Co, Ni, Ti, V, Cr, Mn, Fe, Zn,
Examples include Al, Sn, Pb, Cu, Mo, and Nb. Of these, particularly preferred other elements are W, Zr, Co, Ni, and Ti.

【0027】Si相は合金中に5〜質量%の割合で存在す
ることが好ましい。Si相の割合が少なすぎると放電容量
が低下し、Si相の割合が多すぎると体積変化を十分に抑
制できないため、サイクル寿命が低下する。合金原料の
組成は、凝固中にSi相が析出するように、その合金系の
化学量論比に対してSiリッチにする。このSiリッチの程
度により、Si相の割合を調整することができる。
The Si phase is preferably present in the alloy at a ratio of 5% by mass. If the proportion of the Si phase is too small, the discharge capacity decreases, and if the proportion of the Si phase is too large, the change in volume cannot be sufficiently suppressed, and the cycle life decreases. The composition of the alloy raw material is made Si-rich with respect to the stoichiometric ratio of the alloy system so that a Si phase is precipitated during solidification. The proportion of the Si phase can be adjusted depending on the degree of the Si richness.

【0028】本発明のSi相を含む合金粉末は、Li元素お
よびLiより酸化され易い易酸化性の元素よりなる群から
選ばれた少なくとも1種の易酸化性元素Aをさらに含有
する。この易酸化性元素Aは、Liでもよいが、酸化物生
成自由エネルギーがLiより低い元素 (Liより酸化され易
い元素) の方が好ましく、酸化物生成自由エネルギーが
なるべく低い元素を使用することが有利である。その意
味で好ましい易酸化性元素はCa、Mg、および希土類元素
(Sc, Yおよびランタノイド元素) である。
The alloy powder containing a Si phase of the present invention further contains at least one oxidizable element A selected from the group consisting of Li element and oxidizable element which is easily oxidized than Li. The oxidizable element A may be Li, but is preferably an element having a lower free energy of oxide formation than Li (an element that is more easily oxidized than Li). It is advantageous. Preferred oxidizable elements in that sense are Ca, Mg, and rare earth elements (Sc, Y and lanthanoid elements).

【0029】合金中の易酸化性元素Aの含有率は、原料
の溶解と凝固、粉末製造、熱処理等を含む合金粉末の製
造過程で混入しうる酸素の実質的に全量を安定な酸化物
として不可逆的に固定し、放電容量を低下させないよう
に無害化するのに十分な量であればよい。従って、易酸
化性元素の含有率は製造過程における酸素混入量によっ
ても変動しうるが、通常は合金の0.01質量%以上、1質
量%以下の範囲とすることが好ましい。
The content of the easily oxidizable element A in the alloy is determined by converting substantially all of the oxygen that can be mixed in the alloy powder production process including the melting and solidification of the raw materials, powder production, heat treatment, etc., as a stable oxide. Any amount is sufficient as long as it is irreversibly fixed and detoxified so as not to lower the discharge capacity. Therefore, the content of the easily oxidizable element may vary depending on the amount of oxygen mixed in the production process, but it is usually preferable that the content be in the range of 0.01% by mass or more and 1% by mass or less of the alloy.

【0030】易酸化性元素Aの含有率が少な過ぎると、
酸化物生成サイトが少なくなり、製造過程で混入する酸
素の全てを易酸化性元素との酸化物の生成により固定す
ることができないため、放電容量の向上効果が十分に得
られない。一方、易酸化性元素の含有率が多過ぎると、
酸素と反応して酸化物を生成する以外に、余剰の易酸化
性元素は合金の構成元素であるSiや他の元素と安定な金
属間化合物または固溶体を生成するが、その生成量が多
くなって、合金の電極特性、特に放電容量に悪影響がで
る。
If the content of the easily oxidizable element A is too small,
Oxide generation sites are reduced, and all of the oxygen mixed in the manufacturing process cannot be fixed by generation of an oxide with an easily oxidizable element, so that the effect of improving the discharge capacity cannot be sufficiently obtained. On the other hand, if the content of the easily oxidizable element is too large,
In addition to producing oxides by reacting with oxygen, excess oxidizable elements produce stable intermetallic compounds or solid solutions with the alloying elements Si and other elements, but the amount produced is large. As a result, the electrode characteristics of the alloy, particularly the discharge capacity, are adversely affected.

【0031】本発明のSi相を含む合金粉末は、所定組成
(Si+他元素X+易酸化性元素A)に調整した合金原料
の溶融物を冷却速度が100 ℃/sec以上となる方法で凝固
させる工程を含む方法により製造することが好ましい。
冷却速度が100 ℃/sec以上となる急冷凝固により、易酸
化性元素が凝固した合金中で偏析することなく均一に分
散される。そのため、易酸化性元素が製造過程で混入す
る酸素と優先的に反応して化学的に安定で不可逆的な酸
化物を生成することにより酸素による放電容量の低下を
防止するという、易酸化性元素の機能がより効果的に作
用する。
The alloy powder containing the Si phase of the present invention has a predetermined composition.
It is preferable to manufacture by a method including a step of solidifying a melt of the alloy raw material adjusted to (Si + other element X + oxidizable element A) by a method in which the cooling rate is 100 ° C./sec or more.
By rapid solidification at a cooling rate of 100 ° C./sec or more, the easily oxidizable element is uniformly dispersed without segregation in the solidified alloy. Therefore, the oxidizable element preferentially reacts with oxygen mixed in the manufacturing process to form a chemically stable and irreversible oxide, thereby preventing a decrease in discharge capacity due to oxygen. Function works more effectively.

【0032】このような急冷凝固が可能な凝固方法とし
ては、アトマイズ法、ロール急冷法、回転電極法、スト
リップキャスティグ法等が挙げられる。アトマイズ法は
液体アトマイズ法とガスアトマイズ法のいずれも可能で
あるが、充填性に優れた球形粉末が得られるガスアトマ
イズ法の方が好ましい。ロール急冷法は、単ロールと双
ロールのいずれの方式も可能である。回転電極法も各種
方式が知られており、そのいずれでもよい。
Examples of the solidification method capable of such rapid solidification include an atomizing method, a roll quenching method, a rotating electrode method, and a strip casting method. The atomization method can be any of a liquid atomization method and a gas atomization method, but the gas atomization method, which can provide a spherical powder having excellent filling properties, is more preferable. As the roll quenching method, any of a single roll and a twin roll is possible. Various methods are also known for the rotating electrode method, and any of them may be used.

【0033】合金原料の溶融から凝固までの雰囲気は、
合金の酸化を避けるように、非酸化性雰囲気 (例、不活
性ガス雰囲気、真空) とすることが好ましい。但し、本
発明では合金が易酸化性元素を含有し、この元素が製造
過程で混入する酸素を捕捉し安定な酸化物として固定す
ることができるので、雰囲気からの酸素の混入による悪
影響を避けることができる。従って、雰囲気中に多少の
酸素が混入することは許容されるので、コストの高い高
純度の不活性ガスあるいは高真空を使用する必要はな
い。
The atmosphere from melting to solidification of the alloy raw material is as follows:
It is preferable to use a non-oxidizing atmosphere (eg, an inert gas atmosphere, vacuum) to avoid oxidation of the alloy. However, in the present invention, the alloy contains an easily oxidizable element, and this element can capture oxygen mixed in the manufacturing process and fix it as a stable oxide, so that adverse effects due to mixing of oxygen from the atmosphere are avoided. Can be. Therefore, it is permissible to mix a small amount of oxygen into the atmosphere, so that it is not necessary to use a costly high-purity inert gas or high vacuum.

【0034】凝固した合金は、必要に応じて粉砕し、粉
末にする。アトマイズ法や回転電極法では合金が粉末状
態で得られるので、粉砕工程は必要ないが、所望により
粉末を微細化するために粉砕してもよい。ロール急冷法
やストリップキャスティグ法では、一般に薄片状の合金
が得られるので、粉砕して粉末化する。粉砕工程も不活
性ガス雰囲気等の非酸化性雰囲気中で行うことが好まし
い。合金粉末は、必要であれば分級して粒度調整する。
非水電解質二次電池用負極材料として好適な合金粉末
は、一般に平均粒径が1〜30μmの範囲である。
The solidified alloy is pulverized to a powder as required. In the atomizing method or the rotating electrode method, the alloy is obtained in a powder state, so that a pulverizing step is not necessary. In the roll quenching method or the strip casting method, a flaky alloy is generally obtained, so that it is pulverized and powdered. The pulverizing step is also preferably performed in a non-oxidizing atmosphere such as an inert gas atmosphere. The alloy powder is classified if necessary to adjust the particle size.
An alloy powder suitable as a negative electrode material for a non-aqueous electrolyte secondary battery generally has an average particle size in the range of 1 to 30 μm.

【0035】急冷凝固により製造した合金粉末は、凝固
したままの状態で使用することができるが、所望により
熱処理を施してもよい。急冷凝固させた合金は、冷却速
度が速いため非平衡状態にあるので、製造過程で混入し
た酸素の全てが易酸化性元素との酸化物になるとは限ら
ず、一部は合金の構成元素(SiまたはX元素)との酸化
物となる場合がある。熱処理すると、このような合金構
成元素の酸化物が、合金中に含まれる易酸化性元素で還
元され、化学的に安定で不可逆的な易酸化性元素の酸化
物になる。
The alloy powder produced by rapid solidification can be used in a solidified state, but may be subjected to a heat treatment if desired. Since the rapidly solidified alloy is in a non-equilibrium state due to a high cooling rate, not all of the oxygen mixed in during the manufacturing process becomes an oxide with an easily oxidizable element, and some of the constituent elements of the alloy ( (Si or X element). When heat treatment is performed, the oxide of such an alloy constituent element is reduced by the easily oxidizable element contained in the alloy, and becomes a chemically stable and irreversible oxide of the easily oxidizable element.

【0036】熱処理条件は、合金構成元素の酸化物を易
酸化性元素で還元するのに十分なように選択する。熱処
理温度は、合金の溶融が起こらないように合金の固相線
温度以下とすることが好ましい。熱処理温度が高過ぎる
と、結晶粒が成長して粗大になるので、合金の固相線温
度より50℃以上低い温度で熱処理することがより好まし
い。熱処理時間は通常は 0.5〜48時間の範囲である。熱
処理雰囲気は、熱処理時の酸化を抑制するため、非酸化
性雰囲気 (真空、不活性ガス雰囲気等) とすることが好
ましい。
The heat treatment conditions are selected so as to be sufficient to reduce the oxides of the constituent elements of the alloy with the easily oxidizable element. The heat treatment temperature is preferably equal to or lower than the solidus temperature of the alloy so that melting of the alloy does not occur. If the heat treatment temperature is too high, the crystal grains grow and become coarse. Therefore, it is more preferable to perform the heat treatment at a temperature lower than the solidus temperature of the alloy by 50 ° C. or more. Heat treatment times typically range from 0.5 to 48 hours. The heat treatment atmosphere is preferably a non-oxidizing atmosphere (vacuum, inert gas atmosphere, or the like) in order to suppress oxidation during the heat treatment.

【0037】本発明の負極材料から、例えば、次に説明
するようにして非水電解質二次電池用負極を製造するこ
とができる。まず、負極材料の合金粉末に、適当な結着
剤とその溶媒を、必要に応じて導電性向上のために導電
粉と一緒に混合する。この混合物を、ホモジナイザー、
ガラスビーズ等を適宜用いて充分に攪拌し、スラリー状
にする。このスラリーを圧延銅箔、銅電析銅箔などの電
極基板 (集電体) に、ドクターブレード等を用いて塗布
し、乾燥した後、ロール圧延等で圧密化させ、必要であ
れば適当な大きさに切断して、負極が製造される。
From the negative electrode material of the present invention, for example, a negative electrode for a non-aqueous electrolyte secondary battery can be manufactured as described below. First, an appropriate binder and a solvent thereof are mixed with an alloy powder of a negative electrode material together with a conductive powder as needed to improve conductivity. The mixture is homogenized,
The mixture is sufficiently stirred by appropriately using glass beads or the like to form a slurry. This slurry is applied to an electrode substrate (current collector) such as a rolled copper foil or a copper electrodeposited copper foil using a doctor blade or the like, dried, and then consolidated by roll rolling or the like. The negative electrode is cut to a size.

【0038】結着剤としては、PVDF(ポリフッ化ビニリ
デン)、PMMA(ポリメチルメタクリレート)、PTFE(ポ
リテトラフルオロエチレン)等の非水溶性の樹脂、並び
にCMC(カルボキシメチルセルロース) 、PVA(ポリビニル
アルコール) などの水溶性樹脂が例示される。溶媒とし
ては、結着剤に応じて、NMP(N-メチルピロリドン) 、DM
F(ジメチルホルムアミド) 等の有機溶媒、または水を使
用する。
Examples of the binder include water-insoluble resins such as PVDF (polyvinylidene fluoride), PMMA (polymethyl methacrylate), and PTFE (polytetrafluoroethylene); CMC (carboxymethyl cellulose); and PVA (polyvinyl alcohol). And the like. As the solvent, depending on the binder, NMP (N-methylpyrrolidone), DM
Use an organic solvent such as F (dimethylformamide) or water.

【0039】導電粉としては、炭素質材料 (例、カーボ
ンブラック、黒鉛) および金属(例、Ni)のいずれも使
用できるが、好ましいのは炭素質材料である。炭素質材
料は、その層間にLiイオンを吸蔵することができるの
で、導電性に加えて、負極の容量にも寄与することがで
き、また保液性にも富んでいる。
As the conductive powder, any of carbonaceous materials (eg, carbon black, graphite) and metals (eg, Ni) can be used, but carbonaceous materials are preferred. Since the carbonaceous material can occlude Li ions between the layers, in addition to conductivity, it can contribute to the capacity of the negative electrode, and is rich in liquid retention.

【0040】負極に炭素質材料を配合する場合、本発明
の負極材料に対して5質量%以上、80質量%以下の量で
炭素材料を使用することが好ましい。この量が5質量%
未満では十分な導電性を付与することができず、80質量
%を超えると負極の容量が低下する。より好ましい配合
量は20質量%以上、50質量%以下である。
When a carbonaceous material is compounded in the negative electrode, it is preferable to use the carbon material in an amount of 5% by mass or more and 80% by mass or less based on the negative electrode material of the present invention. This amount is 5% by mass
If it is less than 30, sufficient conductivity cannot be imparted, and if it exceeds 80% by mass, the capacity of the negative electrode decreases. A more preferred blending amount is 20% by mass or more and 50% by mass or less.

【0041】この負極を用いて、非水電解質二次電池を
作製する。非水電解質二次電池の代表例はリチウムイオ
ン二次電池であり、本発明に係る負極材料および負極
は、リチウムイオン二次電池の負極材料および負極とし
て好適である。
Using this negative electrode, a non-aqueous electrolyte secondary battery is manufactured. A typical example of the nonaqueous electrolyte secondary battery is a lithium ion secondary battery, and the negative electrode material and the negative electrode according to the present invention are suitable as the negative electrode material and the negative electrode of the lithium ion secondary battery.

【0042】非水電解質二次電池は、基本構造として、
負極、正極、セパレーター、非水系の電解質を含んでい
る。負極は本発明の負極材料から製造したものを使用す
るが、他の正極、セパレーター、電解質については特に
制限されず、従来より公知のもの、或いは今後開発され
る材料を適当に使用すればよい。非水電解質二次電池の
形状も特に制限されず、円筒型、角形、コイン型、シー
ル型等何れの形でもよい。
The non-aqueous electrolyte secondary battery has the following basic structure:
It contains a negative electrode, a positive electrode, a separator, and a non-aqueous electrolyte. As the negative electrode, one manufactured from the negative electrode material of the present invention is used, but other positive electrodes, separators, and electrolytes are not particularly limited, and conventionally known materials or materials to be developed in the future may be appropriately used. The shape of the nonaqueous electrolyte secondary battery is not particularly limited, and may be any shape such as a cylindrical shape, a square shape, a coin shape, and a seal shape.

【0043】リチウムイオン二次電池とする場合、正極
は、Li含有遷移金属化合物を正極活物質とするものが好
ましい。Li含有遷移金属化合物の例は、LiM1-XM'X O2
または LiM2yM'y O4 (式中、0≦X, Y≦1、M とM'は
それぞれBa、Co、Ni、Mn、Cr、Ti、V、Fe、Zn、Al、I
n、Sn、Sc、Yの少なくとも1種) で示される化合物で
ある。但し、遷移金属カルコゲン化物;バナジウム酸化
物およびそのLi化合物;ニオブ酸化物およびそのLi化合
物;有機導電性物質を用いた共役系ポリマー;シェブレ
ル相化合物;活性炭、活性炭素繊維等といった、他の正
極材料を用いることも可能である。
In the case of a lithium ion secondary battery, the positive electrode preferably uses a Li-containing transition metal compound as a positive electrode active material. Examples of Li-containing transition metal compounds are LiM 1-X M ' X O 2
Or LiM 2y M ' y O 4 (where 0 ≦ X, Y ≦ 1, M and M ′ are each Ba, Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, I
at least one of n, Sn, Sc, and Y). However, other positive electrode materials such as transition metal chalcogenides; vanadium oxides and their Li compounds; niobium oxides and their Li compounds; conjugated polymers using organic conductive substances; chevrel phase compounds; Can also be used.

【0044】リチウムイオン二次電池の電解質は、一般
に支持電解質となるリチウム塩を有機溶媒に溶解させた
非水電解質である。リチウム塩としては、例えば、LiCl
O4、LiBF4 、LiPF6 、LiAsF6、LiB(C6H5) 、LiCF3SO3
LiCH3SO3、Li(CF3SO2)2N、LiC4F9SO3 、Li(CF2SO2)2
LiCl、LiBr、LiI 等が例示され、1種もしくは2種以上
を使用することができる。
The electrolyte of a lithium ion secondary battery is generally a non-aqueous electrolyte in which a lithium salt serving as a supporting electrolyte is dissolved in an organic solvent. As the lithium salt, for example, LiCl
O 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiB (C 6 H 5 ), LiCF 3 SO 3 ,
LiCH 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , Li (CF 2 SO 2 ) 2 ,
Examples thereof include LiCl, LiBr, and LiI, and one or more of them can be used.

【0045】有機溶媒としては、プロピレンカーボネー
ト、エチレンカーボネート、エチルメチルカーボネー
ト、ジメチルカーボネート、ジエチルカーボネートなど
の炭酸エステル類が好ましい。但し、カルボン酸エステ
ル、エーテルをはじめとする他の各種の有機溶媒も使用
可能である。
As the organic solvent, carbonates such as propylene carbonate, ethylene carbonate, ethyl methyl carbonate, dimethyl carbonate and diethyl carbonate are preferred. However, other various organic solvents including carboxylic acid esters and ethers can also be used.

【0046】セパレーターは、正極・負極の間に設置し
た絶縁体としての役割を果たす他、電解質の保持にも大
きく寄与する。通常は、ポリプロピレン、ポリエチレ
ン、またはその両者の混合布、ガラスフィルターなどの
多孔体が一般に使用される。
The separator plays a role as an insulator provided between the positive electrode and the negative electrode, and also greatly contributes to retention of the electrolyte. Usually, a porous body such as polypropylene, polyethylene or a mixed cloth of both, or a glass filter is generally used.

【0047】[0047]

【実施例】【Example】

【0048】[0048]

【実施例1】本実施例はガスアトマイズ法による合金粉
末の作製を例示する。表1に示す各種組成の合金原料を
アルゴンガス雰囲気下に高周波溶解して得た溶湯をアル
ゴンガス雰囲気下のタンデッシュに注湯し、タンデッシ
ュの底部に設けた細孔から流出した溶湯細流に高圧のAr
ガスを噴霧することにより合金粉末を作製した。この時
の凝固速度は、実施例2に示すように 103〜105 ℃/sec
であった。一部の合金粉末には、アルゴンガス中で表1
に示す温度で10時間の熱処理を施した。熱処理温度はそ
の合金の固相線温度より140 ℃以上低い温度とした。
Example 1 This example illustrates the production of an alloy powder by a gas atomizing method. A molten metal obtained by high-frequency melting of alloy materials having various compositions shown in Table 1 under an argon gas atmosphere was poured into a tundish under an argon gas atmosphere. Ar
Alloy powder was produced by spraying gas. The solidification rate at this time was 10 3 to 10 5 ° C / sec as shown in Example 2.
Met. For some alloy powders, Table 1 was used in argon gas.
At 10 ° C. for 10 hours. The heat treatment temperature was 140 ° C. or lower than the solidus temperature of the alloy.

【0049】この合金粉末の負極性能を評価するため、
各合金粉末を45μmの篩で分級して得た、平均粒径20μ
mの粉末を用いて、次のようにして負極を作製した。比
較のために、従来の炭素材 (石油系ピッチをメソフェー
ズ化、炭化、および黒鉛化して得た、上記と同じ平均粒
径の黒鉛粉末) を用いて、同様に負極を作製した。
To evaluate the negative electrode performance of this alloy powder,
Average particle size 20μ obtained by classifying each alloy powder with a 45μm sieve
A negative electrode was prepared using the powder of m in the following manner. For comparison, a negative electrode was similarly produced using a conventional carbon material (graphite powder obtained by mesophase, carbonization, and graphitization of petroleum pitch and having the same average particle size as above).

【0050】負極の作製は、負極材料とする合金粉末に
結着剤としてポリフッ化ビニリデンを粉末重量の8質量
%、溶媒のN−メチルピロリドンを同じく10質量%、導
電材としての炭素材 (アセチレンブラック) の粉末を同
じく12質量%の量で加え、混練して均一なスラリーとし
た。このスラリーを30μm厚の電解銅箔に塗布し、乾燥
させ、ロール圧延して圧密化させた後、直径15 mm のポ
ンチを用いて打ち抜きして得た円板部材を負極とした。
銅箔上の負極材料層の厚みは約100 μmであった。
The negative electrode was prepared by adding 8% by mass of polyvinylidene fluoride as a binder, 10% by mass of N-methylpyrrolidone as a solvent, and a carbon material (acetylene) as a conductive material to an alloy powder used as a negative electrode material. Black) powder was added in the same amount of 12% by mass and kneaded to form a uniform slurry. This slurry was applied to a 30 μm-thick electrolytic copper foil, dried, roll-rolled, consolidated, and then punched out using a punch having a diameter of 15 mm to obtain a disk member, which was used as a negative electrode.
The thickness of the negative electrode material layer on the copper foil was about 100 μm.

【0051】得られた負極の単極での性能を、対極、参
照極にLi金属を用いた、いわゆる3極式セルを用いて評
価した。電解液にはエチレンカーボネートとジメトキシ
エタンの1:1混合溶媒中に、支持電解質のLiPF6 を1
M 濃度で溶解させた溶液を使用した。測定は25℃で行
い、グローブボックスのように不活性雰囲気を維持でき
る装置を用いて、雰囲気の露点を−70℃程度にして充電
と放電を実施した。
The performance of the obtained negative electrode with a single electrode was evaluated using a so-called three-electrode cell using Li metal for the counter electrode and the reference electrode. For the electrolyte, LiPF 6 as a supporting electrolyte was mixed in a 1: 1 mixed solvent of ethylene carbonate and dimethoxyethane.
A solution dissolved at an M concentration was used. The measurement was performed at 25 ° C., and charging and discharging were performed using a device capable of maintaining an inert atmosphere such as a glove box with the dew point of the atmosphere being about −70 ° C.

【0052】充放電条件: (1) 温度25℃ (2) 充電 1/10Cで0V (vs 参照極) まで 放電 1/10Cで2V (vs 参照極) まで 1サイクル目に得られた放電容量を表1に示す。Charge / discharge conditions: (1) Temperature 25 ° C. (2) Charge Discharge to 0 V (vs. reference electrode) at 1/10 C. Up to 2 V (vs. reference electrode) at 1/10 C. Discharge capacity obtained in the first cycle It is shown in Table 1.

【0053】[0053]

【表1】 Si相を含む合金は、従来の炭素材に比べて著しく高い放
電容量を示すことができるが、これにさらに易酸化性元
素を少量含有させると、放電容量がさらに向上すること
が表1からわかる。
[Table 1] An alloy containing a Si phase can exhibit a significantly higher discharge capacity than a conventional carbon material, but it can be seen from Table 1 that the discharge capacity is further improved by adding a small amount of an oxidizable element to the alloy. .

【0054】[0054]

【実施例2】本実施例は合金作製時の凝固温度の影響を
例示する。表2に示すように質量%で60%Si−0.1 %Ca
−残Coの同一組成の合金原料を実施例1と同様に溶解さ
せ、得られた溶湯から表2に示す各種の方法で合金を作
製した。ロール急冷法と鋳造法 (鋳型に溶湯を鋳込んで
合金作製) により得た合金は、アルゴンガス雰囲気下で
ボールミルにより粉砕して粉末にした。熱処理は行わな
かった。
Example 2 This example illustrates the effect of the solidification temperature during alloy preparation. As shown in Table 2, 60% Si-0.1% Ca
-An alloy raw material having the same composition as the remaining Co was melted in the same manner as in Example 1, and alloys were prepared from the obtained molten metal by various methods shown in Table 2. The alloy obtained by the roll quenching method and the casting method (preparing an alloy by casting a molten metal in a mold) was pulverized by a ball mill in an argon gas atmosphere into powder. No heat treatment was performed.

【0055】各方法で得られた合金粉末をミクロ組織観
察したところ、鋳造法で作製した合金は偏析相が見ら
れ、その偏析相には合金の構成元素であるSiおよび/ま
たはCoと易酸化性元素Caとの金属間化合物が存在してい
た。他の凝固方法では偏析は見られなかった。
When the microstructure of the alloy powder obtained by each method was observed, a segregation phase was observed in the alloy produced by the casting method, and the segregation phase contained Si and / or Co, which is a constituent element of the alloy, and an easily oxidizable alloy. An intermetallic compound with the Ca element was present. No segregation was observed with other solidification methods.

【0056】凝固組織のデンドライト二次アームの間隔
から算出した各凝固方法の冷却速度は次の通りであっ
た: ガスアトマイズ法 103〜105 ℃/sec ロール急冷法 103〜105 ℃/sec 回転電極法 102 ℃/sec 鋳造法 30 ℃/sec 各方法で得られた合金粉末を45μmの篩で分級して得た
平均粒径20μmの粉末を使用して、実施例1と同様の方
法にて負極の作製と負極試験を実施した。負極試験で得
られた放電容量を表2に併せて示す。
The cooling rate of each solidification method calculated from the interval between the dendrite secondary arms of the solidified structure was as follows: gas atomization method 10 3 to 10 5 ° C / sec roll quenching method 10 3 to 10 5 ° C / sec Rotating electrode method 10 2 ℃ / sec Casting method 30 ℃ / sec The same method as in Example 1 using a powder having an average particle diameter of 20 μm obtained by classifying the alloy powder obtained by each method with a 45 μm sieve. , And a negative electrode test was conducted. Table 2 also shows the discharge capacity obtained in the negative electrode test.

【0057】[0057]

【表2】 表2に示すように、急冷凝固により作製した本発明の合
金粉末は、冷却速度が100 ℃/secに満たない鋳造法 (比
較例) で得られた合金粉末に比べ、放電容量が高くな
る。急冷凝固法の中でも、冷却速度が大きいガスアトマ
イズ法およびロール急冷法で作製した合金粉末が特に高
い放電容量を示した。中でもガスアトマイズ法により最
も高い体積当たりの放電容量が得られたが、これは、こ
の合金粉末は粉砕の必要がなく、粉砕時の酸化がないた
めである。
[Table 2] As shown in Table 2, the alloy powder of the present invention produced by rapid solidification has a higher discharge capacity than an alloy powder obtained by a casting method having a cooling rate of less than 100 ° C./sec (Comparative Example). Among the rapid solidification methods, the alloy powders produced by the gas atomizing method and the roll quenching method having a high cooling rate exhibited particularly high discharge capacities. Above all, the highest discharge capacity per volume was obtained by the gas atomization method, because this alloy powder does not need to be pulverized, and there is no oxidation at the time of pulverization.

【0058】[0058]

【実施例3】本実施例は熱処理温度の影響を例示する。
実施例2と同組成の合金の粉末を、実施例1に記載した
アルゴンガスアトマイズ法により作製し、アルゴンガス
中で表3に示す温度で10時間の熱処理を施した。この合
金の固相線温度は1259℃であった。熱処理した合金粉末
を使用し、実施例1と同様にして負極の作製と負極試験
を実施した。試験結果 (放電容量) を実施例3に併せて
示す。
Embodiment 3 This embodiment illustrates the influence of the heat treatment temperature.
A powder of an alloy having the same composition as in Example 2 was produced by the argon gas atomizing method described in Example 1, and heat-treated at a temperature shown in Table 3 for 10 hours in argon gas. The solidus temperature of this alloy was 1259 ° C. A negative electrode was produced and a negative electrode test was performed in the same manner as in Example 1 using the heat-treated alloy powder. The test results (discharge capacity) are also shown in Example 3.

【0059】[0059]

【表3】 表3から、合金の固相線温度より低温での熱処理により
放電容量がさらに増大することがわかる。しかし、熱処
理温度が合金の固相線温度を超えると、放電容量は著し
く低下した。この合金粉末をミクロ組織観察したとこ
ろ、偏析相が見られた。この偏析相は、実施例2の鋳造
法で作製した合金に見られた偏析相とほぼ同一の様相を
呈していた。おそらく、熱処理中に液相が生じ、その液
相が徐冷される際に偏析を生じたものと考えられる。
[Table 3] Table 3 shows that the heat treatment at a temperature lower than the solidus temperature of the alloy further increases the discharge capacity. However, when the heat treatment temperature exceeded the solidus temperature of the alloy, the discharge capacity was significantly reduced. When the microstructure of this alloy powder was observed, a segregation phase was observed. This segregation phase had almost the same appearance as the segregation phase observed in the alloy produced by the casting method of Example 2. Presumably, a liquid phase was formed during the heat treatment, and segregation occurred when the liquid phase was gradually cooled.

【0060】[0060]

【発明の効果】本発明によれば、放電容量とサイクル寿
命に優れた非水電解質二次電池用負極材料となるSi相を
含む合金粉末に、少量の易酸化性元素を均一に含有させ
ることにより、合金粉末作製中の酸素の混入による放電
容量の減少を回避することができ、放電容量がさらに向
上した負極材料を低コストで提供することができる。
According to the present invention, a small amount of an easily oxidizable element is uniformly contained in an alloy powder containing a Si phase as a negative electrode material for a non-aqueous electrolyte secondary battery having excellent discharge capacity and cycle life. Accordingly, it is possible to avoid a decrease in the discharge capacity due to mixing of oxygen during the production of the alloy powder, and to provide a negative electrode material with further improved discharge capacity at low cost.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中本 貴之 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 島村 治成 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 神代 光一 兵庫県尼崎市扶桑町1番8号 住友金属工 業株式会社エレクトロニクス技術研究所内 (72)発明者 竹下 幸輝 兵庫県尼崎市扶桑町1番8号 住友金属工 業株式会社エレクトロニクス技術研究所内 (72)発明者 禰宜 教之 兵庫県尼崎市扶桑町1番8号 住友金属工 業株式会社エレクトロニクス技術研究所内 Fターム(参考) 4K018 AA40 BC01 KA38 5H029 AJ03 AJ05 AK03 AL11 AM03 AM04 AM05 AM07 CJ02 CJ30 DJ16 HJ00 HJ01 5H050 AA07 AA08 BA17 CA08 CA09 CB11 FA17 GA02 GA06 GA29 HA01 HA20  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Takayuki Nakamoto 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Harari Shimamura 1006 Kadoma Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. (72) Inventor Koichi Kamishiro 1-8 Fuso-cho, Amagasaki City, Hyogo Prefecture Sumitomo Metal Industries, Ltd.Electronic Technology Research Laboratories (72) Inventor Yukiteru Takeshita 1-8 Fuso-cho, Amagasaki City, Hyogo Sumitomo Metal Industries, Ltd. (72) Inventor Noriyuki Nego 1-8 Fuso-cho, Amagasaki-shi, Hyogo Sumitomo Metal Industries, Ltd. Electronics Technology Laboratory F-term (reference) 4K018 AA40 BC01 KA38 5H029 AJ03 AJ05 AK03 AL11 AM03 AM04 AM05 AM07 CJ02 CJ30 DJ16 HJ00 HJ01 5H050 AA07 AA08 BA17 CA08 CA09 CB11 FA17 GA02 GA06 GA29 HA0 1 HA20

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Si相を含む合金の粉末であって、Li元素
およびLiより酸化され易い元素よりなる群から選ばれた
少なくとも1種の易酸化性元素をさらに含有することを
特徴とする、非水電解質二次電池負極用合金粉末。
1. An alloy powder containing a Si phase, further comprising at least one oxidizable element selected from the group consisting of a Li element and an element more easily oxidized than Li. Alloy powder for negative electrode of non-aqueous electrolyte secondary battery.
【請求項2】 該易酸化性元素を0.01質量%以上、1質
量%以下で含有する請求項1記載の非水電解質二次電池
負極用合金粉末。
2. The alloy powder for a negative electrode of a non-aqueous electrolyte secondary battery according to claim 1, wherein the oxidizable element is contained in an amount of 0.01% by mass or more and 1% by mass or less.
【請求項3】 該易酸化性元素がLi、Ca、Mg、および希
土類元素よりなる群から選ばれる請求項1または2に記
載の非水電解質二次電池負極用合金粉末。
3. The non-aqueous electrolyte secondary battery negative electrode alloy powder according to claim 1, wherein the oxidizable element is selected from the group consisting of Li, Ca, Mg, and a rare earth element.
【請求項4】 合金原料の溶融物を冷却速度が100 ℃/s
ec以上となる方法で凝固させる工程を含むことを特徴と
する、請求項1〜3のいずれか1項に記載の非水電解質
二次電池負極用合金粉末の製造方法。
4. The cooling rate of the molten alloy raw material is 100 ° C./s.
The method for producing an alloy powder for a negative electrode of a non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, further comprising a step of solidifying by a method of at least ec.
【請求項5】 該方法がアトマイズ法、ロール急冷法、
または回転電極法である、請求項4記載の非水電解質二
次電池負極用合金粉末の製造方法。
5. The method according to claim 1, wherein said method is an atomizing method, a roll quenching method,
5. The method for producing an alloy powder for a negative electrode of a non-aqueous electrolyte secondary battery according to claim 4, wherein the method is a rotating electrode method.
【請求項6】 凝固した合金に該合金の固相線温度より
低い温度で熱処理を施す工程をさらに含む、請求項4ま
たは5記載の非水電解質二次電池負極用合金粉末の製造
方法。
6. The method for producing an alloy powder for a negative electrode of a non-aqueous electrolyte secondary battery according to claim 4, further comprising a step of subjecting the solidified alloy to a heat treatment at a temperature lower than the solidus temperature of the alloy.
JP2000266962A 2000-09-04 2000-09-04 Alloy powder for negative electrode of nonaqueous electrolyte secondary battery and method for manufacturing the alloy powder Pending JP2002075351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000266962A JP2002075351A (en) 2000-09-04 2000-09-04 Alloy powder for negative electrode of nonaqueous electrolyte secondary battery and method for manufacturing the alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000266962A JP2002075351A (en) 2000-09-04 2000-09-04 Alloy powder for negative electrode of nonaqueous electrolyte secondary battery and method for manufacturing the alloy powder

Publications (1)

Publication Number Publication Date
JP2002075351A true JP2002075351A (en) 2002-03-15

Family

ID=18753957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000266962A Pending JP2002075351A (en) 2000-09-04 2000-09-04 Alloy powder for negative electrode of nonaqueous electrolyte secondary battery and method for manufacturing the alloy powder

Country Status (1)

Country Link
JP (1) JP2002075351A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166442A (en) * 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd Energy device and manufacturing method therefor
WO2005018026A3 (en) * 2003-08-08 2006-02-23 3M Innovative Properties Co Multi-phase, silicon-containing electrode for a lithium-ion battery
JP2006260944A (en) * 2005-03-17 2006-09-28 Matsushita Electric Ind Co Ltd Anode for lithium ion secondary battery, manufacturing method of the same, and lithium ion secondary battery
CN100382362C (en) * 2003-03-26 2008-04-16 佳能株式会社 Electrode material for lithium secondary battery and electrode structure having the electrode material
EP2104175A2 (en) 2008-03-17 2009-09-23 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
US7767349B2 (en) 2005-07-25 2010-08-03 3M Innovative Properties Company Alloy compositions for lithium ion batteries
US7851086B2 (en) * 2003-10-09 2010-12-14 Samsung Sdi Co., Ltd. Electrode material for a lithium secondary battery, lithium secondary battery, and preparation method for the electrode material for a lithium secondary battery
US7851085B2 (en) 2005-07-25 2010-12-14 3M Innovative Properties Company Alloy compositions for lithium ion batteries
US7871727B2 (en) 2005-07-25 2011-01-18 3M Innovative Properties Company Alloy composition for lithium ion batteries
US7906238B2 (en) 2005-12-23 2011-03-15 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
EP2509139A1 (en) 2011-04-08 2012-10-10 Shin-Etsu Chemical Co., Ltd. Method for manufacturing negative electrode active material for use in non-aqueous electrolyte secondary battery, negative electrode material for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2013122905A (en) * 2011-11-10 2013-06-20 Sanyo Special Steel Co Ltd Scale-like silicon-based alloy negative electrode material
WO2013151047A1 (en) * 2012-04-05 2013-10-10 三井金属鉱業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries
JP2013239448A (en) * 2011-06-27 2013-11-28 Mitsui Mining & Smelting Co Ltd Method for manufacturing negative-electrode active material for nonaqueous electrolyte secondary battery
US8734991B2 (en) 2007-11-12 2014-05-27 Sanyo Electric Co., Ltd. Negative electrode material for nonaqueous electrolyte secondary battery
WO2015097990A1 (en) 2013-12-25 2015-07-02 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
US9142858B2 (en) 2008-08-26 2015-09-22 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode, negative electrode material, and preparation of Si—O—Al composite
CN113948693A (en) * 2021-09-23 2022-01-18 西安交通大学 Lithium indium alloy cathode material for lithium battery and preparation method thereof

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100382362C (en) * 2003-03-26 2008-04-16 佳能株式会社 Electrode material for lithium secondary battery and electrode structure having the electrode material
WO2005018026A3 (en) * 2003-08-08 2006-02-23 3M Innovative Properties Co Multi-phase, silicon-containing electrode for a lithium-ion battery
US7498100B2 (en) 2003-08-08 2009-03-03 3M Innovative Properties Company Multi-phase, silicon-containing electrode for a lithium-ion battery
US7851086B2 (en) * 2003-10-09 2010-12-14 Samsung Sdi Co., Ltd. Electrode material for a lithium secondary battery, lithium secondary battery, and preparation method for the electrode material for a lithium secondary battery
JP4526806B2 (en) * 2003-12-02 2010-08-18 パナソニック株式会社 Method for producing lithium ion secondary battery
JP2005166442A (en) * 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd Energy device and manufacturing method therefor
JP2006260944A (en) * 2005-03-17 2006-09-28 Matsushita Electric Ind Co Ltd Anode for lithium ion secondary battery, manufacturing method of the same, and lithium ion secondary battery
US7767349B2 (en) 2005-07-25 2010-08-03 3M Innovative Properties Company Alloy compositions for lithium ion batteries
US7851085B2 (en) 2005-07-25 2010-12-14 3M Innovative Properties Company Alloy compositions for lithium ion batteries
US7871727B2 (en) 2005-07-25 2011-01-18 3M Innovative Properties Company Alloy composition for lithium ion batteries
US7906238B2 (en) 2005-12-23 2011-03-15 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
US8071238B2 (en) 2005-12-23 2011-12-06 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
US8734991B2 (en) 2007-11-12 2014-05-27 Sanyo Electric Co., Ltd. Negative electrode material for nonaqueous electrolyte secondary battery
EP2104175A2 (en) 2008-03-17 2009-09-23 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
US8105718B2 (en) 2008-03-17 2012-01-31 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
US9142858B2 (en) 2008-08-26 2015-09-22 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode, negative electrode material, and preparation of Si—O—Al composite
EP2509139A1 (en) 2011-04-08 2012-10-10 Shin-Etsu Chemical Co., Ltd. Method for manufacturing negative electrode active material for use in non-aqueous electrolyte secondary battery, negative electrode material for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR20120115116A (en) 2011-04-08 2012-10-17 신에쓰 가가꾸 고교 가부시끼가이샤 Method for producing cathode active material for nonaqueous electrolyte secondary battery, cathode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2013239448A (en) * 2011-06-27 2013-11-28 Mitsui Mining & Smelting Co Ltd Method for manufacturing negative-electrode active material for nonaqueous electrolyte secondary battery
US9761873B2 (en) 2011-06-27 2017-09-12 Mitsui Mining & Smelting Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary batteries
JP2013122905A (en) * 2011-11-10 2013-06-20 Sanyo Special Steel Co Ltd Scale-like silicon-based alloy negative electrode material
WO2013151047A1 (en) * 2012-04-05 2013-10-10 三井金属鉱業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries
GB2514987A (en) * 2012-04-05 2014-12-10 Mitsui Mining & Smelting Co Negative electrode active material for nonaqueous electrolyte secondary batteries
US10505183B2 (en) 2012-04-05 2019-12-10 Mitsui Mining & Smelting Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary batteries
WO2015097990A1 (en) 2013-12-25 2015-07-02 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
KR20160101932A (en) 2013-12-25 2016-08-26 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
US10050272B2 (en) 2013-12-25 2018-08-14 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electolyte secondary battery and method of producing the same
EP3480875A1 (en) 2013-12-25 2019-05-08 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
CN113948693A (en) * 2021-09-23 2022-01-18 西安交通大学 Lithium indium alloy cathode material for lithium battery and preparation method thereof

Similar Documents

Publication Publication Date Title
US6881518B2 (en) Process for manufacture of negative electrode material for a non-aqueous electrolyte secondary battery
JP3846661B2 (en) Lithium secondary battery
JP3562398B2 (en) Method for producing negative electrode material for non-aqueous electrolyte secondary battery and secondary battery
JP2001297757A (en) Negative electrode material for nonaqueous electrolyte secondary cell and its manufacturing method
KR20060004597A (en) Negative active material and method for production thereof, non-aqueous electrolyte secondary cell using the same
JP2002075351A (en) Alloy powder for negative electrode of nonaqueous electrolyte secondary battery and method for manufacturing the alloy powder
KR20080032037A (en) Alloy for negative electrode of lithium secondary battery
JP3262019B2 (en) Method for producing negative electrode material for lithium ion secondary battery
JP2001291514A (en) Negative electrode material for nonaqueous electrolyte secondary battery and its manufacturing method
JP3277845B2 (en) Method for producing negative electrode material for lithium ion secondary battery
JP3622631B2 (en) Nonaqueous electrolyte secondary battery, negative electrode material thereof, and method for producing the same
JP4144181B2 (en) Anode material for non-aqueous secondary battery and method for producing the same
JP4997706B2 (en) Anode material for non-aqueous secondary battery and method for producing the same
JP3622629B2 (en) Method for producing negative electrode material for non-aqueous electrolyte secondary battery
JP4133116B2 (en) Negative electrode active material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4836439B2 (en) Non-aqueous electrolyte battery electrode material, non-aqueous electrolyte battery electrode, and non-aqueous electrolyte battery
JP3567843B2 (en) Anode materials for non-aqueous electrolyte secondary batteries
JP4032893B2 (en) Anode material for non-aqueous electrolyte secondary battery
JP2001148247A (en) Non-aqueous electrolyte secondary battery and alloy for battery and its manufacturing method
JP2003272613A (en) Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2001307723A (en) Negative electrode material for nonaqueous electrolyte secondary battery and its manufacturing method
JPH09171829A (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery
JP4844503B2 (en) Anode material for lithium ion secondary battery
JP3984184B2 (en) Nonaqueous electrolyte secondary battery
JP4196894B2 (en) Anode material for non-aqueous secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040629