WO2014141962A1 - All-solid-state battery - Google Patents
All-solid-state battery Download PDFInfo
- Publication number
- WO2014141962A1 WO2014141962A1 PCT/JP2014/055593 JP2014055593W WO2014141962A1 WO 2014141962 A1 WO2014141962 A1 WO 2014141962A1 JP 2014055593 W JP2014055593 W JP 2014055593W WO 2014141962 A1 WO2014141962 A1 WO 2014141962A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- electrode layer
- solid
- current collector
- solid electrolyte
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/10—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/626—Metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/665—Composites
- H01M4/667—Composites in the form of layers, e.g. coatings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention generally relates to an all-solid battery, and more particularly to an all-solid battery in which at least one of a positive electrode layer and a negative electrode layer includes an electrode active material and a sulfide solid electrolyte.
- a metal oxide such as lithium cobaltate as a positive electrode active material, a carbon material such as graphite as a negative electrode active material, and a lithium hexafluorophosphate dissolved in an organic solvent as an electrolyte that is, Organic solvent electrolytes are generally used.
- a metal oxide such as lithium cobaltate as a positive electrode active material
- a carbon material such as graphite as a negative electrode active material
- a lithium hexafluorophosphate dissolved in an organic solvent as an electrolyte that is, Organic solvent electrolytes
- the organic solvent used for the electrolyte is a flammable substance, there is a risk that the battery may ignite. For this reason, it is required to further increase the safety of the battery.
- one measure for improving the safety of the lithium ion secondary battery is to use a solid electrolyte instead of the organic solvent electrolyte.
- the solid electrolyte it has been studied to apply organic materials such as polymers and gels, and inorganic materials such as glass and ceramics. Among them, an all-solid secondary battery using an inorganic material mainly composed of nonflammable glass or ceramics as a solid electrolyte has been proposed and attracted attention.
- Patent Document 1 Japanese Unexamined Patent Application Publication No. 2010-33918 (hereinafter referred to as Patent Document 1) describes using aluminum, titanium, and stainless steel as a current collector in a sulfide-based solid battery.
- Patent Document 2 Japanese Patent Laid-Open No. 2011-165467 (hereinafter referred to as Patent Document 2) uses stainless steel, aluminum, nickel, iron, titanium, and carbon as a positive electrode current collector in a sulfide-based solid battery. It is described that stainless steel, copper, nickel, and carbon are used as the current collector.
- Patent Document 1 and Patent Document 2 can be applied to the positive electrode current collector, it is not applicable to the negative electrode current collector because lithium ions are doped at a base potential.
- titanium described in Patent Document 1 and Patent Document 2 may react with a sulfide solid electrolyte, it cannot be used as a current collector.
- the stainless steels described in Patent Document 1 and Patent Document 2 do not react with the sulfide solid electrolyte, but are not suitable for the battery manufacturing process because of poor workability.
- Patent Document 2 Since iron and copper described in Patent Document 2 may react with the sulfide solid electrolyte, they cannot be used as a current collector. Further, carbon described in Patent Document 2 is not suitable for a battery manufacturing process because it is difficult to obtain strength and flexibility as in metal foil when processed into a thin sheet alone.
- an object of the present invention is to provide an all solid state battery capable of expanding the application range of the current collector material in the all solid state battery using sulfide as a solid electrolyte.
- the present inventors when an intervening layer made of a limited material is disposed between the electrode layer and the current collector, the current collector reacts with the sulfide solid electrolyte. It has been found that the application range of the current collector material can be expanded. Based on this finding, the all solid state battery according to the present invention has the following characteristics.
- An all-solid battery includes at least one of a positive electrode layer and a negative electrode layer, a solid electrolyte layer laminated on one surface of the electrode layer, and a surface opposite to the one surface of the electrode layer.
- a current collector disposed on the other side of the electrode, and an intervening layer interposed between the electrode layer and the current collector.
- the electrode layer includes an electrode active material and a sulfide solid electrolyte.
- the intervening layer includes a material that is less reactive with the sulfide solid electrolyte than copper.
- the intervening layer preferably has conductivity with respect to electrons and does not have conductivity with respect to lithium ions.
- the intervening layer preferably contains a carbon material.
- the intervening layer preferably contains a metal.
- the intervening layer preferably contains stainless steel or aluminum as a metal.
- the all solid state battery of the present invention includes first and second batteries each including a laminate in which a positive electrode layer, a solid electrolyte layer, and a negative electrode layer are sequentially laminated, and the first battery is a second battery. And a current collector is disposed between the positive electrode layer of the first battery and the negative electrode layer of the second battery, and the intervening layer is between the positive electrode layer of the first battery and the current collector, or It is preferable to intervene between the negative electrode layer of the second battery and the current collector.
- a part of the intervening layer preferably contains an electrical insulator.
- the intervening layer interposed between the electrode layer and the current collector includes a material that is less reactive with the sulfide solid electrolyte than the copper, the current collector reacts with the sulfide solid electrolyte. Therefore, the application range of the current collector material can be expanded.
- an all-solid battery 10 is constituted by a single battery including a positive electrode layer 11, a solid electrolyte layer 12, and a negative electrode layer 13.
- the positive electrode layer 11 is disposed on one surface of the solid electrolyte layer 12, and the negative electrode layer 13 is disposed on the other surface opposite to the one surface of the solid electrolyte layer 12.
- the positive electrode layer 11 and the negative electrode layer 13 are provided at positions facing each other via the solid electrolyte layer 12, and the solid electrolyte layer 12 is interposed between the positive electrode layer 11 and the negative electrode layer 13.
- Each of positive electrode layer 11 and negative electrode layer 13 includes a sulfide solid electrolyte and an electrode active material
- solid electrolyte layer 12 includes a sulfide solid electrolyte.
- Each of the positive electrode layer 11, the solid electrolyte layer 12, and the negative electrode layer 13 is formed into a green sheet, a printed layer, a film, or the like from a solid-liquid mixture such as slurry, paste, or colloid by a sheet method, a printing method, or the like. Alternatively, it may be formed from a powder of each material by a compression molding method.
- the solid electrolyte layer 12 is laminated on one surface of the negative electrode layer 13, and the current collector 15 is disposed on the other surface opposite to the one surface of the negative electrode layer 13.
- the intervening layer 14 is disposed so as to be interposed between the negative electrode layer 13 and the current collector 15.
- the intervening layer 14 includes a material that is less reactive with the sulfide solid electrolyte than copper (Cu).
- the solid electrolyte layer 12 is laminated on one surface of the positive electrode layer 11, and the current collector 15 is disposed on the other surface opposite to the one surface of the positive electrode layer 11.
- the layer 14 may be disposed so as to be interposed between the positive electrode layer 11 and the current collector 15.
- the current collector 15 is disposed on the surface on the other side opposite to the surface on one side (the surface on which the solid electrolyte layer 12 is laminated) of at least one of the positive electrode layer 11 and the negative electrode layer 13 and interposed.
- the layer 14 may be disposed so as to be interposed between the electrode layer and the current collector 15.
- the intervening layer 14 is most preferably disposed so as to be interposed between each electrode layer of the positive electrode layer 11 and the negative electrode layer 13 and the current collector 15, and at least between the negative electrode layer 13 and the current collector 15. It is preferable to arrange so as to intervene.
- the intervening layer 14 interposed between at least one of the positive electrode layer 11 and the negative electrode layer 13 and the current collector 15 is a sulfide solid electrolyte.
- the current collector 15 does not react with the sulfide solid electrolyte contained in at least one of the positive electrode layer 11 and the negative electrode layer 13.
- the application range of the material of the current collector 15 can be expanded.
- the intervening layer 14 can prevent the reaction between the sulfide solid electrolyte and the current collector 15, the following effects can be obtained. It is possible to prevent deterioration of battery characteristics due to deterioration of the solid electrolyte. In addition, since the electric resistance between the battery and the current collector can be lowered, a high output battery can be obtained. Furthermore, since the corrosion of the current collector 15 containing a metal can be prevented, the reliability of the battery characteristics can be improved.
- the intervening layer 14 is preferably conductive to electrons and not conductive to lithium ions. With this configuration, it is possible to obtain electronic conductivity between the electrode layer and the current collector 15 and to prevent doping of lithium ions from the electrode layer to the current collector 15.
- the intervening layer 14 preferably contains a carbon material.
- the intervening layer 14 can be formed by printing, coating, or the like.
- the carbon material that has electronic conductivity and does not occlude lithium include carbon black, ketjen black, acetylene black, vapor-grown carbon fiber, and activated carbon.
- the intervening layer 14 preferably contains a metal.
- the intervening layer 14 having excellent electron conductivity can be formed.
- metals include cobalt (Co), nickel (Ni), platinum (Pt), zinc (Zn), tin (Sn), gold (Au), rhodium (Rh), aluminum (Al), and stainless steel.
- the intervening layer 14 containing metal is formed on the surface of the current collector 15 by plating, sputtering, vapor deposition, or the like, and particularly preferably formed by plating. It is preferable to form the intervening layer 14 by plating a nickel-phosphorus (Ni-P) alloy on the surface of the copper foil as the current collector 15.
- Ni-P nickel-phosphorus
- the intervening layer 14 may be configured to include a resin.
- the resin include acrylic resin, polyvinylidene fluoride, polytetrafluoroethylene, and styrene butadiene rubber.
- the intervening layer may be a resin having electronic conductivity such as polypyrrole or polythiophene.
- the thickness of the intervening layer 14 is preferably as thin as possible in consideration of electric resistance, and may be a thickness that does not allow pores to be formed.
- the thickness of the intervening layer 14 is preferably about 100 nm to 10 ⁇ m.
- the intervening layer 14 is formed by printing or coating, it is about several ⁇ m to 10 ⁇ m.
- the thickness is several hundred nm. About several ⁇ m.
- the intervening layer 14 containing the above-described material between at least one of the positive electrode layer 11 and the negative electrode layer 13 and the current collector 15 the materials listed below are applied to the current collector 15. can do.
- the material of the current collector 15 include copper (Cu), iron (Fe), nickel (Ni), gold (Au), platinum (Pt), aluminum (Al), aluminum alloy, brass, and stainless steel. Can do.
- copper is more preferably used as a material for the current collector 15 in terms of workability, manufacturing cost, and electronic conductivity.
- the present invention can be applied to an all solid state battery in which a plurality of unit cells are connected in series as another embodiment of the present invention.
- the all solid state battery 20 includes two all solid state batteries 10 and 10 each including a laminate in which a positive electrode layer 11, a solid electrolyte layer 12, and a negative electrode layer 13 are sequentially laminated.
- the two all solid state batteries 10 and 10 are connected in series.
- a current collector 15 is disposed between the positive electrode layer 11 of one all solid state battery 10 disposed on the lower side and the negative electrode layer 13 of the other all solid state battery 10 disposed on the upper side.
- Intervening layer 14 is interposed between positive electrode layer 11 and current collector 15 of one all-solid battery 10, and is interposed between negative electrode layer 13 and current collector 15 of the other all-solid battery 10. .
- the intervening layer 14 is either between the positive electrode layer 11 and the current collector 15 of one all solid state battery 10 or between the negative electrode layer 13 and the current collector 15 of the other all solid state battery 10. It is also possible to intervene only.
- the single current collector 15 can be used as a current collector for both positive and negative electrodes, and can also be used as a connection layer for two batteries.
- the total thickness and weight can be reduced, the movement of lithium ions between the unit cells can be surely prevented, and deterioration of the battery performance can be prevented. it can.
- an all-solid battery 30 is composed of a single battery including a positive electrode layer 11, a solid electrolyte layer 12, and a negative electrode layer 13, and the negative electrode layer 13 and a current collector.
- the intervening layers 141 and 142 are interposed between the positive electrode layer 11 and the current collector 15, and the intervening layer 14 is interposed between the positive electrode layer 11 and the current collector 15.
- the intervening layers 14 and 141 have electronic conductivity.
- An intervening layer 142 having a shape surrounding the electrode is formed around the intervening layer 141 between the negative electrode layer 13 and the current collector 15.
- the intervening layer 142 has electrical insulation.
- the electron conductive intervening layer 141 can prevent a reaction between the sulfide solid electrolyte contained in the positive electrode layer 11 and the negative electrode layer 13 and the current collector 15, and also has an electrically insulating property.
- the interposition layer 142 can prevent an electrical short circuit between the positive electrode side and the negative electrode side.
- a part of the intervening layer contains an electrical insulator.
- the positive electrode layer 11 includes a positive electrode active material, and the positive electrode active material is a kind of element selected from the group consisting of sulfur, lithium, manganese, iron, copper, and nickel. Are preferably included.
- the crystal structure of the compound forming the positive electrode active material can be strengthened, and the energy density during discharge can be increased, that is, the discharge capacity can be increased.
- the charge / discharge cycle characteristics can be improved because the resistance during charge / discharge can be reduced, and in this case, the charge / discharge cycle characteristics are further improved by including Li 2 FeS 2 in the positive electrode active material.
- the positive electrode layer 11 contains a carbon material as a conductive agent, the electronic conductivity can be increased.
- the positive electrode layer 11 includes, for example, Li 2 FeS 2 as a positive electrode active material and a mixture of Li 2 S and P 2 S 5 that are ion conductive compounds as a solid electrolyte.
- the negative electrode layer 13 includes, for example, a carbon material such as spherical graphite as a negative electrode active material, and a mixture of Li 2 S and P 2 S 5 that are ion conductive compounds as a solid electrolyte.
- the solid electrolyte layer 12 sandwiched between the positive electrode layer 11 and the negative electrode layer 13 includes, for example, a mixture of Li 2 S and P 2 S 5 that are ion conductive compounds as the solid electrolyte.
- the positive electrode layer 11, the solid electrolyte layer 12, and the negative electrode layer 13 are each formed by compressing a raw material, or a solid-liquid mixture such as a slurry, a paste, or a colloid containing the raw material as a green sheet, a printing layer It is produced by molding into a film or the like.
- the solid electrolyte only needs to contain at least lithium and sulfur as constituent elements.
- a compound in addition to a mixture of Li 2 S and P 2 S 5 , for example, Li 2 S and B 2 S 3 can be used. A mixture etc. can be mention
- the solid electrolyte preferably further contains phosphorus.
- Li 7 P examples include 3 S 11 , Li 3 PS 4, and those in which some of these anions are oxygen-substituted.
- the composition ratio of the elements constituting the solid electrolyte is not limited to the above-described ratio.
- the positive electrode active material more preferably contains lithium, iron, and sulfur as constituent elements. Examples of such a compound include compounds such as Li 2.33 Fe 0.67 S 2 in addition to Li 2 FeS 2. be able to. Further, other positive electrode active materials include compounds such as lithium titanium sulfide and lithium vanadium sulfide.
- the composition ratio of the elements constituting the positive electrode active material is not limited to the above-described ratio.
- the all-solid-state battery of the present invention may be used in the form in which the battery element shown in FIGS. 1 to 3 is inserted into a ceramic container, for example, as shown in FIGS. It may be used in a self-supporting form.
- Example shown below is an example and this invention is not limited to the following Example.
- Example 1 An all-solid battery 10 having the cross-sectional structure shown in FIG.
- Acrylic resin (polyethyl methacrylate) was dissolved using terpineol (boiling point: 218 ° C.) as a solvent.
- a carbon paste was prepared by dispersing acetylene black powder as a carbon material in this solution. Acetylene black and acrylic resin were mixed at a weight ratio of 9: 1.
- ⁇ Preparation of positive electrode mixture paste Li 2 FeS 2 powder as the positive electrode active material and the sulfide solid electrolyte described above were mixed using a rocking mill to prepare a positive electrode mixture.
- the positive electrode active material and the sulfide solid electrolyte were mixed at a weight ratio of 1: 1.
- the acrylic resin was dissolved using terpineol as a solvent.
- the positive electrode mixture was dispersed in this solution to prepare a positive electrode mixture paste.
- the positive electrode mixture and the acrylic resin were mixed at a weight ratio of 9: 1.
- the negative electrode mixture paste was printed on the surface of the current collector 15 on which the intervening layer 14 was formed, using a screen printing plate having an opening pattern with an opening diameter of 7 mm.
- the obtained printed layer was dried at 60 ° C. in an atmosphere under reduced pressure for 1 hour to form a negative electrode layer 13 having a thickness of about 50 ⁇ m.
- the above solid electrolyte paste was printed on the negative electrode layer 13 using a screen printing plate having an opening pattern with an opening diameter of 9 mm.
- the obtained printed layer was dried at 60 ° C. in an atmosphere under reduced pressure for 1 hour to form a solid electrolyte layer 12 having a thickness of about 50 ⁇ m.
- the above positive electrode mixture paste was printed on the solid electrolyte layer 12 using a screen printing plate having an opening pattern with an opening diameter of 7 mm.
- the obtained printed layer was dried at 60 ° C. in an atmosphere under reduced pressure for 1 hour to form a positive electrode layer 11 having a thickness of about 50 ⁇ m.
- a laminate including the negative electrode layer 13, the solid electrolyte layer 12, and the positive electrode layer 11 was produced on the surface of the current collector 15 on which the intervening layer 14 was formed.
- a die having a diameter of 10 mm in which a die portion is made of polyethylene terephthalate (PET) resin and upper and lower punches are made of stainless steel, was prepared.
- PET polyethylene terephthalate
- the laminate obtained above was punched into a cylindrical shape with a diameter of 9 mm and placed in the mold, and a pressure of 300 MPa was applied. In this way, an all-solid battery 10 was produced. The all solid state battery 10 was sealed.
- Example 2 An all-solid battery 10 was produced in the same manner as in Example 1 except that the intervening layer 14 made of a stainless steel film having a thickness of 200 nm was formed on the surface of the current collector 15 made of copper foil using a sputtering apparatus. .
- the all solid state battery 10 of Example 1 and Example 2 exhibited a discharge capacity of 160 mAh / g.
- the all-solid-state battery of Comparative Example 1 exhibited a discharge capacity of 80 mAh / g.
- charge / discharge capacity was small, and when charging / discharging was repeated, the charge / discharge curve changed. From this, the all-solid-state battery of Comparative Example 1 deteriorates due to the reaction between the sulfide solid electrolyte and the copper foil of the current collector 15, and the all-solid-state battery 10 of Example 1 and Example 2 has the intervening layer 14. It is considered that deterioration did not occur by preventing the reaction between the sulfide solid electrolyte and the copper foil of the current collector 15.
- a carbon paste was prepared by mixing acetylene black powder as a carbon material, polyvinylidene fluoride (PVDF) as a binder resin, and N-methyl-2-pyrrolidone (NMP) as a solvent.
- PVDF polyvinylidene fluoride
- NMP N-methyl-2-pyrrolidone
- Li 2 FeS 2 powder as the positive electrode active material and the sulfide solid electrolyte described above were mixed using a rocking mill to prepare a positive electrode mixture.
- the positive electrode active material and the sulfide solid electrolyte were mixed at a weight ratio of 1: 1.
- a current collector 15 in which the above-described intervening layer 14 is formed on both sides in a mold having a diameter of 10 mm, a negative electrode composite, a solid electrolyte, a positive electrode composite, and a current collector 15 in which the above intervening layer 14 is formed on both sides were put in this order, and a pressure of 330 MPa was applied, whereby an all-solid battery 20 was produced.
- the all solid state battery 20 was sealed.
- the all solid state battery 20 of Example 3 showed a discharge capacity of 150 mAh / g. It is considered that the all-solid-state battery 20 did not deteriorate because the intervening layer 14 prevented the reaction between the sulfide solid electrolyte and the copper foil of the current collector 15.
- Example 4 An all-solid battery 20 having the cross-sectional structure shown in FIG.
- Example 2 In the same manner as in Example 1, a carbon paste is applied on one surface of a current collector 15 made of copper foil to form an intervening layer 14 made of a carbon material, and aluminum is formed on the other surface of the current collector 15.
- the all-solid-state battery 20 was produced in the same manner as in Example 3 except that the intervening layer 14 made of an aluminum film having a thickness of 100 nm was formed by vapor deposition.
- the current collector 15 having the intervening layer 14 formed on both surfaces is disposed so that the intervening layer 14 made of an aluminum film is in contact with the positive electrode layer 11 and the intervening layer 14 made of a carbon material is in contact with the negative electrode layer 13. .
- the all solid state battery 20 of Example 4 showed a discharge capacity of 150 mAh / g. It is considered that the all-solid-state battery 20 did not deteriorate because the intervening layer 14 prevented the reaction between the sulfide solid electrolyte and the copper foil of the current collector 15.
- the all solid state battery of Comparative Example 2 exhibited a discharge capacity of 74 mAh / g.
- the all-solid-state battery of Comparative Example 2 is considered to have a reduced discharge capacity because the sulfide solid electrolyte and the copper foil of the current collector 15 reacted and deteriorated.
- Example 5 An all-solid battery 30 having the cross-sectional structure shown in FIG. 3 was produced.
- a carbon paste was produced in the same manner as in Example 1.
- the carbon paste was screen-printed on the surface of the current collector 15 made of copper foil in the same manner as in Example 1 to form a circular intervening layer 141 having a diameter of 9 mm.
- an intervening layer 142 made of a ring-shaped insulating layer having an outer diameter of 10 mm was formed on the outer peripheral portion of the intervening layer 141 by screen printing a pasty acrylic resin.
- the negative electrode layer 13, the solid electrolyte layer, the solid electrolyte paste, and the positive electrode mixture paste were used to form the negative electrode layer 13, the solid electrolyte layer on the surface of the current collector 15 on which the intervening layer 141 was formed.
- a columnar laminate having a diameter of 9 mm and 12 and the positive electrode layer 11 was produced.
- the electron conductive intervening layer 141 can prevent the reaction between the sulfide solid electrolyte and the current collector 15, and the electrically insulating intervening layer 142 allows the positive electrode side and the negative electrode An electrical short circuit on the side can be prevented.
- the applicable range of the current collector material can be expanded in the sulfide-based solid battery.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
Provided is an all-solid-state battery which uses a sulfide as a solid electrolyte, and which is capable of expanding the scope of applicable collector materials. This all-solid-state battery (10) is provided with: a positive electrode layer (11) and/or a negative electrode layer (13); a solid electrolyte layer (12) that is laminated on one surface of the electrode layer; a collector (15) that is arranged on the other surface of the electrode layer, said other surface being on the reverse side of the one surface; and an intervening layer (14) that is interposed between the electrode layer and the collector (15). The electrode layer contains an electrode active material and a sulfide solid electrolyte. The intervening layer (14) contains a material which is less reactive with the sulfide solid electrolyte in comparison to copper.
Description
本発明は、一般的に全固体電池に関し、特定的には正極層または負極層の少なくともいずれか一方の電極層が電極活物質と硫化物固体電解質とを含む全固体電池に関する。
The present invention generally relates to an all-solid battery, and more particularly to an all-solid battery in which at least one of a positive electrode layer and a negative electrode layer includes an electrode active material and a sulfide solid electrolyte.
近年、携帯電話、ノートパソコン等の携帯用電子機器の開発に伴い、これらの電子機器のコードレス電源として二次電池の需要が大きくなっている。その中でも、エネルギー密度が高く、充放電可能なリチウムイオン二次電池の開発が盛んに行われている。
In recent years, with the development of portable electronic devices such as mobile phones and laptop computers, the demand for secondary batteries as cordless power sources for these electronic devices has increased. Among them, development of lithium ion secondary batteries that have high energy density and can be charged and discharged has been actively conducted.
また、携帯用電子機器の機能が多くなるに伴って、その消費電力が著しく増加している。この消費電力の増大に対応するために大容量のリチウムイオン二次電池が必要になってきている。
Also, as the functions of portable electronic devices increase, their power consumption has increased remarkably. In order to cope with this increase in power consumption, a large-capacity lithium ion secondary battery has become necessary.
リチウムイオン二次電池では、正極活物質としてコバルト酸リチウム等の金属酸化物、負極活物質として黒鉛等の炭素材料、電解質として、六フッ化リン酸リチウムを有機溶媒に溶解させたもの、すなわち、有機溶媒系電解液が一般に使用されている。このような構成の電池において、活物質量を増加させることにより内部エネルギーを増加させ、さらにエネルギー密度を高くし、出力電流を向上させる試みがなされている。また、電池を大型化すること、電池を車両に搭載することも期待されている。
In the lithium ion secondary battery, a metal oxide such as lithium cobaltate as a positive electrode active material, a carbon material such as graphite as a negative electrode active material, and a lithium hexafluorophosphate dissolved in an organic solvent as an electrolyte, that is, Organic solvent electrolytes are generally used. In the battery having such a configuration, an attempt has been made to increase the internal energy by increasing the amount of the active material, further increase the energy density, and improve the output current. It is also expected to increase the size of the battery and mount the battery in a vehicle.
しかし、上記の構成のリチウムイオン二次電池では、電解質に用いられる有機溶媒は可燃性物質であるため、電池が発火する等の危険性がある。このため、電池の安全性をさらに高めることが求められている。
However, in the lithium ion secondary battery having the above configuration, since the organic solvent used for the electrolyte is a flammable substance, there is a risk that the battery may ignite. For this reason, it is required to further increase the safety of the battery.
そこで、リチウムイオン二次電池の安全性を高めるための一つの対策は、有機溶媒系電解液に代えて、固体電解質を用いることである。固体電解質としては、高分子、ゲル等の有機材料、ガラス、セラミックス等の無機材料を適用することが検討されている。その中でも、不燃性のガラスまたはセラミックスを主成分とする無機材料を固体電解質として用いる全固体二次電池が提案され、注目されている。
Therefore, one measure for improving the safety of the lithium ion secondary battery is to use a solid electrolyte instead of the organic solvent electrolyte. As the solid electrolyte, it has been studied to apply organic materials such as polymers and gels, and inorganic materials such as glass and ceramics. Among them, an all-solid secondary battery using an inorganic material mainly composed of nonflammable glass or ceramics as a solid electrolyte has been proposed and attracted attention.
硫化物を固体電解質として用いる硫化物系固体電池を作製する場合、硫化物が反応性の高い材料であるので、集電体に適用可能な材料が限定される。
When producing a sulfide-based solid battery using sulfide as a solid electrolyte, since sulfide is a highly reactive material, materials applicable to the current collector are limited.
たとえば、特開2010‐33918号公報(以下、特許文献1という)には、硫化物系固体電池において、集電体として、アルミニウム、チタン、ステンレス鋼を用いることが記載されている。
For example, Japanese Unexamined Patent Application Publication No. 2010-33918 (hereinafter referred to as Patent Document 1) describes using aluminum, titanium, and stainless steel as a current collector in a sulfide-based solid battery.
また、特開2011‐165467号公報(以下、特許文献2という)には、硫化物系固体電池において、正極用集電体として、ステンレス鋼、アルミニウム、ニッケル、鉄、チタン、炭素を用い、負極用集電体として、ステンレス鋼、銅、ニッケル、炭素を用いることが記載されている。
Japanese Patent Laid-Open No. 2011-165467 (hereinafter referred to as Patent Document 2) uses stainless steel, aluminum, nickel, iron, titanium, and carbon as a positive electrode current collector in a sulfide-based solid battery. It is described that stainless steel, copper, nickel, and carbon are used as the current collector.
しかしながら、特許文献1と特許文献2に記載されたアルミニウムは、正極用集電体には適用できるが、卑の電位ではリチウムイオンがドープされるため、負極用集電体には適用できない。また、特許文献1と特許文献2に記載されたチタンは、硫化物固体電解質と反応する可能性があるので、集電体に用いることができない。さらに、特許文献1と特許文献2に記載されたステンレス鋼は、硫化物固体電解質と反応しないが、加工性が悪いので、電池の製造工程に適していない。
However, although the aluminum described in Patent Document 1 and Patent Document 2 can be applied to the positive electrode current collector, it is not applicable to the negative electrode current collector because lithium ions are doped at a base potential. Moreover, since titanium described in Patent Document 1 and Patent Document 2 may react with a sulfide solid electrolyte, it cannot be used as a current collector. Furthermore, the stainless steels described in Patent Document 1 and Patent Document 2 do not react with the sulfide solid electrolyte, but are not suitable for the battery manufacturing process because of poor workability.
特許文献2に記載された鉄、銅は、硫化物固体電解質と反応する可能性があるので、集電体に用いることができない。また、特許文献2に記載された炭素は、単独で薄いシート状に加工すると、金属箔のような強度と可撓性を得ることが困難であるので、電池の製造工程に適していない。
Since iron and copper described in Patent Document 2 may react with the sulfide solid electrolyte, they cannot be used as a current collector. Further, carbon described in Patent Document 2 is not suitable for a battery manufacturing process because it is difficult to obtain strength and flexibility as in metal foil when processed into a thin sheet alone.
そこで、本発明の目的は、硫化物を固体電解質として用いた全固体電池において集電体材料の適用範囲を拡げることが可能な全固体電池を提供することである。
Therefore, an object of the present invention is to provide an all solid state battery capable of expanding the application range of the current collector material in the all solid state battery using sulfide as a solid electrolyte.
本発明者らは、全固体電池の構成を種々検討した結果、電極層と集電体との間に限定された材料からなる介在層を配置すると、集電体が硫化物固体電解質と反応することがなく、集電体材料の適用範囲を拡げることができることを見出した。この知見に基づいて、本発明に従った全固体電池は、次のような特徴を備えている。
As a result of various investigations on the configuration of the all-solid battery, the present inventors, when an intervening layer made of a limited material is disposed between the electrode layer and the current collector, the current collector reacts with the sulfide solid electrolyte. It has been found that the application range of the current collector material can be expanded. Based on this finding, the all solid state battery according to the present invention has the following characteristics.
本発明に従った全固体電池は、正極層または負極層の少なくともいずれか一方の電極層と、電極層の一方側の面に積層された固体電解質層と、電極層の一方側の面と反対の他方側の面に配置された集電体と、電極層と集電体との間に介在する介在層とを備える。電極層が電極活物質と硫化物固体電解質とを含む。介在層は、硫化物固体電解質との反応性が銅に比べて低い材料を含む。
An all-solid battery according to the present invention includes at least one of a positive electrode layer and a negative electrode layer, a solid electrolyte layer laminated on one surface of the electrode layer, and a surface opposite to the one surface of the electrode layer. A current collector disposed on the other side of the electrode, and an intervening layer interposed between the electrode layer and the current collector. The electrode layer includes an electrode active material and a sulfide solid electrolyte. The intervening layer includes a material that is less reactive with the sulfide solid electrolyte than copper.
本発明の全固体電池において、介在層は、電子に対して伝導性を有し、リチウムイオンに対して伝導性を有しないことが好ましい。
In the all solid state battery of the present invention, the intervening layer preferably has conductivity with respect to electrons and does not have conductivity with respect to lithium ions.
介在層は炭素材料を含むことが好ましい。
The intervening layer preferably contains a carbon material.
また、介在層は、金属を含むことが好ましい。
The intervening layer preferably contains a metal.
さらに、介在層は、金属として、ステンレス鋼またはアルミニウムを含むことが好ましい。
Furthermore, the intervening layer preferably contains stainless steel or aluminum as a metal.
本発明の全固体電池は、各々が正極層、固体電解質層、および、負極層の順に積層された積層体を含む第1と第2の電池を備え、第1の電池が第2の電池に接続され、集電体が、第1の電池の正極層と第2の電池の負極層との間に配置され、介在層が、第1の電池の正極層と集電体との間、または、第2の電池の負極層と集電体との間のいずれか一方に介在することが好ましい。
The all solid state battery of the present invention includes first and second batteries each including a laminate in which a positive electrode layer, a solid electrolyte layer, and a negative electrode layer are sequentially laminated, and the first battery is a second battery. And a current collector is disposed between the positive electrode layer of the first battery and the negative electrode layer of the second battery, and the intervening layer is between the positive electrode layer of the first battery and the current collector, or It is preferable to intervene between the negative electrode layer of the second battery and the current collector.
なお、介在層の一部は、電気絶縁体を含むことが好ましい。
Note that a part of the intervening layer preferably contains an electrical insulator.
本発明によれば、電極層と集電体との間に介在する介在層が硫化物固体電解質との反応性が銅に比べて低い材料を含むので、集電体が硫化物固体電解質と反応することがなく、集電体材料の適用範囲を拡げることができる。
According to the present invention, since the intervening layer interposed between the electrode layer and the current collector includes a material that is less reactive with the sulfide solid electrolyte than the copper, the current collector reacts with the sulfide solid electrolyte. Therefore, the application range of the current collector material can be expanded.
以下、本発明の実施の形態を図面に基づいて説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1に示すように、本発明の一つの実施の形態としての全固体電池10は、正極層11と固体電解質層12と負極層13とからなる単電池で構成される。固体電解質層12の一方面に正極層11が配置され、固体電解質層12の一方面と反対側の他方面に負極層13が配置されている。いいかえれば、正極層11と負極層13とは、固体電解質層12を介して互いに対向する位置に設けられ、固体電解質層12は、正極層11と負極層13との間に介在する。なお、正極層11と負極層13のそれぞれは、硫化物固体電解質と電極活物質とを含み、固体電解質層12は硫化物固体電解質を含む。正極層11と固体電解質層12と負極層13のそれぞれは、スラリー、ペースト、コロイド等の固液混合物から、シート工法、印刷工法等によって、グリーンシート、印刷層、膜等の成形体に成形されてもよく、あるいは、各材料の粉末から圧縮成形法によって成形されてもよい。
As shown in FIG. 1, an all-solid battery 10 according to an embodiment of the present invention is constituted by a single battery including a positive electrode layer 11, a solid electrolyte layer 12, and a negative electrode layer 13. The positive electrode layer 11 is disposed on one surface of the solid electrolyte layer 12, and the negative electrode layer 13 is disposed on the other surface opposite to the one surface of the solid electrolyte layer 12. In other words, the positive electrode layer 11 and the negative electrode layer 13 are provided at positions facing each other via the solid electrolyte layer 12, and the solid electrolyte layer 12 is interposed between the positive electrode layer 11 and the negative electrode layer 13. Each of positive electrode layer 11 and negative electrode layer 13 includes a sulfide solid electrolyte and an electrode active material, and solid electrolyte layer 12 includes a sulfide solid electrolyte. Each of the positive electrode layer 11, the solid electrolyte layer 12, and the negative electrode layer 13 is formed into a green sheet, a printed layer, a film, or the like from a solid-liquid mixture such as slurry, paste, or colloid by a sheet method, a printing method, or the like. Alternatively, it may be formed from a powder of each material by a compression molding method.
負極層13の一方側の面に固体電解質層12が積層され、負極層13の一方側の面と反対の他方側の面に集電体15が配置されている。介在層14が負極層13と集電体15との間に介在するように配置されている。介在層14は、硫化物固体電解質との反応性が銅(Cu)に比べて低い材料を含む。なお、図示されていないが、正極層11の一方側の面に固体電解質層12が積層され、正極層11の一方側の面と反対の他方側の面に集電体15が配置され、介在層14が正極層11と集電体15との間に介在するように配置されてもよい。すなわち、正極層11または負極層13の少なくともいずれか一方の電極層の一方側の面(固体電解質層12が積層される面)と反対の他方側の面に集電体15が配置され、介在層14が電極層と集電体15との間に介在するように配置されていればよい。介在層14は正極層11と負極層13の各々の電極層と集電体15との間に介在するように配置されることが最も好ましく、少なくとも負極層13と集電体15との間に介在するように配置されることが好ましい。
The solid electrolyte layer 12 is laminated on one surface of the negative electrode layer 13, and the current collector 15 is disposed on the other surface opposite to the one surface of the negative electrode layer 13. The intervening layer 14 is disposed so as to be interposed between the negative electrode layer 13 and the current collector 15. The intervening layer 14 includes a material that is less reactive with the sulfide solid electrolyte than copper (Cu). Although not shown, the solid electrolyte layer 12 is laminated on one surface of the positive electrode layer 11, and the current collector 15 is disposed on the other surface opposite to the one surface of the positive electrode layer 11. The layer 14 may be disposed so as to be interposed between the positive electrode layer 11 and the current collector 15. That is, the current collector 15 is disposed on the surface on the other side opposite to the surface on one side (the surface on which the solid electrolyte layer 12 is laminated) of at least one of the positive electrode layer 11 and the negative electrode layer 13 and interposed. The layer 14 may be disposed so as to be interposed between the electrode layer and the current collector 15. The intervening layer 14 is most preferably disposed so as to be interposed between each electrode layer of the positive electrode layer 11 and the negative electrode layer 13 and the current collector 15, and at least between the negative electrode layer 13 and the current collector 15. It is preferable to arrange so as to intervene.
上記のように構成された本発明の全固体電池10において、正極層11または負極層13の少なくともいずれか一方の電極層と集電体15との間に介在する介在層14が硫化物固体電解質との反応性が銅に比べて低い材料を含むので、集電体15が、正極層11または負極層13の少なくともいずれか一方の電極層に含まれる硫化物固体電解質と反応することがなく、集電体15の材料の適用範囲を拡げることができる。
In the all solid state battery 10 of the present invention configured as described above, the intervening layer 14 interposed between at least one of the positive electrode layer 11 and the negative electrode layer 13 and the current collector 15 is a sulfide solid electrolyte. And the current collector 15 does not react with the sulfide solid electrolyte contained in at least one of the positive electrode layer 11 and the negative electrode layer 13. The application range of the material of the current collector 15 can be expanded.
介在層14は、硫化物固体電解質と集電体15との反応を防止することができるので、以下の効果を奏する。固体電解質の劣化による電池特性の低下を防ぐことができる。また、電池と集電体の間の電気抵抗を低くすることができるので、高出力の電池を得ることができる。さらに、金属を含む集電体15の腐食を防ぐことができるので、電池特性の信頼性を向上させることができる。
Since the intervening layer 14 can prevent the reaction between the sulfide solid electrolyte and the current collector 15, the following effects can be obtained. It is possible to prevent deterioration of battery characteristics due to deterioration of the solid electrolyte. In addition, since the electric resistance between the battery and the current collector can be lowered, a high output battery can be obtained. Furthermore, since the corrosion of the current collector 15 containing a metal can be prevented, the reliability of the battery characteristics can be improved.
介在層14は、電子に対して伝導性を有し、リチウムイオンに対して伝導性を有しないことが好ましい。このように構成することにより、電極層と集電体15との間の電子伝導性を得るとともに、電極層から集電体15へのリチウムイオンのドープを防ぐことができる。
The intervening layer 14 is preferably conductive to electrons and not conductive to lithium ions. With this configuration, it is possible to obtain electronic conductivity between the electrode layer and the current collector 15 and to prevent doping of lithium ions from the electrode layer to the current collector 15.
介在層14は炭素材料を含むことが好ましい。この場合、介在層14を印刷、塗布等によって形成することができる。電子伝導性を有し、かつ、リチウムを吸蔵しない炭素材料としては、カーボンブラック、ケッチェンブラック、アセチレンブラック、気相成長炭素繊維、活性炭等を挙げることができる。
The intervening layer 14 preferably contains a carbon material. In this case, the intervening layer 14 can be formed by printing, coating, or the like. Examples of the carbon material that has electronic conductivity and does not occlude lithium include carbon black, ketjen black, acetylene black, vapor-grown carbon fiber, and activated carbon.
また、介在層14は金属を含むことが好ましい。この場合、電子伝導性に優れた介在層14を形成することができる。金属としては、コバルト(Co)、ニッケル(Ni)、白金(Pt)、亜鉛(Zn)、スズ(Sn)、金(Au)、ロジウム(Rh)、アルミニウム(Al)、ステンレス鋼等を挙げることができ、金属を含む介在層14は、集電体15の表面上にめっき、スパッタ、蒸着等によって形成され、特にめっきすることによって形成されることが好ましい。集電体15としての銅箔の表面上にニッケル‐リン(Ni‐P)合金をめっきすることによって介在層14を形成することが好ましい。介在層14に含まれる金属として、特に、ステンレス鋼とアルミニウムは、汎用の材料であるので好ましい。集電体15の箔の材質としては、銅またはアルミニウムが特に好ましい。
The intervening layer 14 preferably contains a metal. In this case, the intervening layer 14 having excellent electron conductivity can be formed. Examples of metals include cobalt (Co), nickel (Ni), platinum (Pt), zinc (Zn), tin (Sn), gold (Au), rhodium (Rh), aluminum (Al), and stainless steel. The intervening layer 14 containing metal is formed on the surface of the current collector 15 by plating, sputtering, vapor deposition, or the like, and particularly preferably formed by plating. It is preferable to form the intervening layer 14 by plating a nickel-phosphorus (Ni-P) alloy on the surface of the copper foil as the current collector 15. Especially as a metal contained in the intervening layer 14, since stainless steel and aluminum are general purpose materials, they are preferable. As a material of the foil of the current collector 15, copper or aluminum is particularly preferable.
なお、介在層14は樹脂を含むように構成されてもよい。樹脂としては、アクリル樹脂、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレンブタジエンゴム等を挙げることができる。また、介在層は、ポリピロール、ポリチオフェン等の電子伝導性を有する樹脂でもよい。
Note that the intervening layer 14 may be configured to include a resin. Examples of the resin include acrylic resin, polyvinylidene fluoride, polytetrafluoroethylene, and styrene butadiene rubber. The intervening layer may be a resin having electronic conductivity such as polypyrrole or polythiophene.
介在層14の厚みは、電気抵抗を考慮すると、できるだけ薄い方が好ましく、ポアが形成され得ない程度の厚みであればよい。また、介在層14の厚みは、100nm~10μm程度が好ましく、介在層14が印刷、塗布によって形成される場合には数μm~10μm程度、めっき、スパッタ、蒸着によって形成される場合には数100nm~数μm程度である。
The thickness of the intervening layer 14 is preferably as thin as possible in consideration of electric resistance, and may be a thickness that does not allow pores to be formed. The thickness of the intervening layer 14 is preferably about 100 nm to 10 μm. When the intervening layer 14 is formed by printing or coating, it is about several μm to 10 μm. When formed by plating, sputtering, or vapor deposition, the thickness is several hundred nm. About several μm.
上述した材料を含む介在層14が正極層11または負極層13の少なくともいずれか一方の電極層と集電体15との間に介在することにより、以下に列挙する材料を集電体15に適用することができる。集電体15の材料としては、銅(Cu)、鉄(Fe)、ニッケル(Ni)、金(Au)、白金(Pt)、アルミニウム(Al)、アルミニウム合金、真鍮、ステンレス鋼等を挙げることができる。特に、銅は、加工性、製造コスト、電子伝導性の点で集電体15の材料として用いることがより好ましい。
By interposing the intervening layer 14 containing the above-described material between at least one of the positive electrode layer 11 and the negative electrode layer 13 and the current collector 15, the materials listed below are applied to the current collector 15. can do. Examples of the material of the current collector 15 include copper (Cu), iron (Fe), nickel (Ni), gold (Au), platinum (Pt), aluminum (Al), aluminum alloy, brass, and stainless steel. Can do. In particular, copper is more preferably used as a material for the current collector 15 in terms of workability, manufacturing cost, and electronic conductivity.
図2に示すように、本発明のもう一つの実施形態として複数の単電池を直列に接続した全固体電池に本発明を適用することができる。全固体電池20は、各々が正極層11、固体電解質層12、および、負極層13の順に積層された積層体を含む二つの全固体電池10、10を備える。二つの全固体電池10、10は直列に接続されている。集電体15が、下側に配置された一方の全固体電池10の正極層11と、上側に配置された他方の全固体電池10の負極層13との間に配置されている。介在層14が、一方の全固体電池10の正極層11と集電体15との間に介在し、かつ、他方の全固体電池10の負極層13と集電体15との間に介在する。なお、介在層14は、一方の全固体電池10の正極層11と集電体15との間、または、他方の全固体電池10の負極層13と集電体15との間のいずれか一方のみに介在させるようにしてもよい。
As shown in FIG. 2, the present invention can be applied to an all solid state battery in which a plurality of unit cells are connected in series as another embodiment of the present invention. The all solid state battery 20 includes two all solid state batteries 10 and 10 each including a laminate in which a positive electrode layer 11, a solid electrolyte layer 12, and a negative electrode layer 13 are sequentially laminated. The two all solid state batteries 10 and 10 are connected in series. A current collector 15 is disposed between the positive electrode layer 11 of one all solid state battery 10 disposed on the lower side and the negative electrode layer 13 of the other all solid state battery 10 disposed on the upper side. Intervening layer 14 is interposed between positive electrode layer 11 and current collector 15 of one all-solid battery 10, and is interposed between negative electrode layer 13 and current collector 15 of the other all-solid battery 10. . The intervening layer 14 is either between the positive electrode layer 11 and the current collector 15 of one all solid state battery 10 or between the negative electrode layer 13 and the current collector 15 of the other all solid state battery 10. It is also possible to intervene only.
このように構成することにより、単一の集電体15が、正負極用兼用の集電体として用いることができるとともに、二つの電池の接続層として用いることもできる。これにより、複数の単電池を積層する場合に総厚みと重量を低減することができるとともに、単電池間のリチウムイオンの移動を確実に阻止することができ、電池性能の劣化を防止することができる。
With this configuration, the single current collector 15 can be used as a current collector for both positive and negative electrodes, and can also be used as a connection layer for two batteries. As a result, when a plurality of unit cells are stacked, the total thickness and weight can be reduced, the movement of lithium ions between the unit cells can be surely prevented, and deterioration of the battery performance can be prevented. it can.
図3に示すように、本発明の別の実施形態としての全固体電池30は、正極層11と固体電解質層12と負極層13とからなる単電池で構成され、負極層13と集電体15との間には介在層141、142が介在し、正極層11と集電体15との間には介在層14が介在する。介在層14、141は電子伝導性を有する。負極層13と集電体15との間にある介在層141の周囲には電極を取り囲む形状の介在層142が形成されている。介在層142は電気絶縁性を有する。
As shown in FIG. 3, an all-solid battery 30 according to another embodiment of the present invention is composed of a single battery including a positive electrode layer 11, a solid electrolyte layer 12, and a negative electrode layer 13, and the negative electrode layer 13 and a current collector. The intervening layers 141 and 142 are interposed between the positive electrode layer 11 and the current collector 15, and the intervening layer 14 is interposed between the positive electrode layer 11 and the current collector 15. The intervening layers 14 and 141 have electronic conductivity. An intervening layer 142 having a shape surrounding the electrode is formed around the intervening layer 141 between the negative electrode layer 13 and the current collector 15. The intervening layer 142 has electrical insulation.
このように構成することにより、電子伝導性の介在層141が正極層11および負極層13に含まれる硫化物固体電解質と集電体15との反応を防止することができるとともに、電気絶縁性の介在層142によって正極側と負極側の電気的短絡を防止することができる。このように介在層の一部は電気絶縁体を含むことが好ましい。
With this configuration, the electron conductive intervening layer 141 can prevent a reaction between the sulfide solid electrolyte contained in the positive electrode layer 11 and the negative electrode layer 13 and the current collector 15, and also has an electrically insulating property. The interposition layer 142 can prevent an electrical short circuit between the positive electrode side and the negative electrode side. Thus, it is preferable that a part of the intervening layer contains an electrical insulator.
本発明の全固体電池10においては、正極層11が正極活物質を含み、正極活物質が、硫黄と、リチウムと、マンガン、鉄、銅、および、ニッケルからなる群より選ばれた一種の元素とを含むことが好ましい。また、正極層11は、たとえば、一般的な活物質(LiMO2(M=Co,Ni,Mn,もしくはLi1/3Mn2/3等)、または、ポリアニオン系(LiFePO4)等の物質を含む。このように構成された正極層11を備えることにより、正極活物質を形成する化合物の結晶構造を強固にして、放電時のエネルギー密度を高くすることができ、すなわち、放電容量を高くすることができ、充放電時の抵抗を低減することができるので充放電サイクル特性を向上させることができる。この場合、正極活物質がLi2FeS2を含むことにより、充放電サイクル特性をさらに向上させることができる。また、正極層11が導電剤として炭素材料を含むことにより、電子伝導度を高めることができる。
In the all solid state battery 10 of the present invention, the positive electrode layer 11 includes a positive electrode active material, and the positive electrode active material is a kind of element selected from the group consisting of sulfur, lithium, manganese, iron, copper, and nickel. Are preferably included. The positive electrode layer 11 is made of, for example, a general active material (LiMO 2 (M = Co, Ni, Mn, Li 1/3 Mn 2/3, etc.) or a polyanion-based material (LiFePO 4 ). By including the positive electrode layer 11 thus configured, the crystal structure of the compound forming the positive electrode active material can be strengthened, and the energy density during discharge can be increased, that is, the discharge capacity can be increased. The charge / discharge cycle characteristics can be improved because the resistance during charge / discharge can be reduced, and in this case, the charge / discharge cycle characteristics are further improved by including Li 2 FeS 2 in the positive electrode active material. In addition, since the positive electrode layer 11 contains a carbon material as a conductive agent, the electronic conductivity can be increased.
具体的には、正極層11は、たとえば、正極活物質としてのLi2FeS2等と、固体電解質としてイオン伝導性化合物であるLi2SとP2S5の混合物等とを含む。負極層13は、たとえば、負極活物質としての球状黒鉛等の炭素材料と、固体電解質としてイオン伝導性化合物であるLi2SとP2S5の混合物等とを含む。正極層11と負極層13との間に挟まれた固体電解質層12は、たとえば、固体電解質としてイオン伝導性化合物であるLi2SとP2S5の混合物等を含む。正極層11と固体電解質層12と負極層13とは、それぞれ、原材料を圧縮成形することにより作製されたもの、あるいは、原材料を含むスラリー、ペースト、コロイド等の固液混合物をグリーンシート、印刷層、膜等に成形することにより作製されたものである。なお、固体電解質は、構成元素としてリチウムと硫黄とを少なくとも含有すればよく、このような化合物として、Li2SとP2S5の混合物以外に、たとえば、Li2SとB2S3の混合物等をあげることができる。また、固体電解質は、構成元素としてリチウムと硫黄に加えて、好ましくはリンをさらに含有すればよく、このような化合物として、Li2SとP2S5の混合物以外に、たとえば、Li7P3S11、Li3PS4やこれらのアニオンの一部が酸素置換されたもの等をあげることができる。固体電解質を構成する元素の組成比率は上述した比率に限定されるものではない。また、正極活物質は、構成元素としてリチウムと鉄と硫黄とを含有することがより好ましく、このような化合物として、Li2FeS2以外に、たとえば、Li2.33Fe0.67S2等の化合物をあげることができる。さらに、その他の正極活物質として硫化リチウムチタン、硫化リチウムバナジウム等の化合物をあげることができる。正極活物質を構成する元素の組成比率は上述した比率に限定されるものではない。
Specifically, the positive electrode layer 11 includes, for example, Li 2 FeS 2 as a positive electrode active material and a mixture of Li 2 S and P 2 S 5 that are ion conductive compounds as a solid electrolyte. The negative electrode layer 13 includes, for example, a carbon material such as spherical graphite as a negative electrode active material, and a mixture of Li 2 S and P 2 S 5 that are ion conductive compounds as a solid electrolyte. The solid electrolyte layer 12 sandwiched between the positive electrode layer 11 and the negative electrode layer 13 includes, for example, a mixture of Li 2 S and P 2 S 5 that are ion conductive compounds as the solid electrolyte. The positive electrode layer 11, the solid electrolyte layer 12, and the negative electrode layer 13 are each formed by compressing a raw material, or a solid-liquid mixture such as a slurry, a paste, or a colloid containing the raw material as a green sheet, a printing layer It is produced by molding into a film or the like. The solid electrolyte only needs to contain at least lithium and sulfur as constituent elements. As such a compound, in addition to a mixture of Li 2 S and P 2 S 5 , for example, Li 2 S and B 2 S 3 can be used. A mixture etc. can be mention | raise | lifted. In addition to lithium and sulfur as constituent elements, the solid electrolyte preferably further contains phosphorus. As such a compound, in addition to a mixture of Li 2 S and P 2 S 5 , for example, Li 7 P Examples include 3 S 11 , Li 3 PS 4, and those in which some of these anions are oxygen-substituted. The composition ratio of the elements constituting the solid electrolyte is not limited to the above-described ratio. The positive electrode active material more preferably contains lithium, iron, and sulfur as constituent elements. Examples of such a compound include compounds such as Li 2.33 Fe 0.67 S 2 in addition to Li 2 FeS 2. be able to. Further, other positive electrode active materials include compounds such as lithium titanium sulfide and lithium vanadium sulfide. The composition ratio of the elements constituting the positive electrode active material is not limited to the above-described ratio.
なお、本発明の全固体電池は、図1~図3に示される電池要素を、たとえば、セラミックス製の容器に装入された形態で用いられてもよく、図1~図3に示される形態のままで自立した形態で用いられてもよい。
Note that the all-solid-state battery of the present invention may be used in the form in which the battery element shown in FIGS. 1 to 3 is inserted into a ceramic container, for example, as shown in FIGS. It may be used in a self-supporting form.
次に、本発明の実施例を具体的に説明する。なお、以下に示す実施例は一例であり、本発明は下記の実施例に限定されるものではない。
Next, specific examples of the present invention will be described. In addition, the Example shown below is an example and this invention is not limited to the following Example.
以下、介在層を形成して全固体電池を作製した実施例1~5と比較例1、2について説明する。
Hereinafter, Examples 1 to 5 and Comparative Examples 1 and 2 in which an all-solid battery is formed by forming an intervening layer will be described.
(実施例1)
図1に示す断面構造を有する全固体電池10を以下の工程で作製した。 (Example 1)
An all-solid battery 10 having the cross-sectional structure shown in FIG.
図1に示す断面構造を有する全固体電池10を以下の工程で作製した。 (Example 1)
An all-
<カーボンペーストの作製>
テルピネオール(沸点:218℃)を溶媒に用いてアクリル樹脂(ポリメタクリル酸エチル)を溶解した。この溶液に、炭素材料としてのアセチレンブラックの粉末を分散させてカーボンペーストを作製した。アセチレンブラックとアクリル樹脂は9:1の重量比で混合した。 <Production of carbon paste>
Acrylic resin (polyethyl methacrylate) was dissolved using terpineol (boiling point: 218 ° C.) as a solvent. A carbon paste was prepared by dispersing acetylene black powder as a carbon material in this solution. Acetylene black and acrylic resin were mixed at a weight ratio of 9: 1.
テルピネオール(沸点:218℃)を溶媒に用いてアクリル樹脂(ポリメタクリル酸エチル)を溶解した。この溶液に、炭素材料としてのアセチレンブラックの粉末を分散させてカーボンペーストを作製した。アセチレンブラックとアクリル樹脂は9:1の重量比で混合した。 <Production of carbon paste>
Acrylic resin (polyethyl methacrylate) was dissolved using terpineol (boiling point: 218 ° C.) as a solvent. A carbon paste was prepared by dispersing acetylene black powder as a carbon material in this solution. Acetylene black and acrylic resin were mixed at a weight ratio of 9: 1.
<介在層の塗工>
厚みが10μmの銅箔からなる集電体15の表面上に上記のカーボンペーストを、コーターを用いて塗工し、120℃の温度で乾燥させることにより、厚みが10μmの介在層14を形成した。 <Intermediate layer coating>
The carbon paste was coated on the surface of thecurrent collector 15 made of a copper foil having a thickness of 10 μm using a coater and dried at a temperature of 120 ° C., thereby forming an intervening layer 14 having a thickness of 10 μm. .
厚みが10μmの銅箔からなる集電体15の表面上に上記のカーボンペーストを、コーターを用いて塗工し、120℃の温度で乾燥させることにより、厚みが10μmの介在層14を形成した。 <Intermediate layer coating>
The carbon paste was coated on the surface of the
<固体電解質の作製>
アルゴンガスの雰囲気中にて、Li2S粉末とP2S5粉末とを7:3のモル比になるように秤量して混合した。この混合物を、遊星ボールミルにて、温度25℃、回転速度370rpmで20時間メカニカルミリング処理することにより、白黄色のガラス粉末を得た。得られたガラス粉末をガラス製の密閉容器に入れ、200~300℃の温度で2時間加熱し、硫化物系ガラスセラミックスを得た。このようにして硫化物固体電解質を作製した。 <Preparation of solid electrolyte>
In an argon gas atmosphere, Li 2 S powder and P 2 S 5 powder were weighed and mixed so as to have a molar ratio of 7: 3. This mixture was mechanically milled with a planetary ball mill at a temperature of 25 ° C. and a rotation speed of 370 rpm for 20 hours to obtain a white-yellow glass powder. The obtained glass powder was put in a closed glass container and heated at a temperature of 200 to 300 ° C. for 2 hours to obtain a sulfide glass ceramic. In this way, a sulfide solid electrolyte was produced.
アルゴンガスの雰囲気中にて、Li2S粉末とP2S5粉末とを7:3のモル比になるように秤量して混合した。この混合物を、遊星ボールミルにて、温度25℃、回転速度370rpmで20時間メカニカルミリング処理することにより、白黄色のガラス粉末を得た。得られたガラス粉末をガラス製の密閉容器に入れ、200~300℃の温度で2時間加熱し、硫化物系ガラスセラミックスを得た。このようにして硫化物固体電解質を作製した。 <Preparation of solid electrolyte>
In an argon gas atmosphere, Li 2 S powder and P 2 S 5 powder were weighed and mixed so as to have a molar ratio of 7: 3. This mixture was mechanically milled with a planetary ball mill at a temperature of 25 ° C. and a rotation speed of 370 rpm for 20 hours to obtain a white-yellow glass powder. The obtained glass powder was put in a closed glass container and heated at a temperature of 200 to 300 ° C. for 2 hours to obtain a sulfide glass ceramic. In this way, a sulfide solid electrolyte was produced.
<固体電解質ペーストの作製>
テルピネオールを溶媒に用いてアクリル樹脂を溶解した。この溶液に、上記の硫化物固体電解質を分散させて固体電解質ペーストを作製した。硫化物固体電解質とアクリル樹脂は9:1の重量比で混合した。 <Preparation of solid electrolyte paste>
The acrylic resin was dissolved using terpineol as a solvent. The above-mentioned sulfide solid electrolyte was dispersed in this solution to prepare a solid electrolyte paste. The sulfide solid electrolyte and the acrylic resin were mixed at a weight ratio of 9: 1.
テルピネオールを溶媒に用いてアクリル樹脂を溶解した。この溶液に、上記の硫化物固体電解質を分散させて固体電解質ペーストを作製した。硫化物固体電解質とアクリル樹脂は9:1の重量比で混合した。 <Preparation of solid electrolyte paste>
The acrylic resin was dissolved using terpineol as a solvent. The above-mentioned sulfide solid electrolyte was dispersed in this solution to prepare a solid electrolyte paste. The sulfide solid electrolyte and the acrylic resin were mixed at a weight ratio of 9: 1.
<正極合材ペーストの作製>
正極活物質としてのLi2FeS2粉末と、上記の硫化物固体電解質とを、ロッキングミルを用いて混合して正極合材を作製した。正極活物質と硫化物固体電解質は1:1の重量比で混合した。テルピネオールを溶媒に用いてアクリル樹脂を溶解した。この溶液に上記の正極合材を分散させて正極合材ペーストを作製した。混合比は、正極合材とアクリル樹脂は9:1の重量比で混合した。 <Preparation of positive electrode mixture paste>
Li 2 FeS 2 powder as the positive electrode active material and the sulfide solid electrolyte described above were mixed using a rocking mill to prepare a positive electrode mixture. The positive electrode active material and the sulfide solid electrolyte were mixed at a weight ratio of 1: 1. The acrylic resin was dissolved using terpineol as a solvent. The positive electrode mixture was dispersed in this solution to prepare a positive electrode mixture paste. As for the mixing ratio, the positive electrode mixture and the acrylic resin were mixed at a weight ratio of 9: 1.
正極活物質としてのLi2FeS2粉末と、上記の硫化物固体電解質とを、ロッキングミルを用いて混合して正極合材を作製した。正極活物質と硫化物固体電解質は1:1の重量比で混合した。テルピネオールを溶媒に用いてアクリル樹脂を溶解した。この溶液に上記の正極合材を分散させて正極合材ペーストを作製した。混合比は、正極合材とアクリル樹脂は9:1の重量比で混合した。 <Preparation of positive electrode mixture paste>
Li 2 FeS 2 powder as the positive electrode active material and the sulfide solid electrolyte described above were mixed using a rocking mill to prepare a positive electrode mixture. The positive electrode active material and the sulfide solid electrolyte were mixed at a weight ratio of 1: 1. The acrylic resin was dissolved using terpineol as a solvent. The positive electrode mixture was dispersed in this solution to prepare a positive electrode mixture paste. As for the mixing ratio, the positive electrode mixture and the acrylic resin were mixed at a weight ratio of 9: 1.
<負極合材ペーストの作製>
負極活物質としてのグラファイト粉末と、上記の硫化物固体電解質とを、ロッキングミルを用いて混合して負極合材を作製した。負極活物質と硫化物固体電解質は1:1の重量比で混合した。テルピネオールを溶媒に用いてアクリル樹脂を溶解した。この溶液に上記の負極合材を分散させて負極合材ペーストを作製した。混合比は、負極合材とアクリル樹脂は9:1の重量比で混合した。 <Preparation of negative electrode mixture paste>
The graphite powder as the negative electrode active material and the above sulfide solid electrolyte were mixed using a rocking mill to prepare a negative electrode mixture. The negative electrode active material and the sulfide solid electrolyte were mixed at a weight ratio of 1: 1. The acrylic resin was dissolved using terpineol as a solvent. The negative electrode mixture was dispersed in this solution to prepare a negative electrode mixture paste. As for the mixing ratio, the negative electrode mixture and the acrylic resin were mixed at a weight ratio of 9: 1.
負極活物質としてのグラファイト粉末と、上記の硫化物固体電解質とを、ロッキングミルを用いて混合して負極合材を作製した。負極活物質と硫化物固体電解質は1:1の重量比で混合した。テルピネオールを溶媒に用いてアクリル樹脂を溶解した。この溶液に上記の負極合材を分散させて負極合材ペーストを作製した。混合比は、負極合材とアクリル樹脂は9:1の重量比で混合した。 <Preparation of negative electrode mixture paste>
The graphite powder as the negative electrode active material and the above sulfide solid electrolyte were mixed using a rocking mill to prepare a negative electrode mixture. The negative electrode active material and the sulfide solid electrolyte were mixed at a weight ratio of 1: 1. The acrylic resin was dissolved using terpineol as a solvent. The negative electrode mixture was dispersed in this solution to prepare a negative electrode mixture paste. As for the mixing ratio, the negative electrode mixture and the acrylic resin were mixed at a weight ratio of 9: 1.
<全固体電池の作製>
介在層14が形成された集電体15の表面上に、開口径が7mmの開口パターンを有するスクリーン印刷版を用いて、上記の負極合材ペーストを印刷した。得られた印刷層を60℃の温度で減圧下の雰囲気中にて1時間乾燥させて、厚みが約50μmの負極層13を形成した。 <Preparation of all-solid battery>
The negative electrode mixture paste was printed on the surface of thecurrent collector 15 on which the intervening layer 14 was formed, using a screen printing plate having an opening pattern with an opening diameter of 7 mm. The obtained printed layer was dried at 60 ° C. in an atmosphere under reduced pressure for 1 hour to form a negative electrode layer 13 having a thickness of about 50 μm.
介在層14が形成された集電体15の表面上に、開口径が7mmの開口パターンを有するスクリーン印刷版を用いて、上記の負極合材ペーストを印刷した。得られた印刷層を60℃の温度で減圧下の雰囲気中にて1時間乾燥させて、厚みが約50μmの負極層13を形成した。 <Preparation of all-solid battery>
The negative electrode mixture paste was printed on the surface of the
次に、開口径が9mmの開口パターンを有するスクリーン印刷版を用いて、上記の固体電解質ペーストを負極層13の上に印刷した。得られた印刷層を60℃の温度で減圧下の雰囲気中にて1時間乾燥させて、厚みが約50μmの固体電解質層12を形成した。
Next, the above solid electrolyte paste was printed on the negative electrode layer 13 using a screen printing plate having an opening pattern with an opening diameter of 9 mm. The obtained printed layer was dried at 60 ° C. in an atmosphere under reduced pressure for 1 hour to form a solid electrolyte layer 12 having a thickness of about 50 μm.
そして、開口径が7mmの開口パターンを有するスクリーン印刷版を用いて、上記の正極合材ペーストを固体電解質層12の上に印刷した。得られた印刷層を60℃の温度で減圧下の雰囲気中にて1時間乾燥させて、厚みが約50μmの正極層11を形成した。以上のようにして、介在層14が形成された集電体15の表面上に負極層13、固体電解質層12、および、正極層11からなる積層体を作製した。
Then, the above positive electrode mixture paste was printed on the solid electrolyte layer 12 using a screen printing plate having an opening pattern with an opening diameter of 7 mm. The obtained printed layer was dried at 60 ° C. in an atmosphere under reduced pressure for 1 hour to form a positive electrode layer 11 having a thickness of about 50 μm. As described above, a laminate including the negative electrode layer 13, the solid electrolyte layer 12, and the positive electrode layer 11 was produced on the surface of the current collector 15 on which the intervening layer 14 was formed.
次に電池評価用のセルとして、ダイ部分がポリエチレンテレフタレート(PET)樹脂からなり、上下のパンチがステンレス鋼からなる直径が10mmの金型を用意した。上記で得られた積層体を直径が9mmの円柱状に打ち抜いたものを上記の金型に入れて、300MPaの圧力を加えた。このようにして全固体電池10を作製した。この全固体電池10を封止した。
Next, as a cell for battery evaluation, a die having a diameter of 10 mm, in which a die portion is made of polyethylene terephthalate (PET) resin and upper and lower punches are made of stainless steel, was prepared. The laminate obtained above was punched into a cylindrical shape with a diameter of 9 mm and placed in the mold, and a pressure of 300 MPa was applied. In this way, an all-solid battery 10 was produced. The all solid state battery 10 was sealed.
(実施例2)
スパッタ装置を用いて厚みが200nmのステンレス鋼膜からなる介在層14を銅箔からなる集電体15の表面上に形成したこと以外は、実施例1と同様にして全固体電池10を作製した。 (Example 2)
An all-solid battery 10 was produced in the same manner as in Example 1 except that the intervening layer 14 made of a stainless steel film having a thickness of 200 nm was formed on the surface of the current collector 15 made of copper foil using a sputtering apparatus. .
スパッタ装置を用いて厚みが200nmのステンレス鋼膜からなる介在層14を銅箔からなる集電体15の表面上に形成したこと以外は、実施例1と同様にして全固体電池10を作製した。 (Example 2)
An all-
(比較例1)
介在層14が形成されていない銅箔からなる集電体15を用いたこと以外は、実施例1と同様にして全固体電池を作製した。 (Comparative Example 1)
An all-solid battery was produced in the same manner as in Example 1 except that thecurrent collector 15 made of copper foil on which no intervening layer 14 was formed was used.
介在層14が形成されていない銅箔からなる集電体15を用いたこと以外は、実施例1と同様にして全固体電池を作製した。 (Comparative Example 1)
An all-solid battery was produced in the same manner as in Example 1 except that the
<充放電試験>
実施例1、実施例2、および、比較例1の全固体電池に対して、20℃の温度にて、6.4μA/cm2の定電流で電圧が3Vになるまで充電した。その後、6.4μA/cm2の定電流で電圧が0Vになるまで放電した。 <Charge / discharge test>
The all solid state batteries of Example 1, Example 2, and Comparative Example 1 were charged at a temperature of 20 ° C. with a constant current of 6.4 μA / cm 2 until the voltage reached 3V. Thereafter, the battery was discharged at a constant current of 6.4 μA / cm 2 until the voltage reached 0V.
実施例1、実施例2、および、比較例1の全固体電池に対して、20℃の温度にて、6.4μA/cm2の定電流で電圧が3Vになるまで充電した。その後、6.4μA/cm2の定電流で電圧が0Vになるまで放電した。 <Charge / discharge test>
The all solid state batteries of Example 1, Example 2, and Comparative Example 1 were charged at a temperature of 20 ° C. with a constant current of 6.4 μA / cm 2 until the voltage reached 3V. Thereafter, the battery was discharged at a constant current of 6.4 μA / cm 2 until the voltage reached 0V.
実施例1と実施例2の全固体電池10は160mAh/gの放電容量を示した。これに対して、比較例1の全固体電池は80mAh/gの放電容量を示した。比較例1の全固体電池では、実施例1と実施例2の全固体電池に比べて、充放電容量が小さく、充放電を繰り返すと充放電曲線が変化した。このことから、比較例1の全固体電池は硫化物固体電解質と集電体15の銅箔とが反応して劣化し、実施例1と実施例2の全固体電池10は、介在層14が硫化物固体電解質と集電体15の銅箔との反応を防ぐことにより、劣化しなかったものと考えられる。
The all solid state battery 10 of Example 1 and Example 2 exhibited a discharge capacity of 160 mAh / g. On the other hand, the all-solid-state battery of Comparative Example 1 exhibited a discharge capacity of 80 mAh / g. In the all-solid-state battery of the comparative example 1, compared with the all-solid-state battery of Example 1 and Example 2, charge / discharge capacity was small, and when charging / discharging was repeated, the charge / discharge curve changed. From this, the all-solid-state battery of Comparative Example 1 deteriorates due to the reaction between the sulfide solid electrolyte and the copper foil of the current collector 15, and the all-solid-state battery 10 of Example 1 and Example 2 has the intervening layer 14. It is considered that deterioration did not occur by preventing the reaction between the sulfide solid electrolyte and the copper foil of the current collector 15.
(実施例3)
図2に示す断面構造を有する全固体電池20を以下の工程で作製した。 (Example 3)
An all-solid battery 20 having the cross-sectional structure shown in FIG.
図2に示す断面構造を有する全固体電池20を以下の工程で作製した。 (Example 3)
An all-
<カーボンペーストの作製>
炭素材料としてのアセチレンブラックの粉末と、バインダー樹脂としてのポリフッ化ビニリデン(PVDF)と、溶媒としてのN‐メチル‐2‐ピロリドン(NMP)とを混合してカーボンペーストを作製した。 <Production of carbon paste>
A carbon paste was prepared by mixing acetylene black powder as a carbon material, polyvinylidene fluoride (PVDF) as a binder resin, and N-methyl-2-pyrrolidone (NMP) as a solvent.
炭素材料としてのアセチレンブラックの粉末と、バインダー樹脂としてのポリフッ化ビニリデン(PVDF)と、溶媒としてのN‐メチル‐2‐ピロリドン(NMP)とを混合してカーボンペーストを作製した。 <Production of carbon paste>
A carbon paste was prepared by mixing acetylene black powder as a carbon material, polyvinylidene fluoride (PVDF) as a binder resin, and N-methyl-2-pyrrolidone (NMP) as a solvent.
<介在層の塗工>
厚みが15μmの銅箔からなる集電体15の両面上に上記のカーボンペーストを、コーターを用いて塗工し、120℃の温度で乾燥させることにより、厚みが5μmの介在層14を形成した。 <Intermediate layer coating>
The carbon paste was applied on both sides of acurrent collector 15 made of copper foil having a thickness of 15 μm using a coater, and dried at a temperature of 120 ° C., thereby forming an intervening layer 14 having a thickness of 5 μm. .
厚みが15μmの銅箔からなる集電体15の両面上に上記のカーボンペーストを、コーターを用いて塗工し、120℃の温度で乾燥させることにより、厚みが5μmの介在層14を形成した。 <Intermediate layer coating>
The carbon paste was applied on both sides of a
<固体電解質の作製>
Li2S粉末とP2S5粉末の比率を8:2のモル比としたこと以外は、実施例1と同様にして硫化物固体電解質を作製した。 <Preparation of solid electrolyte>
A sulfide solid electrolyte was produced in the same manner as in Example 1 except that the molar ratio of Li 2 S powder to P 2 S 5 powder was 8: 2.
Li2S粉末とP2S5粉末の比率を8:2のモル比としたこと以外は、実施例1と同様にして硫化物固体電解質を作製した。 <Preparation of solid electrolyte>
A sulfide solid electrolyte was produced in the same manner as in Example 1 except that the molar ratio of Li 2 S powder to P 2 S 5 powder was 8: 2.
<正極合材の作製>
正極活物質としてのLi2FeS2粉末と、上記の硫化物固体電解質とを、ロッキングミルを用いて混合して正極合材を作製した。正極活物質と硫化物固体電解質は1:1の重量比で混合した。 <Preparation of positive electrode mixture>
Li 2 FeS 2 powder as the positive electrode active material and the sulfide solid electrolyte described above were mixed using a rocking mill to prepare a positive electrode mixture. The positive electrode active material and the sulfide solid electrolyte were mixed at a weight ratio of 1: 1.
正極活物質としてのLi2FeS2粉末と、上記の硫化物固体電解質とを、ロッキングミルを用いて混合して正極合材を作製した。正極活物質と硫化物固体電解質は1:1の重量比で混合した。 <Preparation of positive electrode mixture>
Li 2 FeS 2 powder as the positive electrode active material and the sulfide solid electrolyte described above were mixed using a rocking mill to prepare a positive electrode mixture. The positive electrode active material and the sulfide solid electrolyte were mixed at a weight ratio of 1: 1.
<負極合材の作製>
負極活物質としての球状黒鉛粉末と、上記の硫化物固体電解質とを、ロッキングミルを用いて混合して負極合材を作製した。負極活物質と硫化物固体電解質は1:1の重量比で混合した。 <Preparation of negative electrode mixture>
Spherical graphite powder as a negative electrode active material and the above sulfide solid electrolyte were mixed using a rocking mill to prepare a negative electrode mixture. The negative electrode active material and the sulfide solid electrolyte were mixed at a weight ratio of 1: 1.
負極活物質としての球状黒鉛粉末と、上記の硫化物固体電解質とを、ロッキングミルを用いて混合して負極合材を作製した。負極活物質と硫化物固体電解質は1:1の重量比で混合した。 <Preparation of negative electrode mixture>
Spherical graphite powder as a negative electrode active material and the above sulfide solid electrolyte were mixed using a rocking mill to prepare a negative electrode mixture. The negative electrode active material and the sulfide solid electrolyte were mixed at a weight ratio of 1: 1.
<全固体電池の作製>
直径が10mmの金型に、上記の介在層14が両面に形成された集電体15、負極合材、固体電解質、正極合材、上記の介在層14が両面に形成された集電体15、負極合材、固体電解質、正極合材、上記の介在層14が両面に形成された集電体15の順に入れて、330MPaの圧力を加えることにより、全固体電池20を作製した。この全固体電池20を封止した。 <Preparation of all-solid battery>
Acurrent collector 15 in which the above-described intervening layer 14 is formed on both sides in a mold having a diameter of 10 mm, a negative electrode composite, a solid electrolyte, a positive electrode composite, and a current collector 15 in which the above intervening layer 14 is formed on both sides Then, the negative electrode composite material, the solid electrolyte, the positive electrode composite material, and the current collector 15 having the intervening layer 14 formed on both surfaces thereof were put in this order, and a pressure of 330 MPa was applied, whereby an all-solid battery 20 was produced. The all solid state battery 20 was sealed.
直径が10mmの金型に、上記の介在層14が両面に形成された集電体15、負極合材、固体電解質、正極合材、上記の介在層14が両面に形成された集電体15、負極合材、固体電解質、正極合材、上記の介在層14が両面に形成された集電体15の順に入れて、330MPaの圧力を加えることにより、全固体電池20を作製した。この全固体電池20を封止した。 <Preparation of all-solid battery>
A
<充放電試験>
得られた全固体電池20に対して、20℃の温度にて、6.4μA/cm2の定電流で電圧が6Vになるまで充電した。その後、6.4μA/cm2の定電流で電圧が0Vになるまで放電した。 <Charge / discharge test>
The obtained allsolid state battery 20 was charged at a temperature of 20 ° C. with a constant current of 6.4 μA / cm 2 until the voltage reached 6V. Thereafter, the battery was discharged at a constant current of 6.4 μA / cm 2 until the voltage reached 0V.
得られた全固体電池20に対して、20℃の温度にて、6.4μA/cm2の定電流で電圧が6Vになるまで充電した。その後、6.4μA/cm2の定電流で電圧が0Vになるまで放電した。 <Charge / discharge test>
The obtained all
実施例3の全固体電池20は150mAh/gの放電容量を示した。全固体電池20は、介在層14が硫化物固体電解質と集電体15の銅箔との反応を防ぐことにより、劣化しなかったものと考えられる。
The all solid state battery 20 of Example 3 showed a discharge capacity of 150 mAh / g. It is considered that the all-solid-state battery 20 did not deteriorate because the intervening layer 14 prevented the reaction between the sulfide solid electrolyte and the copper foil of the current collector 15.
(実施例4)
図2に示す断面構造を有する全固体電池20を以下の工程で作製した。 Example 4
An all-solid battery 20 having the cross-sectional structure shown in FIG.
図2に示す断面構造を有する全固体電池20を以下の工程で作製した。 Example 4
An all-
実施例1と同様にして銅箔からなる集電体15の一方の表面上にカーボンペーストを塗工して炭素材料からなる介在層14を形成し、集電体15の他方の表面上にアルミニウムを蒸着して厚みが100nmのアルミニウム膜からなる介在層14を形成したこと以外は、実施例3と同様にして、全固体電池20を作製した。なお、アルミニウム膜からなる介在層14が正極層11に接し、炭素材料からなる介在層14が負極層13に接するように、上記の介在層14が両面に形成された集電体15を配置した。
In the same manner as in Example 1, a carbon paste is applied on one surface of a current collector 15 made of copper foil to form an intervening layer 14 made of a carbon material, and aluminum is formed on the other surface of the current collector 15. The all-solid-state battery 20 was produced in the same manner as in Example 3 except that the intervening layer 14 made of an aluminum film having a thickness of 100 nm was formed by vapor deposition. The current collector 15 having the intervening layer 14 formed on both surfaces is disposed so that the intervening layer 14 made of an aluminum film is in contact with the positive electrode layer 11 and the intervening layer 14 made of a carbon material is in contact with the negative electrode layer 13. .
<充放電試験>
得られた全固体電池20に対して、20℃の温度にて、6.4μA/cm2の定電流で電圧が6Vになるまで充電した。その後、6.4μA/cm2の定電流で電圧が0Vになるまで放電した。 <Charge / discharge test>
The obtained allsolid state battery 20 was charged at a temperature of 20 ° C. with a constant current of 6.4 μA / cm 2 until the voltage reached 6V. Thereafter, the battery was discharged at a constant current of 6.4 μA / cm 2 until the voltage reached 0V.
得られた全固体電池20に対して、20℃の温度にて、6.4μA/cm2の定電流で電圧が6Vになるまで充電した。その後、6.4μA/cm2の定電流で電圧が0Vになるまで放電した。 <Charge / discharge test>
The obtained all
実施例4の全固体電池20は150mAh/gの放電容量を示した。全固体電池20は、介在層14が硫化物固体電解質と集電体15の銅箔との反応を防ぐことにより、劣化しなかったものと考えられる。
The all solid state battery 20 of Example 4 showed a discharge capacity of 150 mAh / g. It is considered that the all-solid-state battery 20 did not deteriorate because the intervening layer 14 prevented the reaction between the sulfide solid electrolyte and the copper foil of the current collector 15.
(比較例2)
介在層14が形成されていない銅箔からなる集電体15を用いたこと以外は、実施例3と同様にして全固体電池を作製した。 (Comparative Example 2)
An all-solid battery was produced in the same manner as in Example 3 except that thecurrent collector 15 made of copper foil on which no intervening layer 14 was formed was used.
介在層14が形成されていない銅箔からなる集電体15を用いたこと以外は、実施例3と同様にして全固体電池を作製した。 (Comparative Example 2)
An all-solid battery was produced in the same manner as in Example 3 except that the
比較例2の全固体電池は74mAh/gの放電容量を示した。比較例2の全固体電池は硫化物固体電解質と集電体15の銅箔とが反応して劣化したため、放電容量が低下したものと考えられる。
The all solid state battery of Comparative Example 2 exhibited a discharge capacity of 74 mAh / g. The all-solid-state battery of Comparative Example 2 is considered to have a reduced discharge capacity because the sulfide solid electrolyte and the copper foil of the current collector 15 reacted and deteriorated.
(実施例5)
図3に示す断面構造を有する全固体電池30を作製した。 (Example 5)
An all-solid battery 30 having the cross-sectional structure shown in FIG. 3 was produced.
図3に示す断面構造を有する全固体電池30を作製した。 (Example 5)
An all-
実施例1と同様にしてカーボンペーストを作製した。このカーボンペーストを、実施例1と同様にして銅箔からなる集電体15の表面上にスクリーン印刷することによって、直径が9mmの大きさの円形状の介在層141を形成した。さらに、介在層141の外周部に、ペースト状のアクリル樹脂をスクリーン印刷することによって、外径が10mmの大きさのリング形状の絶縁層からなる介在層142を形成した。
A carbon paste was produced in the same manner as in Example 1. The carbon paste was screen-printed on the surface of the current collector 15 made of copper foil in the same manner as in Example 1 to form a circular intervening layer 141 having a diameter of 9 mm. Further, an intervening layer 142 made of a ring-shaped insulating layer having an outer diameter of 10 mm was formed on the outer peripheral portion of the intervening layer 141 by screen printing a pasty acrylic resin.
次に、実施例1と同様にして、負極合材ペースト、固体電解質ペースト、正極合材ペーストを用いて、介在層141が形成された集電体15の表面上に負極層13、固体電解質層12、および、正極層11からなる直径が9mmの円柱状の積層体を作製した。
Next, in the same manner as in Example 1, the negative electrode layer 13, the solid electrolyte layer, the solid electrolyte paste, and the positive electrode mixture paste were used to form the negative electrode layer 13, the solid electrolyte layer on the surface of the current collector 15 on which the intervening layer 141 was formed. A columnar laminate having a diameter of 9 mm and 12 and the positive electrode layer 11 was produced.
この積層体の正極層11の表面上に、実施例1と同様の介在層14が形成された集電体15を配置して、積層体を直径が10mmの金型に入れて、300MPaの圧力を加えた。このようにして全固体電池30を作製した。この全固体電池30を封止した。
On the surface of the positive electrode layer 11 of this laminate, a current collector 15 in which an intervening layer 14 similar to that of Example 1 was formed was placed, and the laminate was placed in a mold having a diameter of 10 mm, and a pressure of 300 MPa Was added. In this way, an all-solid battery 30 was produced. This all solid state battery 30 was sealed.
得られた全固体電池30においては、電子伝導性の介在層141が硫化物固体電解質と集電体15との反応を防止することができるとともに、電気絶縁性の介在層142によって正極側と負極側の電気的短絡を防止することができる。
In the obtained all-solid-state battery 30, the electron conductive intervening layer 141 can prevent the reaction between the sulfide solid electrolyte and the current collector 15, and the electrically insulating intervening layer 142 allows the positive electrode side and the negative electrode An electrical short circuit on the side can be prevented.
今回開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態と実施例ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての修正と変形を含むものであることが意図される。
It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above embodiments and examples but by the scope of claims, and is intended to include all modifications and variations within the meaning and scope equivalent to the scope of claims. .
本発明によれば、集電体が硫化物固体電解質と反応することがないので、硫化物系固体電池において、集電体材料の適用範囲を拡げることができる。
According to the present invention, since the current collector does not react with the sulfide solid electrolyte, the applicable range of the current collector material can be expanded in the sulfide-based solid battery.
10,20,30:全固体電池、11:正極層、12:固体電解質層、13:負極層、14,141,142:介在層、15:集電体。
10, 20, 30: all solid state battery, 11: positive electrode layer, 12: solid electrolyte layer, 13: negative electrode layer, 14, 141, 142: intervening layer, 15: current collector.
10, 20, 30: all solid state battery, 11: positive electrode layer, 12: solid electrolyte layer, 13: negative electrode layer, 14, 141, 142: intervening layer, 15: current collector.
Claims (7)
- 正極層または負極層の少なくともいずれか一方の電極層と、
前記電極層の一方側の面に積層された固体電解質層と、
前記電極層の一方側の面と反対の他方側の面に配置された集電体と、
前記電極層と前記集電体との間に介在する介在層とを備え、
前記電極層が電極活物質と硫化物固体電解質とを含み、
前記介在層は、硫化物固体電解質との反応性が銅に比べて低い材料を含む、全固体電池。 At least one of the positive electrode layer and the negative electrode layer;
A solid electrolyte layer laminated on one surface of the electrode layer;
A current collector disposed on the surface on the other side opposite to the surface on one side of the electrode layer;
An intervening layer interposed between the electrode layer and the current collector,
The electrode layer includes an electrode active material and a sulfide solid electrolyte,
The intervening layer is an all-solid-state battery including a material that is less reactive with a sulfide solid electrolyte than copper. - 前記介在層が、電子に対して伝導性を有し、リチウムイオンに対して伝導性を有しない、請求項1に記載の全固体電池。 The all-solid-state battery according to claim 1, wherein the intervening layer has conductivity for electrons and does not have conductivity for lithium ions.
- 前記介在層が、炭素材料を含む、請求項1または請求項2に記載の全固体電池。 The all-solid-state battery according to claim 1 or 2, wherein the intervening layer includes a carbon material.
- 前記介在層が、金属を含む、請求項1から請求項3までのいずれか1項に記載の全固体電池。 The all-solid-state battery according to any one of claims 1 to 3, wherein the intervening layer contains a metal.
- 前記介在層が、金属として、ステンレス鋼またはアルミニウムを含む、請求項4に記載の全固体電池。 The all-solid-state battery according to claim 4, wherein the intervening layer contains stainless steel or aluminum as a metal.
- 各々が正極層、固体電解質層、および、負極層の順に積層された積層体を含む第1と第2の電池を備え、
前記第1の電池が前記第2の電池に接続され、
前記集電体が、前記第1の電池の正極層と前記第2の電池の負極層との間に配置され、 前記介在層が、前記第1の電池の正極層と前記集電体との間、または、前記第2の電池の負極層と前記集電体との間の少なくともいずれか一方に介在する、請求項1から請求項5までのいずれか1項に記載の全固体電池。 Each of the first and second batteries includes a laminate in which a positive electrode layer, a solid electrolyte layer, and a negative electrode layer are sequentially laminated.
The first battery is connected to the second battery;
The current collector is disposed between the positive electrode layer of the first battery and the negative electrode layer of the second battery, and the intervening layer includes a positive electrode layer of the first battery and the current collector. The all-solid-state battery according to any one of claims 1 to 5, wherein the all-solid-state battery is interposed between or at least one of the negative electrode layer of the second battery and the current collector. - 前記介在層の一部が電気絶縁体を含む、請求項1から請求項6までのいずれか1項に記載の全固体電池。 The all-solid-state battery according to any one of claims 1 to 6, wherein a part of the intervening layer includes an electrical insulator.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-048266 | 2013-03-11 | ||
JP2013048266 | 2013-03-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014141962A1 true WO2014141962A1 (en) | 2014-09-18 |
Family
ID=51536628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/055593 WO2014141962A1 (en) | 2013-03-11 | 2014-03-05 | All-solid-state battery |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014141962A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016136090A1 (en) * | 2015-02-27 | 2016-09-01 | 富士フイルム株式会社 | Solid electrolyte composition, electrode active substance and production method thereof, battery electrode sheet and manufacturing method thereof, and all-solid-state secondary battery and manufacturing method thereof |
JP2017152147A (en) * | 2016-02-23 | 2017-08-31 | 凸版印刷株式会社 | Composite active material secondary particle, laminate green sheet, all-solid type secondary battery and manufacturing methods thereof |
WO2018088058A1 (en) * | 2016-11-08 | 2018-05-17 | 凸版印刷株式会社 | Laminate green sheet, laminate sintered body, and all-solid secondary battery, and production method therefor |
EP3496188A1 (en) * | 2017-12-08 | 2019-06-12 | Toyota Jidosha Kabushiki Kaisha | Method for producing sulfide solid-state battery |
WO2019189311A1 (en) * | 2018-03-28 | 2019-10-03 | Tdk株式会社 | All-solid-state battery |
US10566653B2 (en) | 2015-08-14 | 2020-02-18 | Samsung Electronics Co., Ltd. | Lithium sulfur nitrogen compound for anode barrier coating or solid electrolyte |
CN111430684A (en) * | 2020-01-19 | 2020-07-17 | 蜂巢能源科技有限公司 | Composite negative electrode and preparation method and application thereof |
JP2021002495A (en) * | 2019-06-24 | 2021-01-07 | トヨタ自動車株式会社 | All-solid battery and all-solid battery system |
JP2021144807A (en) * | 2020-03-10 | 2021-09-24 | トヨタ自動車株式会社 | Method for manufacturing all-solid-state battery |
WO2022045295A1 (en) * | 2020-08-28 | 2022-03-03 | 花王株式会社 | Ion conductive layer for electricity storage devices |
CN114556615A (en) * | 2019-10-23 | 2022-05-27 | Tdk株式会社 | All-solid-state battery |
US20220181609A1 (en) * | 2020-12-03 | 2022-06-09 | Toyota Jidosha Kabushiki Kaisha | All solid state battery |
EP4117056A4 (en) * | 2020-03-03 | 2023-09-13 | Panasonic Intellectual Property Management Co., Ltd. | Electrode material and battery |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58126678A (en) * | 1982-01-22 | 1983-07-28 | Hitachi Ltd | Lithium battery |
JPH07105952A (en) * | 1993-10-06 | 1995-04-21 | Mitsubishi Cable Ind Ltd | Lithium secondary battery and its current collecting body |
JP2006179241A (en) * | 2004-12-21 | 2006-07-06 | Matsushita Electric Ind Co Ltd | Solid battery |
JP2012049023A (en) * | 2010-08-27 | 2012-03-08 | Toyota Motor Corp | Battery |
JP2012069305A (en) * | 2010-09-22 | 2012-04-05 | Hitachi Zosen Corp | Manufacturing method of all-solid secondary battery |
JP2012146512A (en) * | 2011-01-12 | 2012-08-02 | Toyota Motor Corp | Method for manufacturing battery |
JP2012164571A (en) * | 2011-02-08 | 2012-08-30 | Sumitomo Electric Ind Ltd | Negative electrode body and lithium ion battery |
-
2014
- 2014-03-05 WO PCT/JP2014/055593 patent/WO2014141962A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58126678A (en) * | 1982-01-22 | 1983-07-28 | Hitachi Ltd | Lithium battery |
JPH07105952A (en) * | 1993-10-06 | 1995-04-21 | Mitsubishi Cable Ind Ltd | Lithium secondary battery and its current collecting body |
JP2006179241A (en) * | 2004-12-21 | 2006-07-06 | Matsushita Electric Ind Co Ltd | Solid battery |
JP2012049023A (en) * | 2010-08-27 | 2012-03-08 | Toyota Motor Corp | Battery |
JP2012069305A (en) * | 2010-09-22 | 2012-04-05 | Hitachi Zosen Corp | Manufacturing method of all-solid secondary battery |
JP2012146512A (en) * | 2011-01-12 | 2012-08-02 | Toyota Motor Corp | Method for manufacturing battery |
JP2012164571A (en) * | 2011-02-08 | 2012-08-30 | Sumitomo Electric Ind Ltd | Negative electrode body and lithium ion battery |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016136090A1 (en) * | 2015-02-27 | 2016-09-01 | 富士フイルム株式会社 | Solid electrolyte composition, electrode active substance and production method thereof, battery electrode sheet and manufacturing method thereof, and all-solid-state secondary battery and manufacturing method thereof |
US11335949B2 (en) | 2015-08-14 | 2022-05-17 | Samsung Electronics Co., Ltd. | Battery including a sulfide barrier coating |
US10566653B2 (en) | 2015-08-14 | 2020-02-18 | Samsung Electronics Co., Ltd. | Lithium sulfur nitrogen compound for anode barrier coating or solid electrolyte |
JP2017152147A (en) * | 2016-02-23 | 2017-08-31 | 凸版印刷株式会社 | Composite active material secondary particle, laminate green sheet, all-solid type secondary battery and manufacturing methods thereof |
WO2018088058A1 (en) * | 2016-11-08 | 2018-05-17 | 凸版印刷株式会社 | Laminate green sheet, laminate sintered body, and all-solid secondary battery, and production method therefor |
EP3496188A1 (en) * | 2017-12-08 | 2019-06-12 | Toyota Jidosha Kabushiki Kaisha | Method for producing sulfide solid-state battery |
CN111868997A (en) * | 2018-03-28 | 2020-10-30 | Tdk株式会社 | All-solid-state battery |
US20210036362A1 (en) * | 2018-03-28 | 2021-02-04 | Tdk Corporation | All-solid-state battery |
JPWO2019189311A1 (en) * | 2018-03-28 | 2021-03-18 | Tdk株式会社 | All solid state battery |
JP7553352B2 (en) | 2018-03-28 | 2024-09-18 | Tdk株式会社 | All-solid-state battery |
DE112019001591B4 (en) | 2018-03-28 | 2024-07-25 | Tdk Corporation | SOLID-STATE BATTERY |
WO2019189311A1 (en) * | 2018-03-28 | 2019-10-03 | Tdk株式会社 | All-solid-state battery |
JP7196783B2 (en) | 2019-06-24 | 2022-12-27 | トヨタ自動車株式会社 | All-solid-state battery and all-solid-state battery system |
JP2021002495A (en) * | 2019-06-24 | 2021-01-07 | トヨタ自動車株式会社 | All-solid battery and all-solid battery system |
US11799127B2 (en) | 2019-06-24 | 2023-10-24 | Toyota Jidosha Kabushiki Kaisha | All solid state battery having anode current collector including elastic portion and all solid state battery system having the anode current collector |
CN114556615A (en) * | 2019-10-23 | 2022-05-27 | Tdk株式会社 | All-solid-state battery |
CN111430684B (en) * | 2020-01-19 | 2022-02-25 | 蜂巢能源科技有限公司 | Composite negative electrode and preparation method and application thereof |
CN111430684A (en) * | 2020-01-19 | 2020-07-17 | 蜂巢能源科技有限公司 | Composite negative electrode and preparation method and application thereof |
EP4117056A4 (en) * | 2020-03-03 | 2023-09-13 | Panasonic Intellectual Property Management Co., Ltd. | Electrode material and battery |
JP7376396B2 (en) | 2020-03-10 | 2023-11-08 | トヨタ自動車株式会社 | All-solid-state battery manufacturing method |
JP2021144807A (en) * | 2020-03-10 | 2021-09-24 | トヨタ自動車株式会社 | Method for manufacturing all-solid-state battery |
WO2022045295A1 (en) * | 2020-08-28 | 2022-03-03 | 花王株式会社 | Ion conductive layer for electricity storage devices |
JP2022088945A (en) * | 2020-12-03 | 2022-06-15 | トヨタ自動車株式会社 | All-solid battery |
KR20220078485A (en) * | 2020-12-03 | 2022-06-10 | 도요타 지도샤(주) | All solid state battery |
US20220181609A1 (en) * | 2020-12-03 | 2022-06-09 | Toyota Jidosha Kabushiki Kaisha | All solid state battery |
US11984585B2 (en) | 2020-12-03 | 2024-05-14 | Toyota Jidosha Kabushiki Kaisha | All solid state battery |
JP7484683B2 (en) | 2020-12-03 | 2024-05-16 | トヨタ自動車株式会社 | All-solid-state battery |
KR102698856B1 (en) | 2020-12-03 | 2024-08-27 | 도요타 지도샤(주) | All solid state battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014141962A1 (en) | All-solid-state battery | |
CN108390066B (en) | All-solid-state battery | |
WO2017141735A1 (en) | Solid electrolytic composition, electrode sheet for full-solid secondary batteries, full-solid secondary battery, and method for manufacturing electrode sheet for full-solid secondary batteries and full-solid secondary battery | |
JP6085370B2 (en) | All solid state battery, electrode for all solid state battery and method for producing the same | |
JP5413355B2 (en) | All solid battery | |
US9647262B2 (en) | Core-shell type anode active material for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the same | |
US20160261002A1 (en) | Solid-state multi-layer electrolyte, electrochemical cell and battery including the electrolyte, and method of forming same | |
WO2017046915A1 (en) | Composite electrolyte for secondary batteries, secondary battery and battery pack | |
US9865873B2 (en) | Positive electrode mixture and all-solid-state lithium sulfur cell | |
JP6704295B2 (en) | All-solid-state lithium secondary battery and manufacturing method thereof | |
JP5755400B2 (en) | Negative electrode mixture, negative electrode mixture mixture, negative electrode, all solid lithium battery and apparatus | |
JP6259704B2 (en) | Method for producing electrode for all solid state battery and method for producing all solid state battery | |
WO2019065030A1 (en) | All-solid secondary battery electrode composite particles, method of manufacturing same, all-solid secondary battery electrode, and all-solid secondary battery | |
TW201507249A (en) | Lithium manganese oxide composite, secondary battery, and manufacturing method thereof | |
EP3576192A1 (en) | Manufacturing method for electrode for all-solid-state battery and manufacturing method for all solid-state-battery | |
US20210050157A1 (en) | Hybrid electrode materials for bipolar capacitor-assisted solid-state batteries | |
JP5796798B2 (en) | Positive electrode material, all solid state battery, and manufacturing method thereof | |
JP6936661B2 (en) | Manufacturing method of all-solid-state battery | |
JP2013051171A (en) | Electrode body for all solid-state battery and all solid-state battery | |
WO2014068777A1 (en) | All-solid lithium ion secondary battery | |
US20190334174A1 (en) | All-solid battery | |
JP5521719B2 (en) | Current collector for all-solid-state secondary battery, electrode body for all-solid-state secondary battery, and all-solid-state secondary battery | |
WO2014002857A1 (en) | All-solid-state battery | |
WO2015159331A1 (en) | Solid-state battery, electrode for solid-state battery, and production processes therefor | |
KR20240058771A (en) | A solid-state battery and preparation thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14762687 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14762687 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |