JP2002157999A - Method of manufacturing electrode for secondary battery - Google Patents

Method of manufacturing electrode for secondary battery

Info

Publication number
JP2002157999A
JP2002157999A JP2000353066A JP2000353066A JP2002157999A JP 2002157999 A JP2002157999 A JP 2002157999A JP 2000353066 A JP2000353066 A JP 2000353066A JP 2000353066 A JP2000353066 A JP 2000353066A JP 2002157999 A JP2002157999 A JP 2002157999A
Authority
JP
Japan
Prior art keywords
current collector
thin film
active material
electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000353066A
Other languages
Japanese (ja)
Inventor
Katsunobu Sayama
勝信 佐山
Hisaki Tarui
久樹 樽井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000353066A priority Critical patent/JP2002157999A/en
Publication of JP2002157999A publication Critical patent/JP2002157999A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of an electrode for a secondary battery capable of forming the secondary battery for controlling diffusion of a current collector material to an active material thin film, improving adhesion of the active material thin film to a current collector, with an excellent cycle characteristic. SOLUTION: In this method of manufacturing the electrode for the secondary battery by accumulating the active material thin film on the current collector forming a surface treatment layer, the active material thin film is accumulated on a current collector surface after removing at least a part of the surface treatment layer by cleaning the current collector surface with liquid when the diffusion of the current collector material to the active material thin film is to be enhanced to the low activity of the current collector surface, and the active material thin film is accumulated on the current collector surface without cleaning the current collector surface when the diffusion of the current collector material to the active material thin film is not needed to be enhanced since the activity of the current collector surface is high.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
などの二次電池用電極の製造方法に関するものであり、
特に集電体上に活物質薄膜を堆積して製造する二次電池
用電極の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electrode for a secondary battery such as a lithium secondary battery,
In particular, the present invention relates to a method for manufacturing an electrode for a secondary battery, which is manufactured by depositing an active material thin film on a current collector.

【0002】[0002]

【従来の技術】近年、研究開発が盛んに行われているリ
チウム二次電池は、用いられる電極により充放電電圧、
充放電サイクル寿命特性、保存特性などの電池特性が大
きく左右される。このことから、電極活物質を改善する
ことにより、電池特性の向上が図られている。
2. Description of the Related Art In recent years, a lithium secondary battery, which has been actively researched and developed, has a charge / discharge voltage,
Battery characteristics such as charge-discharge cycle life characteristics and storage characteristics are greatly affected. For this reason, the battery characteristics have been improved by improving the electrode active material.

【0003】負極活物質としてリチウム金属を用いる
と、重量当たり及び体積当たり共に高いエネルギー密度
の電池を構成することができるが、充電時にリチウムが
デンドライト状に析出し、内部短絡を引き起こすという
問題があった。
[0003] When lithium metal is used as the negative electrode active material, a battery having a high energy density per weight and per volume can be formed. However, there is a problem that lithium precipitates in a dendrite shape during charging and causes an internal short circuit. Was.

【0004】これに対し、充電の際に電気化学的にリチ
ウムと合金化するアルミニウム、シリコン、錫などを電
極として用いるリチウム二次電池が報告されている。こ
れらのうち、特にシリコンは理論容量が大きく、高い容
量を示す電池用負極として有望であり、これを負極とす
る種々の二次電池が提案されている(特開平10−25
5768号公報)。しかしながら、この種の合金電極
は、電極活物質である合金自体が充放電により微粉化し
集電特性が悪化することから、十分なサイクル特性が得
られていない。
[0004] On the other hand, there has been reported a lithium secondary battery using aluminum, silicon, tin, or the like which electrochemically alloys with lithium during charging as an electrode. Among these, silicon is particularly promising as a negative electrode for a battery having a large theoretical capacity and exhibiting a high capacity, and various secondary batteries using this as a negative electrode have been proposed (JP-A-10-25).
No. 5768). However, this type of alloy electrode does not have sufficient cycle characteristics because the alloy itself, which is an electrode active material, is pulverized by charging and discharging and the current collecting characteristics are deteriorated.

【0005】[0005]

【発明が解決しようとする課題】本出願人は、CVD法
やスパッタリング法により、銅箔の上に微結晶シリコン
薄膜または非晶質シリコン薄膜を形成してこれを電極と
して用いることにより、4000mAh/g程度の高い
容量を有し、かつ実用に十分に耐え得る良好なサイクル
特性を有したリチウム二次電池が得られることを既に見
い出している(特願平11−301646号など)。
SUMMARY OF THE INVENTION The present applicant has formed a microcrystalline silicon thin film or an amorphous silicon thin film on a copper foil by a CVD method or a sputtering method and used this as an electrode to obtain 4000 mAh / It has already been found that a lithium secondary battery having a capacity as high as about g and having good cycle characteristics enough to withstand practical use can be obtained (Japanese Patent Application No. 11-301646).

【0006】また、この電極においては、集電体である
銅箔に対するシリコン薄膜の密着性が良好であることが
必要であり、このような密着性は、銅箔からの銅元素が
シリコン薄膜に拡散し固溶体を形成することによりもた
らされるものであることを見い出している。また、シリ
コン薄膜への銅元素の拡散が多くなり、シリコンと銅の
金属間化合物が形成されると、密着性が低下し、容量が
低下することを見い出している。従って、このような電
極の製造においては、集電体材料の活物質薄膜への拡散
を制御することが重要となる。
In this electrode, it is necessary that the adhesion of the silicon thin film to the copper foil serving as the current collector is good, and such adhesion requires that the copper element from the copper foil be applied to the silicon thin film. Have been found to result from diffusion and formation of a solid solution. In addition, it has been found that when the diffusion of the copper element into the silicon thin film increases and an intermetallic compound of silicon and copper is formed, the adhesion decreases and the capacity decreases. Therefore, in manufacturing such an electrode, it is important to control the diffusion of the current collector material into the active material thin film.

【0007】本発明の目的は、集電体材料の活物質薄膜
への拡散を制御して、集電体に対する活物質薄膜の密着
性が良好で、かつサイクル特性に優れた二次電池とする
ことができる二次電池用電極の製造方法を提供すること
にある。
An object of the present invention is to provide a secondary battery in which the diffusion of a current collector material into an active material thin film is controlled, and the adhesion of the active material thin film to the current collector is good and the cycle characteristics are excellent. It is an object of the present invention to provide a method for manufacturing a secondary battery electrode which can be used.

【0008】[0008]

【課題を解決するための手段】本発明の第1の局面に従
う二次電池用電極の製造方法は、表面処理層が形成され
た集電体上に活物質薄膜を堆積させて二次電池用電極を
製造する方法であり、活物質薄膜への集電体材料の拡散
を高めるため、集電体表面を液体で洗浄して表面処理層
の少なくとも一部を除去する工程と、洗浄工程後の集電
体表面上に活物質薄膜を堆積する工程とを備えることを
特徴としている。
According to a first aspect of the present invention, there is provided a method of manufacturing an electrode for a secondary battery, comprising: depositing an active material thin film on a current collector having a surface treatment layer formed thereon; A method of manufacturing an electrode, in order to enhance the diffusion of the current collector material into the active material thin film, a step of cleaning the current collector surface with a liquid to remove at least a part of the surface treatment layer, and after the cleaning step. Depositing an active material thin film on the surface of the current collector.

【0009】本発明の第1の局面によれば、防錆処理等
により形成された表面処理層の存在によって集電体材料
の活物質薄膜への拡散が抑制され、この結果集電体に対
する活物質薄膜の密着性が良好でない場合に、活物質薄
膜への集電体材料の拡散を高めて良好な密着性を得るこ
とができる。
According to the first aspect of the present invention, the diffusion of the current collector material into the active material thin film is suppressed by the presence of the surface treatment layer formed by rust prevention treatment or the like. When the adhesiveness of the material thin film is not good, the diffusion of the current collector material into the active material thin film can be enhanced to obtain good adhesiveness.

【0010】本発明の第2の局面に従う二次電池用電極
の製造方法は、表面処理層が形成された集電体上に活物
質薄膜を堆積させて二次電池用電極を製造する方法であ
り、集電体表面の活性が低く集電体材料の活物質薄膜へ
の拡散を高める必要がある場合には、集電体表面を液体
で洗浄して表面処理層の少なくとも一部を除去した後、
集電体表面上に活物質薄膜を堆積し、集電体表面の活性
が高く集電体材料の活物質薄膜への拡散を高める必要が
ない場合には、集電体表面を洗浄せずに、集電体表面上
に活物質薄膜を堆積することを特徴としている。
A method for manufacturing a secondary battery electrode according to a second aspect of the present invention is a method for manufacturing a secondary battery electrode by depositing an active material thin film on a current collector having a surface-treated layer formed thereon. Yes, when the activity of the current collector surface is low and it is necessary to increase the diffusion of the current collector material into the active material thin film, the current collector surface was washed with a liquid to remove at least a part of the surface treatment layer. rear,
If the active material thin film is deposited on the current collector surface and the current collector surface activity is high and it is not necessary to increase the diffusion of the current collector material into the active material thin film, the current collector surface should not be washed. The method is characterized in that an active material thin film is deposited on the current collector surface.

【0011】本発明の第2の局面においては、集電体表
面の活性が低く、集電体材料の活物質薄膜への拡散を高
める必要がある場合、上記本発明の第1の局面に従い、
集電体表面を液体で洗浄して表面処理層の少なくとも一
部を除去することにより、活物質薄膜への集電体材料の
拡散を高める。また、集電体表面の活性が高く、集電体
材料の活物質薄膜への拡散を高める必要がない場合に
は、集電体表面を洗浄せずにそのまま集電体表面上に活
物質薄膜を堆積させる。
According to the second aspect of the present invention, when the activity of the current collector surface is low and it is necessary to increase the diffusion of the current collector material into the active material thin film,
By cleaning the current collector surface with a liquid to remove at least a part of the surface treatment layer, diffusion of the current collector material into the active material thin film is enhanced. If the current collector surface has high activity and it is not necessary to increase the diffusion of the current collector material into the active material thin film, the active material thin film can be placed on the current collector surface without cleaning the current collector surface. Is deposited.

【0012】本発明の第2の局面によれば、使用する集
電体の表面活性に応じて集電体材料の活物質薄膜への拡
散を制御することができるので、どのような集電体に対
しても、活物質薄膜の密着性を良好にすることができ、
サイクル特性に優れた二次電池用電極とすることができ
る。
According to the second aspect of the present invention, the diffusion of the current collector material into the active material thin film can be controlled in accordance with the surface activity of the current collector used. Against, it is possible to improve the adhesion of the active material thin film,
An electrode for a secondary battery having excellent cycle characteristics can be obtained.

【0013】表面活性の低い集電体として、例えば圧延
によって仕上げられた金属箔が挙げられる。圧延によっ
て仕上げられた金属箔としては、例えば圧延銅箔があ
る。圧延銅箔の表面は、圧延工程で仕上げられているの
で、凹凸が少なく表面積が小さい。このため、圧延銅箔
の表面は活性が低くなっている。また、銅箔の表面に
は、通常、特開平11−158652号公報に開示され
たような公知のクロメート等による防錆処理が施されて
おり、防錆処理による表面処理層が形成されている。こ
のため、圧延銅箔上に微結晶シリコン薄膜または非晶質
シリコン薄膜を形成した場合、銅箔中のCuのシリコン
薄膜への拡散が不十分となり、良好な密着性が得られな
い場合がある。このような場合、銅箔表面を液体で洗浄
して防錆処理による表面処理層の少なくとも一部を除去
することにより、銅箔中のCuのシリコン薄膜への拡散
を高めることができ、銅箔に対するシリコン薄膜の密着
性を高めることができる。
A current collector having a low surface activity is, for example, a metal foil finished by rolling. Examples of the metal foil finished by rolling include rolled copper foil. Since the surface of the rolled copper foil is finished in the rolling step, there are few irregularities and the surface area is small. Therefore, the surface of the rolled copper foil has low activity. In addition, the surface of the copper foil is usually subjected to a rust-preventive treatment using a known chromate or the like as disclosed in JP-A-11-158652, and a surface treatment layer is formed by the rust-preventive treatment. . For this reason, when a microcrystalline silicon thin film or an amorphous silicon thin film is formed on a rolled copper foil, diffusion of Cu in the copper foil into the silicon thin film becomes insufficient, and good adhesion may not be obtained. . In such a case, the diffusion of Cu in the copper foil to the silicon thin film can be enhanced by cleaning the surface of the copper foil with a liquid and removing at least a part of the surface treatment layer by the rust prevention treatment. Adhesion of the silicon thin film to the substrate can be improved.

【0014】表面活性の高い集電体としては、電解また
はエッチングによって表面に凹凸が形成された金属箔が
挙げられる。電解は、電解めっき法により金属箔の表面
に粒状の金属を析出させることにより、表面に凹凸を形
成する方法である。エッチングは、ドライエッチングや
ウエットエッチングによって、表面を粗面化する方法で
ある。
A current collector having a high surface activity includes a metal foil having a surface with irregularities formed by electrolysis or etching. Electrolysis is a method of forming irregularities on the surface by depositing granular metal on the surface of a metal foil by an electrolytic plating method. Etching is a method of roughening the surface by dry etching or wet etching.

【0015】電解によって表面に凹凸が形成された金属
箔としては、電解銅箔が挙げられる。電解銅箔も、圧延
銅箔と同様に、通常、表面にクロメートによる防錆処理
が施されており、防錆処理による表面処理層が表面に存
在する。この表面処理層により、圧延銅箔と同様に、銅
箔のCuのシリコン薄膜への拡散が抑制されるが、電解
銅箔の場合、表面活性が高いので、このような表面処理
層が存在していても、シリコン薄膜に銅箔中のCuが十
分に拡散し、銅箔に対する密着性の良好なシリコン薄膜
が形成される。
An example of the metal foil having an uneven surface formed by electrolysis is an electrolytic copper foil. Similarly to the rolled copper foil, the surface of the electrolytic copper foil is usually subjected to rust-prevention treatment by chromate, and a surface treatment layer by the rust-prevention treatment is present on the surface. By this surface treatment layer, similarly to the rolled copper foil, diffusion of Cu of the copper foil into the silicon thin film is suppressed. However, in the case of the electrolytic copper foil, such a surface treatment layer is present because the surface activity is high. However, Cu in the copper foil is sufficiently diffused into the silicon thin film, and a silicon thin film having good adhesion to the copper foil is formed.

【0016】電解銅箔の場合、このような表面処理層を
液体で洗浄して除去すると、Cuが高濃度にシリコン薄
膜中に拡散し、結晶性の金属間化合物が形成されるの
で、集電体の強度が低下したり、電池容量の低下や、サ
イクル特性の低下を生じる場合がある。従って、本発明
の第2の局面によれば、このような電解銅箔を用いる場
合には、銅箔表面を洗浄せずに、銅箔表面上にシリコン
薄膜を堆積することが好ましい。
In the case of electrolytic copper foil, if such a surface treatment layer is removed by washing with a liquid, Cu diffuses into the silicon thin film at a high concentration, and a crystalline intermetallic compound is formed. The strength of the body may be reduced, the battery capacity may be reduced, or the cycle characteristics may be reduced. Therefore, according to the second aspect of the present invention, when using such an electrolytic copper foil, it is preferable to deposit a silicon thin film on the copper foil surface without cleaning the copper foil surface.

【0017】以下、本発明の第1の局面及び第2の局面
に共通する事項については、「本発明」として説明す
る。本発明において洗浄に用いる液体は、除去すべき表
面処理層に応じて適宜選択されるものである。例えばク
ロメートによる防錆処理の場合、洗剤などの界面活性剤
を含有した溶液や、有機溶剤などが挙げられる。洗剤と
しては、中性洗剤であってもよいし、弱酸性または弱ア
ルカリ性の洗剤であってもよい。有機溶剤としては、例
えば、エチルアルコール、アセトン、トリクロルエチレ
ンなどが挙げられる。洗浄は、超音波を印加させながら
行う超音波洗浄が好ましい。
Hereinafter, matters common to the first and second aspects of the present invention will be described as "the present invention". The liquid used for cleaning in the present invention is appropriately selected according to the surface treatment layer to be removed. For example, in the case of rust prevention treatment by chromate, a solution containing a surfactant such as a detergent, an organic solvent, and the like can be given. The detergent may be a neutral detergent or a weakly acidic or slightly alkaline detergent. Examples of the organic solvent include ethyl alcohol, acetone, and trichloroethylene. The cleaning is preferably performed by ultrasonic cleaning while applying ultrasonic waves.

【0018】洗浄の方法は特に限定されるものではな
く、種々の方法で行うことができる。例えば、洗浄液を
入れた洗浄槽中に集電体を浸漬し超音波を印加しながら
行ってもよいし、洗浄液を集電体にシャワー状に噴射し
ながら行ってもよい。また、洗浄液を集電体の表面に流
しながら洗浄を行ってもよい。これらの場合、超音波を
印加しながら洗浄を行うことが好ましい。さらには、加
熱しながら洗浄を行ってもよい。
The washing method is not particularly limited, and can be carried out by various methods. For example, the cleaning may be performed while the current collector is immersed in a cleaning tank containing the cleaning liquid and applying ultrasonic waves, or the cleaning liquid may be sprayed onto the current collector in a shower shape. Further, the cleaning may be performed while the cleaning liquid is caused to flow on the surface of the current collector. In these cases, it is preferable to perform cleaning while applying ultrasonic waves. Further, the cleaning may be performed while heating.

【0019】また、純水による洗浄と洗浄剤による洗浄
を交互に繰り返し行い、最後に純水により洗浄した後乾
燥させることが好ましい。乾燥は、集電体表面の酸化を
防止したい場合には、窒素などの不活性ガス雰囲気中で
行うことが好ましい。
It is preferable that washing with pure water and washing with a cleaning agent are alternately repeated, and finally, washing with pure water and drying are performed. Drying is preferably performed in an atmosphere of an inert gas such as nitrogen when it is desired to prevent oxidation of the current collector surface.

【0020】本発明において、集電体上に活物質薄膜を
堆積する方法は、特に限定されるものではなく、CVD
法、スパッタリング法、真空蒸着法、溶射法などの気相
から薄膜を形成する方法や、めっき法のように液相から
薄膜を形成する方法が挙げられる。薄膜形成後、集電体
材料の活物質薄膜への拡散が不十分な場合には、加熱処
理を施してもよい。また、活物質薄膜を堆積させる前
に、集電体表面にArなどの不活性ガスや水素のプラズ
マまたはイオンを照射し、集電体表面を活性化してもよ
い。
In the present invention, the method for depositing the active material thin film on the current collector is not particularly limited.
A method of forming a thin film from a gas phase, such as a sputtering method, a sputtering method, a vacuum evaporation method, and a thermal spraying method, and a method of forming a thin film from a liquid phase, such as a plating method. After the formation of the thin film, if the diffusion of the current collector material into the active material thin film is insufficient, a heat treatment may be performed. Before the active material thin film is deposited, the surface of the current collector may be activated by irradiating the surface of the current collector with plasma or ions of an inert gas such as Ar or hydrogen or hydrogen.

【0021】活物質薄膜としてシリコン薄膜を用いる場
合、シリコン薄膜に拡散し易い元素としては銅元素(C
u)が挙げられる。このようなCuは集電体表面からシ
リコン薄膜中に拡散するものであるので、集電体全体が
必ずしもCuまたはその合金から形成されている必要は
なく、集電体の少なくとも表面部分がCuまたはその合
金から形成されていればよい。例えば、ニッケル箔など
の金属箔の表面にCu層を形成したような集電体を用い
てもよい。
When a silicon thin film is used as an active material thin film, a copper element (C
u). Since such Cu diffuses from the current collector surface into the silicon thin film, the entire current collector does not necessarily need to be formed from Cu or an alloy thereof, and at least the surface portion of the current collector is Cu or What is necessary is just to be formed from the alloy. For example, a current collector having a Cu layer formed on the surface of a metal foil such as a nickel foil may be used.

【0022】[0022]

【発明の実施の形態】以下、本発明を具体的な実施例に
基づいてさらに詳細に説明するが、本発明は以下の実施
例に何ら限定されるものではなく、その要旨を変更しな
い範囲において適宜変更して実施することが可能なもの
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to specific embodiments. However, the present invention is not limited to the following embodiments, and the scope thereof is not changed. It can be implemented with appropriate changes.

【0023】〔集電体の準備〕集電体として、圧延銅箔
(厚み18μm)、及び電解銅箔(厚み17μm)を用
意した。これらの圧延銅箔及び電解銅箔は、ともに表面
にクロメートによる防錆処理が施されているものであ
る。
[Preparation of Current Collector] As current collectors, rolled copper foil (thickness 18 μm) and electrolytic copper foil (thickness 17 μm) were prepared. Both the rolled copper foil and the electrolytic copper foil have been subjected to rust prevention treatment by chromate on the surface.

【0024】また、エッチング圧延銅箔として、上記圧
延銅箔の表面をエッチングしたものを準備した。エッチ
ングは、エッチング液としてメック株式会社製の商品名
「MECetchBOND CZ−8100」を用い
て、処理温度:35℃、スプレー圧:0.2MPa、エ
ッチング量3μmの条件でスプレー処理により実施し
た。その後水洗、酸洗(処理温度:室温、スプレー圧:
0.06MPa、処理時間:10秒)、水洗を行い、さ
らに銅表面の酸化防止のため、防錆剤としてメック株式
会社製の商品名「MECetchBOND CL−83
00」の20倍希釈液を用いて、処理温度:室温、処理
時間:10秒の条件で浸漬処理により、防錆処理を行
い、水洗した後乾燥させて用いた。
Further, as the etched rolled copper foil, one obtained by etching the surface of the rolled copper foil was prepared. The etching was performed by a spray process using a trade name "MECetchBOND CZ-8100" manufactured by Mec Co., Ltd. as an etchant at a processing temperature of 35 ° C., a spray pressure of 0.2 MPa, and an etching amount of 3 μm. Then wash with water and pickle (treatment temperature: room temperature, spray pressure:
(0.06 MPa, treatment time: 10 seconds), washed with water, and furthermore, as a rust preventive for preventing oxidation of the copper surface, trade name "MECetchBOND CL-83" manufactured by MEC Corporation.
Using a 20-fold dilution of "00", a rust-proof treatment was performed by dipping at a treatment temperature of room temperature and a treatment time of 10 seconds, followed by washing with water and drying.

【0025】〔集電体表面の洗浄〕上記集電体を、以下
の〜の工程で洗浄した。各洗浄工程では、洗浄槽中
に純水または中性洗剤を入れ、この中に集電体を浸漬し
超音波を印加することにより洗浄した。純水としては、
導電度約15MΩ・cmのものを用いた。中性洗剤とし
ては、無りん石鹸液(井内盛栄堂製の商品名「ピュアソ
フト」5倍希釈液)を用いた。
[Cleaning of Current Collector Surface] The current collector was cleaned by the following steps (1) to (4). In each washing step, pure water or a neutral detergent was put in the washing tank, the current collector was immersed in the washing tank, and washing was performed by applying ultrasonic waves. As pure water,
The one having a conductivity of about 15 MΩ · cm was used. As the neutral detergent, a non-phosphorus soap solution (trade name “Pure Soft”, 5 times diluted by Iuchi Seieido) was used.

【0026】 25℃純水による超音波洗浄10分 25℃中性洗剤による超音波洗浄10分 25℃純水による超音波洗浄10分 25℃中性洗剤による超音波洗浄10分 25℃純水による超音波洗浄10分 25℃純水による超音波洗浄10分 105℃窒素雰囲気で乾燥14時間Ultrasonic cleaning with 25 ° C pure water for 10 minutes Ultrasonic cleaning with 25 ° C neutral detergent for 10 minutes Ultrasonic cleaning with 25 ° C pure water for 10 minutes Ultrasonic cleaning with 25 ° C neutral detergent for 10 minutes 25 ° C pure water Ultrasonic cleaning 10 minutes Ultrasonic cleaning with pure water at 25 ° C 10 minutes Drying in nitrogen atmosphere at 105 ° C 14 hours

【0027】〔シリコン薄膜の形成〕上記洗浄工程後の
集電体の上に微結晶シリコン薄膜を形成した。シリコン
薄膜を形成する前に、集電体表面に水素プラズマを照射
し前処理を行った。反応室中のヒーターの上に集電体を
設置し、真空排気装置により、反応室中の圧力を40P
a(0.3Torr)となるように排気した。次に、水
素(H2 )ガスを200sccmとなるように反応室内
に導入し、基板である集電体を210℃まで加熱し、高
周波電力20W(高周波電力密度62mW/cm2 )の
条件で水素プラズマを発生させ、これを集電体に10分
間照射した。
[Formation of Silicon Thin Film] A microcrystalline silicon thin film was formed on the current collector after the above cleaning step. Before forming the silicon thin film, the surface of the current collector was irradiated with hydrogen plasma to perform a pretreatment. A current collector was placed on the heater in the reaction chamber, and the pressure in the reaction chamber was reduced to 40P by a vacuum exhaust device.
a (0.3 Torr). Next, a hydrogen (H 2 ) gas was introduced into the reaction chamber so as to have a flow rate of 200 sccm, the current collector serving as a substrate was heated to 210 ° C., and hydrogen was applied under a condition of high frequency power of 20 W (high frequency power density of 62 mW / cm 2 ). Plasma was generated, and this was irradiated on the current collector for 10 minutes.

【0028】次に、基板である集電体の温度を210℃
に加熱した状態で、圧力40Pa(0.3Torr)、
高周波電力555W(高周波電力密度1713mW/c
2)とし、シラン(SiH4 )ガス流量を10scc
m、水素ガス流量を200sccmとして、プラズマC
VD法により集電体の上に微結晶シリコン薄膜を形成し
た。約180分間形成することにより、厚み約8〜10
μmの微結晶シリコン薄膜が形成された。なお、基板温
度は最終的に260℃まで上昇した。
Next, the temperature of the current collector as a substrate is set to 210 ° C.
Under the pressure of 40 Pa (0.3 Torr),
High frequency power 555W (high frequency power density 1713mW / c
m 2 ) and a silane (SiH 4 ) gas flow rate of 10 scc
m, the hydrogen gas flow rate was 200 sccm, and the plasma C
A microcrystalline silicon thin film was formed on the current collector by the VD method. By forming for about 180 minutes, the thickness is about 8 to 10
A microcrystalline silicon thin film of μm was formed. The substrate temperature finally rose to 260 ° C.

【0029】〔電極におけるCu拡散の評価〕以上のよ
うにして得られた各電極について、薄膜形成後の外観及
びCuの拡散状態について評価した。薄膜形成後の外観
については、活物質薄膜が集電体から剥離しているかど
うか、並びに、色むら及び変色を評価した。シリコン薄
膜中に拡散したCuが、Siとの金属間化合物を形成し
た場合には、シリコン薄膜の灰色が灰白色になる。Cu
の拡散状態については、シリコン薄膜が灰白色に変色し
たか否かに加えて、後述するSIMS及びXPSによる
分析結果から判断した。結果を表1に示す。
[Evaluation of Cu Diffusion in Electrode] With respect to each electrode obtained as described above, the appearance after forming a thin film and the state of diffusion of Cu were evaluated. Regarding the appearance after the formation of the thin film, it was evaluated whether the active material thin film was peeled off from the current collector, and color unevenness and discoloration were evaluated. When Cu diffused into the silicon thin film forms an intermetallic compound with Si, the gray of the silicon thin film becomes grayish white. Cu
Was determined from the results of analysis by SIMS and XPS described later in addition to whether or not the silicon thin film turned grayish white. Table 1 shows the results.

【0030】[0030]

【表1】 [Table 1]

【0031】表1から明らかなように、圧延銅箔を集電
体として用いた場合、洗浄工程を行わずにシリコン薄膜
を形成すると、シリコン薄膜と集電体との密着性が不十
分となり、シリコン薄膜が剥離している。これに対し、
洗浄工程を行った場合には、このような剥離が認められ
ていない。従って、圧延銅箔を集電体として用いた場合
は、圧延銅箔表面の防錆処理による表面処理層を洗浄に
よって除去することにより、集電体からのCuがシリコ
ン薄膜中に拡散しやすくなり、密着性が改善されている
と考えられる。
As is clear from Table 1, when the rolled copper foil is used as the current collector, if the silicon thin film is formed without performing the cleaning step, the adhesion between the silicon thin film and the current collector becomes insufficient. The silicon thin film has peeled off. In contrast,
When the cleaning step was performed, such peeling was not observed. Therefore, when the rolled copper foil is used as the current collector, Cu from the current collector is easily diffused into the silicon thin film by removing the surface treatment layer by the rust prevention treatment on the surface of the rolled copper foil by washing. It is considered that the adhesion was improved.

【0032】また、集電体として電解銅箔を用いた場合
には、その表面が活性であるため、洗浄を行わずともC
uが十分にシリコン薄膜中に拡散しているものと思われ
る。洗浄を行い、表面処理層の少なくとも一部を除去す
ると、Cuが過剰にシリコン薄膜中に拡散し、金属間化
合物が形成されるものと思われる。
When an electrolytic copper foil is used as a current collector, its surface is active.
It seems that u has sufficiently diffused into the silicon thin film. When cleaning is performed to remove at least a part of the surface treatment layer, it is considered that Cu excessively diffuses into the silicon thin film and an intermetallic compound is formed.

【0033】また、エッチングした圧延銅箔を集電体と
して用いた場合も、電解銅箔と同様に、洗浄を行うこと
により過剰のCuがシリコン薄膜中に拡散するものと思
われる。従って、上記実験で用いた電解銅箔またはエッ
チング圧延銅箔に対しては、洗浄を行わずにシリコン薄
膜を形成することが好ましいことがわかる。
Also, when the rolled copper foil thus etched is used as a current collector, it is considered that excessive Cu diffuses into the silicon thin film by washing as in the case of the electrolytic copper foil. Therefore, it is understood that it is preferable to form a silicon thin film without performing cleaning on the electrolytic copper foil or the etched rolled copper foil used in the above experiment.

【0034】[SIMS及びXPSによる分析]表1に
示す電極a1及び電極a4について、SIMSにより、
2 + をスパッタ源に用いて、シリコン薄膜の深さ方向
での銅元素(Cu+ )の濃度分布を測定した。なお、電
極a1におけるシリコン薄膜は膜厚約8μmであり、電
極a4におけるシリコン薄膜の膜厚は約10μmであ
る。
[Analysis by SIMS and XPS] The electrodes a1 and a4 shown in Table 1 were analyzed by SIMS.
Using O 2 + as a sputtering source, the concentration distribution of copper element (Cu + ) in the depth direction of the silicon thin film was measured. The thickness of the silicon thin film at the electrode a1 is about 8 μm, and the thickness of the silicon thin film at the electrode a4 is about 10 μm.

【0035】図1は電極a1についてのSIMSプロフ
ァイルであり、図2は電極a4についてのSIMSプロ
ファイルである。図1から明らかなように、圧延銅箔を
洗浄して集電体として用いた電極a1においては、シリ
コン薄膜と集電体との界面部分に厚さ1〜2μm程度の
拡散領域が存在している。また、拡散領域より上の部分
(表面側の部分)では、ほとんど銅元素が検出されてお
らず、過剰拡散になっていないことがわかる。
FIG. 1 shows a SIMS profile for the electrode a1, and FIG. 2 shows a SIMS profile for the electrode a4. As is clear from FIG. 1, in the electrode a1 used as a current collector after washing the rolled copper foil, a diffusion region having a thickness of about 1 to 2 μm exists at the interface between the silicon thin film and the current collector. I have. Further, in the portion above the diffusion region (surface-side portion), almost no copper element was detected, indicating that excessive diffusion was not occurring.

【0036】また、電解銅箔を洗浄せずに集電体として
用いた電極a4では、図2に示すように、シリコン薄膜
と集電体との界面部分に、厚さ約3〜4μm程度の拡散
領域Aが存在していることがわかる。また、拡散領域A
より上方の部分ではほとんど銅元素が検出されておら
ず、過剰拡散となっていないことがわかる。また、集電
体近傍の領域Bでは、電解銅箔の表面に凹凸が存在して
いるため、高い濃度の銅が検出されていることがわか
る。
Further, in the electrode a4 used as a current collector without washing the electrolytic copper foil, as shown in FIG. 2, the interface portion between the silicon thin film and the current collector has a thickness of about 3 to 4 μm. It can be seen that the diffusion region A exists. Also, the diffusion region A
It can be seen that almost no copper element was detected in the upper portion, and no excessive diffusion was observed. In addition, in the region B near the current collector, since the surface of the electrolytic copper foil has irregularities, it can be seen that a high concentration of copper is detected.

【0037】次に、XPSによりシリコン薄膜と集電体
との界面付近の濃度分布を測定するため、シリコン薄膜
の厚みが薄い電極を作製した。具体的には、上記と同様
の電解銅箔を集電体として用い、この電解銅箔を洗浄し
たものと洗浄しないもの2種類の集電体を用意し、この
集電体の上に上記と同様の条件で、厚み約2μmの微結
晶シリコン薄膜を形成した。得られた電極について、X
PSにより、構成元素であるシリコン(Si)、銅(C
u)、炭素(C)、及び(O)の濃度(存在比)を測定
した。
Next, in order to measure the concentration distribution near the interface between the silicon thin film and the current collector by XPS, an electrode having a thin silicon thin film was manufactured. Specifically, the same electrolytic copper foil as described above was used as a current collector, and two types of current collectors were prepared by washing the electrolytic copper foil and by not cleaning the electrolytic copper foil. Under the same conditions, a microcrystalline silicon thin film having a thickness of about 2 μm was formed. About the obtained electrode, X
By PS, silicon (Si), copper (C
The concentrations (existence ratio) of u), carbon (C), and (O) were measured.

【0038】図3は、電解銅箔を洗浄せずに用いた電極
のXPSプロファイルであり、図4は、電解銅箔を洗浄
して用いた電極のXPSプロファイルである。図3及び
図4において、横軸は、シリコン薄膜の表面をスパッタ
した時間を示しており、シリコン薄膜の深さを示してい
る。また、縦軸は、各構成元素の存在比を示している。
FIG. 3 is an XPS profile of an electrode used without cleaning the electrolytic copper foil, and FIG. 4 is an XPS profile of an electrode used after cleaning the electrolytic copper foil. 3 and 4, the horizontal axis indicates the time of sputtering the surface of the silicon thin film, and indicates the depth of the silicon thin film. The vertical axis indicates the abundance ratio of each constituent element.

【0039】図3から明らかなように、電解銅箔を洗浄
せずに集電体として用いた電極においては、シリコン薄
膜と集電体の界面に拡散領域が存在している。また、拡
散領域より上方の部分では銅(Cu)が検出されておら
ず、過剰拡散になっていないいことがわかる。
As is apparent from FIG. 3, in the electrode used as the current collector without cleaning the electrolytic copper foil, a diffusion region exists at the interface between the silicon thin film and the current collector. In addition, copper (Cu) is not detected in the portion above the diffusion region, and it can be seen that excessive diffusion has not occurred.

【0040】これに対し、図4に示すように、電解銅箔
を洗浄して集電体として用いた電極においては、広い領
域で高濃度の銅(Cu)が検出されており、表面領域に
おいても銅(Cu)が検出されている。従って、銅(C
u)が過剰拡散していることがわかる。
On the other hand, as shown in FIG. 4, in the electrode used as a current collector by cleaning the electrolytic copper foil, high concentration copper (Cu) was detected in a wide area, and in the surface area, Also, copper (Cu) is detected. Therefore, copper (C
It can be seen that u) is excessively diffused.

【0041】なお、表1に示す電極a1を用いてリチウ
ム二次電池を作製し、充放電サイクル特性を評価したと
ころ、良好なサイクル特性が得られた。電極a2〜電極
a6は、シリコン薄膜が剥離していたり、あるいは電極
として脆くなっているため、リチウム二次電池を作製す
ることができなかった。
A lithium secondary battery was manufactured using the electrode a1 shown in Table 1, and the charge and discharge cycle characteristics were evaluated. As a result, good cycle characteristics were obtained. For the electrodes a2 to a6, a lithium secondary battery could not be manufactured because the silicon thin film was peeled off or became brittle as an electrode.

【0042】[0042]

【発明の効果】本発明によれば、集電体材料の活物質薄
膜への拡散を制御することができるので、集電体に対す
る活物質薄膜の密着性が良好で、かつサイクル特性に優
れた二次電池用電極とすることができる。
According to the present invention, since the diffusion of the current collector material into the active material thin film can be controlled, the adhesion of the active material thin film to the current collector is good, and the cycle characteristics are excellent. It can be used as an electrode for a secondary battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】圧延銅箔を洗浄して集電体として用いた電極に
おけるシリコン薄膜中の銅元素の濃度分布を示すSIM
Sプロファイル。
FIG. 1 is a SIM showing a concentration distribution of a copper element in a silicon thin film in an electrode used as a current collector after washing a rolled copper foil.
S profile.

【図2】電解銅箔を洗浄せずに集電体として用いた電極
におけるシリコン薄膜中の銅元素の濃度分布を示すSI
MSプロファイル。
FIG. 2 is an SI showing a concentration distribution of copper element in a silicon thin film in an electrode used as a current collector without cleaning an electrolytic copper foil.
MS profile.

【図3】電解銅箔を洗浄せずに集電体として用いた電極
におけるシリコン薄膜中の各構成元素の濃度分布を示す
XPSプロファイル。
FIG. 3 is an XPS profile showing a concentration distribution of each constituent element in a silicon thin film in an electrode used as a current collector without cleaning an electrolytic copper foil.

【図4】電解銅箔を洗浄して集電体として用いた電極に
おけるシリコン薄膜中の各構成元素の濃度分布を示すX
PSプロファイル。
FIG. 4 is a graph showing the concentration distribution of each constituent element in a silicon thin film in an electrode used as a current collector after washing an electrolytic copper foil.
PS profile.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H017 AA03 AS02 BB16 CC01 DD01 EE01 5H050 AA07 AA14 BA16 CB11 DA03 DA07 FA15 FA19 FA20 GA12 GA14 GA17 GA18 GA24 GA25 GA27  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H017 AA03 AS02 BB16 CC01 DD01 EE01 5H050 AA07 AA14 BA16 CB11 DA03 DA07 FA15 FA19 FA20 GA12 GA14 GA17 GA18 GA24 GA25 GA27

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 表面処理層が形成された集電体上に活物
質薄膜を堆積させて二次電池用電極を製造する方法であ
って、 前記活物質薄膜への前記集電体材料の拡散を高めるた
め、前記集電体表面を液体で洗浄して前記表面処理層の
少なくとも一部を除去する工程と、 前記洗浄工程後の前記集電体表面上に前記活物質薄膜を
堆積する工程とを備える二次電池用電極の製造方法。
1. A method of manufacturing an electrode for a secondary battery by depositing an active material thin film on a current collector having a surface treatment layer formed thereon, comprising: diffusing the current collector material into the active material thin film. Cleaning the current collector surface with a liquid to remove at least a part of the surface treatment layer, and depositing the active material thin film on the current collector surface after the cleaning step. A method for producing an electrode for a secondary battery comprising:
【請求項2】 表面処理層が形成された集電体上に活物
質薄膜を堆積させて二次電池用電極を製造する方法であ
って、 前記集電体表面の活性が低く前記集電体材料の前記活物
質薄膜への拡散を高める必要がある場合には、前記集電
体表面を液体で洗浄して前記表面処理層の少なくとも一
部を除去した後、前記集電体表面上に前記活物質薄膜を
堆積し、 前記集電体表面の活性が高く前記集電体材料の前記活物
質薄膜への拡散を高める必要がない場合には、前記集電
体表面を洗浄せずに、前記集電体表面上に前記活物質薄
膜を堆積することを特徴とする二次電池用電極の製造方
法。
2. A method of manufacturing an electrode for a secondary battery by depositing an active material thin film on a current collector having a surface treatment layer formed thereon, wherein the current collector has low surface activity. When it is necessary to increase the diffusion of the material into the active material thin film, the surface of the current collector is washed with a liquid to remove at least a part of the surface treatment layer, and then the surface of the current collector is removed. When an active material thin film is deposited, the activity of the current collector surface is high, and it is not necessary to increase the diffusion of the current collector material into the active material thin film, without cleaning the current collector surface, A method for manufacturing an electrode for a secondary battery, comprising depositing the active material thin film on a current collector surface.
【請求項3】 表面活性の低い集電体が、圧延によって
仕上げられた金属箔であることを特徴とする請求項2に
記載の二次電池用電極の製造方法。
3. The method for producing an electrode for a secondary battery according to claim 2, wherein the current collector having a low surface activity is a metal foil finished by rolling.
【請求項4】 表面活性の高い集電体が、電解またはエ
ッチングによって表面に凹凸が形成された金属箔である
ことを特徴とする請求項2に記載の二次電池用電極の製
造方法。
4. The method for producing an electrode for a secondary battery according to claim 2, wherein the current collector having a high surface activity is a metal foil having a surface having irregularities formed by electrolysis or etching.
【請求項5】 前記活物質材料と前記集電体材料の金属
間化合物が形成されない範囲で前記集電体材料の前記活
物質薄膜への拡散が高められることを特徴とする請求項
1〜4のいずれか1項に記載の二次電池用電極の製造方
法。
5. The diffusion of the current collector material into the active material thin film as long as no intermetallic compound of the active material material and the current collector material is formed. The method for producing an electrode for a secondary battery according to any one of the above.
【請求項6】 前記活物質薄膜を堆積させる前に、前記
集電体表面にプラズマまたはイオンを照射することを特
徴とする請求項1〜5のいずれか1項に記載の二次電池
用電極の製造方法。
6. The electrode for a secondary battery according to claim 1, wherein the surface of the current collector is irradiated with plasma or ions before depositing the active material thin film. Manufacturing method.
【請求項7】 前記表面処理層が、防錆処理による表面
処理層であることを特徴とする請求項1〜6のいずれか
1項に記載の二次電池用電極の製造方法。
7. The method for producing an electrode for a secondary battery according to claim 1, wherein the surface treatment layer is a surface treatment layer obtained by rust prevention treatment.
【請求項8】 前記活物質薄膜がSiを主成分とする薄
膜であることを特徴とする請求項1〜7のいずれか1項
に記載の二次電池用電極の製造方法。
8. The method according to claim 1, wherein the active material thin film is a thin film containing Si as a main component.
【請求項9】 前記集電体の少なくとも表面部分がCu
またはその合金からなり、前記活物質薄膜に拡散する前
記集電体材料がCuであることを特徴とする請求項1〜
8のいずれか1項に記載の二次電池用電極の製造方法。
9. At least a surface portion of the current collector is Cu
Or the alloy thereof, and the current collector material diffused into the active material thin film is Cu.
9. The method for producing an electrode for a secondary battery according to any one of the above items 8.
JP2000353066A 2000-11-20 2000-11-20 Method of manufacturing electrode for secondary battery Withdrawn JP2002157999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000353066A JP2002157999A (en) 2000-11-20 2000-11-20 Method of manufacturing electrode for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000353066A JP2002157999A (en) 2000-11-20 2000-11-20 Method of manufacturing electrode for secondary battery

Publications (1)

Publication Number Publication Date
JP2002157999A true JP2002157999A (en) 2002-05-31

Family

ID=18825884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000353066A Withdrawn JP2002157999A (en) 2000-11-20 2000-11-20 Method of manufacturing electrode for secondary battery

Country Status (1)

Country Link
JP (1) JP2002157999A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135779A (en) * 2003-10-31 2005-05-26 Rikkyo Gakuin Lithium secondary battery and its manufacturing method
JP2005166442A (en) * 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd Energy device and manufacturing method therefor
JP2005183365A (en) * 2003-11-27 2005-07-07 Matsushita Electric Ind Co Ltd Energy device and its manufacturing method
JP2005294091A (en) * 2004-04-01 2005-10-20 Matsushita Electric Ind Co Ltd Electrode for non-aqueous electrolyte secondary battery
JP2006073212A (en) * 2004-08-31 2006-03-16 Sanyo Electric Co Ltd Non-aqueous electrolyte battery
JP2006164954A (en) * 2004-11-11 2006-06-22 Matsushita Electric Ind Co Ltd Negative electrode for lithium ion secondary battery, its manufacturing method, and lithium ion secondary battery using it
JP2007165293A (en) * 2005-11-16 2007-06-28 Jfe Chemical Corp Lithium-ion secondary battery anode, its manufacturing method, and lithium-ion secondary battery
JP2008269827A (en) * 2007-04-17 2008-11-06 Matsushita Electric Ind Co Ltd Electrode material of electrochemical element, its manufacturing method, electrode plate of electrode using it, and electrochemical element
WO2014035208A2 (en) * 2012-08-30 2014-03-06 주식회사 다원시스 Method and apparatus for manufacturing electrode for secondary battery
KR101507497B1 (en) * 2013-05-24 2015-03-31 한국과학기술연구원 Anode foil for magnesium secondary battery and its fabrication method
WO2022259871A1 (en) * 2021-06-08 2022-12-15 国立大学法人東海国立大学機構 Negative electrode for lithium-ion secondary battery, manufacturing method and manufacturing device therefor, and lithium-ion secondary battery
KR20230020196A (en) 2021-08-03 2023-02-10 주식회사 엘지에너지솔루션 Electrode Current Collector Cleaning Device Comprising Atmospheric Pressure Plasma Module and Electrode Current Collector Cleaned Thereby

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135779A (en) * 2003-10-31 2005-05-26 Rikkyo Gakuin Lithium secondary battery and its manufacturing method
JP2005183365A (en) * 2003-11-27 2005-07-07 Matsushita Electric Ind Co Ltd Energy device and its manufacturing method
JP4526806B2 (en) * 2003-12-02 2010-08-18 パナソニック株式会社 Method for producing lithium ion secondary battery
JP2005166442A (en) * 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd Energy device and manufacturing method therefor
JP2005294091A (en) * 2004-04-01 2005-10-20 Matsushita Electric Ind Co Ltd Electrode for non-aqueous electrolyte secondary battery
JP2006073212A (en) * 2004-08-31 2006-03-16 Sanyo Electric Co Ltd Non-aqueous electrolyte battery
JP2006164954A (en) * 2004-11-11 2006-06-22 Matsushita Electric Ind Co Ltd Negative electrode for lithium ion secondary battery, its manufacturing method, and lithium ion secondary battery using it
JP2007165293A (en) * 2005-11-16 2007-06-28 Jfe Chemical Corp Lithium-ion secondary battery anode, its manufacturing method, and lithium-ion secondary battery
JP2008269827A (en) * 2007-04-17 2008-11-06 Matsushita Electric Ind Co Ltd Electrode material of electrochemical element, its manufacturing method, electrode plate of electrode using it, and electrochemical element
WO2014035208A2 (en) * 2012-08-30 2014-03-06 주식회사 다원시스 Method and apparatus for manufacturing electrode for secondary battery
WO2014035208A3 (en) * 2012-08-30 2014-04-24 주식회사 다원시스 Method and apparatus for manufacturing electrode for secondary battery
KR101507497B1 (en) * 2013-05-24 2015-03-31 한국과학기술연구원 Anode foil for magnesium secondary battery and its fabrication method
WO2022259871A1 (en) * 2021-06-08 2022-12-15 国立大学法人東海国立大学機構 Negative electrode for lithium-ion secondary battery, manufacturing method and manufacturing device therefor, and lithium-ion secondary battery
KR20230020196A (en) 2021-08-03 2023-02-10 주식회사 엘지에너지솔루션 Electrode Current Collector Cleaning Device Comprising Atmospheric Pressure Plasma Module and Electrode Current Collector Cleaned Thereby

Similar Documents

Publication Publication Date Title
JP4245270B2 (en) Method for manufacturing electrode for secondary battery
JP2002157999A (en) Method of manufacturing electrode for secondary battery
US20120241324A1 (en) Coated article and method for manufacturing same
JPS61100979A (en) Thin film solar cell
JP5437155B2 (en) Secondary battery negative electrode, electrode copper foil, secondary battery, and method for producing secondary battery negative electrode
CN104060224A (en) Vacuum coating method of metal piece
JP2012201950A (en) METHOD FOR PRODUCING STAINLESS STEEL SHEET WITH FINELY ROUGHENED SURFACE AND THIN FILM Si SOLAR CELL
CN104073855A (en) Surface treating method for metal piece
JP3754374B2 (en) Method for producing electrode for lithium secondary battery
JP4183488B2 (en) Method for producing electrode for lithium secondary battery
JP3432521B2 (en) Plated steel sheet for battery case, method for manufacturing the same, battery case, and battery
US8506728B2 (en) Surface treatment method of metal material
CA2056943C (en) Substrate of improved plasma sprayed surface morphology
US20020102348A1 (en) Method for fabricating electrode for lithium secondary battery
CN104561980A (en) Surface treatment method for magnesium alloy
JP3955727B2 (en) Method for producing electrode for lithium secondary battery
CN111933965A (en) High-temperature fuel cell bipolar plate oxidation-resistant coating
CN114993889A (en) Hydrogen permeation test method for hydrogen-resistant coating on metal surface
JP2012142214A (en) Lithium ion secondary battery anode manufacturing method and lithium ion secondary battery anode
JPH11158652A (en) Production of electrode material for secondary battery
WO2015108784A1 (en) A method for plating fine grain copper deposit on metal substrate
JP2003123782A (en) Separator for fuel cell, its manufacturing method, and fuel cell
JP2934263B2 (en) Aluminum material and method of manufacturing the same
JP6633165B2 (en) Method for manufacturing negative and positive ears of soft pack battery
JP2003242983A (en) Positive electrode collector foil for lead acid storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050118

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061229