WO2022045295A1 - Ion conductive layer for electricity storage devices - Google Patents

Ion conductive layer for electricity storage devices Download PDF

Info

Publication number
WO2022045295A1
WO2022045295A1 PCT/JP2021/031520 JP2021031520W WO2022045295A1 WO 2022045295 A1 WO2022045295 A1 WO 2022045295A1 JP 2021031520 W JP2021031520 W JP 2021031520W WO 2022045295 A1 WO2022045295 A1 WO 2022045295A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive layer
acrylic polymer
ion conductive
mass
storage device
Prior art date
Application number
PCT/JP2021/031520
Other languages
French (fr)
Japanese (ja)
Inventor
小塚寛斗
福田泰紀
後藤英樹
平石篤司
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to JP2022545733A priority Critical patent/JPWO2022045295A1/ja
Publication of WO2022045295A1 publication Critical patent/WO2022045295A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to an ion conductive layer for a power storage device.
  • Such a power storage device is generally provided with an electrode on which a mixture layer containing an active material or the like is coated on a metal foil, and an electrolyte for transferring ions is filled between the electrodes.
  • a liquid, a semi-solid, or a solid is used for this electrolyte depending on the purpose.
  • a liquid a solvent containing a metal ion is used
  • a semi-solid a gel containing the liquid is used, and in the case of a solid.
  • solids with ionic conductivity is known to use solids with ionic conductivity.
  • a separator is provided between the electrodes from the viewpoint of preventing a short circuit between the electrodes.
  • a separator is provided between the electrodes from the viewpoint of preventing a short circuit between the electrodes.
  • a storage battery using a solid electrolyte it is known to use a mixed film of a solid electrolyte and a resin from the viewpoint of preventing peeling because it is easy to peel off only with the solid electrolyte.
  • the electrodes and separators may be displaced, which may reduce the durability, and an adhesive layer is provided from the viewpoint of preventing the displacement.
  • a surface protective film is provided on the surfaces of the positive electrode and the negative electrode from the viewpoint of suppressing the precipitation of metal due to a local reaction and the formation of a fixing film having high ion resistance due to denaturation of an electrolyte.
  • Patent Documents 1 and 2 An adhesive layer for a separator and an electrode surface protective film have been proposed (Patent Documents 1 and 2).
  • Patent Document 1 includes a particulate polymer A having a glass transition temperature of ⁇ 50 to 5 ° C. and a particulate polymer B having a glass transition temperature of 50 to 120 ° C. Disclosed is a method for producing an electrode / separator laminate, wherein the adhesive layer has an average thickness of 0.2 to 1.0 ⁇ m and the thermal pressure bonding is performed at 50 to 100 ° C.
  • the particulate polymer A composed of 86.8 parts of ethyl acrylate, 10 parts of acrylonitrile, 2 parts of methacrylic acid and 1.2 parts of N-methylol acrylamide, 18 parts of butyl acrylate, 80 parts of styrene, and acrylonitrile
  • the particulate polymer B consisting of 2 parts, 2 parts of methacrylic acid and 1.2 parts of acrylamide is mixed so that the solid content weight ratio (particle-like polymer A / particle-like polymer B) is 15/85.
  • Patent Document 2 contains 0 monomer units containing a water-soluble polymer, an inorganic filler, and a hydrophilic group selected from the group consisting of a carboxylic acid group, a hydroxyl group and a sulfonic acid group.
  • a porous film containing a water-insoluble particulate polymer containing .5 to 40% by mass is disclosed.
  • a particulate polymer composed of 80 parts of ethyl acrylate, 15 parts of acrylonitrile and 5 parts of itaconic acid was obtained.
  • Patent Document 3 discloses a binder for a power storage device electrode containing polymer particles having ion permeability and a specific elastic change rate. And in Examples, polymer particles composed of 97% by mass of ethyl acrylate and 3% by mass of acrylic acid are disclosed.
  • the present disclosure is, in one embodiment, an ionic conductive layer arranged between a positive electrode and a negative electrode of a power storage device, wherein the ionic conductive layer contains an acrylic polymer, and the acrylic polymer is the following formula (I).
  • the content of the structural unit (A) in all the structural units of the acrylic polymer is 88% by mass or more and 100% by mass or less, and the ionic conductive layer contains the structural unit (A) derived from the compound represented by.
  • the present invention relates to an ion conductive layer for a power storage device having a thickness of more than 1 ⁇ m and 500 ⁇ m or less.
  • R 1 represents a hydrogen atom or a methyl group.
  • R 2 represents a linear or branched alkyl group having 1 or more and 3 or less carbon atoms.
  • X indicates -O- or -NH-.
  • the present disclosure relates, in one aspect, to an acrylic polymer composition for forming the ionic conductive layer of the present disclosure.
  • the present disclosure relates to, in one aspect, a member for a power storage device containing the ion conductive layer of the present disclosure and having a thickness of the ion conductive layer of more than 1 ⁇ m and 500 ⁇ m or less.
  • the present disclosure relates to a power storage device having the power storage device member of the present disclosure in one aspect.
  • the present disclosure is, in one embodiment, a method for forming an ionic conductive layer for a power storage device, wherein a slurry containing an acrylic polymer composition is provided so that the thickness of the ionic conductive layer is more than 1 ⁇ m and 500 ⁇ m or less.
  • the acrylic polymer composition comprises particles of the acrylic polymer, and the acrylic polymer comprises a step of applying the coating to the surface of the substrate and a step of drying the applied slurry to form an ionic conductive layer.
  • the content of the structural unit (A) in all the structural units of the acrylic polymer is 88% by mass or more and 100% by mass or less, including the structural unit (A) derived from the compound represented by the following formula (I).
  • R 1 represents a hydrogen atom or a methyl group.
  • R 2 represents a linear or branched alkyl group having 1 or more and 3 or less carbon atoms.
  • X indicates -O- or -NH-.
  • FIG. 1 is a schematic diagram of a bipolar battery.
  • the adhesive layer itself disclosed in Patent Document 1 has poor ionic conductivity, it is described that if the thickness exceeds 1 ⁇ m, the pores of the porous polyolefin film are blocked and the ionic conductivity is impaired.
  • the ionic conductivity of the coalescence itself is not mentioned, and the battery characteristics of the electrode sufficient for the above-mentioned request cannot be obtained.
  • the porous film disclosed in Patent Document 2 has poor ionic conductivity of the polymer, if the content of the water-soluble polymer and the particulate polymer is large with respect to the inorganic filler, the pores are covered and Li moves.
  • Patent Document 3 The polymer particles of Patent Document 3 are used as a binder for electrodes, and there is no mention of using them for forming an ionic conductive layer.
  • the present disclosure provides, in one aspect, an ion conduction layer for a power storage device that can improve the battery characteristics of the power storage device.
  • the present disclosure is based on the finding that the battery characteristics of a power storage device can be improved by forming the ion conduction layer for the power storage device with a predetermined acrylic polymer.
  • the present disclosure is, in one embodiment, an ionic conductive layer arranged between the positive electrode and the negative electrode of the power storage device, and the ionic conductive layer is also referred to as an acrylic polymer (hereinafter, also referred to as "the acrylic polymer of the present disclosure").
  • the acrylic polymer contains the structural unit (A) derived from the compound represented by the above formula (I), and the content of the structural unit (A) in all the structural units of the acrylic polymer is
  • the present invention relates to an ion conducting layer for a power storage device (hereinafter, also referred to as “the ion conducting layer of the present disclosure”), which is 88% by mass or more and 100% by mass or less, and the thickness of the ion conducting layer is more than 1 ⁇ m and 500 ⁇ m or less. According to the present disclosure, it is possible to provide an ion conductive layer for a power storage device that can improve the battery characteristics of the power storage device.
  • a power storage device having excellent battery characteristics By using the ion conducting layer of the present disclosure for an electrolyte, a separator, a solid electrolyte mixed film, an adhesive layer such as an electrode and a separator, a surface protection layer, etc. of a power storage device, a power storage device having excellent battery characteristics can be obtained. ..
  • the acrylic polymer contained in the ionic conduction layer for a power storage device is represented by a (meth) acrylic acid ester (formula (I)) having a linear or branched alkyl group having 1 or more and 3 or less carbon atoms. It is considered that having the structural unit (A) derived from the compound) has a high affinity for the metal ion and the electrolytic solution used in the energy storage device, and can prevent the movement of the metal ion from being hindered.
  • the power storage device manufactured by using the ion conductive layer of the present disclosure has a high internal resistance of the battery. It is thought that it can be suppressed and the battery characteristics can be improved. However, these are estimates and the present disclosure may not be construed as limiting to these mechanisms.
  • the ion conducting layer of the present disclosure is an ion conducting layer arranged between the positive electrode and the negative electrode of the power storage device in the power storage device that transfers ions between the positive electrode and the negative electrode.
  • the ion conductive layer of the present disclosure is a resin-containing layer capable of ion conduction for the purpose of protecting and adhering electrodes, safety and durability of a power storage device, and the like in one or a plurality of embodiments.
  • the ion conducting layer of the present disclosure may be arranged at any place as long as it is between the positive electrode and the negative electrode.
  • Examples of the place where the ion conductive layer of the present disclosure is arranged include a negative electrode surface (negative electrode protective layer, etc.), an electrolyte layer, a separator surface (adhesive layer, etc.), a separator itself, and a positive electrode surface (positive electrode protective layer, etc.). .. By arranging the ion conduction layer of the present disclosure at at least one of these locations, the battery characteristics of the power storage device can be improved.
  • the ionic conductive layer of the present disclosure includes the acrylic polymer of the present disclosure.
  • the content of the acrylic polymer of the present disclosure in the ion conductive layer of the present disclosure is preferably 1% by mass or more, more preferably 2% by mass or more, and further preferably 3% by mass or more, from the viewpoint of the performance and manufacture of the power storage device.
  • the ionic conductive layer of the present disclosure may contain a polymer other than the acrylic polymer of the present disclosure.
  • the content of the acrylic polymer of the present disclosure in the polymer of the ion conductive layer of the present disclosure is preferably 75% by mass or more, more preferably 85% by mass or more, and 90% by mass or more from the viewpoint of the performance and manufacture of the power storage device. Is more preferable, and 100% by mass or less is preferable.
  • the polymer other than the acrylic polymer of the present disclosure include an acrylic polymer, a styrene polymer, a fluoropolymer, a cellulosic polymer, etc., in which the content of the structural unit (A) in all the structural units is less than 88% by mass. ..
  • the acrylic polymer of the present disclosure contains a structural unit (A) described later.
  • the structural unit (A) is a structural unit derived from a monofunctional monomer of a compound described later.
  • the monofunctional monomer means a monomer having one unsaturated bond.
  • the acrylic polymer of the present disclosure may further contain a structural unit (B) and / or a structural unit (C) described later in one or more embodiments.
  • At least one selected from the copolymers containing the copolymers may be mentioned.
  • the acrylic polymer may be one kind or a combination of two or more kinds.
  • the structural unit (A) is a structural unit derived from a compound represented by the following formula (I) (hereinafter, also referred to as “monomer (A)”).
  • the monomer (A) may be used alone or in combination of two or more.
  • R 1 represents a hydrogen atom or a methyl group from the viewpoint of ease of synthesis, and a hydrogen atom is more preferable.
  • R 2 represents a linear or branched alkyl group having 1 or more and 3 or less carbon atoms from the viewpoint of affinity with metal ions and an electrolytic solution, and an alkyl group having 1 to 2 carbon atoms is more preferable and has 2 carbon atoms. Alkyl group of is more preferred.
  • X indicates -O- or -NH-.
  • Examples of the monomer (A) include alkyl ester (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, normal propyl (meth) acrylate, and isopropyl (meth) acrylate; methyl (meth) acrylamide and ethyl.
  • alkyl ester (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, normal propyl (meth) acrylate, and isopropyl (meth) acrylate
  • methyl (meth) acrylamide and ethyl examples include one or a combination of two or more selected from monofunctional (meth) acrylamides such as (meth) acrylamide, normal propyl (meth) acrylamide, and isopropyl (meth) acrylamide.
  • MMA methyl methacrylate
  • MA methyl acrylate
  • EMA ethyl methacrylate
  • EA ethyl acrylate
  • (meth) acrylate means methacrylate or acrylate
  • (meth) acrylamide means methacrylamide or acrylamide.
  • the content of the structural unit (A) in all the structural units of the acrylic polymer of the present disclosure is 88% by mass or more, preferably 90% by mass or more, and 92% by mass, from the viewpoint of affinity with the electrolytic solution.
  • the above is more preferable, 94% by mass or more is further preferable, and 96% by mass or more is further preferable.
  • it is preferably 100% by mass or less, preferably 99.9% by mass or less, more preferably 99.5% by mass or less, still more preferably 99% by mass or less.
  • the content of the structural unit (A) can be determined by a known analytical method or an analyzer.
  • the content of the structural unit (A) means the total content thereof.
  • R 1 in the formula (I) is a hydrogen atom and R 2 has 1 or more and 3 or less carbon atoms from the viewpoint of affinity with the electrolytic solution.
  • a structural unit derived from a compound that is a linear or branched alkyl group hereinafter, also referred to as “constituent unit (A1)”), or R 1 in the formula (I) is a hydrogen atom or a methyl group, and R 2 It is preferable that the compound contains a structural unit derived from a compound which is an alkyl group having 1 to 2 carbon atoms (hereinafter, also referred to as “constituent unit (A2)”).
  • the content of the structural unit (A1) in all the structural units of the acrylic polymer of the present disclosure is 70% by mass from the viewpoint of affinity with the electrolytic solution.
  • the above is preferable, 85% by mass or more is more preferable, 90% by mass or more is further preferable, 94% by mass or more is further preferable, and 96% by mass or more is particularly preferable.
  • the structural unit (A) includes the structural unit (A2) the content of the structural unit (A2) in all the structural units of the acrylic polymer of the present disclosure is 70% by mass from the viewpoint of affinity with the electrolytic solution.
  • the above is preferable, 85% by mass or more is more preferable, 90% by mass or more is further preferable, 94% by mass or more is further preferable, and 96% by mass or more is particularly preferable.
  • the structural unit (B) is a compound represented by the following formula (II) (hereinafter, also referred to as “monomer (B1)”) and a compound represented by the following (III) (hereinafter, also referred to as “monomer (B2)”). ) And unsaturated dibasic acid (hereinafter, also referred to as “monomer (B3)”), which is a constituent unit derived from at least one compound (hereinafter, also referred to as monomer (B)). From the viewpoint of affinity for metal ions, the structural unit (B) is preferably a structural unit derived from the monomer (B1). The monomer (B) may be used alone or in combination of two or more.
  • R 1 is a hydrogen atom or a methyl group from the viewpoint of ease of synthesis.
  • M is a hydrogen atom or a cation from the viewpoint of affinity for a metal ion, and a cation is preferable.
  • the cation at least one of alkali metal ion and ammonium ion is preferable from the viewpoint of improving battery characteristics, and at least one selected from ammonium ion, lithium ion, sodium ion and potassium ion is more preferable, and lithium ion and sodium ion are more preferable. At least one is more preferred.
  • the monomer (B1) contains, for example, a monomer in which M is a hydrogen atom with an alkali (ammonia, sodium hydroxide, lithium hydroxide, potassium hydroxide, etc.). It may be summed, or it may be a polymer obtained by polymerizing a monomer in which M is a hydrogen atom and then neutralized with an alkali. Further, the polymer obtained by polymerizing a monomer in which M is a hydrogen atom may be a polymer in which a hydrogen atom is replaced by a metal ion contained in an electrolyte inside a power storage device.
  • an alkali ammonia, sodium hydroxide, lithium hydroxide, potassium hydroxide, etc.
  • the polymer is neutralized with an alkali after becoming a constituent unit of the polymer after polymerization.
  • the monomer (B1) may be partially neutralized or completely neutralized in one or more embodiments.
  • M in the formula (II) is preferably at least one selected from lithium ions and hydrogen atoms.
  • Examples of the monomer (B1) include acrylic acid (AA), methacrylic acid (MAA), and one or a combination of two or more selected from salts thereof.
  • Examples of the salt include at least one selected from ammonium salt, sodium salt, lithium salt and potassium salt.
  • R 1 represents a hydrogen atom or a methyl group
  • X represents -O- or -NH-.
  • R4 is-(CH 2 ) n OR 3 , -R 5 SO 3 M, -R 6 N (R 7 ) (R 8 ) and -R 6 N + (R 7 ) (R 8 ) (R 9 ).
  • -Indicates at least one selected from Y- .
  • n indicates the average number of added moles, which is 1 or more and 4 or less.
  • R 3 represents a hydrogen atom or a methyl group.
  • R 5 represents a linear or branched alkylene group having 1 or more and 3 or less carbon atoms.
  • M represents a hydrogen atom or a cation.
  • Examples of the cation include the same cations of M in the above-mentioned formula (II).
  • M in formula (II) and formula (III) are independent of each other.
  • R 6 represents a linear or branched alkylene group having 1 or more and 3 or less carbon atoms.
  • R 7 and R 8 are the same or different, and represent linear or branched alkyl groups having 1 or more and 3 or less carbon atoms.
  • R 9 represents a linear or branched alkyl group having 1 or more and 3 or less carbon atoms.
  • Y - indicates an anion. Examples of the anion include halide ions such as chloride ion, bromide ion and fluoride ion; sulfate ion; phosphate ion; and the like.
  • the monomer (B2) may be, for example, a monomer in which M is a hydrogen atom neutralized with an alkali, or M is a hydrogen atom. It may be a polymer obtained by polymerizing a certain monomer and then neutralized with an alkali. Further, the polymer obtained by polymerizing a monomer in which M is a hydrogen atom may be a polymer in which a hydrogen atom is replaced by a metal ion contained in an electrolyte inside a power storage device. From the viewpoint of polymerization reaction control and dispersion stability, it is preferable that the polymer is neutralized with an alkali after becoming a constituent unit of the polymer after polymerization.
  • the monomer (B2) may be partially neutralized or completely neutralized in one or more embodiments.
  • M in the formula (III) is preferably at least one selected from lithium ions and hydrogen atoms.
  • the monomer (B2) includes hydroxyl group-containing ester (meth) acrylates such as hydroxyethyl (meth) acrylate and hydroxypropyl (meth) acrylate; and dimethylaminoethyl (meth) acrylate and dimethylaminopropyl from the viewpoint of ease of synthesis.
  • At least one selected from nitrogen atom-containing ester (meth) acrylates such as (meth) acrylate and trimethylammonioethyl (meth) acrylate; is selected from hydroxyethyl (meth) acrylate and hydroxypropyl (meth) acrylate. At least one of them is preferable, and at least one of hydroxyethyl methacrylate and hydroxyethyl acrylate is more preferable.
  • the monomer (B3) is an unsaturated dibasic acid, and from the viewpoint of ease of synthesis, for example, at least one selected from unsaturated dibasic acids having 4 or more and 12 or less carbon atoms and salts thereof can be mentioned.
  • the number of carbon atoms is preferably 4 or more and 8 or less, and more preferably 4 or more and 6 or less.
  • Examples of the monomer (B3) include maleic acid, fumaric acid, citraconic acid, mesaconic acid, itaconic acid, 2-pentene diic acid, 3-hexene diic acid, and salts thereof from the viewpoint of ease of synthesis. At least one selected from maleic acid, fumaric acid, itaconic acid, and salts thereof is preferable, and at least one of maleic acid and its salts is more preferable.
  • the salt is at least one selected from ammonium salt, lithium salt, sodium salt and potassium salt from the viewpoint of affinity for metal ions and dispersion stability. Species are preferred, with at least one of the lithium and sodium salts being more preferred.
  • the salt of the unsaturated dibasic acid of the monomer (B3) may be an unsaturated dibasic acid neutralized with an alkali, or may be polymerized with the unsaturated dibasic acid and then neutralized with an alkali. The summed one may be used. Further, the polymer polymerized using the unsaturated dibasic acid may be a polymer in which hydrogen atoms are replaced by metal ions contained in the electrolyte inside the power storage device. From the viewpoint of polymerization reaction control and dispersion stability, it is preferable that the polymer is neutralized with an alkali after becoming a constituent unit of the polymer after polymerization.
  • the content of the structural unit (B) in all the structural units of the acrylic polymer of the present disclosure is from the viewpoint of affinity to metal ions and dispersion stability. Therefore, 0.01% by mass or more is preferable, 0.1% by mass or more is more preferable, 0.3% by mass or more is further preferable, 0.5% by mass or more is further preferable, and 1% by mass or more is further preferable. From the same viewpoint, 12% by mass or less is preferable, 10% by mass or less is more preferable, 8% by mass or less is further preferable, 6% by mass or less is further preferable, and 4% by mass or less is further preferable.
  • the content of the structural unit (B) can be determined by a known analytical method or an analyzer. When the structural unit (B) is composed of structural units derived from two or more kinds of monomers (B), the content of the structural unit (B) means the total content thereof.
  • the mass ratio (A / B) of the content of the structural unit (A) to the content of the structural unit (B) in the acrylic polymer of the present disclosure is From the viewpoint of affinity for metal ions and electrolytic solution, and dispersion stability, 5000 or less is preferable, 500 or less is more preferable, 200 or less is further preferable, and affinity for metal ion and electrolytic solution, and dispersion. From the viewpoint of stability, 8 or more is preferable, 15 or more is more preferable, 20 or more is further preferable, and 25 or more is further preferable.
  • the structural unit (C) is a structural unit derived from a crosslinkable monomer (hereinafter, also referred to as “monomer (C)”).
  • the monomer (C) is selected from a polyfunctional (meth) acrylate (hereinafter, also referred to as “monomer (C1)”) and an N-methylolamide group-containing monomer (hereinafter, also referred to as “monomer (C2)”). At least one is mentioned.
  • the monomer (C) may be used alone or in combination of two or more.
  • Examples of the monomer (C1) include compounds represented by the following formula (IV).
  • R 10 is preferably a hydrogen atom or a methyl group from the viewpoint of ease of synthesis.
  • X is preferably —O— or —NH— from the viewpoint of ease of synthesis and affinity for the electrolytic solution.
  • n is preferably an integer of 1 or more and 20 or less from the viewpoint of ease of synthesis and affinity for the electrolytic solution.
  • X in the formula (III) and the formula (IV) are independent of each other.
  • Specific examples of the compound represented by the above formula (IV) include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, and decaethylene glycol di (meth) acrylate. , And at least one selected from pentadecaethylene glycol di (meth) acrylates.
  • Examples of the other monomer (C1) include 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and glycerinji ( Meta) acrylate, allyl (meth) acrylate, trimethyl propantri (meth) acrylate, pentaerythritol tetra (meth) acrylate, diethylene glycol di (meth) phthalate, caprolactone-modified dipentaerythritol hexa (meth) acrylate, caprolactone-modified hydroxy
  • Examples thereof include at least one selected from pivalic acid ester neopentyl glycol di (meth) acrylate and polyester (meth) acrylate.
  • Examples of the monomer (C2) which is an N-methylolamide group-containing monomer include at least one selected from N-methylolacrylamide and N-methylolmethacrylamide.
  • the content of the constituent unit (C) of the acrylic polymer of the present disclosure is a constituent unit from the viewpoint of ease of synthesis and compatibility with an electrolytic solution.
  • the total number of moles of the constituent units other than (C) 0.001 mol% or more is preferable, 0.01 mol% or more is more preferable, 0.05 mol% or more is further preferable, and from the same viewpoint. 5 mol% or less is preferable, 3 mol% or less is more preferable, 1 mol% or less is further preferable, and 0.8 mol% or less is further preferable.
  • the structural unit (C) is composed of a structural unit derived from two or more kinds of monomers (C)
  • the content of the structural unit (C) means the total content thereof.
  • the acrylic polymer of the present disclosure may contain other structural units other than the structural unit (A), the structural unit (B) and the structural unit (C) as long as the effects of the present disclosure are not impaired.
  • a structural unit derived from a monomer hereinafter, also referred to as “monomer (D)”) copolymerizable with the monomers (A), (B) and (C) (hereinafter, “constituent unit (D)).
  • monomer (D) a structural unit derived from a monomer
  • consisttituent unit (D) consisttituent unit (D)
  • Examples of the monomer (D) include (meth) acrylonitrile, styrene, methylstyrene, an alkyl (meth) acrylate having a linear or branched alkyl group having 4 or more carbon atoms, an aromatic-containing (meth) acrylate, and an alkyl vinyl ether. , Alkyl vinyl ester, alkenyl group-containing monomer and the like.
  • the monomer (D) may be used alone or in combination of two or more.
  • the total content of the structural units (A) and (B) in all the structural units of the acrylic polymer of the present disclosure is 88% by mass or more, and 90% by mass, from the viewpoint of compatibility with metal ions and electrolytic solutions.
  • the above is preferable, 92% by mass or more is more preferable, 94% by mass or more is further preferable, 96% by mass or more is further preferable, and 98% by mass or more is particularly preferable.
  • the acrylic polymer of the present disclosure can be produced, for example, by polymerizing the monomer (A) and, if necessary, at least one of the monomers (B) to (D). That is, the present disclosure comprises, in one aspect, a polymerization step of polymerizing a monomer mixture containing the monomer (A) and optionally at least one of the monomers (B)-(D).
  • the polymerization method include known polymerization methods such as an emulsion polymerization method, a solution polymerization method, a suspension polymerization method, and a bulk polymerization method, and the emulsion polymerization method is preferable from the viewpoint of ease of producing a polymer.
  • the content (% by mass) of the structural unit (A) in all the structural units of the acrylic polymer can be regarded as the amount (% by mass) of the monomer (A) used with respect to the total amount of the monomers used for the polymerization. ..
  • the content (% by mass) of the structural unit (B) in all the structural units of the polymer particles can be regarded as the amount of the monomer (B) used (% by mass) with respect to the total amount of the monomers used for the polymerization.
  • the mass ratio (A / B) of the content of the structural unit (A) to the structural unit (B) is the mass ratio of the amount of the monomer (A) used to the amount of the monomer (B) in the total amount of the monomers used for the polymerization. You can see it.
  • the total content (% by mass) of the structural unit (A) and the structural unit (B) in all the structural units of the polymer particles is the total amount of the monomers (A) and the monomer (B) used with respect to the total amount of the monomers used for the polymerization ( It can be regarded as% by mass).
  • the content (mol%) of the structural unit (C) in the polymer particles is the total number of moles of the monomers other than the monomer (C) used for polymerization (for example, the polymer particles include the structural units (A) to (C). In this case, it can be regarded as the amount (mol%) of the monomer (C) used (with respect to the total number of moles of the monomers (A) and (B)).
  • the emulsification polymerization method examples include a known method using an emulsifier and a method in which an emulsifier is substantially not used, a so-called soap-free emulsification polymerization method, and the soap-free emulsification polymerization method is preferable from the viewpoint of battery performance.
  • the acrylic polymer of the present disclosure for example, a monomer mixture containing a monomer (A) and, if necessary, at least one monomer (B) to (D) is emulsion-polymerized, preferably soap-free emulsion polymerization.
  • Polymers include.
  • the amount of the emulsifier used in the emulsion polymerization is preferably 0.05% by mass or less, more preferably 0.02% by mass or less, and 0, based on the total amount of the monomers used in the emulsion polymerization from the viewpoint of suppressing the decrease in binding property. It is more preferably 0.01% by mass or less, and even more preferably 0% by mass.
  • the amount of emulsifier used for emulsion polymerization can be the amount of the surfactant used in the polymerization step.
  • the acrylic polymer of the present disclosure is obtained by emulsion polymerization of a monomer mixture containing the monomer (A), and the amount of emulsifier contained in the ion conductive layer of the present disclosure is higher than that of the acrylic polymer. , 0% by mass or more and 0.05% by mass or less, more preferably 0% by mass or more and 0.02% by mass or less, further preferably 0% by mass or more and 0.01% by mass or less, and substantially 0% by mass. preferable.
  • the present disclosure relates, in one aspect, to an acrylic polymer composition for forming the ionic conductive layer of the present disclosure (hereinafter, also referred to as "the acrylic polymer composition of the present disclosure").
  • the acrylic polymer composition of the present disclosure comprises, in one or more embodiments, the acrylic polymer of the present disclosure described above.
  • the form of the acrylic polymer contained in the acrylic polymer composition of the present disclosure is preferably particles.
  • the content of the acrylic polymer in the acrylic polymer composition of the present disclosure is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, from the viewpoint of polymer production and the performance of the power storage device. It is more preferably mass% or more, more preferably 70% by mass or less, still more preferably 60% by mass or less, still more preferably 50% by mass or less.
  • the acrylic polymer composition of the present disclosure comprises a polar medium in one or more embodiments.
  • the polar medium may be any liquid that can dissolve or disperse the acrylic polymer.
  • As the polar medium at least one organic solvent selected from methanol, ethanol, isopropanol, acetone, tetrahydrofuran and dioxane from the viewpoint of production of acrylic polymer and dispersion stability, an aqueous medium containing these organic solvents and water, Alternatively, water is preferred, aqueous media and water are more preferred, and water is even more preferred. Examples of water include ion-exchanged water.
  • the acrylic polymer composition of the present disclosure is contained so that the thickness of the ionic conductive layer is more than 1 ⁇ m and 500 ⁇ m or less in one or more embodiments.
  • a step (coating step) of applying a slurry (hereinafter, also referred to as "slurry for an ion conductive layer of the present disclosure") to the surface of a base material (for example, a separator, an electrode, a release film, etc.) and a step (coating step) of applying the applied slurry to dry ions.
  • the substrate to which the slurry for the ion conductive layer of the present disclosure is applied includes a porous film or an electrode active material layer containing an electrode active material and a binder.
  • the acrylic polymer contained in the slurry for the ion conductive layer of the present disclosure has a particle shape.
  • the average particle size of the particles of the acrylic polymer is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, from the viewpoint of compatibility with the electrolytic solution and productivity, and from the viewpoint of productivity and stability of the slurry. Therefore, 1 ⁇ m or less is preferable, 0.8 ⁇ m or less is more preferable, 0.6 ⁇ m or less is further preferable, 0.5 ⁇ m or less is further preferable, and 0.4 ⁇ m or less is particularly preferable.
  • the average particle size is the volume average particle size (D50) measured by the laser diffraction scattering method, and is the cumulative volume in the cumulative volume distribution curve in which the total volume of the particle size distribution obtained on a volume basis is 100%. Means the particle size at the point where is 50%.
  • the volume average particle size (D50) can be measured by using a laser diffraction / scattering type particle size distribution measuring device, and specifically, can be measured by the method described in Examples.
  • the form of the acrylic polymer contained in the slurry for the ion conductive layer of the present disclosure may be a powder or a polymer particle dispersion in which polymer particles are dispersed in a medium.
  • the medium may be a medium used in emulsion polymerization, preferably a polar medium, more preferably an aqueous medium, and even more preferably water.
  • the content of the acrylic polymer in the slurry for the ion conductive layer of the present disclosure is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and further preferably 1% by mass or more from the viewpoint of manufacturing a power storage device. It is preferable, and it is preferably 70% by mass or less, more preferably 60% by mass or less, still more preferably 50% by mass or less.
  • a monomer mixture containing a monomer (A) and, if necessary, at least one of the monomers (B) to (D) is polymerized. It can include a polymerization step of allowing the polymer particles to be obtained.
  • the polymerization step of the method for producing a slurry of the present disclosure the polymerization method, the types of each component that can be used for the polymerization, and the amount thereof used can be the same as the polymerization step of the above-mentioned method for producing an acrylic polymer.
  • the coating method of the slurry for the ion conductive layer of the present disclosure is not particularly limited, and for example, a doctor blade method, a dip method, a reverse roll method, and a direct roll method. , Gravure method, slurry method, brush painting method and the like.
  • examples of the drying method include drying with warm air, hot air, low humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
  • the drying time is usually 5 to 30 minutes, and the drying temperature is usually 40 to 180 ° C.
  • the ionic conductive layer of the present disclosure is formed of the acrylic polymer of the present disclosure in one or more embodiments.
  • the ionic conductive layer of the present disclosure has ionic conductivity by the action of permeating ions in one or more embodiments. Therefore, the ion conductive layer of the present disclosure exhibits ion permeability in, for example, the measurement method described later, and exhibits the effect of reducing the ion resistance of the power storage device.
  • the formation of the ionic conductive layer of the present disclosure is performed by producing a film containing an acrylic polymer in one or more embodiments.
  • the method for producing a film containing an acrylic polymer include the above-mentioned method for forming an ionic conductive layer of the present disclosure.
  • a method for producing a film containing an acrylic polymer for example, a method of applying or immersing a solution or dispersion (slurry) containing an acrylic polymer on a separator or an electrode as a base material and drying the solution.
  • a method of applying a solution or slurry containing an acrylic polymer on a release film as a base material, drying and forming a film, and transferring the obtained film to a predetermined place can be mentioned.
  • the solution or slurry containing the acrylic polymer in which the content of the structural unit (A) in all the structural units used in the ionic conduction layer of the present disclosure is 88% by mass or more has a high surface tension, so that the solution or slurry is used as a base material.
  • the liquid may repel and the uniformity of the thickness of the obtained film may be impaired.
  • the thickness of the ion conductive layer of the present disclosure can be set according to the purpose, and is preferably more than 1 ⁇ m, preferably 2 ⁇ m, from the viewpoint of ease of manufacturing of the power storage device, battery characteristics, and uniformity of thickness.
  • the above is more preferable, 3 ⁇ m or more is further preferable, 5 ⁇ m or more is further preferable, and from the same viewpoint, 500 ⁇ m or less is more preferable, 100 ⁇ m or less is more preferable, 70 ⁇ m or less is further preferable, and 50 ⁇ m or less is further preferable.
  • the ions conducted in the ion conduction layer of the present disclosure are preferably metal ions, more preferably alkali metal ions, and even more preferably lithium ions.
  • the ionic conduction layer of the present disclosure preferably holds an organic solvent in the power storage device.
  • the organic solvent is preferably a solvent that solubilizes ions, and more preferably an electrolytic solution.
  • cyclic carbonates ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and derivatives thereof
  • chain carbonates dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate ( EMC), dipropyl carbonate (DPC), and their derivatives
  • aliphatic carboxylic acid esters methyl formate, methyl acetate, ethyl propionate, and their derivatives
  • ⁇ -lactones ⁇ -butyrolactone, and their derivatives.
  • the organic solvent may be used alone or in combination of two or more.
  • the amount of the organic solvent retained in the ion conductive layer in the power storage device is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, based on the ion conductive layer. 1% by mass or more is further preferable, 10% by mass or more is further preferable, and 50% by mass or more is particularly preferable. From the viewpoint of battery durability, 10,000% by mass or less is preferable, 5000% by mass or less is more preferable, 2000% by mass or less is further preferable, 1000% by mass or less is further preferable, and 500% by mass or less is particularly preferable.
  • the ionic conductive layer of the present disclosure may contain an arbitrary component in addition to the above acrylic polymer.
  • the optional component include an adhesive, a resin modifier, a metal salt, an inorganic oxide, a solid electrolyte and the like.
  • the metal salt is preferably an alkali metal salt used as a supporting electrolyte for the battery, and more preferably a lithium salt used in a lithium ion battery.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 N Li. , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) 2 NLi and the like.
  • the inorganic oxide can be used for the purpose of imparting the safety and strength of the power storage device to the extent that the effect of the present disclosure is not impaired.
  • examples of the inorganic oxide include alumina (aluminum oxide), magnesia (magnesium oxide), calcium oxide, titania (titanium oxide), zirconia (zirconium oxide), talc, silicate and the like.
  • the ionic conductive layer of the present disclosure may be free of inorganic oxides in one or more embodiments.
  • an inorganic compound having ion conductivity for example, lithium ion conductivity
  • the type of the solid electrolyte is not particularly limited, and both the inorganic solid electrolyte and the organic solid electrolyte can be used, but the inorganic solid electrolyte is preferable from the viewpoint of flame retardancy.
  • the inorganic solid electrolyte a known material can be used, and examples thereof include a sulfide-based solid electrolyte and an oxide-based solid electrolyte.
  • the oxide-based solid electrolyte may also serve as the inorganic oxide described above.
  • the content of the acrylic polymer in the ionic conductive layer of the present disclosure is preferably 1% by mass or more, more preferably 3% by mass or more, further preferably 5% by mass or more, and 10% by mass or more. Is even more preferable, and 100% by mass or less is preferable.
  • the ionic conductive layer of the present disclosure can be used as a member for a power storage device such as an electrolyte, a separator, a surface protective layer of an electrode, a solid electrolyte mixed membrane, and a resin layer. That is, the present disclosure, in one aspect, contains the ion conductive layer of the present disclosure, and the thickness of the ion conductive layer is more than 1 ⁇ m and 500 ⁇ m or less. Also called).
  • the member for a power storage device of the present disclosure is, in one or more embodiments, from the electrolyte layer having the ion conductive layer of the present disclosure, the electrode having the ion conductive layer of the present disclosure, and the separator having the ion conductive layer of the present disclosure. At least one of the choices.
  • the separator having an ion conductive layer of the present disclosure forms the ion conductive layer of the present disclosure on one side or both sides of the separator in one or more embodiments. Can be obtained by doing.
  • the method for producing the separator with an ion conductive layer of the present disclosure can be, for example, the same as the above-described method for forming an ion conductive layer.
  • the separator is a film having porosity (porous film), and is a porous polyolefin film, a porous polyolefin terephthalate film, a porous polyimide film, a porous polyester film, a porous cellulose film, and a porous Teflon (registered trademark).
  • Examples include films, non-woven fabrics, and papers.
  • the electrode having the ion conducting layer of the present disclosure (hereinafter, also referred to as “the electrode with the ion conducting layer of the present disclosure”) is obtained by forming the ion conducting layer of the present disclosure on the surface of the electrode in one or more embodiments.
  • the electrodes are positive electrodes and negative electrodes in a power storage device, and usually, an electrode active material layer (electrode mixture layer) is formed on one side or both sides of a metal foil called a current collector.
  • An electrode (double-sided electrode) having an electrode active material layer formed on both sides may be a positive electrode on both sides or a negative electrode on both sides, one side being a positive electrode and the other side being a negative electrode (a negative electrode). It may be a bipolar electrode).
  • the electrode active material layer contains an electrode active material, a binder, and components such as a conductive material, if necessary, and the electrode having an ion conductive layer is an ion conductive layer of the present disclosure on the surface of the electrode active material layer. It is an electrode provided with. When both sides are positive electrodes or negative electrodes, the ion conductive layer of the present disclosure may be provided on at least one of both surfaces. In the case of a bipolar electrode, the ion conducting layer of the present disclosure may be provided on at least one of the negative electrode surface and the positive electrode surface.
  • the method for manufacturing the electrode with the ion conducting layer of the present disclosure for example, the same method as the above-described method for forming the ion conducting layer of the present disclosure can be used.
  • the present disclosure relates to a power storage device (hereinafter, also referred to as “the power storage device of the present disclosure") having the member for the power storage device of the present disclosure in one aspect.
  • the power storage device of the present disclosure is, in one or more embodiments, a power storage device having at least one positive electrode, at least one negative electrode, and optionally a bipolar electrode, the positive electrode, the negative electrode, and a buy. At least one selected from the polar electrodes may be a power storage device having the ion conductive layer of the present disclosure.
  • the power storage device of the present disclosure may be a bipolar battery in one or more embodiments.
  • a positive electrode having a positive electrode active material layer on at least one surface and a negative electrode having a negative electrode active material layer on at least one surface are provided on the outermost layer, and the positive electrode is provided.
  • the electrolytic solution can be retained in the ion conductive layer in the energy storage device of the present disclosure.
  • the electrolytic solution include at least one selected from cyclic and chain carbonates.
  • the thickness of the ion conductive layer in the power storage device of the present disclosure is more than 1 ⁇ m, preferably 2 ⁇ m or more, preferably 3 ⁇ m or more, from the viewpoint of the durability of the power storage device, the battery characteristics, and the uniformity of the thickness. More preferably, 5 ⁇ m or more is more preferable, and from the same viewpoint, 500 ⁇ m or less, 100 ⁇ m or less is preferable, 70 ⁇ m or less is more preferable, and 50 ⁇ m or less is further preferable.
  • the present disclosure further relates to one or more embodiments below.
  • An electrode having an ionic conduction layer contains an acrylic polymer and has The acrylic polymer contains a structural unit (A) derived from the compound represented by the formula (I).
  • the structural unit (A) is a structural unit (A1) derived from a compound in which R 1 in the formula (I) is a hydrogen atom and R 2 is a linear or branched alkyl group having 1 or more and 3 or less carbon atoms.
  • the content of the structural unit (A) in all the structural units of the acrylic polymer is 88% by mass or more and 100% by mass or less, and the content of the structural unit (A1) in all the structural units of the acrylic polymer.
  • the ionic conductive layer contains an acrylic polymer and has The acrylic polymer contains a structural unit (A) derived from the compound represented by the formula (I).
  • the structural unit (A) includes a structural unit (A2) derived from a compound in which R 1 in the formula (I) is a hydrogen atom or a methyl group and R 2 is an alkyl group having 1 to 2 carbon atoms.
  • the content of the structural unit (A) in all the structural units of the acrylic polymer is 88% by mass or more and 100% by mass or less, and the content of the structural unit (A2) in all the structural units of the acrylic polymer. However, it is 70% by mass or more in all the constituent units of the acrylic polymer.
  • the ionic conductive layer contains an acrylic polymer and has The acrylic polymer contains a structural unit (A) derived from the compound represented by the formula (I).
  • the content of the structural unit (A) in all the structural units of the acrylic polymer is 88% by mass or more and 100% by mass or less.
  • the electrolytic solution is at least one selected from cyclic and chain carbonates.
  • a member for a power storage device having a thickness of the ion conductive layer of more than 1 ⁇ m and 500 ⁇ m or less.
  • a power storage device having a positive electrode, a negative electrode, and at least one bipolar electrode arranged between the positive electrode and the negative electrode. At least one selected from the positive electrode, the negative electrode, and the bipolar electrode has an ion conductive layer.
  • the ionic conductive layer contains an acrylic polymer and has The acrylic polymer contains a structural unit (A) derived from the compound represented by the formula (I).
  • the content of the structural unit (A) in all the structural units of the acrylic polymer is 88% by mass or more and 100% by mass or less.
  • a power storage device having a thickness of the ion conductive layer of more than 1 ⁇ m and 500 ⁇ m or less.
  • the ion conductive layer and the acrylic polymer in these embodiments can be the ion conductive layer of the present disclosure and the acrylic polymer of the present disclosure, respectively.
  • a polymerization initiator solution in which 1 g of APS is dissolved in 10 g of ion-exchanged water is added to the flask, and the reaction solution in the flask is kept at around 70 to 75 ° C. After holding for 6 hours, the mixture was polymerized and aged to obtain an acrylic polymer dispersion. Then, the acrylic polymer dispersion in the flask was cooled to room temperature, neutralized by adding 29.14 g of a 1N LiOH aqueous solution, and then agglomerates were removed using a 200 mesh filter cloth to bring the concentration to 30% by mass.
  • Table 1 shows the amounts and types of each component used in the preparation of the acrylic polymer dispersion of Example 1. Further, Table 1 shows the stability (emulsion stability) of the polymer dispersion of Example 1 confirmed by the amount of the agglomerates, and the measurement results of the average particle size of the polymer particles of Example 1.
  • Acrylic polymer dispersions of Examples 2 to 11 were obtained in the same manner as in Example 1 except that the amount of the monomer species or the monomer components was changed so as to be the structural unit shown in Table 1.
  • Table 1 shows the amounts and types of each component used in the preparation of the acrylic polymer dispersions of Examples 2 to 11. Further, Table 1 shows the measurement results of the emulsion stability of Examples 2 to 11 and the average particle size of the polymer particles.
  • PVDF-HFP was used as the polymer of Comparative Example 6.
  • PVDF-HEP dissolved in 10% by mass with NMP was used as the polymer dispersion of Comparative Example 6.
  • the average particle size of the polymer particles is measured by diluting with a dispersion medium (water) at room temperature using a laser diffraction method particle size measuring device (LA-920 manufactured by HORIBA, Ltd.) until the specified light amount range of the device is reached. did. The results are shown in Table 1.
  • Tg glass transition temperature
  • the EC / DEC mixed solvent I was brought into contact with one surface of the polymer film, and the lithium-containing solvent II was brought into contact with the other surface, and the mixture was allowed to stand for 6 hours. Then, the amount (ppm) of Li in the EC / DEC mixed solvent I was confirmed by an inductively coupled plasma mass spectrometer ICP-MS. The results are shown in Table 1.
  • the polymer dispersion was applied onto the aluminum foil so that the thickness after drying was 20 ⁇ m, and dried at 40 ° C. for 8 hours. After punching to a diameter of 16 mm, the film was further dried under reduced pressure at 50 ° C. for another 8 hours to obtain a film for measuring ionic conductivity.
  • the film for measuring ionic conductivity was placed on a bipolar coin cell (Hosen Co., Ltd. "HS Flat Cell").
  • a LiPF 6 solution (solvent: EC / DEC mixed solvent (volume ratio 3/7)) having a concentration of 1 M was injected as a non-aqueous electrolytic solution, the cell was sealed, and a cell for measuring ionic conductivity was assembled.
  • the AC impedance (10 mV, frequency 0.05 Hz to 100 KHz) was measured using the impedance gain analyzer (FRA) “1260A” manufactured by Solartron Co., Ltd. for the cell for measuring ion conductivity obtained in the above step.
  • the resistance value was calculated from the arc width of the obtained conductor call plot, and the ionic conductivity (mS / cm) was calculated from the resistance value.
  • the results are shown in Table 1. It can be judged that the larger the ionic conductivity, the better the ionic conductive layer.
  • Negative electrode active material Graphite, Showa Denko, "AF-C” -Negative electrode conductive material: carbon fiber, Showa Denko, "VGCF-H” -Negative electrode binder: SBR -Negative electrode thickener: Sodium Carboxymethyl Cellulose (CMC), manufactured by Daicel, "# 2200"
  • a stirring defoaming machine (“Awatori Rentaro” manufactured by Shinky Co., Ltd.
  • the obtained negative electrode paste was dried on a copper foil as a current collector, adjusted in thickness to 80 g / m 2 , and coated with a bar coater.
  • the coating film was dried at 80 ° C. for 5 minutes using a blower dryer, and further dried at 150 ° C. for 10 minutes.
  • the electrode density was adjusted to 1.3 to 1.4 g / cm 3 by a roll press and left in a dry room for one night or more to prepare a negative electrode having a negative electrode mixture layer.
  • the slurry for the ion conductive layer is applied to the surface of the mixture layer of the negative electrode with an applicator so that the thickness after drying becomes 20 ⁇ m, dried at 60 ° C. for 10 minutes, and left in a dry room overnight or longer. Then, a negative electrode A having an ion conductive layer was obtained.
  • the preparation of the negative electrode A with an ion conductive layer using the polymer dispersion liquid of Example 12 the above-mentioned preparation using the polymer dispersion liquid of Example 1 except that the coating was applied so that the thickness after drying was 45 ⁇ m. It was done in the same way as the example.
  • the polymer dispersion was appropriately diluted with ion-exchanged water and then coated so that the thickness after drying was 5 ⁇ m.
  • the polymer dispersion liquid of Example 1 Regarding the production of the negative electrode A with an ion conductive layer using the polymer dispersion of Example 14, except that the polymer dispersion was appropriately diluted with ion-exchanged water and then coated so that the thickness after drying was 2 ⁇ m.
  • the polymer dispersion was appropriately diluted with ion-exchanged water and then coated so that the thickness after drying was 0.8 ⁇ m. Except for the above, the same procedure as in the above-mentioned production example using the polymer dispersion liquid of Example 1 was carried out.
  • the slurry for the ion conductive layer is applied to one side of the separator (porous polyethylene) with an applicator so that the thickness after drying becomes 20 ⁇ m, dried at 60 ° C. for 10 minutes, and further overnight in a dry room or more. It was left to stand to obtain a separator A having an ion conductive layer.
  • the separator A with an ion conductive layer using the polymer dispersion liquid of Example 12 the above-mentioned preparation using the polymer dispersion liquid of Example 1 except that the coating was applied so that the thickness after drying was 45 ⁇ m. It was done in the same way as the example.
  • the polymer dispersion liquid was appropriately diluted with ion-exchanged water and then coated so that the thickness after drying was 5 ⁇ m.
  • the polymer dispersion liquid of Example 14 except that the polymer dispersion was appropriately diluted with ion-exchanged water and then coated so that the thickness after drying was 2 ⁇ m.
  • the polymer dispersion was appropriately diluted with ion-exchanged water and then coated so that the thickness after drying was 0.8 ⁇ m. Except for the above, the same procedure as in the above-mentioned production example using the polymer dispersion liquid of Example 1 was carried out.
  • the polymer dispersion of Comparative Example 6 was mixed with an alumina filler so as to have a solid content mass ratio of 10/90, and then diluted with NMP so that the total solid content concentration was 40% by mass to obtain a slurry for an ion conductive layer.
  • the slurry for the ion conductive layer is applied to one side of the separator (porous polyethylene) with an applicator so that the thickness after drying becomes 20 ⁇ m, dried at 60 ° C. for 10 minutes, and further overnight in a dry room or more. It was left to stand to obtain a separator B having an ion conductive layer.
  • the following electrolytic solution was injected from the opening on the terminal side, the inside was evacuated, and the terminal side was also heat-sealed to seal the cell, thereby producing a lithium ion secondary battery.
  • a solution of LiPF 6 having a concentration of 1 M solvent: EC / DEC mixed solvent (volume ratio 3/7)) to which 1% by mass of vinylene carbonate (VC) was added was used.
  • VC vinylene carbonate
  • a lithium ion secondary battery evaluation cell having a negative electrode A with an ion conductive layer, in which the location of the ion conductive layer is only the surface of the negative electrode active material layer, was produced.
  • the negative electrode A with an ion conductive layer using the polymer dispersion of Comparative Example 6 could not be evaluated because the ion conductive layer was peeled off during punching.
  • the negative electrode with an ion conductive layer is the negative electrode
  • the separator is the separator A with the ion conductive layer
  • the surface of the separator A without the ion conductive layer is overlapped with the negative electrode mixture layer.
  • a lithium ion secondary battery evaluation cell having a separator A with an ion conductive layer was prepared in which the location of the ion conductive layer is only one side of the separator.
  • the separator A with an ionic conductive layer produced by using the polymer dispersion of Comparative Example 6 could not be evaluated because the ionic conductive layer was peeled off during punching.
  • the lithium ion secondary battery having the negative electrode A with the ion conductive layer prepared by using the polymer dispersions of Examples 1 to 12 was prepared by using the polymer dispersions of Comparative Examples 1 to 5. It was found that the decrease in the capacity retention rate was suppressed and the battery characteristics were improved as compared with the lithium ion secondary battery having the negative electrode A with the ion conductive layer. Further, the lithium ion secondary battery having the negative electrode A with the ion conductive layer produced by using the polymer dispersions of Examples 1 to 12 is superior in charge / discharge cycle characteristics as compared with Comparative Examples 1 to 5. all right.
  • the lithium ion secondary battery having the separator A with an ion conductive layer prepared by using the polymer dispersions of Examples 1 to 11 was prepared by using the polymer dispersions of Comparative Examples 1 to 5. It was found that the decrease in the capacity retention rate was suppressed and the battery characteristics were improved as compared with the lithium ion secondary battery having the separator A with the ion conductive layer.
  • the lithium ion secondary battery having the separator B with an ion conductive layer prepared by using the polymer dispersions of Examples 1 to 11 was prepared by using the polymer dispersions of Comparative Examples 1 to 5. It was found that the decrease in the capacity retention rate was suppressed and the battery characteristics were improved as compared with the lithium ion secondary battery having the separator B with the ion conductive layer.
  • Example of manufacturing a bipolar battery The bipolar battery shown in FIG. 1 was produced by the following method using the polymer dispersion of Example 1.
  • -Positive electrode active material NMC111 (manufactured by Nippon Chemical Industrial Co., Ltd.), composition: LiNi 1/3 Mn 1/3 Co 1/3 O 2 (D50: 6.5 ⁇ m, BET specific surface area: 0.7 m 2 / g)
  • -Positive electrode conductive material acetylene black (manufactured by Denki Kagaku Kogyo, product name: Denka Black HS-100)
  • -Positive binder polyvinylidene fluoride (PVDF) (manufactured by Kureha, L # 7208; 8% NMP solution)
  • a positive electrode paste 282 g of the positive electrode active material, 9 g of the positive electrode conductive material, and 9 g of the positive electrode binder were mixed using NMP as a non-aqueous solvent to prepare a positive electrode paste.
  • the mass ratio of the positive electrode active material, the positive electrode conductive material, and the positive electrode binder was set to 94: 3: 3 (solid content conversion).
  • kneading using a disper was performed.
  • the prepared positive electrode paste was dried on an aluminum foil as a current collector, adjusted in thickness to 125 g / m 2 , and coated with a bar coater.
  • the coating film was dried at 100 ° C. for 5 minutes using a blower dryer, and further dried at 150 ° C. for 10 minutes.
  • the electrode density was adjusted to 2.8 to 3.2 g / cm 3 by a roll press, and left in a dry room for one night or more to prepare a positive electrode having a positive electrode mixture layer.
  • a negative electrode was produced by the same method as the negative electrode of the lithium ion battery.
  • the negative electrode paste obtained by the same method as the negative electrode paste used for manufacturing the lithium ion battery is dried on one side of a stainless steel foil as a current collector, and the thickness is adjusted to 80 g / m 2 with a bar coater. Painted.
  • the coating film was dried at 80 ° C. for 5 minutes using a blower dryer, and further dried at 150 ° C. for 10 minutes.
  • the positive electrode paste was applied to the other surface of the foil with a bar coater after drying to adjust the thickness to 125 g / m 2 .
  • the coating film was dried at 100 ° C. for 5 minutes using a blower dryer to obtain a bipolar electrode.
  • An oxide-based solid electrolyte (manufactured by O'Hara, Li 2 O-Al 2 O 3 -SiO 2 -P 2 O 5 -TiO 2 , trade name LICGC powder) was added to the polymer dispersion of Example 1 in a solid content weight ratio of 10. After mixing to a ratio of / 90, the mixture was diluted with ethanol so that the total solid content concentration was 30% by mass and uniformly mixed to obtain a slurry for an ion conductive layer.
  • the slurry for the ion conductive layer is coated on the negative electrode of the negative electrode and the bipolar electrode so that the thickness after drying is 40 ⁇ m, dried at 60 ° C. for 10 minutes, and further in a dry room. After being left to stand for more than night, a negative electrode C having an ion conductive layer C and a bipolar electrode C were obtained.
  • the negative electrode C and the positive electrode were punched out to a size of 40 mm ⁇ 40 mm, leaving the terminal mounting portion, and the terminals were mounted respectively.
  • Two bipolar type electrodes C were punched out to a size of 40 mm ⁇ 40 mm, and the outermost layer was used as a negative electrode C and a positive electrode. ..
  • the laminated electrode is immersed in the electrolytic solution for 8 hours to sufficiently impregnate the electrode and the ionic conductive layer, and the surface of the taken-out laminated electrode is wiped off.
  • LiPF 6 having a concentration of 1 M (solvent: EC / DEC mixed solvent (volume ratio 3/7)) to which 1% by mass of vinylene carbonate (VC) was added was used.
  • the ion conductive layer of the present disclosure having excellent battery characteristics is useful in lithium ion batteries, lithium ion capacitors, and other power storage devices.

Abstract

One embodiment of the present disclosure provides an ion conductive layer for electricity storage devices, said ion conductive layer being capable of improving the battery characteristics of electricity storage devices. One embodiment of the present disclosure relates to an ion conductive layer for electricity storage devices, said ion conductive layer being arranged between the positive electrode and the negative electrode of an electricity storage device. This ion conductive layer for electricity storage devices contains an acrylic polymer; the acrylic polymer contains a constituent unit (A) that is derived from a compound represented by formula (I); the content of the constituent unit (A) in all constituent units of the acrylic polymer is from 88% by mass to 100% by mass; and the thickness of this ion conductive layer is more than 1 μm but not more than 500 μm.

Description

蓄電デバイス用イオン伝導層Ion conduction layer for power storage devices
 本開示は、蓄電デバイス用イオン伝導層に関する。 This disclosure relates to an ion conductive layer for a power storage device.
 近年のスマートフォンの普及や自動車市場でのゼロエミッション規制、さらには自然エネルギー活用の拡大などにより、蓄電デバイスの需要は大きくなってきている。そのため、蓄電デバイスには、小型、軽量、大容量化が望まれ、自動車等においてはさらに高出力、高エネルギー密度を求める声が大きくなっている。このような要求において、リチウムイオン二次電池やアルカリイオン二次電池、電気二重層キャパシタやリチウムイオンキャパシタ、全固体電池などの蓄電デバイスの開発が進められている。 Demand for power storage devices is increasing due to the spread of smartphones in recent years, zero emission regulations in the automobile market, and the expansion of utilization of natural energy. Therefore, it is desired that the power storage device be small, lightweight, and have a large capacity, and there is a growing demand for higher output and higher energy density in automobiles and the like. In response to such demands, development of power storage devices such as lithium ion secondary batteries, alkaline ion secondary batteries, electric double layer capacitors, lithium ion capacitors, and all-solid-state batteries is being promoted.
 このような蓄電デバイスは、一般的に金属箔上に活物質等を含む合材層が塗布された電極を備えており、電極間にはイオンの移動を行う電解質が充填されている。この電解質には目的に応じて液体、半固体、固体が使用され、液体の場合は金属イオンを含有する溶媒を使用し、半固体の場合は前記液体を内包したゲルを使用し、固体の場合はイオン伝導性を有する固体を使用することが知られている。主に電解質に液体や半固体を使用する蓄電池の場合、電極間の短絡を防止する観点で電極間にセパレーターを備えている。一方、固体電解質を使用する蓄電池の場合は、固体電解質のみでは剥落しやすいため剥落防止の観点で固体電解質と樹脂の混合膜を使用することが知られている。 Such a power storage device is generally provided with an electrode on which a mixture layer containing an active material or the like is coated on a metal foil, and an electrolyte for transferring ions is filled between the electrodes. A liquid, a semi-solid, or a solid is used for this electrolyte depending on the purpose. In the case of a liquid, a solvent containing a metal ion is used, in the case of a semi-solid, a gel containing the liquid is used, and in the case of a solid. Is known to use solids with ionic conductivity. In the case of a storage battery that mainly uses a liquid or a semi-solid as an electrolyte, a separator is provided between the electrodes from the viewpoint of preventing a short circuit between the electrodes. On the other hand, in the case of a storage battery using a solid electrolyte, it is known to use a mixed film of a solid electrolyte and a resin from the viewpoint of preventing peeling because it is easy to peel off only with the solid electrolyte.
 また、パウチ型電池は可動域が大きいため、電極のズレ、セパレーターのズレが発生し耐久性を低下させる原因にもなっており、ズレを防止する観点で接着層が設けられている。また、正極や負極の表面には、局所的な反応による金属の析出や電解質の変性による高いイオン抵抗性の固着膜の生成を抑制する観点から表面保護膜が設けられることも知られている。 In addition, since the pouch-type battery has a large range of motion, the electrodes and separators may be displaced, which may reduce the durability, and an adhesive layer is provided from the viewpoint of preventing the displacement. It is also known that a surface protective film is provided on the surfaces of the positive electrode and the negative electrode from the viewpoint of suppressing the precipitation of metal due to a local reaction and the formation of a fixing film having high ion resistance due to denaturation of an electrolyte.
 しかしながら、昨今の小型化、高容量化、高出力化の要求に応える上で、電解質、セパレーター、固体電解質混合膜、接着層、表面保護層などに使用される樹脂のイオン伝導性を向上させることが必要であり、高いイオン伝導性を有する樹脂層の提案が求められている。 However, in order to meet the recent demands for miniaturization, high capacity, and high output, it is necessary to improve the ionic conductivity of the resin used for the electrolyte, the separator, the solid electrolyte mixed film, the adhesive layer, the surface protection layer, and the like. Is required, and a proposal for a resin layer having high ionic conductivity is required.
 このような問題を解決するため、セパレーターの接着層や電極表面保護膜が提案されている(特許文献1及び2)。 In order to solve such a problem, an adhesive layer for a separator and an electrode surface protective film have been proposed (Patent Documents 1 and 2).
 WO2014/081035号(特許文献1)には、接着層が、ガラス転移温度-50~5℃である粒子状重合体Aと、ガラス転移温度50~120℃である粒子状重合体Bとを含み、前記接着層の平均厚さが0.2~1.0μmであり、前記熱圧着を50~100℃で行うことを特徴とする電極/セパレータ積層体の製造方法が開示されている。そして、実施例には、エチルアクリレート86.8部、アクリロニトリル10部、メタクリル酸2部及びN-メチロールアクリルアミド1.2部からなる粒子状重合体Aと、ブチルアクリレート18部、スチレン80部、アクリロニトリル2部、メタクリル酸2部及びアクリルアミド1.2部からなる粒子状重合体Bとを、固形分重量比(粒子状重合体A/粒子状重合体B)が15/85となるように混合し、接着層用水分散スラリーを得たことが開示されている。 WO2014 / 081035 (Patent Document 1) includes a particulate polymer A having a glass transition temperature of −50 to 5 ° C. and a particulate polymer B having a glass transition temperature of 50 to 120 ° C. Disclosed is a method for producing an electrode / separator laminate, wherein the adhesive layer has an average thickness of 0.2 to 1.0 μm and the thermal pressure bonding is performed at 50 to 100 ° C. In the examples, the particulate polymer A composed of 86.8 parts of ethyl acrylate, 10 parts of acrylonitrile, 2 parts of methacrylic acid and 1.2 parts of N-methylol acrylamide, 18 parts of butyl acrylate, 80 parts of styrene, and acrylonitrile The particulate polymer B consisting of 2 parts, 2 parts of methacrylic acid and 1.2 parts of acrylamide is mixed so that the solid content weight ratio (particle-like polymer A / particle-like polymer B) is 15/85. , It is disclosed that an aqueous dispersion slurry for an adhesive layer was obtained.
 WO2009/123168号(特許文献2)には、水溶性高分子と、無機フィラーと、カルボン酸基、水酸基及びスルホン酸基からなる群から選択される親水性基を含有する単量体単位を0.5~40質量%含有する非水溶性の粒子状高分子とを含有してなる多孔膜が開示されている。そして、実施例には、エチルアクリレート80部、アクリロニトリル15部及びイタコン酸5部からなる粒子状高分子を得たことが開示されている。 WO2009 / 123168 (Patent Document 2) contains 0 monomer units containing a water-soluble polymer, an inorganic filler, and a hydrophilic group selected from the group consisting of a carboxylic acid group, a hydroxyl group and a sulfonic acid group. A porous film containing a water-insoluble particulate polymer containing .5 to 40% by mass is disclosed. And in the Example, it is disclosed that a particulate polymer composed of 80 parts of ethyl acrylate, 15 parts of acrylonitrile and 5 parts of itaconic acid was obtained.
 WO2018/021552号(特許文献3)には、イオン透過性と特定の弾性変化率を有するポリマー粒子を含む、蓄電デバイス電極用バインダーが開示されている。そして、実施例には、エチルアクリレート97質量%及びアクリル酸3質量%からなるポリマー粒子が開示されている。 WO2018 / 021552 (Patent Document 3) discloses a binder for a power storage device electrode containing polymer particles having ion permeability and a specific elastic change rate. And in Examples, polymer particles composed of 97% by mass of ethyl acrylate and 3% by mass of acrylic acid are disclosed.
 本開示は、一態様において、蓄電デバイスの正極と負極の間に配置されるイオン伝導層であって、前記イオン伝導層はアクリル系ポリマーを含有し、前記アクリル系ポリマーは、下記式(I)で表される化合物由来の構成単位(A)を含み、前記アクリル系ポリマーの全構成単位中の構成単位(A)の含有量が88質量%以上100質量%以下であり、前記イオン伝導層の厚さが1μm超500μm以下である、蓄電デバイス用イオン伝導層に関する。
Figure JPOXMLDOC01-appb-C000005
式(I)中、Rは、水素原子又はメチル基を示す。Rは、炭素数1以上3以下の直鎖又は分岐鎖のアルキル基を示す。Xは、-O-又は-NH-を示す。
The present disclosure is, in one embodiment, an ionic conductive layer arranged between a positive electrode and a negative electrode of a power storage device, wherein the ionic conductive layer contains an acrylic polymer, and the acrylic polymer is the following formula (I). The content of the structural unit (A) in all the structural units of the acrylic polymer is 88% by mass or more and 100% by mass or less, and the ionic conductive layer contains the structural unit (A) derived from the compound represented by. The present invention relates to an ion conductive layer for a power storage device having a thickness of more than 1 μm and 500 μm or less.
Figure JPOXMLDOC01-appb-C000005
In formula (I), R 1 represents a hydrogen atom or a methyl group. R 2 represents a linear or branched alkyl group having 1 or more and 3 or less carbon atoms. X indicates -O- or -NH-.
 本開示は、一態様において、本開示のイオン伝導層を形成するためのアクリル系ポリマー組成物に関する。 The present disclosure relates, in one aspect, to an acrylic polymer composition for forming the ionic conductive layer of the present disclosure.
 本開示は、一態様において、本開示のイオン伝導層を含有し、前記イオン伝導層の厚さが1μm超500μm以下である、蓄電デバイス用部材に関する。 The present disclosure relates to, in one aspect, a member for a power storage device containing the ion conductive layer of the present disclosure and having a thickness of the ion conductive layer of more than 1 μm and 500 μm or less.
 本開示は、一態様において、本開示の蓄電デバイス用部材を有する、蓄電デバイスに関する。 The present disclosure relates to a power storage device having the power storage device member of the present disclosure in one aspect.
 本開示は、一態様において、蓄電デバイス用イオン伝導層を形成するための方法であって、イオン伝導層の厚さが1μm超500μm以下になるように、アクリル系ポリマー組成物を含有するスラリーを基材表面に塗布する工程と、塗布したスラリーを乾燥してイオン伝導層を形成する工程と、を含み、前記アクリル系ポリマー組成物はアクリル系ポリマーの粒子を含有し、前記アクリル系ポリマーは、下記式(I)で表される化合物由来の構成単位(A)を含み、前記アクリル系ポリマーの全構成単位中における構成単位(A)の含有量は88質量%以上100質量%以下である、イオン伝導層形成方法に関する。
Figure JPOXMLDOC01-appb-C000006
式(I)中、Rは、水素原子又はメチル基を示す。Rは、炭素数1以上3以下の直鎖又は分岐鎖のアルキル基を示す。Xは、-O-又は-NH-を示す。
The present disclosure is, in one embodiment, a method for forming an ionic conductive layer for a power storage device, wherein a slurry containing an acrylic polymer composition is provided so that the thickness of the ionic conductive layer is more than 1 μm and 500 μm or less. The acrylic polymer composition comprises particles of the acrylic polymer, and the acrylic polymer comprises a step of applying the coating to the surface of the substrate and a step of drying the applied slurry to form an ionic conductive layer. The content of the structural unit (A) in all the structural units of the acrylic polymer is 88% by mass or more and 100% by mass or less, including the structural unit (A) derived from the compound represented by the following formula (I). The present invention relates to a method for forming an ion conductive layer.
Figure JPOXMLDOC01-appb-C000006
In formula (I), R 1 represents a hydrogen atom or a methyl group. R 2 represents a linear or branched alkyl group having 1 or more and 3 or less carbon atoms. X indicates -O- or -NH-.
図1は、バイポーラー電池の概略図である。FIG. 1 is a schematic diagram of a bipolar battery.
 特許文献1に開示される接着層自体にはイオン伝導性が乏しいため、厚みが1μmを超えると多孔性ポリオレフィンフィルムの空孔を塞ぎイオン伝導性が損なわれることが記載されており、粒子状重合体自体のイオン伝導性には言及されておらず、前記要望に十分な電極の電池特性は得られない。
 特許文献2に開示される多孔膜は、高分子のイオン伝導性が乏しいために、無機フィラーに対して水溶性高分子及び粒子状高分子の含有量が多いと空孔を覆いLiの移動が阻害されることが記載されており、高分子自体のイオン伝導性には言及されておらず、前記要望に十分な電極の電池特性は得られない。
 特許文献3のポリマー粒子は電極のバインダーとして用いられており、イオン伝導層の形成に用いることについて言及されていない。
Since the adhesive layer itself disclosed in Patent Document 1 has poor ionic conductivity, it is described that if the thickness exceeds 1 μm, the pores of the porous polyolefin film are blocked and the ionic conductivity is impaired. The ionic conductivity of the coalescence itself is not mentioned, and the battery characteristics of the electrode sufficient for the above-mentioned request cannot be obtained.
Since the porous film disclosed in Patent Document 2 has poor ionic conductivity of the polymer, if the content of the water-soluble polymer and the particulate polymer is large with respect to the inorganic filler, the pores are covered and Li moves. It is described that it is inhibited, and the ionic conductivity of the polymer itself is not mentioned, and the battery characteristics of the electrode sufficient for the above-mentioned request cannot be obtained.
The polymer particles of Patent Document 3 are used as a binder for electrodes, and there is no mention of using them for forming an ionic conductive layer.
 本開示は、一態様において、蓄電デバイスの電池特性を向上できる蓄電デバイス用イオン伝導層を提供する。 The present disclosure provides, in one aspect, an ion conduction layer for a power storage device that can improve the battery characteristics of the power storage device.
 本開示は、蓄電デバイス用イオン伝導層を所定のアクリル系ポリマーで形成することにより、蓄電デバイスの電池特性を向上できるという知見に基づく。 The present disclosure is based on the finding that the battery characteristics of a power storage device can be improved by forming the ion conduction layer for the power storage device with a predetermined acrylic polymer.
 すなわち、本開示は、一態様において、蓄電デバイスの正極と負極の間に配置されるイオン伝導層であって、前記イオン伝導層はアクリル系ポリマー(以下、「本開示のアクリル系ポリマー」ともいう)を含有し、前記アクリル系ポリマーは、上記式(I)で表される化合物由来の構成単位(A)を含み、前記アクリル系ポリマーの全構成単位中の構成単位(A)の含有量が88質量%以上100質量%以下であり、前記イオン伝導層の厚さが1μm超500μm以下である、蓄電デバイス用イオン伝導層(以下、「本開示のイオン伝導層」ともいう)に関する。
 本開示によれば、蓄電デバイスの電池特性を向上できる蓄電デバイス用イオン伝導層を提供できる。本開示のイオン伝導層を、蓄電デバイスの電解質、セパレーター、固体電解質混合膜、電極とセパレーター等の接着層、表面保護層等に使用することで、電池特性に優れた蓄電デバイスを得ることができる。
That is, the present disclosure is, in one embodiment, an ionic conductive layer arranged between the positive electrode and the negative electrode of the power storage device, and the ionic conductive layer is also referred to as an acrylic polymer (hereinafter, also referred to as "the acrylic polymer of the present disclosure"). ), The acrylic polymer contains the structural unit (A) derived from the compound represented by the above formula (I), and the content of the structural unit (A) in all the structural units of the acrylic polymer is The present invention relates to an ion conducting layer for a power storage device (hereinafter, also referred to as “the ion conducting layer of the present disclosure”), which is 88% by mass or more and 100% by mass or less, and the thickness of the ion conducting layer is more than 1 μm and 500 μm or less.
According to the present disclosure, it is possible to provide an ion conductive layer for a power storage device that can improve the battery characteristics of the power storage device. By using the ion conducting layer of the present disclosure for an electrolyte, a separator, a solid electrolyte mixed film, an adhesive layer such as an electrode and a separator, a surface protection layer, etc. of a power storage device, a power storage device having excellent battery characteristics can be obtained. ..
 本開示の効果発現のメカニズムの詳細は明らかではないが、以下のことが推定される。
 本開示では、蓄電デバイス用イオン伝導層に含まれるアクリル系ポリマーが、炭素数1以上3以下の直鎖又は分岐鎖のアルキル基を有する(メタ)アクリル酸エステル(式(I)で表される化合物)由来の構成単位(A)を有することで、蓄電デバイスに用いる金属イオンおよび電解液への親和性が高く、金属イオンの移動も阻害しないようにすることができると考えられる。そして、イオン伝導層に含まれるアクリル系ポリマーの全構成単位中の構成単位(A)の含有割合が多いことで、本開示のイオン伝導層を用いて作製した蓄電デバイスは、電池の内部抵抗が抑制され、電池特性を向上できると考えられる。
 但し、これらは推定であって、本開示はこれらメカニズムに限定して解釈されなくてもよい。
The details of the mechanism of effect manifestation of the present disclosure are not clear, but the following are presumed.
In the present disclosure, the acrylic polymer contained in the ionic conduction layer for a power storage device is represented by a (meth) acrylic acid ester (formula (I)) having a linear or branched alkyl group having 1 or more and 3 or less carbon atoms. It is considered that having the structural unit (A) derived from the compound) has a high affinity for the metal ion and the electrolytic solution used in the energy storage device, and can prevent the movement of the metal ion from being hindered. Since the content of the structural unit (A) in all the structural units of the acrylic polymer contained in the ion conductive layer is high, the power storage device manufactured by using the ion conductive layer of the present disclosure has a high internal resistance of the battery. It is thought that it can be suppressed and the battery characteristics can be improved.
However, these are estimates and the present disclosure may not be construed as limiting to these mechanisms.
 本開示のイオン伝導層は、正極と負極の間でイオンの授受を行う蓄電デバイスにおいて、蓄電デバイスの正極と負極の間に配置されるイオン伝導層である。本開示のイオン伝導層は、一又は複数の実施形態において、電極の保護や接着、あるいは蓄電デバイスの安全性や耐久性などを目的としたイオン伝導可能な樹脂含有層である。本開示のイオン伝導層は、正極と負極の間であればいずれの場所に配置されてもよい。本開示のイオン伝導層が配置される場所としては、例えば、負極表面(負極保護層など)、電解質層、セパレーター表面(接着層など)、セパレーター自体、正極表面(正極保護層など)が挙げられる。これらのうち少なくとも1つの場所に本開示のイオン伝導層が配置されることにより、蓄電デバイスの電池特性を向上させることができる。 The ion conducting layer of the present disclosure is an ion conducting layer arranged between the positive electrode and the negative electrode of the power storage device in the power storage device that transfers ions between the positive electrode and the negative electrode. The ion conductive layer of the present disclosure is a resin-containing layer capable of ion conduction for the purpose of protecting and adhering electrodes, safety and durability of a power storage device, and the like in one or a plurality of embodiments. The ion conducting layer of the present disclosure may be arranged at any place as long as it is between the positive electrode and the negative electrode. Examples of the place where the ion conductive layer of the present disclosure is arranged include a negative electrode surface (negative electrode protective layer, etc.), an electrolyte layer, a separator surface (adhesive layer, etc.), a separator itself, and a positive electrode surface (positive electrode protective layer, etc.). .. By arranging the ion conduction layer of the present disclosure at at least one of these locations, the battery characteristics of the power storage device can be improved.
[アクリル系ポリマー]
 本開示のイオン伝導層は、本開示のアクリル系ポリマーを含む。本開示のイオン伝導層中の本開示のアクリル系ポリマーの含有量は、蓄電デバイスの性能および製造の観点から、1質量%以上が好ましく、2質量%以上がより好ましく、3質量%以上が更に好ましく、5質量%以上がより更に好ましく、そして、100質量%以下が好ましい。
 また、本開示のイオン伝導層は、本開示のアクリル系ポリマー以外のポリマー含むことができる。本開示のイオン伝導層のポリマー中の本開示のアクリル系ポリマーの含有量は、蓄電デバイスの性能および製造の観点から、75質量%以上が好ましく、85質量%以上がより好ましく、90質量%以上が更に好ましく、そして、100質量%以下が好ましい。本開示のアクリル系ポリマー以外のポリマーとしては、全構成単位中の構成単位(A)の含有量が88質量%未満のアクリル系ポリマー、スチレン系ポリマー、フッ素系ポリマー、セルロース系ポリマー等が挙げられる。
[Acrylic polymer]
The ionic conductive layer of the present disclosure includes the acrylic polymer of the present disclosure. The content of the acrylic polymer of the present disclosure in the ion conductive layer of the present disclosure is preferably 1% by mass or more, more preferably 2% by mass or more, and further preferably 3% by mass or more, from the viewpoint of the performance and manufacture of the power storage device. Preferably, 5% by mass or more is more preferable, and 100% by mass or less is preferable.
Further, the ionic conductive layer of the present disclosure may contain a polymer other than the acrylic polymer of the present disclosure. The content of the acrylic polymer of the present disclosure in the polymer of the ion conductive layer of the present disclosure is preferably 75% by mass or more, more preferably 85% by mass or more, and 90% by mass or more from the viewpoint of the performance and manufacture of the power storage device. Is more preferable, and 100% by mass or less is preferable. Examples of the polymer other than the acrylic polymer of the present disclosure include an acrylic polymer, a styrene polymer, a fluoropolymer, a cellulosic polymer, etc., in which the content of the structural unit (A) in all the structural units is less than 88% by mass. ..
 本開示のアクリル系ポリマーは、後述する構成単位(A)を含むものである。構成単位(A)は、後述する化合物の単官能モノマー由来の構成単位である。単官能モノマーとは、不飽和結合を1個有するモノマーをいう。
 本開示のアクリル系ポリマーは、一又は複数の実施形態において、後述する構成単位(B)及び/又は後述する構成単位(C)をさらに含有することができる。
 本開示のアクリル系ポリマーとしては、一又は複数の実施形態において、後述する構成単位(A)からなるホモポリマー、後述する構成単位(A)と後述する構成単位(B)とを含む共重合体、後述する構成単位(A)と後述する構成単位(C)とを含む共重合体、及び、後述する構成単位(A)と後述する構成単位(B)と後述する構成単位(C)とを含む共重合体から選ばれる少なくとも1種が挙げられる。アクリル系ポリマーは、1種であってもよいし、2種以上の組合せであってもよい。
The acrylic polymer of the present disclosure contains a structural unit (A) described later. The structural unit (A) is a structural unit derived from a monofunctional monomer of a compound described later. The monofunctional monomer means a monomer having one unsaturated bond.
The acrylic polymer of the present disclosure may further contain a structural unit (B) and / or a structural unit (C) described later in one or more embodiments.
As the acrylic polymer of the present disclosure, in one or more embodiments, a homopolymer composed of the structural unit (A) described later, and a copolymer containing the structural unit (A) described later and the structural unit (B) described later. , A copolymer containing a structural unit (A) described later and a structural unit (C) described later, and a structural unit (A) described later, a structural unit (B) described later, and a structural unit (C) described later. At least one selected from the copolymers containing the copolymers may be mentioned. The acrylic polymer may be one kind or a combination of two or more kinds.
 <構成単位(A)>
 構成単位(A)は、下記式(I)で表される化合物(以下、「モノマー(A)」ともいう)由来の構成単位である。モノマー(A)は、1種単独で用いてもよいし、2種以上併用してもよい。
<Constituent unit (A)>
The structural unit (A) is a structural unit derived from a compound represented by the following formula (I) (hereinafter, also referred to as “monomer (A)”). The monomer (A) may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(I)中、Rは、合成の容易性の観点から、水素原子又はメチル基を示し、水素原子がより好ましい。Rは、金属イオン及び電解液への親和性の観点から、炭素数1以上3以下の直鎖又は分岐鎖のアルキル基を示し、炭素数1~2のアルキル基がより好ましく、炭素数2のアルキル基が更に好ましい。Xは、-O-又は-NH-を示す。本開示において、上記式(I)、後述する式(II)、及び式(III)におけるRは、それぞれ独立している。 In formula (I), R 1 represents a hydrogen atom or a methyl group from the viewpoint of ease of synthesis, and a hydrogen atom is more preferable. R 2 represents a linear or branched alkyl group having 1 or more and 3 or less carbon atoms from the viewpoint of affinity with metal ions and an electrolytic solution, and an alkyl group having 1 to 2 carbon atoms is more preferable and has 2 carbon atoms. Alkyl group of is more preferred. X indicates -O- or -NH-. In the present disclosure, R1 in the above formula (I), the formula (II) described later, and the formula (III) are independent of each other.
 モノマー(A)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ノルマルプロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、等のアルキルエステル(メタ)アクリレート;メチル(メタ)アクリルアミド、エチル(メタ)アクリルアミド、ノルマルプロピル(メタ)アクリルアミド、イソプロピル(メタ)アクリルアミド等の単官能(メタ)アクリルアミド;から選ばれる1種又は2種以上の組合せが挙げられる。これらの中でも、金属イオンおよび電解液への親和性の観点から、メチルメタクリレート(MMA)、メチルアクリレート(MA)、エチルメタクリレート(EMA)及びエチルアクリレート(EA)から選ばれる1種又は2種以上の組合せが好ましい。本開示において、(メタ)アクリレートとは、メタクリレート又はアクリレートを意味し、(メタ)アクリルアミドとは、メタクリルアミド又はアクリルアミドを意味する。 Examples of the monomer (A) include alkyl ester (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, normal propyl (meth) acrylate, and isopropyl (meth) acrylate; methyl (meth) acrylamide and ethyl. Examples thereof include one or a combination of two or more selected from monofunctional (meth) acrylamides such as (meth) acrylamide, normal propyl (meth) acrylamide, and isopropyl (meth) acrylamide. Among these, one or more selected from methyl methacrylate (MMA), methyl acrylate (MA), ethyl methacrylate (EMA) and ethyl acrylate (EA) from the viewpoint of affinity for metal ions and electrolytic solutions. The combination is preferred. In the present disclosure, (meth) acrylate means methacrylate or acrylate, and (meth) acrylamide means methacrylamide or acrylamide.
 本開示のアクリル系ポリマーの全構成単位中の構成単位(A)の含有量は、電解液への親和性の観点から、88質量%以上であって、90質量%以上が好ましく、92質量%以上がより好ましく、94質量%以上が更に好ましく、96質量%以上がより更に好ましい。そして、金属イオンへの親和性の観点から、100質量%以下であって、99.9質量%以下が好ましく、99.5質量%以下がより好ましく、99質量%以下が更に好ましい。構成単位(A)の含有量は、公知の分析方法又は分析装置によって求めることができる。構成単位(A)が2種以上のモノマー(A)由来の構成単位からなる場合、構成単位(A)の含有量はそれらの合計含有量をいう。 The content of the structural unit (A) in all the structural units of the acrylic polymer of the present disclosure is 88% by mass or more, preferably 90% by mass or more, and 92% by mass, from the viewpoint of affinity with the electrolytic solution. The above is more preferable, 94% by mass or more is further preferable, and 96% by mass or more is further preferable. From the viewpoint of affinity for metal ions, it is preferably 100% by mass or less, preferably 99.9% by mass or less, more preferably 99.5% by mass or less, still more preferably 99% by mass or less. The content of the structural unit (A) can be determined by a known analytical method or an analyzer. When the structural unit (A) is composed of a structural unit derived from two or more kinds of monomers (A), the content of the structural unit (A) means the total content thereof.
 本開示のアクリル系ポリマーに含まれる構成単位(A)は、電解液への親和性の観点から、式(I)中のRが水素原子であり、Rが炭素数1以上3以下の直鎖又は分岐鎖のアルキル基である化合物由来の構成単位(以下、「構成単位(A1)」ともいう)、又は、式(I)中のRが水素原子又はメチル基であり、Rが炭素数1~2のアルキル基である化合物由来の構成単位(以下、「構成単位(A2)」ともいう)を含むことが好ましい。
 構成単位(A)が構成単位(A1)を含む場合、本開示のアクリル系ポリマーの全構成単位中の構成単位(A1)の含有量は、電解液への親和性の観点から、70質量%以上が好ましく、85質量%以上がより好ましく、90質量%以上が更に好ましく、94質量%以上がより更に好ましく、96質量%以上が特に好ましい。
 構成単位(A)が構成単位(A2)を含む場合、本開示のアクリル系ポリマーの全構成単位中の構成単位(A2)の含有量は、電解液への親和性の観点から、70質量%以上が好ましく、85質量%以上がより好ましく、90質量%以上が更に好ましく、94質量%以上がより更に好ましく、96質量%以上が特に好ましい。
In the structural unit (A) contained in the acrylic polymer of the present disclosure, R 1 in the formula (I) is a hydrogen atom and R 2 has 1 or more and 3 or less carbon atoms from the viewpoint of affinity with the electrolytic solution. A structural unit derived from a compound that is a linear or branched alkyl group (hereinafter, also referred to as “constituent unit (A1)”), or R 1 in the formula (I) is a hydrogen atom or a methyl group, and R 2 It is preferable that the compound contains a structural unit derived from a compound which is an alkyl group having 1 to 2 carbon atoms (hereinafter, also referred to as “constituent unit (A2)”).
When the structural unit (A) includes the structural unit (A1), the content of the structural unit (A1) in all the structural units of the acrylic polymer of the present disclosure is 70% by mass from the viewpoint of affinity with the electrolytic solution. The above is preferable, 85% by mass or more is more preferable, 90% by mass or more is further preferable, 94% by mass or more is further preferable, and 96% by mass or more is particularly preferable.
When the structural unit (A) includes the structural unit (A2), the content of the structural unit (A2) in all the structural units of the acrylic polymer of the present disclosure is 70% by mass from the viewpoint of affinity with the electrolytic solution. The above is preferable, 85% by mass or more is more preferable, 90% by mass or more is further preferable, 94% by mass or more is further preferable, and 96% by mass or more is particularly preferable.
 <構成単位(B)>
 構成単位(B)は、下記式(II)で表される化合物(以下、「モノマー(B1)」ともいう)、下記(III)で表される化合物(以下、「モノマー(B2)」ともいう)及び不飽和二塩基酸(以下、「モノマー(B3)」ともいう)から選ばれる少なくとも1種の化合物(以下、モノマー(B)ともいう)由来の構成単位である。金属イオンへの親和性の観点から、構成単位(B)は、モノマー(B1)由来の構成単位が好ましい。モノマー(B)は、1種単独で用いてもよいし、2種以上併用してもよい。
<Constituent unit (B)>
The structural unit (B) is a compound represented by the following formula (II) (hereinafter, also referred to as “monomer (B1)”) and a compound represented by the following (III) (hereinafter, also referred to as “monomer (B2)”). ) And unsaturated dibasic acid (hereinafter, also referred to as “monomer (B3)”), which is a constituent unit derived from at least one compound (hereinafter, also referred to as monomer (B)). From the viewpoint of affinity for metal ions, the structural unit (B) is preferably a structural unit derived from the monomer (B1). The monomer (B) may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 前記式(II)中、Rは、合成の容易性の観点から、水素原子又はメチル基である。Mは、金属イオンへの親和性の観点から、水素原子又はカチオンであって、カチオンが好ましい。カチオンとしては、電池特性向上の観点から、アルカリ金属イオン及びアンモニウムイオンの少なくとも一方が好ましく、アンモニウムイオン、リチウムイオン、ナトリウムイオン及びカリウムイオンから選ばれる少なくとも1種がより好ましく、リチウムイオン及びナトリウムイオンの少なくとも一方が更に好ましい。 In the formula (II), R 1 is a hydrogen atom or a methyl group from the viewpoint of ease of synthesis. M is a hydrogen atom or a cation from the viewpoint of affinity for a metal ion, and a cation is preferable. As the cation, at least one of alkali metal ion and ammonium ion is preferable from the viewpoint of improving battery characteristics, and at least one selected from ammonium ion, lithium ion, sodium ion and potassium ion is more preferable, and lithium ion and sodium ion are more preferable. At least one is more preferred.
 前記式(II)中のMがカチオンである場合、モノマー(B1)は、例えば、Mが水素原子であるモノマーを、アルカリ(アンモニア、水酸化ナトリウム、水酸化リチウム、水酸化カリウム等)で中和したものであってもよいし、あるいは、Mが水素原子であるモノマーを重合したポリマーとなってからアルカリで中和されたものでもあってもよい。また、Mが水素原子であるモノマーを重合したポリマーが蓄電デバイス内部で電解質に含まれる金属イオンにより水素原子が置換されたものであってもよい。重合反応制御および分散安定性の観点から重合後にポリマーの構成単位となってからアルカリで中和されたものであることが好ましい。
 モノマー(B1)は、一又は複数の実施形態において、部分的に中和されたものであってもよいし、完全に中和されたものであってもよい。前記式(II)におけるMは、一又は複数の実施形態において、リチウムイオン及び水素原子から選ばれる少なくとも1種であることが好ましい。
When M in the formula (II) is a cation, the monomer (B1) contains, for example, a monomer in which M is a hydrogen atom with an alkali (ammonia, sodium hydroxide, lithium hydroxide, potassium hydroxide, etc.). It may be summed, or it may be a polymer obtained by polymerizing a monomer in which M is a hydrogen atom and then neutralized with an alkali. Further, the polymer obtained by polymerizing a monomer in which M is a hydrogen atom may be a polymer in which a hydrogen atom is replaced by a metal ion contained in an electrolyte inside a power storage device. From the viewpoint of polymerization reaction control and dispersion stability, it is preferable that the polymer is neutralized with an alkali after becoming a constituent unit of the polymer after polymerization.
The monomer (B1) may be partially neutralized or completely neutralized in one or more embodiments. In one or more embodiments, M in the formula (II) is preferably at least one selected from lithium ions and hydrogen atoms.
 モノマー(B1)としては、例えば、アクリル酸(AA)、メタクリル酸(MAA)、及びそれらの塩から選ばれる1種又は2種以上の組合せが挙げられる。塩としては、例えば、アンモニウム塩、ナトリウム塩、リチウム塩及びカリウム塩から選ばれる少なくとも1種が挙げられる。 Examples of the monomer (B1) include acrylic acid (AA), methacrylic acid (MAA), and one or a combination of two or more selected from salts thereof. Examples of the salt include at least one selected from ammonium salt, sodium salt, lithium salt and potassium salt.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 前記式(III)中、Rは、水素原子又はメチル基を示し、Xは、-O-又は-NH-を示す。Rは、-(CH)OR、-RSOM、-RN(R)(R)及び-R(R)(R)(R)・Yから選ばれる少なくとも1種を示す。nは、平均付加モル数を示し、1以上4以下である。Rは、水素原子又はメチル基を示す。Rは、炭素数1以上3以下の直鎖又は分岐鎖のアルキレン基を示す。Mは、水素原子又はカチオンを示す。カチオンとしては、上述した式(II)中のMのカチオンと同じものが挙げられる。本開示において、式(II)及び式(III)におけるMは、それぞれ独立している。Rは、炭素数1以上3以下の直鎖又は分岐鎖のアルキレン基を示す。R及びRは同一又は異なり、炭素数1以上3以下の直鎖又は分岐鎖のアルキル基を示す。Rは、炭素数1以上3以下の直鎖又は分岐鎖のアルキル基を示す。Y-は、アニオンを示す。アニオンとしては、塩化物イオン、臭化物イオン、フッ化物イオン等のハロゲン化物イオン;硫酸イオン;リン酸イオン;等が挙げられる。 In the formula (III), R 1 represents a hydrogen atom or a methyl group, and X represents -O- or -NH-. R4 is-(CH 2 ) n OR 3 , -R 5 SO 3 M, -R 6 N (R 7 ) (R 8 ) and -R 6 N + (R 7 ) (R 8 ) (R 9 ). -Indicates at least one selected from Y- . n indicates the average number of added moles, which is 1 or more and 4 or less. R 3 represents a hydrogen atom or a methyl group. R 5 represents a linear or branched alkylene group having 1 or more and 3 or less carbon atoms. M represents a hydrogen atom or a cation. Examples of the cation include the same cations of M in the above-mentioned formula (II). In the present disclosure, M in formula (II) and formula (III) are independent of each other. R 6 represents a linear or branched alkylene group having 1 or more and 3 or less carbon atoms. R 7 and R 8 are the same or different, and represent linear or branched alkyl groups having 1 or more and 3 or less carbon atoms. R 9 represents a linear or branched alkyl group having 1 or more and 3 or less carbon atoms. Y - indicates an anion. Examples of the anion include halide ions such as chloride ion, bromide ion and fluoride ion; sulfate ion; phosphate ion; and the like.
 前記式(III)中のMがカチオンである場合、モノマー(B2)は、例えば、Mが水素原子であるモノマーをアルカリで中和したものであってもよいし、あるいは、Mが水素原子であるモノマーを重合したポリマーとなってからアルカリで中和されたものでもあってもよい。また、Mが水素原子であるモノマーを重合したポリマーが蓄電デバイス内部で電解質に含まれる金属イオンにより水素原子が置換されたものであってもよい。重合反応制御および分散安定性の観点から重合後にポリマーの構成単位となってからアルカリで中和されたものであることが好ましい。
 モノマー(B2)は、一又は複数の実施形態において、部分的に中和されたものであってもよいし、完全に中和されたものであってもよい。前記式(III)におけるMは、一又は複数の実施形態において、リチウムイオン及び水素原子から選ばれる少なくとも1種であることが好ましい。
When M in the formula (III) is a cation, the monomer (B2) may be, for example, a monomer in which M is a hydrogen atom neutralized with an alkali, or M is a hydrogen atom. It may be a polymer obtained by polymerizing a certain monomer and then neutralized with an alkali. Further, the polymer obtained by polymerizing a monomer in which M is a hydrogen atom may be a polymer in which a hydrogen atom is replaced by a metal ion contained in an electrolyte inside a power storage device. From the viewpoint of polymerization reaction control and dispersion stability, it is preferable that the polymer is neutralized with an alkali after becoming a constituent unit of the polymer after polymerization.
The monomer (B2) may be partially neutralized or completely neutralized in one or more embodiments. In one or more embodiments, M in the formula (III) is preferably at least one selected from lithium ions and hydrogen atoms.
 モノマー(B2)としては、合成の容易性の観点から、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート等の水酸基含有エステル(メタ)アクリレート;及びジメチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート、トリメチルアンモニオエチル(メタ)アクリレート等の窒素原子含有エステル(メタ)アクリレート;から選ばれる少なくとも1種が挙げられ、ヒドロキシエチル(メタ)アクリレート、及びヒドロキシプロピル(メタ)アクリレートから選ばれる少なくとも1種が好ましく、ヒドロキシエチルメタクリレート及びヒドロキシエチルアクリレートの少なくとも一方がより好ましい。 The monomer (B2) includes hydroxyl group-containing ester (meth) acrylates such as hydroxyethyl (meth) acrylate and hydroxypropyl (meth) acrylate; and dimethylaminoethyl (meth) acrylate and dimethylaminopropyl from the viewpoint of ease of synthesis. At least one selected from nitrogen atom-containing ester (meth) acrylates such as (meth) acrylate and trimethylammonioethyl (meth) acrylate; is selected from hydroxyethyl (meth) acrylate and hydroxypropyl (meth) acrylate. At least one of them is preferable, and at least one of hydroxyethyl methacrylate and hydroxyethyl acrylate is more preferable.
 モノマー(B3)は、不飽和二塩基酸であって、合成の容易性の観点から、例えば、炭素数4以上12以下の不飽和二塩基酸及びその塩から選ばれる少なくとも1種が挙げられ、炭素数は4以上8以下が好ましく、炭素数4以上6以下がより好ましい。 The monomer (B3) is an unsaturated dibasic acid, and from the viewpoint of ease of synthesis, for example, at least one selected from unsaturated dibasic acids having 4 or more and 12 or less carbon atoms and salts thereof can be mentioned. The number of carbon atoms is preferably 4 or more and 8 or less, and more preferably 4 or more and 6 or less.
 モノマー(B3)としては、合成の容易性の観点から、マレイン酸、フマル酸、シトラコン酸、メサコン酸、イタコン酸、2-ペンテン二酸、3-ヘキセン二酸、及びそれらの塩が挙げられ、マレイン酸、フマル酸、イタコン酸、及びそれらの塩から選ばれる少なくとも1種が好ましく、マレイン酸及びその塩の少なくとも一方がより好ましい。 Examples of the monomer (B3) include maleic acid, fumaric acid, citraconic acid, mesaconic acid, itaconic acid, 2-pentene diic acid, 3-hexene diic acid, and salts thereof from the viewpoint of ease of synthesis. At least one selected from maleic acid, fumaric acid, itaconic acid, and salts thereof is preferable, and at least one of maleic acid and its salts is more preferable.
 モノマー(B3)が不飽和二塩基酸の塩である場合、塩としては、金属イオンへの親和性及び分散安定性の観点から、アンモニウム塩、リチウム塩、ナトリウム塩及びカリウム塩から選ばれる少なくとも1種が好ましく、リチウム塩及びナトリウム塩の少なくとも一方がより好ましい。 When the monomer (B3) is a salt of unsaturated dibasic acid, the salt is at least one selected from ammonium salt, lithium salt, sodium salt and potassium salt from the viewpoint of affinity for metal ions and dispersion stability. Species are preferred, with at least one of the lithium and sodium salts being more preferred.
 モノマー(B3)の不飽和二塩基酸の塩としては、不飽和二塩基酸がアルカリで中和されたものであってもよいし、前記不飽和二塩基酸を用いて重合した後にアルカリで中和されたものを用いていてもよい。また、前記不飽和二塩基酸を用いて重合したポリマーが蓄電デバイス内部で電解質に含まれる金属イオンにより水素原子が置換されたものであってもよい。重合反応制御および分散安定性の観点から重合後にポリマーの構成単位となってからアルカリで中和されたものであることが好ましい。 The salt of the unsaturated dibasic acid of the monomer (B3) may be an unsaturated dibasic acid neutralized with an alkali, or may be polymerized with the unsaturated dibasic acid and then neutralized with an alkali. The summed one may be used. Further, the polymer polymerized using the unsaturated dibasic acid may be a polymer in which hydrogen atoms are replaced by metal ions contained in the electrolyte inside the power storage device. From the viewpoint of polymerization reaction control and dispersion stability, it is preferable that the polymer is neutralized with an alkali after becoming a constituent unit of the polymer after polymerization.
 本開示のアクリル系ポリマーが構成単位(B)を含む場合、本開示のアクリル系ポリマーの全構成単位中の構成単位(B)の含有量は、金属イオンへの親和性及び分散安定性の観点から、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、0.3質量%以上が更に好ましく、0.5質量%以上が更に好ましく、1質量%以上が更に好ましく、そして、同様の観点から、12質量%以下が好ましく、10質量%以下がより好ましく、8質量%以下が更に好ましく、6質量%以下が更に好ましく、4質量%以下が更に好ましい。構成単位(B)の含有量は、公知の分析方法又は分析装置によって求めることができる。構成単位(B)が2種以上のモノマー(B)由来の構成単位からなる場合、構成単位(B)の含有量はそれらの合計含有量をいう。 When the acrylic polymer of the present disclosure contains a structural unit (B), the content of the structural unit (B) in all the structural units of the acrylic polymer of the present disclosure is from the viewpoint of affinity to metal ions and dispersion stability. Therefore, 0.01% by mass or more is preferable, 0.1% by mass or more is more preferable, 0.3% by mass or more is further preferable, 0.5% by mass or more is further preferable, and 1% by mass or more is further preferable. From the same viewpoint, 12% by mass or less is preferable, 10% by mass or less is more preferable, 8% by mass or less is further preferable, 6% by mass or less is further preferable, and 4% by mass or less is further preferable. The content of the structural unit (B) can be determined by a known analytical method or an analyzer. When the structural unit (B) is composed of structural units derived from two or more kinds of monomers (B), the content of the structural unit (B) means the total content thereof.
 本開示のアクリル系ポリマーが構成単位(B)を含む場合、本開示のアクリル系ポリマー中の構成単位(B)の含有量に対する構成単位(A)の含有量の質量比(A/B)は、金属イオン及び電解液への親和性、並びに分散安定性の観点から、5000以下が好ましく、500以下がより好ましく、200以下が更に好ましく、そして、金属イオン及び電解液への親和性、並びに分散安定性の観点から、8以上が好ましく、15以上がより好ましく、20以上が更に好ましく、25以上がより更に好ましい。 When the acrylic polymer of the present disclosure contains a structural unit (B), the mass ratio (A / B) of the content of the structural unit (A) to the content of the structural unit (B) in the acrylic polymer of the present disclosure is From the viewpoint of affinity for metal ions and electrolytic solution, and dispersion stability, 5000 or less is preferable, 500 or less is more preferable, 200 or less is further preferable, and affinity for metal ion and electrolytic solution, and dispersion. From the viewpoint of stability, 8 or more is preferable, 15 or more is more preferable, 20 or more is further preferable, and 25 or more is further preferable.
 <構成単位(C)>
 構成単位(C)は、架橋性モノマー(以下、「モノマー(C)」ともいう)由来の構成単位である。モノマー(C)としては、多官能(メタ)アクリレート(以下、「モノマー(C1)」ともいう)、及び、N-メチロールアミド基含有モノマー(以下、「モノマー(C2)」ともいう)から選ばれる少なくとも1種が挙げられる。モノマー(C)は、1種単独で用いてもよいし、2種以上併用してもよい。
<Constituent unit (C)>
The structural unit (C) is a structural unit derived from a crosslinkable monomer (hereinafter, also referred to as “monomer (C)”). The monomer (C) is selected from a polyfunctional (meth) acrylate (hereinafter, also referred to as “monomer (C1)”) and an N-methylolamide group-containing monomer (hereinafter, also referred to as “monomer (C2)”). At least one is mentioned. The monomer (C) may be used alone or in combination of two or more.
 モノマー(C1)としては、例えば、下記式(IV)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000010
Examples of the monomer (C1) include compounds represented by the following formula (IV).
Figure JPOXMLDOC01-appb-C000010
 前記式(IV)中、R10は、合成の容易性の観点から、水素原子又はメチル基が好ましい。Xは、合成の容易性及び電解液への親和性の観点から、-O-又は-NH-が好ましい。nは、合成の容易性及び電解液への親和性の観点から、1以上20以下の整数が好ましい。本開示において、前記式(III)及び式(IV)におけるXは、それぞれ独立している。 In the formula (IV), R 10 is preferably a hydrogen atom or a methyl group from the viewpoint of ease of synthesis. X is preferably —O— or —NH— from the viewpoint of ease of synthesis and affinity for the electrolytic solution. n is preferably an integer of 1 or more and 20 or less from the viewpoint of ease of synthesis and affinity for the electrolytic solution. In the present disclosure, X in the formula (III) and the formula (IV) are independent of each other.
 上記式(IV)で表される化合物の具体例としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、デカエチレングリコールジ(メタ)アクリレート、及びペンタデカエチレングリコールジ(メタ)アクリレートから選ばれる少なくとも1種が挙げられる。 Specific examples of the compound represented by the above formula (IV) include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, and decaethylene glycol di (meth) acrylate. , And at least one selected from pentadecaethylene glycol di (meth) acrylates.
 その他のモノマー(C1)としては、例えば、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、アリル(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、フタル酸ジエチレングリコールジ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ヒドロキシピバリン酸エステルネオペンチルグリコールジ(メタ)アクリレート、及びポリエステル(メタ)アクリレートから選ばれる少なくとも1種が挙げられる。 Examples of the other monomer (C1) include 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and glycerinji ( Meta) acrylate, allyl (meth) acrylate, trimethyl propantri (meth) acrylate, pentaerythritol tetra (meth) acrylate, diethylene glycol di (meth) phthalate, caprolactone-modified dipentaerythritol hexa (meth) acrylate, caprolactone-modified hydroxy Examples thereof include at least one selected from pivalic acid ester neopentyl glycol di (meth) acrylate and polyester (meth) acrylate.
 N-メチロールアミド基含有モノマーであるモノマー(C2)としては、N-メチロールアクリルアミド及びN-メチロールメタクリルアミドから選ばれる少なくとも1種が挙げられる。 Examples of the monomer (C2) which is an N-methylolamide group-containing monomer include at least one selected from N-methylolacrylamide and N-methylolmethacrylamide.
 本開示のアクリル系ポリマーが構成単位(C)を含む場合、本開示のアクリル系ポリマーの構成単位(C)の含有量は、合成の容易性及び電解液への親和性の観点から、構成単位(C)以外の構成単位の合計モル数に対して、0.001モル%以上が好ましく、0.01モル%以上がより好ましく、0.05モル%以上が更に好ましく、そして、同様の観点から、5モル%以下が好ましく、3モル%以下がより好ましく、1モル%以下が更に好ましく、0.8モル%以下が更に好ましい。構成単位(C)が2種以上のモノマー(C)由来の構成単位からなる場合、構成単位(C)の含有量はそれらの合計含有量をいう。 When the acrylic polymer of the present disclosure contains a constituent unit (C), the content of the constituent unit (C) of the acrylic polymer of the present disclosure is a constituent unit from the viewpoint of ease of synthesis and compatibility with an electrolytic solution. With respect to the total number of moles of the constituent units other than (C), 0.001 mol% or more is preferable, 0.01 mol% or more is more preferable, 0.05 mol% or more is further preferable, and from the same viewpoint. 5 mol% or less is preferable, 3 mol% or less is more preferable, 1 mol% or less is further preferable, and 0.8 mol% or less is further preferable. When the structural unit (C) is composed of a structural unit derived from two or more kinds of monomers (C), the content of the structural unit (C) means the total content thereof.
 本開示のアクリル系ポリマーは、本開示の効果を損なわない範囲で、前記構成単位(A)、構成単位(B)及び構成単位(C)以外のその他の構成単位を含んでいてもよい。その他の構成単位としては、モノマー(A)、(B)及び(C)と共重合可能なモノマー(以下、「モノマー(D)」ともいう)由来の構成単位(以下、「構成単位(D)」ともいう)であればよい。モノマー(D)としては、例えば、(メタ)アクリロニトリル、スチレン、メチルスチレン、炭素数4以上の直鎖又は分岐鎖のアルキル基を有するアルキル(メタ)アクリレート、芳香族含有(メタ)アクリレート、アルキルビニルエーテル、アルキルビニルエステル、アルケニル基含有モノマー等が挙げられる。モノマー(D)は、1種単独で用いてもよいし、2種以上併用してもよい。 The acrylic polymer of the present disclosure may contain other structural units other than the structural unit (A), the structural unit (B) and the structural unit (C) as long as the effects of the present disclosure are not impaired. As other structural units, a structural unit derived from a monomer (hereinafter, also referred to as “monomer (D)”) copolymerizable with the monomers (A), (B) and (C) (hereinafter, “constituent unit (D)). ”). Examples of the monomer (D) include (meth) acrylonitrile, styrene, methylstyrene, an alkyl (meth) acrylate having a linear or branched alkyl group having 4 or more carbon atoms, an aromatic-containing (meth) acrylate, and an alkyl vinyl ether. , Alkyl vinyl ester, alkenyl group-containing monomer and the like. The monomer (D) may be used alone or in combination of two or more.
 本開示のアクリル系ポリマーの全構成単位中の構成単位(A)及び(B)の合計含有量は、金属イオンおよび電解液への親和性の観点から、88質量%以上であり、90質量%以上が好ましく、92質量%以上がより好ましく、94質量%以上が更に好ましく、96質量%以上がより更に好ましく、98質量%以上が特に好ましい。 The total content of the structural units (A) and (B) in all the structural units of the acrylic polymer of the present disclosure is 88% by mass or more, and 90% by mass, from the viewpoint of compatibility with metal ions and electrolytic solutions. The above is preferable, 92% by mass or more is more preferable, 94% by mass or more is further preferable, 96% by mass or more is further preferable, and 98% by mass or more is particularly preferable.
[アクリル系ポリマーの製造方法]
 本開示のアクリル系ポリマーは、例えば、モノマー(A)並びに必要に応じてモノマー(B)~(D)の少なくとも1つのモノマーを重合させることによって製造できる。すなわち、本開示は、一態様において、モノマー(A)並びに必要に応じてモノマー(B)~(D)の少なくとも1つのモノマーを含むモノマー混合物を重合させる重合工程を含む。重合法としては、例えば、乳化重合法、溶液重合法、懸濁重合法、塊状重合法等の公知の重合法が挙げられ、ポリマーの製造容易性の観点から、乳化重合法が好ましい。
[Manufacturing method of acrylic polymer]
The acrylic polymer of the present disclosure can be produced, for example, by polymerizing the monomer (A) and, if necessary, at least one of the monomers (B) to (D). That is, the present disclosure comprises, in one aspect, a polymerization step of polymerizing a monomer mixture containing the monomer (A) and optionally at least one of the monomers (B)-(D). Examples of the polymerization method include known polymerization methods such as an emulsion polymerization method, a solution polymerization method, a suspension polymerization method, and a bulk polymerization method, and the emulsion polymerization method is preferable from the viewpoint of ease of producing a polymer.
 本開示において、アクリル系ポリマーの全構成単位中の構成単位(A)の含有量(質量%)は、重合に用いるモノマー全量に対する、モノマー(A)の使用量(質量%)と見なすことができる。ポリマー粒子の全構成単位中の構成単位(B)の含有量(質量%)は、重合に用いるモノマー全量に対する、モノマー(B)の使用量(質量%)と見なすことができる。構成単位(B)に対する構成単位(A)の含有量の質量比(A/B)は、重合に用いるモノマー全量における、モノマー(B)の使用量に対するモノマー(A)の使用量の質量比と見なすことができる。ポリマー粒子の全構成単位中の構成単位(A)及び構成単位(B)の合計含有量(質量%)は、重合に用いるモノマー全量に対する、モノマー(A)及びモノマー(B)の合計使用量(質量%)と見なすことができる。ポリマー粒子中の構成単位(C)の含有量(モル%)は、重合に用いるモノマー(C)以外のモノマーの合計モル数に対する(例えば、ポリマー粒子が構成単位(A)~(C)を含む場合、モノマー(A)及び(B)の合計モル数に対する)、モノマー(C)の使用量(モル%)と見なすことができる。 In the present disclosure, the content (% by mass) of the structural unit (A) in all the structural units of the acrylic polymer can be regarded as the amount (% by mass) of the monomer (A) used with respect to the total amount of the monomers used for the polymerization. .. The content (% by mass) of the structural unit (B) in all the structural units of the polymer particles can be regarded as the amount of the monomer (B) used (% by mass) with respect to the total amount of the monomers used for the polymerization. The mass ratio (A / B) of the content of the structural unit (A) to the structural unit (B) is the mass ratio of the amount of the monomer (A) used to the amount of the monomer (B) in the total amount of the monomers used for the polymerization. You can see it. The total content (% by mass) of the structural unit (A) and the structural unit (B) in all the structural units of the polymer particles is the total amount of the monomers (A) and the monomer (B) used with respect to the total amount of the monomers used for the polymerization ( It can be regarded as% by mass). The content (mol%) of the structural unit (C) in the polymer particles is the total number of moles of the monomers other than the monomer (C) used for polymerization (for example, the polymer particles include the structural units (A) to (C). In this case, it can be regarded as the amount (mol%) of the monomer (C) used (with respect to the total number of moles of the monomers (A) and (B)).
 乳化重合法としては、乳化剤を使用する公知の方法及び乳化剤を実質的に使用しない方法、いわゆる、ソープフリー乳化重合法が挙げられ、電池性能の観点から、ソープフリー乳化重合法が好ましい。本開示のアクリル系ポリマーとしては、例えば、モノマー(A)並びに必要に応じてモノマー(B)~(D)の少なくとも1つのモノマーを含有するモノマー混合物を乳化重合、好ましくはソープフリー乳化重合させてなるポリマーが挙げられる。 Examples of the emulsification polymerization method include a known method using an emulsifier and a method in which an emulsifier is substantially not used, a so-called soap-free emulsification polymerization method, and the soap-free emulsification polymerization method is preferable from the viewpoint of battery performance. As the acrylic polymer of the present disclosure, for example, a monomer mixture containing a monomer (A) and, if necessary, at least one monomer (B) to (D) is emulsion-polymerized, preferably soap-free emulsion polymerization. Polymers include.
 乳化重合に用いられる乳化剤量は、結着性低下を抑制する観点から、乳化重合に用いられるモノマー全量に対して、0.05質量%以下が好ましく、0.02質量%以下がより好ましく、0.01質量%以下が更に好ましく、実質的に0質量%がより更に好ましい。本開示において、乳化重合に用いられる乳化剤量は、前記重合工程における界面活性剤の使用量とすることができる。一又は複数の実施形態において、本開示のアクリル系ポリマーは、モノマー(A)を含むモノマー混合物を乳化重合させてなり、本開示のイオン伝導層に含まれる乳化剤量が、アクリル系ポリマーに対して、0質量%以上0.05質量%以下が好ましく、0質量%以上0.02質量%以下がより好ましく、0質量%以上0.01質量%以下が更に好ましく、実質的に0質量%が更に好ましい。 The amount of the emulsifier used in the emulsion polymerization is preferably 0.05% by mass or less, more preferably 0.02% by mass or less, and 0, based on the total amount of the monomers used in the emulsion polymerization from the viewpoint of suppressing the decrease in binding property. It is more preferably 0.01% by mass or less, and even more preferably 0% by mass. In the present disclosure, the amount of emulsifier used for emulsion polymerization can be the amount of the surfactant used in the polymerization step. In one or more embodiments, the acrylic polymer of the present disclosure is obtained by emulsion polymerization of a monomer mixture containing the monomer (A), and the amount of emulsifier contained in the ion conductive layer of the present disclosure is higher than that of the acrylic polymer. , 0% by mass or more and 0.05% by mass or less, more preferably 0% by mass or more and 0.02% by mass or less, further preferably 0% by mass or more and 0.01% by mass or less, and substantially 0% by mass. preferable.
[アクリル系ポリマー組成物]
 本開示は、一態様において、本開示のイオン伝導層を形成するためのアクリル系ポリマー組成物(以下、「本開示のアクリル系ポリマー組成物」ともいう)に関する。
[Acrylic polymer composition]
The present disclosure relates, in one aspect, to an acrylic polymer composition for forming the ionic conductive layer of the present disclosure (hereinafter, also referred to as "the acrylic polymer composition of the present disclosure").
 本開示のアクリル系ポリマー組成物は、一又は複数の実施形態において、上述した本開示のアクリル系ポリマーを含む。本開示のアクリル系ポリマー組成物に含まれるアクリル系ポリマーの形態は粒子であることが好ましい。本開示のアクリル系ポリマー組成物中のアクリル系ポリマーの含有量は、ポリマーの製造および蓄電デバイスの性能の観点から、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上が更に好ましく、そして、70質量%以下が好ましく、60質量%以下がより好ましく、50質量%以下が更に好ましい。 The acrylic polymer composition of the present disclosure comprises, in one or more embodiments, the acrylic polymer of the present disclosure described above. The form of the acrylic polymer contained in the acrylic polymer composition of the present disclosure is preferably particles. The content of the acrylic polymer in the acrylic polymer composition of the present disclosure is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, from the viewpoint of polymer production and the performance of the power storage device. It is more preferably mass% or more, more preferably 70% by mass or less, still more preferably 60% by mass or less, still more preferably 50% by mass or less.
 本開示のアクリル系ポリマー組成物は、一又は複数の実施形態において、極性媒体を含む。極性媒体は、アクリル系ポリマーを溶解または分散できる液体であればよい。極性媒体としては、アクリル系ポリマーの製造と分散安定性の観点から、メタノール、エタノール、イソプロパノール、アセトン、テトラヒドロフランおよびジオキサンから選ばれる少なくとも1種の有機溶媒、これら有機溶媒と水を含有する水性媒体、又は水が好ましく、水性媒体及び水がより好ましく、水が更に好ましい。水としては、イオン交換水等が挙げられる。 The acrylic polymer composition of the present disclosure comprises a polar medium in one or more embodiments. The polar medium may be any liquid that can dissolve or disperse the acrylic polymer. As the polar medium, at least one organic solvent selected from methanol, ethanol, isopropanol, acetone, tetrahydrofuran and dioxane from the viewpoint of production of acrylic polymer and dispersion stability, an aqueous medium containing these organic solvents and water, Alternatively, water is preferred, aqueous media and water are more preferred, and water is even more preferred. Examples of water include ion-exchanged water.
[イオン伝導層の形成方法]
 本開示のイオン伝導層を形成するための方法としては、一又は複数の実施形態において、イオン伝導層の厚さが1μm超500μm以下になるように、本開示のアクリル系ポリマー組成物を含有するスラリー(以下、「本開示のイオン伝導層用スラリー」ともいう)を基材(例えば、セパレーター、電極、剥離フィルムなど)表面に塗布する工程(塗布工程)と、塗布したスラリーを乾燥してイオン伝導層を形成する工程(乾燥工程)と、を含む、イオン伝導層形成方法(以下、「本開示のイオン伝導層形成方法」ともいう)が挙げられる。本開示のイオン伝導層用スラリーを塗布する基材は、一又は複数の実施形態において、多孔性フィルム、又は、電極活性物質とバインダーとを含む電極活物質層が挙げられる。
[Method of forming an ion conductive layer]
As a method for forming the ionic conductive layer of the present disclosure, the acrylic polymer composition of the present disclosure is contained so that the thickness of the ionic conductive layer is more than 1 μm and 500 μm or less in one or more embodiments. A step (coating step) of applying a slurry (hereinafter, also referred to as "slurry for an ion conductive layer of the present disclosure") to the surface of a base material (for example, a separator, an electrode, a release film, etc.) and a step (coating step) of applying the applied slurry to dry ions. Examples thereof include an ion conductive layer forming method (hereinafter, also referred to as “the ion conductive layer forming method of the present disclosure”) including a step of forming a conductive layer (drying step). In one or more embodiments, the substrate to which the slurry for the ion conductive layer of the present disclosure is applied includes a porous film or an electrode active material layer containing an electrode active material and a binder.
 本開示のイオン伝導層用スラリーに含まれるアクリル系ポリマーは粒子形状を有する。アクリル系ポリマーの粒子の平均粒子径は、電解液への親和性及び生産性の観点から、0.1μm以上が好ましく、0.2μm以上がより好ましく、そして、生産性およびスラリーの安定性の観点から、1μm以下が好ましく、0.8μm以下がより好ましく、0.6μm以下が更に好ましく、0.5μm以下がより更に好ましく、0.4μm以下が特に好ましい。本開示において、平均粒径は、レーザー回折散乱法によって測定される体積平均粒径(D50)であり、体積基準で求めた粒度分布の全体積を100%とした累積体積分布曲線において、累積体積が50%となる点の粒子径を意味する。体積平均粒径(D50)は、レーザー回折/散乱式粒子径分布測定装置を用いて測定でき、具体的には実施例に記載の方法で測定できる。 The acrylic polymer contained in the slurry for the ion conductive layer of the present disclosure has a particle shape. The average particle size of the particles of the acrylic polymer is preferably 0.1 μm or more, more preferably 0.2 μm or more, from the viewpoint of compatibility with the electrolytic solution and productivity, and from the viewpoint of productivity and stability of the slurry. Therefore, 1 μm or less is preferable, 0.8 μm or less is more preferable, 0.6 μm or less is further preferable, 0.5 μm or less is further preferable, and 0.4 μm or less is particularly preferable. In the present disclosure, the average particle size is the volume average particle size (D50) measured by the laser diffraction scattering method, and is the cumulative volume in the cumulative volume distribution curve in which the total volume of the particle size distribution obtained on a volume basis is 100%. Means the particle size at the point where is 50%. The volume average particle size (D50) can be measured by using a laser diffraction / scattering type particle size distribution measuring device, and specifically, can be measured by the method described in Examples.
 本開示のイオン伝導層用スラリーに含まれるアクリル系ポリマーの形態としては、粉体であってもよいし、ポリマー粒子を媒体に分散させたポリマー粒子分散体であってもよい。前記媒体は、乳化重合で使用する媒体であってよく、好ましくは極性媒体であり、より好ましくは水性媒体であり、更に好ましくは水である。 The form of the acrylic polymer contained in the slurry for the ion conductive layer of the present disclosure may be a powder or a polymer particle dispersion in which polymer particles are dispersed in a medium. The medium may be a medium used in emulsion polymerization, preferably a polar medium, more preferably an aqueous medium, and even more preferably water.
 本開示のイオン伝導層用スラリー中のアクリル系ポリマーの含有量は、蓄電デバイス製造の観点から、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上が更に好ましく、そして、70質量%以下が好ましく、60質量%以下がより好ましく、50質量%以下が更に好ましい。 The content of the acrylic polymer in the slurry for the ion conductive layer of the present disclosure is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and further preferably 1% by mass or more from the viewpoint of manufacturing a power storage device. It is preferable, and it is preferably 70% by mass or less, more preferably 60% by mass or less, still more preferably 50% by mass or less.
 本開示のイオン伝導層用スラリーの製造方法は、一又は複数の実施形態において、モノマー(A)、並びに必要に応じてモノマー(B)~(D)の少なくとも1つのモノマーを含むモノマー混合物を重合させてポリマー粒子を得る重合工程を含むことができる。本開示のスラリーの製造方法の重合工程における、重合方法、重合に用いうる各成分の種類及びその使用量については、上述したアクリル系ポリマーの製造方法の重合工程と同様とすることができる。 In the method for producing a slurry for an ion conductive layer of the present disclosure, in one or a plurality of embodiments, a monomer mixture containing a monomer (A) and, if necessary, at least one of the monomers (B) to (D) is polymerized. It can include a polymerization step of allowing the polymer particles to be obtained. In the polymerization step of the method for producing a slurry of the present disclosure, the polymerization method, the types of each component that can be used for the polymerization, and the amount thereof used can be the same as the polymerization step of the above-mentioned method for producing an acrylic polymer.
 本開示のイオン伝導層形成方法における塗工工程において、本開示のイオン伝導層用スラリーの塗工法としては、特に限定はされず、例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、およびハケ塗り法等の方法が挙げられる。 In the coating process in the ion conductive layer forming method of the present disclosure, the coating method of the slurry for the ion conductive layer of the present disclosure is not particularly limited, and for example, a doctor blade method, a dip method, a reverse roll method, and a direct roll method. , Gravure method, slurry method, brush painting method and the like.
 本開示のイオン伝導層形成方法における乾燥工程において、乾燥方法としては、例えば、温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線等の照射による乾燥法が挙げられる。乾燥時間は通常5~30分であり、乾燥温度は通常40~180℃である。 In the drying step in the ion conductive layer forming method of the present disclosure, examples of the drying method include drying with warm air, hot air, low humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams. The drying time is usually 5 to 30 minutes, and the drying temperature is usually 40 to 180 ° C.
[イオン伝導層]
 本開示のイオン伝導層は、一又は複数の実施形態において、本開示のアクリル系ポリマーで形成されている。本開示のイオン伝導層は、一又は複数の実施形態において、イオンを透過する作用によりイオン伝導性を有する。そのため、本開示のイオン伝導層は、例えば、後述の測定方法においてイオン透過性を示し、蓄電デバイスのイオン抵抗を低減する効果が発現する。
[Ion conduction layer]
The ionic conductive layer of the present disclosure is formed of the acrylic polymer of the present disclosure in one or more embodiments. The ionic conductive layer of the present disclosure has ionic conductivity by the action of permeating ions in one or more embodiments. Therefore, the ion conductive layer of the present disclosure exhibits ion permeability in, for example, the measurement method described later, and exhibits the effect of reducing the ion resistance of the power storage device.
 本開示のイオン伝導層の形成は、一又は複数の実施形態において、アクリル系ポリマーを含有する膜を作製することにより行われる。アクリル系ポリマーを含有する膜の作製方法としては、上述した本開示のイオン伝導層形成方法が挙げられる。その他のアクリル系ポリマーを含有する膜の作製方法としては、例えば、アクリル系ポリマーを含む溶液又は分散液(スラリー)を基材であるセパレーターや電極等に塗布または浸漬し、これを乾燥する方法、あるいは、アクリル系ポリマーを含む溶液又はスラリーを基材である剥離フィルム上に塗布、乾燥、成膜し、得られた膜を所定の場所に転写する方法が挙げられる。 The formation of the ionic conductive layer of the present disclosure is performed by producing a film containing an acrylic polymer in one or more embodiments. Examples of the method for producing a film containing an acrylic polymer include the above-mentioned method for forming an ionic conductive layer of the present disclosure. As another method for producing a film containing an acrylic polymer, for example, a method of applying or immersing a solution or dispersion (slurry) containing an acrylic polymer on a separator or an electrode as a base material and drying the solution. Alternatively, a method of applying a solution or slurry containing an acrylic polymer on a release film as a base material, drying and forming a film, and transferring the obtained film to a predetermined place can be mentioned.
 本開示のイオン伝導層に用いられる、全構成単位中の構成単位(A)の含有量が88質量%以上であるアクリル系ポリマーを含む溶液又はスラリーは、表面張力が高いために、基材に塗布した際に液の弾きが生じて、得られる膜の厚みの均一性が損なわれる場合がある。
 本開示のイオン伝導層の厚さは、目的に応じて設定することができ、蓄電デバイスの製造の容易性と電池特性の観点、及び、厚みの均一性の観点から、1μm超が好ましく、2μm以上がより好ましく、3μm以上が更に好ましく、5μm以上が更に好ましく、そして、同様の観点から、500μm以下が好ましく、100μm以下がより好ましく、70μm以下が更に好ましく、50μm以下が更に好ましい。
The solution or slurry containing the acrylic polymer in which the content of the structural unit (A) in all the structural units used in the ionic conduction layer of the present disclosure is 88% by mass or more has a high surface tension, so that the solution or slurry is used as a base material. When applied, the liquid may repel and the uniformity of the thickness of the obtained film may be impaired.
The thickness of the ion conductive layer of the present disclosure can be set according to the purpose, and is preferably more than 1 μm, preferably 2 μm, from the viewpoint of ease of manufacturing of the power storage device, battery characteristics, and uniformity of thickness. The above is more preferable, 3 μm or more is further preferable, 5 μm or more is further preferable, and from the same viewpoint, 500 μm or less is more preferable, 100 μm or less is more preferable, 70 μm or less is further preferable, and 50 μm or less is further preferable.
 本開示のイオン伝導層内を伝導するイオンは、金属イオンが好ましく、アルカリ金属イオンがより好ましく、リチウムイオンが更に好ましい。 The ions conducted in the ion conduction layer of the present disclosure are preferably metal ions, more preferably alkali metal ions, and even more preferably lithium ions.
 本開示のイオン伝導層は、蓄電デバイス内において、有機溶媒を保持していることが好ましい。前記有機溶媒は、イオンを可溶化する溶媒であることが好ましく、電解液であることがより好ましい。例えば、環状カーボネート類:エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、およびこれらの誘導体、鎖状カーボネート類:ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)、およびこれらの誘導体、脂肪族カルボン酸エステル類:ギ酸メチル、酢酸メチル、プロピオン酸エチル、およびこれらの誘導体、γ-ラクトン類:γ-ブチロラクトン、およびこれらの誘導体等が挙げられる。中でも、環状カーボネート類、鎖状カーボネート類、脂肪族カルボン酸エステル類およびγ-ラクトン類が好ましく、環状カーボネート類および鎖状カーボネート類がより好ましく、EC、PC、DMC、DEC、EMCが更に好ましい。有機溶媒は、1種単独で用いてもよいし、2種以上併用してもよい。
 蓄電デバイス内でイオン伝導層に保持される有機溶媒の量は、イオン伝導性の観点から、イオン伝導層に対して、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、1質量%以上が更に好ましく、10質量%以上がより更に好ましく、50質量%以上が特に好ましい。そして、電池の耐久性の観点から、10000質量%以下が好ましく、5000質量%以下がより好ましく、2000質量%以下が更に好ましく、1000質量%以下がより更に好ましく、500質量%以下が特に好ましい。
The ionic conduction layer of the present disclosure preferably holds an organic solvent in the power storage device. The organic solvent is preferably a solvent that solubilizes ions, and more preferably an electrolytic solution. For example, cyclic carbonates: ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and derivatives thereof, chain carbonates: dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate ( EMC), dipropyl carbonate (DPC), and their derivatives, aliphatic carboxylic acid esters: methyl formate, methyl acetate, ethyl propionate, and their derivatives, γ-lactones: γ-butyrolactone, and their derivatives. And so on. Among them, cyclic carbonates, chain carbonates, aliphatic carboxylic acid esters and γ-lactones are preferable, cyclic carbonates and chain carbonates are more preferable, and EC, PC, DMC, DEC and EMC are further preferable. The organic solvent may be used alone or in combination of two or more.
The amount of the organic solvent retained in the ion conductive layer in the power storage device is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, based on the ion conductive layer. 1% by mass or more is further preferable, 10% by mass or more is further preferable, and 50% by mass or more is particularly preferable. From the viewpoint of battery durability, 10,000% by mass or less is preferable, 5000% by mass or less is more preferable, 2000% by mass or less is further preferable, 1000% by mass or less is further preferable, and 500% by mass or less is particularly preferable.
 本開示のイオン伝導層は、上記アクリル系ポリマー以外に任意成分を含有してもよい。任意成分としては、例えば、接着剤、樹脂改質剤、金属塩、無機酸化物、固体電解質等が挙げられる。 The ionic conductive layer of the present disclosure may contain an arbitrary component in addition to the above acrylic polymer. Examples of the optional component include an adhesive, a resin modifier, a metal salt, an inorganic oxide, a solid electrolyte and the like.
 金属塩は、電池の支持電解質に使用されるアルカリ金属塩が好ましく、リチウムイオン電池で使用するリチウム塩がより好ましい。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSONLi等が挙げられる。 The metal salt is preferably an alkali metal salt used as a supporting electrolyte for the battery, and more preferably a lithium salt used in a lithium ion battery. Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 N Li. , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) 2 NLi and the like.
 無機酸化物は、本開示の効果を損なわない範囲で、蓄電デバイスの安全性や強度を付与する目的で使用することができる。無機酸化物としては、例えば、アルミナ(酸化アルミニウム)、マグネシア(酸化マグネシウム)、酸化カルシウム、チタニア(酸化チタン)、ジルコニア(酸化ジルコニウム)、タルク、珪石等が挙げられる。本開示のイオン伝導層は、一又は複数の実施形態において、無機酸化物を含まないものとすることができる。 The inorganic oxide can be used for the purpose of imparting the safety and strength of the power storage device to the extent that the effect of the present disclosure is not impaired. Examples of the inorganic oxide include alumina (aluminum oxide), magnesia (magnesium oxide), calcium oxide, titania (titanium oxide), zirconia (zirconium oxide), talc, silicate and the like. The ionic conductive layer of the present disclosure may be free of inorganic oxides in one or more embodiments.
 固体電解質はイオン伝導性(例えばリチウムイオン伝導性)を有する無機化合物を用いることができる。固体電解質としては、種類は特に制限されず、無機固体電解質および有機固体電解質をいずれも使用できるが、難燃性の観点から無機固体電解質であることが好ましい。
 無機固体電解質としては公知の材料を使用でき、たとえば、硫化物系固体電解質、酸化物系固体電解質等が挙げられる。酸化物系固体電解質は、全述した無機酸化物を兼ねてもよい。
As the solid electrolyte, an inorganic compound having ion conductivity (for example, lithium ion conductivity) can be used. The type of the solid electrolyte is not particularly limited, and both the inorganic solid electrolyte and the organic solid electrolyte can be used, but the inorganic solid electrolyte is preferable from the viewpoint of flame retardancy.
As the inorganic solid electrolyte, a known material can be used, and examples thereof include a sulfide-based solid electrolyte and an oxide-based solid electrolyte. The oxide-based solid electrolyte may also serve as the inorganic oxide described above.
 本開示のイオン伝導層中のアクリル系ポリマーの含有量は、イオン伝導性の観点から、1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上が更に好ましく、10質量%以上がより更に好ましく、そして、100質量%以下が好ましい。 From the viewpoint of ionic conductivity, the content of the acrylic polymer in the ionic conductive layer of the present disclosure is preferably 1% by mass or more, more preferably 3% by mass or more, further preferably 5% by mass or more, and 10% by mass or more. Is even more preferable, and 100% by mass or less is preferable.
(蓄電デバイス用部材)
 本開示のイオン伝導層は、一又は複数の実施形態において、電解質、セパレーター、電極の表面保護層、固体電解質混合膜、樹脂層等の蓄電デバイス用部材に使用することができる。
 すなわち、本開示は、一態様において、本開示のイオン伝導層を含有し、前記イオン伝導層の厚さが1μm超500μm以下である、蓄電デバイス用部材(以下、「本開示の蓄電デバイス用部材」ともいう)に関する。本開示の蓄電デバイス用部材は、一又は複数の実施形態において、本開示のイオン伝導層を有する電解質層、本開示のイオン伝導層を有する電極、及び、本開示のイオン伝導層を有するセパレーターから選ばれる少なくとも1種である。
(Members for power storage devices)
In one or more embodiments, the ionic conductive layer of the present disclosure can be used as a member for a power storage device such as an electrolyte, a separator, a surface protective layer of an electrode, a solid electrolyte mixed membrane, and a resin layer.
That is, the present disclosure, in one aspect, contains the ion conductive layer of the present disclosure, and the thickness of the ion conductive layer is more than 1 μm and 500 μm or less. Also called). The member for a power storage device of the present disclosure is, in one or more embodiments, from the electrolyte layer having the ion conductive layer of the present disclosure, the electrode having the ion conductive layer of the present disclosure, and the separator having the ion conductive layer of the present disclosure. At least one of the choices.
 本開示のイオン伝導層を有するセパレーター(以下、「本開示のイオン伝導層付セパレーター」ともいう)は、一又は複数の実施形態において、セパレーターの片面もしくは両面に、本開示のイオン伝導層を形成することにより得ることができる。
 本開示のイオン伝導層付セパレーターの製造方法は、例えば、上述した本開示のイオン伝導層形成方法と同様にすることができる。
 前記セパレーターは、多孔性を有するフィルム(多孔性フィルム)であり、多孔性ポリオレフィンフィルム、多孔性ポリオレフィンテレフタレートフィルム、多孔性ポリイミドフィルム、多孔性ポリエステルフィルム、多孔性セルロースフィルム、多孔性テフロン(登録商標)フィルム、不織布、紙等が挙げられる。
The separator having an ion conductive layer of the present disclosure (hereinafter, also referred to as “separator with an ion conductive layer of the present disclosure”) forms the ion conductive layer of the present disclosure on one side or both sides of the separator in one or more embodiments. Can be obtained by doing.
The method for producing the separator with an ion conductive layer of the present disclosure can be, for example, the same as the above-described method for forming an ion conductive layer.
The separator is a film having porosity (porous film), and is a porous polyolefin film, a porous polyolefin terephthalate film, a porous polyimide film, a porous polyester film, a porous cellulose film, and a porous Teflon (registered trademark). Examples include films, non-woven fabrics, and papers.
 本開示のイオン伝導層を有する電極(以下、「本開示のイオン伝導層付電極」ともいう)は、一又は複数の実施形態において、電極の表面に本開示のイオン伝導層を形成することにより得ることができる。電極は、蓄電デバイスにおける正極および負極であり、通常は、集電体と呼ばれる金属箔上の片面あるいは両面に電極活物質層(電極合材層)が形成されてなる。両面に電極活物質層が形成されてなる電極(両面電極)は、両面ともに正極であってもよいし、両面ともに負極であってもよいし、一方の面が正極、他方の面が負極(バイポーラー電極)であってよい。電極活物質層は、電極活物質とバインダーと必要に応じて導電材等の成分を含有するものであり、イオン伝導層を有する電極とは、電極活物質層の表面に本開示のイオン伝導層を設けた電極である。
 両面が正極又は負極である場合、両面のうち少なくともいずれか1面に本開示のイオン伝導層を有していてよい。
 バイポーラー電極の場合、負極面と正極面のうち少なくともいずれか1面に本開示のイオン伝導層を有していてよい。
 本開示のイオン伝導層付電極の製造方法としては、例えば、上述した本開示のイオン伝導層形成方法と同様にすることができる。
The electrode having the ion conducting layer of the present disclosure (hereinafter, also referred to as “the electrode with the ion conducting layer of the present disclosure”) is obtained by forming the ion conducting layer of the present disclosure on the surface of the electrode in one or more embodiments. Obtainable. The electrodes are positive electrodes and negative electrodes in a power storage device, and usually, an electrode active material layer (electrode mixture layer) is formed on one side or both sides of a metal foil called a current collector. An electrode (double-sided electrode) having an electrode active material layer formed on both sides may be a positive electrode on both sides or a negative electrode on both sides, one side being a positive electrode and the other side being a negative electrode (a negative electrode). It may be a bipolar electrode). The electrode active material layer contains an electrode active material, a binder, and components such as a conductive material, if necessary, and the electrode having an ion conductive layer is an ion conductive layer of the present disclosure on the surface of the electrode active material layer. It is an electrode provided with.
When both sides are positive electrodes or negative electrodes, the ion conductive layer of the present disclosure may be provided on at least one of both surfaces.
In the case of a bipolar electrode, the ion conducting layer of the present disclosure may be provided on at least one of the negative electrode surface and the positive electrode surface.
As the method for manufacturing the electrode with the ion conducting layer of the present disclosure, for example, the same method as the above-described method for forming the ion conducting layer of the present disclosure can be used.
[蓄電デバイス]
 本開示は、一態様において、本開示の蓄電デバイス用部材を有する、蓄電デバイス(以下、「本開示の蓄電デバイス」ともいう)に関する。
 本開示の蓄電デバイスは、一又は複数の実施形態において、少なくとも1つの正極と、少なくとも1つの負極と、必要に応じてバイポーラー電極とを有する蓄電デバイスであって、前記正極、負極、及びバイポーラー電極から選ばれる少なくとも1つが本開示のイオン伝導層を有する蓄電デバイスであってもよい。
[Power storage device]
The present disclosure relates to a power storage device (hereinafter, also referred to as "the power storage device of the present disclosure") having the member for the power storage device of the present disclosure in one aspect.
The power storage device of the present disclosure is, in one or more embodiments, a power storage device having at least one positive electrode, at least one negative electrode, and optionally a bipolar electrode, the positive electrode, the negative electrode, and a buy. At least one selected from the polar electrodes may be a power storage device having the ion conductive layer of the present disclosure.
 本開示の蓄電デバイスは、一又は複数の実施形態において、バイポーラー型電池であってよい。本開示のバイポーラー型電池は、一又は複数の実施形態において、少なくとも1面に正極活物質層を有する正極と、少なくとも1面に負極活物質層を有する負極が最外層に設けられ、前記正極と前記負極の間に、少なくとも1以上のバイポーラー電極が、セパレーターや電解質を介して正極の対面が負極となるように積層されており、正極と負極が電池内で直列に配置されている電池であり、電池内で対面する正極の負極の間の少なくとも1つの場所に本開示のイオン伝導層が形成されているバイポーラー型電池である。 The power storage device of the present disclosure may be a bipolar battery in one or more embodiments. In the bipolar battery of the present disclosure, in one or more embodiments, a positive electrode having a positive electrode active material layer on at least one surface and a negative electrode having a negative electrode active material layer on at least one surface are provided on the outermost layer, and the positive electrode is provided. A battery in which at least one or more bipolar electrodes are laminated between the negative electrode and the negative electrode so that the positive electrode faces the negative electrode via a separator or an electrolyte, and the positive electrode and the negative electrode are arranged in series in the battery. It is a bipolar type battery in which the ion conduction layer of the present disclosure is formed at at least one place between the negative electrodes of the positive electrodes facing each other in the battery.
 一又は複数の実施形態において、本開示の蓄電デバイス内におけるイオン伝導層中に電解液を保持することができる。電解液としては、例えば、環状および鎖状カーボネート類から選ばれる少なくとも1種が挙げられる。 In one or more embodiments, the electrolytic solution can be retained in the ion conductive layer in the energy storage device of the present disclosure. Examples of the electrolytic solution include at least one selected from cyclic and chain carbonates.
 本開示の蓄電デバイス内におけるイオン伝導層の厚さは、蓄電デバイスの耐久性と電池特性の観点、及び、厚みの均一性の観点から、1μm超であって、2μm以上が好ましく、3μm以上がより好ましく、5μm以上がより好ましく、そして、同様の観点から、500μm以下であって、100μm以下が好ましく、70μm以下がより好ましく、50μm以下が更に好ましい。 The thickness of the ion conductive layer in the power storage device of the present disclosure is more than 1 μm, preferably 2 μm or more, preferably 3 μm or more, from the viewpoint of the durability of the power storage device, the battery characteristics, and the uniformity of the thickness. More preferably, 5 μm or more is more preferable, and from the same viewpoint, 500 μm or less, 100 μm or less is preferable, 70 μm or less is more preferable, and 50 μm or less is further preferable.
 本開示は、さらに下記の一又は複数の実施形態に関する。
<1> イオン伝導層を有する電極であって、
 前記イオン伝導層はアクリル系ポリマーを含有し、
 前記アクリル系ポリマーは、前記式(I)で表される化合物由来の構成単位(A)を含み、
 前記構成単位(A)は、式(I)中のRが水素原子であり、Rが炭素数1以上3以下の直鎖又は分岐鎖のアルキル基である化合物由来の構成単位(A1)を含み、
 前記アクリル系ポリマーの全構成単位中の構成単位(A)の含有量が88質量%以上100質量%以下であり、かつ、前記アクリル系ポリマーの全構成単位中の構成単位(A1)の含有量が70質量%以上であり、
 前記イオン伝導層の厚さが1μm超500μm以下である、イオン伝導層を有する電極。
<2> 蓄電デバイスの正極と負極の間に配置されるイオン伝導層を有するセパレーターであって、
 前記イオン伝導層はアクリル系ポリマーを含有し、
 前記アクリル系ポリマーは、前記式(I)で表される化合物由来の構成単位(A)を含み、
 前記構成単位(A)は、式(I)中のRが水素原子又はメチル基であり、Rが炭素数1~2のアルキル基である化合物由来の構成単位(A2)を含み、
 前記アクリル系ポリマーの全構成単位中の構成単位(A)の含有量が88質量%以上100質量%以下であり、かつ、前記アクリル系ポリマーの全構成単位中の構成単位(A2)の含有量が、アクリル系ポリマーの全構成単位中に70質量%以上であり、
 前記イオン伝導層の厚さが1μm超500μm以下である、イオン伝導層を有するセパレーター。
<3> イオン伝導層中に電解液を保持する蓄電デバイス用部材であって、
 前記イオン伝導層はアクリル系ポリマーを含有し、
 前記アクリル系ポリマーは、前記式(I)で表される化合物由来の構成単位(A)を含み、
 前記アクリル系ポリマーの全構成単位中の構成単位(A)の含有量が88質量%以上100質量%以下であり、
 前記電解液は、環状および鎖状カーボネート類から選ばれる少なくとも1種であり、
 前記イオン伝導層の厚さが1μm超500μm以下である、蓄電デバイス用部材。
<4> 正極と、負極と、前記正極と前記負極との間に配置された少なくとも1つのバイポーラー電極とを有する蓄電デバイスであって、
 前記正極、負極、及びバイポーラー電極から選ばれる少なくとも1つがイオン伝導層を有し、
 前記イオン伝導層はアクリル系ポリマーを含有し、
 前記アクリル系ポリマーは、前記式(I)で表される化合物由来の構成単位(A)を含み、
 前記アクリル系ポリマーの全構成単位中の構成単位(A)の含有量が88質量%以上100質量%以下であり、
 前記イオン伝導層の厚さが1μm超500μm以下である、蓄電デバイス。
 これらの態様におけるイオン電導層及びアクリル系ポリマーはそれぞれ、上述した本開示のイオン電導層及び本開示のアクリル系ポリマーとすることできる。
The present disclosure further relates to one or more embodiments below.
<1> An electrode having an ionic conduction layer.
The ionic conductive layer contains an acrylic polymer and has
The acrylic polymer contains a structural unit (A) derived from the compound represented by the formula (I).
The structural unit (A) is a structural unit (A1) derived from a compound in which R 1 in the formula (I) is a hydrogen atom and R 2 is a linear or branched alkyl group having 1 or more and 3 or less carbon atoms. Including
The content of the structural unit (A) in all the structural units of the acrylic polymer is 88% by mass or more and 100% by mass or less, and the content of the structural unit (A1) in all the structural units of the acrylic polymer. Is 70% by mass or more,
An electrode having an ion conductive layer having a thickness of more than 1 μm and 500 μm or less.
<2> A separator having an ion conductive layer arranged between the positive electrode and the negative electrode of the power storage device.
The ionic conductive layer contains an acrylic polymer and has
The acrylic polymer contains a structural unit (A) derived from the compound represented by the formula (I).
The structural unit (A) includes a structural unit (A2) derived from a compound in which R 1 in the formula (I) is a hydrogen atom or a methyl group and R 2 is an alkyl group having 1 to 2 carbon atoms.
The content of the structural unit (A) in all the structural units of the acrylic polymer is 88% by mass or more and 100% by mass or less, and the content of the structural unit (A2) in all the structural units of the acrylic polymer. However, it is 70% by mass or more in all the constituent units of the acrylic polymer.
A separator having an ion conductive layer having a thickness of more than 1 μm and 500 μm or less.
<3> A member for a power storage device that holds an electrolytic solution in an ion conductive layer.
The ionic conductive layer contains an acrylic polymer and has
The acrylic polymer contains a structural unit (A) derived from the compound represented by the formula (I).
The content of the structural unit (A) in all the structural units of the acrylic polymer is 88% by mass or more and 100% by mass or less.
The electrolytic solution is at least one selected from cyclic and chain carbonates.
A member for a power storage device having a thickness of the ion conductive layer of more than 1 μm and 500 μm or less.
<4> A power storage device having a positive electrode, a negative electrode, and at least one bipolar electrode arranged between the positive electrode and the negative electrode.
At least one selected from the positive electrode, the negative electrode, and the bipolar electrode has an ion conductive layer.
The ionic conductive layer contains an acrylic polymer and has
The acrylic polymer contains a structural unit (A) derived from the compound represented by the formula (I).
The content of the structural unit (A) in all the structural units of the acrylic polymer is 88% by mass or more and 100% by mass or less.
A power storage device having a thickness of the ion conductive layer of more than 1 μm and 500 μm or less.
The ion conductive layer and the acrylic polymer in these embodiments can be the ion conductive layer of the present disclosure and the acrylic polymer of the present disclosure, respectively.
 以下、実施例により本開示を説明するが、本開示はこれに限定されるものではない。 Hereinafter, the present disclosure will be described with reference to examples, but the present disclosure is not limited thereto.
1.ポリマー分散液の調製(実施例1~14及び比較例1~7)
 表1に示す実施例1~14及び比較例1~7のポリマー分散液の調製には、下記原料を用いた。表1及び以下の実施例に用いた原料の略号は次の通りである。
1. 1. Preparation of polymer dispersion (Examples 1 to 14 and Comparative Examples 1 to 7)
The following raw materials were used to prepare the polymer dispersions of Examples 1 to 14 and Comparative Examples 1 to 7 shown in Table 1. The abbreviations of the raw materials used in Table 1 and the following examples are as follows.
<モノマー(A)> (下記R、R及びXは、式(I)中の記号を意味する)
MMA:メチルメタクリレート(和光純薬工業製)(R:CH、R:CH、X:O)
EMA:エチルメタクリレート(和光純薬工業製)(R:CH、R:C、X:O)
EA:エチルアクリレート(和光純薬工業製)(R:H、R:C、X:O)
<モノマー(B)> (下記R及びMは、式(II)中の記号を意味する)
MAA:メタクリル酸(和光純薬工業製)(R:CH、M:H)
AA:アクリル酸(和光純薬工業製)(R:H、M:H)
ITA:イタコン酸(和光純薬工業製)(不飽和二塩基酸)
<モノマー(C)> (下記R10及びXは、式(IV)中の記号を意味する)
NMAM:N-メチロールアクリルアミド(和光純薬工業製)
EGDMA:エチレングリコールジメタクリレート(和光純薬工業製)(R10:CH、X:O)
<モノマー(D)>
BA:ブチルアクリレート(和光純薬工業製)
AN:アクリロニトリル(和光純薬工業製)
<ポリマー>
SBR:スチレンブタジエンゴム(日本ゼオン製、「BM-400B」、固形分40質量%)
PVDF-HFP:ポリ(ビニリデンフルオリド-co-ヘキサフルオロプロピレン)(Sigma-Aldrich製、average Mw ~455,000, average Mn ~110,000, pellets)
<重合開始剤>
APS:過硫酸アンモニウム
<中和塩>
Li:リチウム
<溶媒>
NMP:N-メチルピロリドン(和光純薬工業製)
<Monomer (A)> (The following R 1 , R 2 and X mean the symbols in the formula (I))
MMA: Methyl Methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) (R 1 : CH 3 , R 2 : CH 3 , X: O)
EMA: Ethyl Methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) (R 1 : CH 3 , R 2 : C 2 H 5 , X: O)
EA: Ethyl acrylate (manufactured by Wako Pure Chemical Industries, Ltd.) (R 1 : H, R 2 : C 2 H 5 , X: O)
<Monomer (B)> (The following R1 and M mean the symbols in the formula (II))
MAA: Methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.) (R 1 : CH 3 , M: H)
AA: Acrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.) (R 1 : H, M: H)
ITA: Itaconic acid (manufactured by Wako Pure Chemical Industries, Ltd.) (unsaturated dibasic acid)
<Monomer (C)> (R10 and X below mean symbols in formula (IV))
NMAM: N-methylolacrylamide (manufactured by Wako Pure Chemical Industries, Ltd.)
EGDMA: Ethylene glycol dimethacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) (R 10 : CH 3 , X: O)
<Monomer (D)>
BA: Butyl acrylate (manufactured by Wako Pure Chemical Industries, Ltd.)
AN: Acrylonitrile (manufactured by Wako Pure Chemical Industries, Ltd.)
<Polymer>
SBR: Styrene butadiene rubber (manufactured by Zeon Corporation, "BM-400B", solid content 40% by mass)
PVDF-HFP: Poly (vinylidene fluoride-co-hexafluoropropylene) (manufactured by Sigma-Aldrich, average Mw ~ 455,000, average Mn ~ 110,000, pellets)
<Initiator of polymerization>
APS: Ammonium persulfate <neutralizing salt>
Li: Lithium <solvent>
NMP: N-methylpyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.)
(実施例1のアクリル系ポリマー分散液)
 モノマー(A)としてEA 194g、モノマー(B)としてAA 6g、モノマー(C)としてEGDMA 0.20g[モノマー(A)及び(B)の合計モル数に対して0.1モル%]、並びにイオン交換水 340gを、内容量1Lのガラス製4つ口セパラブルフラスコに入れ、窒素雰囲気下で一定時間(0.5時間)攪拌した。そして、フラスコ内の反応溶液を70℃付近まで昇温した後、イオン交換水 10gにAPS 1gを溶解した重合開始剤溶液をフラスコ内に添加し、フラスコ内の反応溶液を70~75℃付近で6時間保持することで重合・熟成し、アクリル系ポリマー分散液を得た。その後、フラスコ内のアクリル系ポリマー分散液を室温まで冷却し、1NのLiOH水溶液 29.14gを加えて中和した後、200メッシュ濾布を用いて凝集物を除去し、濃度が30質量%になるまで濃縮し、実施例1のアクリル系ポリマー分散液を得た。実施例1のアクリル系ポリマー分散液の調製に用いた各成分の量及び種類を表1に示す。さらに、前記凝集物の量により確認した実施例1のポリマー分散液の安定性(エマルション安定性)、および、実施例1のポリマー粒子の平均粒径の測定結果を表1に示す。
(Acrylic Polymer Dispersion Liquid of Example 1)
194 g of EA as the monomer (A), 6 g of AA as the monomer (B), 0.20 g of EGDMA as the monomer (C) [0.1 mol% with respect to the total number of moles of the monomers (A) and (B)], and ions. 340 g of exchanged water was placed in a 4-neck separable flask made of glass having a content of 1 L, and the mixture was stirred for a certain period of time (0.5 hours) under a nitrogen atmosphere. Then, after raising the temperature of the reaction solution in the flask to around 70 ° C., a polymerization initiator solution in which 1 g of APS is dissolved in 10 g of ion-exchanged water is added to the flask, and the reaction solution in the flask is kept at around 70 to 75 ° C. After holding for 6 hours, the mixture was polymerized and aged to obtain an acrylic polymer dispersion. Then, the acrylic polymer dispersion in the flask was cooled to room temperature, neutralized by adding 29.14 g of a 1N LiOH aqueous solution, and then agglomerates were removed using a 200 mesh filter cloth to bring the concentration to 30% by mass. The mixture was concentrated to the extent that the acrylic polymer dispersion of Example 1 was obtained. Table 1 shows the amounts and types of each component used in the preparation of the acrylic polymer dispersion of Example 1. Further, Table 1 shows the stability (emulsion stability) of the polymer dispersion of Example 1 confirmed by the amount of the agglomerates, and the measurement results of the average particle size of the polymer particles of Example 1.
(実施例2~11のアクリル系ポリマー分散液)
 表1に示す構成単位となるようモノマー種又はモノマー成分の量を変更したこと以外は、実施例1と同様にして、実施例2~11のアクリル系ポリマー分散液を得た。実施例2~11のアクリル系ポリマー分散液の調製に用いた各成分の量及び種類を表1に示す。さらに、実施例2~11のエマルション安定性及びポリマー粒子の平均粒径の測定結果を表1に示す。
(Acrylic Polymer Dispersion Liquids of Examples 2 to 11)
Acrylic polymer dispersions of Examples 2 to 11 were obtained in the same manner as in Example 1 except that the amount of the monomer species or the monomer components was changed so as to be the structural unit shown in Table 1. Table 1 shows the amounts and types of each component used in the preparation of the acrylic polymer dispersions of Examples 2 to 11. Further, Table 1 shows the measurement results of the emulsion stability of Examples 2 to 11 and the average particle size of the polymer particles.
(実施例12~14及び比較例7のアクリル系ポリマー分散液)
 実施例12~14及び比較例7のアクリル系ポリマー分散液は、実施例1のアクリル系ポリマー分散液と同じものを用いた。
(Acrylic polymer dispersions of Examples 12 to 14 and Comparative Example 7)
As the acrylic polymer dispersions of Examples 12 to 14 and Comparative Example 7, the same acrylic polymer dispersions as those of Example 1 were used.
(比較例1~4のアクリル系ポリマー分散液)
 表1に示す構成単位となるようモノマー種を変更したこと以外は、実施例1と同様にして、比較例1~4のアクリル系ポリマー分散液を得た。比較例1~4のアクリル系ポリマー分散液の調製に用いた各成分の量及び種類を表1に示す。さらに、比較例1~4のポリマー粒子の平均粒径の測定結果を表1に示す。
(Acrylic polymer dispersions of Comparative Examples 1 to 4)
Acrylic polymer dispersions of Comparative Examples 1 to 4 were obtained in the same manner as in Example 1 except that the monomer species were changed so as to have the structural units shown in Table 1. Table 1 shows the amounts and types of each component used in the preparation of the acrylic polymer dispersions of Comparative Examples 1 to 4. Further, Table 1 shows the measurement results of the average particle size of the polymer particles of Comparative Examples 1 to 4.
(比較例5のポリマー分散液)
 比較例5のポリマー分散液としては、SBRを用いた。比較例5のポリマー粒子の平均粒径の測定結果を表1に示す。
(Polymer dispersion of Comparative Example 5)
SBR was used as the polymer dispersion of Comparative Example 5. Table 1 shows the measurement results of the average particle size of the polymer particles of Comparative Example 5.
(比較例6のポリマー分散液)
 比較例6のポリマーとしては、PVDF-HFPを用いた。比較例6のポリマー分散液はPVDF-HEPをNMPで10質量%に溶解させたものを使用した。
(Polymer dispersion of Comparative Example 6)
PVDF-HFP was used as the polymer of Comparative Example 6. As the polymer dispersion of Comparative Example 6, PVDF-HEP dissolved in 10% by mass with NMP was used.
[ポリマー粒子の平均粒径の測定]
 ポリマー粒子の平均粒径は、レーザー回折法の粒径測定器(堀場製作所製LA-920)を用いて、室温下、機器の所定の光量範囲になるまで分散媒(水)で希釈し、測定した。結果を表1に示した。
[Measurement of average particle size of polymer particles]
The average particle size of the polymer particles is measured by diluting with a dispersion medium (water) at room temperature using a laser diffraction method particle size measuring device (LA-920 manufactured by HORIBA, Ltd.) until the specified light amount range of the device is reached. did. The results are shown in Table 1.
[ポリマー分散液の固形分濃度の測定]
 ポリマー分散液の固形分濃度は、105℃で24時間乾燥し重量減量を測定することにより算出した。結果を表1に示した。
[Measurement of solid content concentration of polymer dispersion]
The solid content concentration of the polymer dispersion was calculated by drying at 105 ° C. for 24 hours and measuring the weight loss. The results are shown in Table 1.
[ガラス転移温度(Tg)の測定]
ガラス転移温度Tgは、Fox式[T.G.Fox、Bull.Am.Physics Soc.、第1巻、第3号、123ページ(1956)]に従って、ポリマーを構成する各々のモノマーの単独重合体のTgnより、下記式(I)から計算により求めた。結果を表1に示した。
1/Tg=Σ(Wn/Tgn) (I)
式(I)中、Tgnは、各モノマー成分の単独重合体の絶対温度で表したTgを示し、Wnは各モノマー成分の質量分率を示す。
[Measurement of glass transition temperature (Tg)]
The glass transition temperature Tg is determined from the Tgn of the homopolymer of each monomer constituting the polymer according to the Fox formula [TGFox, Bull.Am.Physics Soc., Vol. 1, No. 3, p. 123 (1956)]. It was calculated from the following formula (I). The results are shown in Table 1.
1 / Tg = Σ (Wn / Tgn) (I)
In the formula (I), Tgn represents Tg represented by the absolute temperature of the homopolymer of each monomer component, and Wn represents the mass fraction of each monomer component.
[イオン透過性の測定]
 リチウム(Li)塩を含まないEC/DEC混合溶媒(体積比3/7)Iと、過塩素酸リチウムをEC/DEC混合溶媒(体積比3/7)に溶解させたリチウム含有溶媒II(1mol/L:LiClO)を準備した。
 ポリマーの分散液を、テフロン(登録商標)シートを備えたトレイに、乾燥後の厚みが0.7mmになる量を流し込み、105℃で24時間乾燥を行うことで、ポリマー皮膜を作製した。ポリマー皮膜の一方の面にEC/DEC混合溶媒Iを接触させ、他方の面にリチウム含有溶媒IIを接触させた状態で6時間放置した。その後、EC/DEC混合溶媒I中のLiの量(ppm)を誘導結合プラズマ質量分析計ICP-MSで確認した。結果を表1に示した。
[Measurement of ion permeability]
An EC / DEC mixed solvent (volume ratio 3/7) I containing no lithium (Li) salt and a lithium-containing solvent II (1 mol) in which lithium perchlorate is dissolved in an EC / DEC mixed solvent (volume ratio 3/7). / L: LiClO 4 ) was prepared.
A polymer film was prepared by pouring an amount of the polymer dispersion into a tray equipped with a Teflon (registered trademark) sheet so that the thickness after drying would be 0.7 mm, and drying at 105 ° C. for 24 hours. The EC / DEC mixed solvent I was brought into contact with one surface of the polymer film, and the lithium-containing solvent II was brought into contact with the other surface, and the mixture was allowed to stand for 6 hours. Then, the amount (ppm) of Li in the EC / DEC mixed solvent I was confirmed by an inductively coupled plasma mass spectrometer ICP-MS. The results are shown in Table 1.
[粘着力の測定]
 銅箔上にポリマーの分散液を、乾燥後の厚さが20μmとなるように塗工し、室温で一晩、さらに40℃で8h乾燥した後、50℃にて8h減圧乾燥を行い、試料を作製した。
 測定は、銅箔上のポリマー被膜をタック試験機(TAC1000;株式会社レスカ製)にセットし、銅箔上のポリマーに150gfで治具を押し付け、1秒間保持した後、10mm/sの速度で引き離すときの最大の粘着力(gf)とした。結果を表1に示した。
[Measurement of adhesive strength]
A dispersion of the polymer was applied onto the copper foil so that the thickness after drying was 20 μm, dried overnight at room temperature at 40 ° C. for 8 hours, and then dried under reduced pressure at 50 ° C. for the sample. Was produced.
For the measurement, the polymer film on the copper foil was set on a tack tester (TAC1000; manufactured by Reska Co., Ltd.), a jig was pressed against the polymer on the copper foil at 150 gf, held for 1 second, and then at a speed of 10 mm / s. The maximum adhesive force (gf) at the time of pulling was set. The results are shown in Table 1.
[イオン伝導性の測定]
 アルミ箔上にポリマーの分散液を、乾燥後の厚さが20μmとなるように塗工し、40℃で8時間乾燥させた。直径16mmに打ち抜き後、更に50℃減圧下で更に8時間乾燥し、イオン伝導度測定用フィルムを得た。
 前記イオン伝導度測定用フィルムを2極式コインセル(宝泉株式会社「HSフラットセル」)上に載置した。次いで非水電解液として濃度1MのLiPF溶液(溶媒:EC/DEC混合溶媒(体積比3/7))を注液し、セルを封止し、イオン伝導度測定用セルを組み立てた。
 上記工程で得たイオン伝導度測定用セルをソーラトロン社製のインピーダンスゲインアナライザー(FRA)「1260A」を用いて、交流インピーダンス(10mV、周波数0.05Hz~100KHz)の測定を行った。得られたコールコールプロットの円弧幅より抵抗値を算出し、そこからイオン伝導度(mS/cm)を算出した。結果を表1に示した。イオン伝導度が大きいほど、イオン伝導層として優れると判断できる。
[Measurement of ionic conductivity]
The polymer dispersion was applied onto the aluminum foil so that the thickness after drying was 20 μm, and dried at 40 ° C. for 8 hours. After punching to a diameter of 16 mm, the film was further dried under reduced pressure at 50 ° C. for another 8 hours to obtain a film for measuring ionic conductivity.
The film for measuring ionic conductivity was placed on a bipolar coin cell (Hosen Co., Ltd. "HS Flat Cell"). Next, a LiPF 6 solution (solvent: EC / DEC mixed solvent (volume ratio 3/7)) having a concentration of 1 M was injected as a non-aqueous electrolytic solution, the cell was sealed, and a cell for measuring ionic conductivity was assembled.
The AC impedance (10 mV, frequency 0.05 Hz to 100 KHz) was measured using the impedance gain analyzer (FRA) “1260A” manufactured by Solartron Co., Ltd. for the cell for measuring ion conductivity obtained in the above step. The resistance value was calculated from the arc width of the obtained conductor call plot, and the ionic conductivity (mS / cm) was calculated from the resistance value. The results are shown in Table 1. It can be judged that the larger the ionic conductivity, the better the ionic conductive layer.
[エマルション安定性]
 前記アクリル系ポリマー分散液の製造における凝集物除去工程において200メッシュ濾布上に残留した凝集物および反応容器内に付着した凝集物を回収し、105℃で24時間乾燥して全凝集物の乾燥重量を算出し、得られたポリマー(固形分)に対して、0.5%未満であればA、0.5以上1.5%未満であればB、1.5%以上であればCとした。
[Emulsion stability]
The agglomerates remaining on the 200-mesh filter cloth and the agglomerates adhering to the inside of the reaction vessel in the agglomerate removal step in the production of the acrylic polymer dispersion are collected and dried at 105 ° C. for 24 hours to dry the total agglomerates. Calculate the weight, and if it is less than 0.5%, it is A, if it is 0.5 or more and less than 1.5%, it is B, and if it is 1.5% or more, it is C. And said.
2.蓄電デバイスの作製(実施例1~14及び比較例1~7)
 蓄電デバイスの一種であるリチウムイオン二次電池を以下のようにして作製した。
2. 2. Fabrication of power storage device (Examples 1 to 14 and Comparative Examples 1 to 7)
A lithium-ion secondary battery, which is a kind of power storage device, was manufactured as follows.
[負極の作製]
 負極ペーストに用いた材料は以下の通りである。
・負極活物質:グラファイト、昭和電工製、「AF-C」
・負極導電材:カーボンファイバー、昭和電工製、「VGCF-H」
・負極バインダー:SBR
・負極増粘剤:カルボキシメチルセルロースナトリウム(CMC)、ダイセル製、「#2200」
[Manufacturing of negative electrode]
The materials used for the negative electrode paste are as follows.
・ Negative electrode active material: Graphite, Showa Denko, "AF-C"
-Negative electrode conductive material: carbon fiber, Showa Denko, "VGCF-H"
-Negative electrode binder: SBR
-Negative electrode thickener: Sodium Carboxymethyl Cellulose (CMC), manufactured by Daicel, "# 2200"
 まず、負極活物質 288g、負極導電材 3g及び負極増粘剤 3gを混合した後、最終固形分濃度が50~55質量%となるのに必要な量の蒸留水を徐々に加えてディスパーを用いて混練した。そして、混練物に負極バインダーをポリマー固形分として6gを加え、さらにディスパーで混練を行った。その後、撹拌脱泡機(シンキー社製「あわとり練太郎」)で脱泡を行い、150メッシュ濾布で粗大粒子を除去し、負極ペーストを得た。得られた負極ペーストを集電体である銅箔上に乾燥後80g/mとなるように厚さを調節してバーコーターで塗工した。塗膜は、送風乾燥器を用いて80℃で5分乾燥し、さらに150℃で10分乾燥した。その後、ロールプレスにより電極密度を1.3~1.4g/cmに調整し、ドライルームにて1晩以上放置し、負極合材層を有する負極を作製した。 First, after mixing 288 g of the negative electrode active material, 3 g of the negative electrode conductive material, and 3 g of the negative electrode thickener, gradually add an amount of distilled water necessary for the final solid content concentration to reach 50 to 55% by mass, and use a disper. And kneaded. Then, 6 g of the negative electrode binder as a polymer solid content was added to the kneaded product, and the mixture was further kneaded with a disper. Then, defoaming was performed with a stirring defoaming machine (“Awatori Rentaro” manufactured by Shinky Co., Ltd.), and coarse particles were removed with a 150 mesh filter cloth to obtain a negative electrode paste. The obtained negative electrode paste was dried on a copper foil as a current collector, adjusted in thickness to 80 g / m 2 , and coated with a bar coater. The coating film was dried at 80 ° C. for 5 minutes using a blower dryer, and further dried at 150 ° C. for 10 minutes. Then, the electrode density was adjusted to 1.3 to 1.4 g / cm 3 by a roll press and left in a dry room for one night or more to prepare a negative electrode having a negative electrode mixture layer.
[イオン伝導層付負極Aの作製]
 実施例1~11及び比較例1~5のポリマー分散液に、1.5質量%CMC(カルボキシメチルセルロースナトリウム、ダイセル製、#2200)水溶液を、ポリマー分散液/CMC水溶液の固形分質量比が9/1となるように混合した後、全固形分濃度が10質量%となるようイオン交換水で希釈し、イオン伝導層用スラリーを得た。
 比較例6のポリマー分散液はそのままイオン伝導層用スラリーとして使用した。
 前記負極の合材層表面に前記イオン伝導層用スラリーを、乾燥後の厚さが20μmになるようにアプリケーターで塗工し、60℃で10分乾燥させ、さらにドライルームにて1晩以上放置し、イオン伝導層を有する負極Aを得た。
 実施例12のポリマー分散液を用いたイオン伝導層付負極Aの作製については、乾燥後の厚さが45μmになるように塗工した以外は、実施例1のポリマー分散液を用いた前記作製例と同様に行った。
 実施例13のポリマー分散液を用いたイオン伝導層付負極Aの作製については、ポリマー分散液をイオン交換水で適度に希釈したのち、乾燥後の厚さが5μmになるように塗工した以外は、実施例1のポリマー分散液を用いた前記作製例と同様に行った。
 実施例14のポリマー分散液を用いたイオン伝導層付負極Aの作製については、ポリマー分散液をイオン交換水で適度に希釈したのち、乾燥後の厚さが2μmになるように塗工した以外は、実施例1のポリマー分散液を用いた前記作製例と同様に行った。
 比較例7のポリマー分散液を用いたイオン伝導層付負極Aの作製については、ポリマー分散液をイオン交換水で適度に希釈したのち、乾燥後の厚さが0.8μmになるように塗工した以外は、実施例1のポリマー分散液を用いた前記作製例と同様に行った。
[Manufacturing of Negative Electrode A with Ion Conducting Layer]
A 1.5 mass% CMC (sodium carboxymethyl cellulose, manufactured by Dycel, # 2200) aqueous solution was added to the polymer dispersions of Examples 1 to 11 and Comparative Examples 1 to 5, and the solid content mass ratio of the polymer dispersion / CMC aqueous solution was 9. After mixing to a ratio of 1/1, the mixture was diluted with ion-exchanged water so that the total solid content concentration was 10% by mass to obtain a slurry for an ion conductive layer.
The polymer dispersion of Comparative Example 6 was used as it was as a slurry for an ion conductive layer.
The slurry for the ion conductive layer is applied to the surface of the mixture layer of the negative electrode with an applicator so that the thickness after drying becomes 20 μm, dried at 60 ° C. for 10 minutes, and left in a dry room overnight or longer. Then, a negative electrode A having an ion conductive layer was obtained.
Regarding the preparation of the negative electrode A with an ion conductive layer using the polymer dispersion liquid of Example 12, the above-mentioned preparation using the polymer dispersion liquid of Example 1 except that the coating was applied so that the thickness after drying was 45 μm. It was done in the same way as the example.
Regarding the production of the negative electrode A with an ion conductive layer using the polymer dispersion of Example 13, the polymer dispersion was appropriately diluted with ion-exchanged water and then coated so that the thickness after drying was 5 μm. Was carried out in the same manner as in the above-mentioned production example using the polymer dispersion liquid of Example 1.
Regarding the production of the negative electrode A with an ion conductive layer using the polymer dispersion of Example 14, except that the polymer dispersion was appropriately diluted with ion-exchanged water and then coated so that the thickness after drying was 2 μm. Was carried out in the same manner as in the above-mentioned production example using the polymer dispersion liquid of Example 1.
Regarding the production of the negative electrode A with an ion conductive layer using the polymer dispersion of Comparative Example 7, the polymer dispersion was appropriately diluted with ion-exchanged water and then coated so that the thickness after drying was 0.8 μm. Except for the above, the same procedure as in the above-mentioned production example using the polymer dispersion liquid of Example 1 was carried out.
[イオン伝導層付セパレーターAの作製]
 実施例1~11および比較例1~5で得られたポリマー分散液に、1.5質量%CMC水溶液を、ポリマー分散液/CMC水溶液の固形分質量比が9/1となるように混合した後、全固形分濃度が10質量%となるようイオン交換水で希釈し、イオン伝導層用スラリーを得た。
 比較例6のポリマー分散液はそのままイオン伝導層用スラリーとして使用した。
 セパレーター(多孔性ポリエチレン)の片面に前記イオン伝導層用スラリーを、乾燥後の厚さが20μmになるようにアプリケーターで塗工し、60℃で10分乾燥させ、さらにドライルームにて1晩以上放置し、イオン伝導層を有するセパレーターAを得た。
 実施例12のポリマー分散液を用いたイオン伝導層付セパレーターAの作製については、乾燥後の厚さが45μmになるように塗工した以外は、実施例1のポリマー分散液を用いた前記作製例と同様に行った。
 実施例13のポリマー分散液を用いたイオン伝導層付セパレーターAの作製については、ポリマー分散液をイオン交換水で適度に希釈したのち、乾燥後の厚さが5μmになるように塗工した以外は、実施例1のポリマー分散液を用いた前記作製例と同様に行った。
 実施例14のポリマー分散液を用いたイオン伝導層付セパレーターAの作製については、ポリマー分散液をイオン交換水で適度に希釈したのち、乾燥後の厚さが2μmになるように塗工した以外は、実施例1のポリマー分散液を用いた前記作製例と同様に行った。
 比較例7のポリマー分散液を用いたイオン伝導層付セパレーターAの作製については、ポリマー分散液をイオン交換水で適度に希釈したのち、乾燥後の厚さが0.8μmになるように塗工した以外は、実施例1のポリマー分散液を用いた前記作製例と同様に行った。
[Preparation of Separator A with Ion Conduction Layer]
The 1.5 mass% CMC aqueous solution was mixed with the polymer dispersions obtained in Examples 1 to 11 and Comparative Examples 1 to 5 so that the solid content mass ratio of the polymer dispersion / CMC aqueous solution was 9/1. Then, it was diluted with ion-exchanged water so that the total solid content concentration became 10% by mass to obtain a slurry for an ion conductive layer.
The polymer dispersion of Comparative Example 6 was used as it was as a slurry for an ion conductive layer.
The slurry for the ion conductive layer is applied to one side of the separator (porous polyethylene) with an applicator so that the thickness after drying becomes 20 μm, dried at 60 ° C. for 10 minutes, and further overnight in a dry room or more. It was left to stand to obtain a separator A having an ion conductive layer.
Regarding the preparation of the separator A with an ion conductive layer using the polymer dispersion liquid of Example 12, the above-mentioned preparation using the polymer dispersion liquid of Example 1 except that the coating was applied so that the thickness after drying was 45 μm. It was done in the same way as the example.
Regarding the production of the separator A with an ion conductive layer using the polymer dispersion liquid of Example 13, the polymer dispersion liquid was appropriately diluted with ion-exchanged water and then coated so that the thickness after drying was 5 μm. Was carried out in the same manner as in the above-mentioned production example using the polymer dispersion liquid of Example 1.
Regarding the production of the separator A with an ion conductive layer using the polymer dispersion of Example 14, except that the polymer dispersion was appropriately diluted with ion-exchanged water and then coated so that the thickness after drying was 2 μm. Was carried out in the same manner as in the above-mentioned production example using the polymer dispersion liquid of Example 1.
Regarding the production of the separator A with an ion conductive layer using the polymer dispersion of Comparative Example 7, the polymer dispersion was appropriately diluted with ion-exchanged water and then coated so that the thickness after drying was 0.8 μm. Except for the above, the same procedure as in the above-mentioned production example using the polymer dispersion liquid of Example 1 was carried out.
[イオン伝導層付セパレーターBの作製]
 実施例1~11および比較例1~5で得られたポリマー分散液に、1.5質量%CMC水溶液、およびアルミナフィラー(Alfer Aesar製 酸化アルミニウム、alpha-phase,99%, metal basis)を、ポリマー分散液/CMC水溶液/アルミナフィラーの固形分質量比が9/1/90となるように混合した後、全固形分濃度が40質量%となるようイオン交換水で希釈し、イオン伝導層用スラリーを得た。
 比較例6のポリマー分散液はアルミナフィラーを固形分質量比10/90となるように混合した後、全固形分濃度が40質量%となるようにNMPで希釈し、イオン伝導層用スラリーを得た。
 セパレーター(多孔性ポリエチレン)の片面に前記イオン伝導層用スラリーを、乾燥後の厚さが20μmになるようにアプリケーターで塗工し、60℃で10分乾燥させ、さらにドライルームにて1晩以上放置し、イオン伝導層を有するセパレーターBを得た。
[Preparation of Separator B with Ion Conduction Layer]
To the polymer dispersions obtained in Examples 1 to 11 and Comparative Examples 1 to 5, a 1.5 mass% CMC aqueous solution and an alumina filler (aluminum oxide manufactured by Alfer Aesar, alpha-phase, 99%, metal basis) were added. After mixing the polymer dispersion / CMC aqueous solution / alumina filler so that the solid content mass ratio is 9/1/90, dilute with ion-exchanged water so that the total solid content concentration becomes 40% by mass, and use the ion conductive layer. A slurry was obtained.
The polymer dispersion of Comparative Example 6 was mixed with an alumina filler so as to have a solid content mass ratio of 10/90, and then diluted with NMP so that the total solid content concentration was 40% by mass to obtain a slurry for an ion conductive layer. rice field.
The slurry for the ion conductive layer is applied to one side of the separator (porous polyethylene) with an applicator so that the thickness after drying becomes 20 μm, dried at 60 ° C. for 10 minutes, and further overnight in a dry room or more. It was left to stand to obtain a separator B having an ion conductive layer.
〔イオン伝導層の平均厚さ〕
 イオン伝導層を付与する前の負極及びセパレーターの平均厚さと、上記の方法で得た負極A及びセパレーターA、Bの平均厚さとの差をイオン伝導接着層の平均厚さとした。平均厚さは、多孔性ポリオレフィンフィルム、イオン伝導層付セパレーター、それぞれについて、高精度膜厚計(東精エンジニアリング)を用いて測定し、5点測定した平均値とした。なお、イオン伝導層を多孔性ポリオレフィンフィルムの両面に形成した場合は、それぞれの面の平均値を2で割った値を平均厚さとした。結果を表1に示した。
[Average thickness of ion conductive layer]
The difference between the average thickness of the negative electrode and the separator before the ion conductive layer was applied and the average thickness of the negative electrode A and the separators A and B obtained by the above method was taken as the average thickness of the ion conductive adhesive layer. The average thickness was measured using a high-precision film thickness meter (Tosei Engineering) for each of the porous polyolefin film and the separator with an ion conductive layer, and the average value was measured at 5 points. When the ion conductive layer was formed on both sides of the porous polyolefin film, the average value of each surface divided by 2 was taken as the average thickness. The results are shown in Table 1.
[イオン伝導層付負極Aを有するリチウムイオン二次電池評価セルの作製]
 端子取り付け部分を残して、イオン伝導層付負極Aを45mm×45mmに、リチウム箔を40mm×40mmに打ち抜き、それぞれ端子を取り付けた。50mm×50mmに打ち抜いたセパレーターを負極の活物質層側に重ね、更に前記リチウム箔を重ねた。それらをアルミ包材ラミネートフィルムに挟んで、端子側の辺を除く3辺を熱融着により閉じた。
 端子側の開口部より下記電解液を注入し、内部を真空状態にして端子側も熱融着してセルを密閉し、リチウムイオン二次電池を作製した。電解液には、濃度1MのLiPF溶液(溶媒:EC/DEC混合溶媒(体積比3/7))に炭酸ビニレン(VC)を1質量%添加したものを用いた。
 以上のようにして、イオン伝導層の場所が負極活物質層の表面のみである、イオン伝導層付負極Aを有するリチウムイオン二次電池評価セルを作製した。
 なお、比較例6のポリマー分散液を用いたイオン伝導層付負極Aは、打ち抜きの際にイオン伝導層が剥がれたため評価できなかった。
[Manufacturing of a lithium ion secondary battery evaluation cell having a negative electrode A with an ion conducting layer]
The negative electrode A with an ion conductive layer was punched to 45 mm × 45 mm and the lithium foil was punched to 40 mm × 40 mm, leaving the terminal mounting portion, and the terminals were mounted respectively. A separator punched out to 50 mm × 50 mm was overlaid on the active material layer side of the negative electrode, and the lithium foil was further overlaid. They were sandwiched between aluminum packaging material laminated films, and three sides except the terminal side were closed by heat fusion.
The following electrolytic solution was injected from the opening on the terminal side, the inside was evacuated, and the terminal side was also heat-sealed to seal the cell, thereby producing a lithium ion secondary battery. As the electrolytic solution, a solution of LiPF 6 having a concentration of 1 M (solvent: EC / DEC mixed solvent (volume ratio 3/7)) to which 1% by mass of vinylene carbonate (VC) was added was used.
As described above, a lithium ion secondary battery evaluation cell having a negative electrode A with an ion conductive layer, in which the location of the ion conductive layer is only the surface of the negative electrode active material layer, was produced.
The negative electrode A with an ion conductive layer using the polymer dispersion of Comparative Example 6 could not be evaluated because the ion conductive layer was peeled off during punching.
[イオン伝導層付セパレーターAを有するリチウムイオン二次電池評価セルの作製]
 イオン伝導層付負極Aを前記負極とし、セパレーターを前記イオン伝導層付セパレーターAとし、セパレーターAのイオン伝導層を有しない面を負極合材層に重ねたこと以外は、前記イオン伝導層付負極Aを有するリチウムイオン二次電池評価セルと同様にして、イオン伝導層の場所がセパレーターの片面のみである、イオン伝導層付セパレーターAを有するリチウムイオン二次電池評価セルを作製した。
 なお、比較例6のポリマー分散液を用いて作製したイオン伝導層付セパレーターAは、打ち抜きの際にイオン伝導層が剥がれたため評価できなかった。
[Manufacturing of a lithium ion secondary battery evaluation cell having a separator A with an ion conductive layer]
The negative electrode with an ion conductive layer is the negative electrode, the separator is the separator A with the ion conductive layer, and the surface of the separator A without the ion conductive layer is overlapped with the negative electrode mixture layer. Similar to the lithium ion secondary battery evaluation cell having A, a lithium ion secondary battery evaluation cell having a separator A with an ion conductive layer was prepared in which the location of the ion conductive layer is only one side of the separator.
The separator A with an ionic conductive layer produced by using the polymer dispersion of Comparative Example 6 could not be evaluated because the ionic conductive layer was peeled off during punching.
[イオン伝導層付セパレーターBを有するリチウムイオン二次電池評価セルの作製]
 イオン伝導層付セパレーターAをイオン伝導層付セパレーターBとしたこと以外は、前記イオン伝導層付セパレーターAを有するリチウムイオン二次電池評価セルと同様にして、イオン伝導層の場所がセパレーターの片面のみである、イオン伝導層付セパレーターBを有するリチウムイオン二次電池評価セルを作製した。
 なお、比較例6のポリマー分散液を用いて作製したイオン伝導層付セパレーターBは、打ち抜きの際にイオン伝導層が剥がれたため評価できなかった。
[Manufacturing of a lithium ion secondary battery evaluation cell having a separator B with an ion conductive layer]
Similar to the lithium ion secondary battery evaluation cell having the separator A with the ion conductive layer, the location of the ion conductive layer is only on one side of the separator, except that the separator A with the ion conductive layer is the separator B with the ion conductive layer. A lithium ion secondary battery evaluation cell having a separator B with an ion conductive layer was prepared.
The separator B with an ionic conductive layer produced using the polymer dispersion of Comparative Example 6 could not be evaluated because the ionic conductive layer was peeled off during punching.
<充電容量>
 作製したリチウムイオン二次電池(イオン伝導層付負極A、イオン伝導層付セパレーターA、又は、イオン伝導層付セパレーターBを有するリチウムイオン二次電池)評価セルを用いて、25℃の環境下で、電圧0Vまで電流値0.2Cで定電流充電した後、0V一定で0.05Cになるまで定電圧充電(CC/CV)し、続いて電流値0.2Cで、電圧3.0Vまで定電流放電した。この充放電を3回繰り返してコンディショニングを完了したのち、以下の電池評価を行った。
 温度25℃の環境下で、電圧0Vまで、0.2Cの定電流充電を実施し、このときの充電容量をCと定義した。その後、同様に0.2Cの定電流にてCC-CV充電し、電流値0.2Cで、電圧3.0Vまで定電流放電したのち、3.0Cの定電流にて0Vまで充電を実施し、このときの充電容量をCと定義した。そして、レート特性として、C=(C/C)×100(%)で示される容量維持率(%)を求めた。この容量維持率Cの値は大きいほど電池特性に優れることを示す。結果を表1~3に示した。
<Charging capacity>
Using the manufactured lithium ion secondary battery (a negative electrode A with an ion conductive layer, a separator A with an ion conductive layer, or a lithium ion secondary battery having a separator B with an ion conductive layer), an evaluation cell was used in an environment of 25 ° C. After constant current charging to a voltage of 0V with a current value of 0.2C, constant voltage charging (CC / CV) is performed until the voltage becomes constant at 0V to 0.05C, and then constant to a voltage of 3.0V with a current value of 0.2C. The current was discharged. After repeating this charging and discharging three times to complete the conditioning, the following battery evaluation was performed.
In an environment with a temperature of 25 ° C., constant current charging of 0.2 C was carried out up to a voltage of 0 V, and the charge capacity at this time was defined as C 0 . After that, CC-CV is similarly charged with a constant current of 0.2C, discharged with a constant current to a voltage of 3.0V at a current value of 0.2C, and then charged to 0V with a constant current of 3.0C. , The charge capacity at this time was defined as C 1 . Then, as the rate characteristic, the capacity retention rate (%) represented by C = (C 1 / C 0 ) × 100 (%) was obtained. The larger the value of the capacity retention rate C, the better the battery characteristics. The results are shown in Tables 1 to 3.
<充放電サイクル特性>
 実施例1~12及び比較例1~5のイオン伝導層付負極Aを有するリチウムイオン二次電池評価セルを用いて、前記コンディショニングを完了した後、25℃の環境下で、電圧0Vまで電流値0.2Cで定電流充電した後、0V固定で0.05Cになるまで定電圧充電した。放電は、電流値0.2Cで、電圧3.0Vまで定電流放電した。この充放電を1サイクルとして100サイクル繰り返した。サイクル耐久性は、1サイクル目の充電容量Cに対する100サイクル後の充電容量C100の比(サイクル容量維持率)として求めた。結果を表1に示した。表1において、容量維持率が80%以上はA、60%以上がB、60%未満はCと表記した。
<Charge / discharge cycle characteristics>
After completing the conditioning using the lithium ion secondary battery evaluation cell having the negative electrode A with the ion conductive layer of Examples 1 to 12 and Comparative Examples 1 to 5, the current value up to a voltage of 0 V in an environment of 25 ° C. After charging with a constant current at 0.2 C, it was charged with a constant voltage until it reached 0.05 C at a fixed value of 0 V. The discharge was a constant current discharge with a current value of 0.2 C and a voltage of 3.0 V. This charging / discharging was regarded as one cycle and repeated for 100 cycles. The cycle durability was determined as the ratio (cycle capacity retention rate) of the charge capacity C 100 after 100 cycles to the charge capacity C 0 in the first cycle. The results are shown in Table 1. In Table 1, when the capacity retention rate is 80% or more, it is expressed as A, when it is 60% or more, it is expressed as B, and when it is less than 60%, it is expressed as C.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表1に示すように、実施例1~12のポリマー分散液を用いて作製したイオン伝導層付負極Aを有するリチウムイオン二次電池は、比較例1~5のポリマー分散液を用いて作製したイオン伝導層付負極Aを有するリチウムイオン二次電池に比べて、容量維持率の低下が抑制されており、電池特性が向上していることがわかった。
 さらに、実施例1~12のポリマー分散液を用いて作製したイオン伝導層付負極Aを有するリチウムイオン二次電池は、比較例1~5に比べて、充放電サイクル特性に優れていることがわかった。
As shown in Table 1, the lithium ion secondary battery having the negative electrode A with the ion conductive layer prepared by using the polymer dispersions of Examples 1 to 12 was prepared by using the polymer dispersions of Comparative Examples 1 to 5. It was found that the decrease in the capacity retention rate was suppressed and the battery characteristics were improved as compared with the lithium ion secondary battery having the negative electrode A with the ion conductive layer.
Further, the lithium ion secondary battery having the negative electrode A with the ion conductive layer produced by using the polymer dispersions of Examples 1 to 12 is superior in charge / discharge cycle characteristics as compared with Comparative Examples 1 to 5. all right.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表2に示すように、実施例1~11のポリマー分散液を用いて作製したイオン伝導層付セパレーターAを有するリチウムイオン二次電池は、比較例1~5のポリマー分散液を用いて作製したイオン伝導層付セパレーターAを有するリチウムイオン二次電池に比べて、容量維持率の低下が抑制されており、電池特性が向上していることがわかった。 As shown in Table 2, the lithium ion secondary battery having the separator A with an ion conductive layer prepared by using the polymer dispersions of Examples 1 to 11 was prepared by using the polymer dispersions of Comparative Examples 1 to 5. It was found that the decrease in the capacity retention rate was suppressed and the battery characteristics were improved as compared with the lithium ion secondary battery having the separator A with the ion conductive layer.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表3に示すように、実施例1~11のポリマー分散液を用いて作製したイオン伝導層付セパレーターBを有するリチウムイオン二次電池は、比較例1~5のポリマー分散液を用いて作製したイオン伝導層付セパレーターBを有するリチウムイオン二次電池に比べて、容量維持率の低下が抑制されており、電池特性が向上していることがわかった。 As shown in Table 3, the lithium ion secondary battery having the separator B with an ion conductive layer prepared by using the polymer dispersions of Examples 1 to 11 was prepared by using the polymer dispersions of Comparative Examples 1 to 5. It was found that the decrease in the capacity retention rate was suppressed and the battery characteristics were improved as compared with the lithium ion secondary battery having the separator B with the ion conductive layer.
<イオン伝導層(塗膜)の均一性>
 実施例1、12~14及び比較例7のポリマー分散液を用いたイオン伝導層付負極A又はセパレーターAについて、イオン伝導層(塗膜)を目視で確認し、弾きによる負極(又はセパレーター)表面の露出の発生の有無により塗膜均一性を評価した。結果を表4に示した。表4において、弾きによる負極(又はセパレーター)表面の露出が見られず塗膜の厚みがほぼ均一であった場合はA、弾きによる負極(又はセパレーター)表面の露出は見られなかったが塗膜の厚みにややムラがあった場合はB、弾きによる負極(又はセパレーター)表面の露出が見られ塗膜の厚みが不均一であった場合はCと表記した。
<Uniformity of ion conductive layer (coating film)>
With respect to the negative electrode A or separator A with an ion conductive layer using the polymer dispersions of Examples 1, 12 to 14 and Comparative Example 7, the ion conductive layer (coating film) was visually confirmed, and the surface of the negative electrode (or separator) was repelled. The uniformity of the coating film was evaluated based on the presence or absence of exposure. The results are shown in Table 4. In Table 4, when the surface of the negative electrode (or separator) was not exposed by flipping and the thickness of the coating film was almost uniform, A was found, and when the surface of the negative electrode (or separator) was not exposed by flipping, the coating film was not exposed. When the thickness of the coating film was slightly uneven, it was indicated as B, and when the surface of the negative electrode (or separator) was exposed by flipping and the thickness of the coating film was uneven, it was indicated as C.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表4に示すように、実施例1、12及び13のイオン伝導層では、負極(又はセパレーター)表面の露出が見られず、厚みがほぼ均一であった。実施例14のイオン伝導層では、負極表面(又はセパレーター)の露出は見られなかったが、厚みにややムラがあった。比較例7のイオン伝導層では、負極(又はセパレーター)表面の露出が見られ、厚みが不均一であった。 As shown in Table 4, in the ion conductive layers of Examples 1, 12 and 13, no exposure of the negative electrode (or separator) surface was observed, and the thickness was almost uniform. In the ion conductive layer of Example 14, the surface of the negative electrode (or the separator) was not exposed, but the thickness was slightly uneven. In the ion conductive layer of Comparative Example 7, the surface of the negative electrode (or separator) was exposed, and the thickness was non-uniform.
[バイポーラー型電池の作製例]
 実施例1のポリマー分散液を用いて図1に示すバイポーラー型電池を以下の方法により作製した。
[Example of manufacturing a bipolar battery]
The bipolar battery shown in FIG. 1 was produced by the following method using the polymer dispersion of Example 1.
(正極の作製)
 正極ペーストに用いた材料の略号は次の通りである。
・正極活物質:NMC111(日本化学工業製)、組成:LiNi1/3Mn1/3Co1/3(D50:6.5μm、BET比表面積:0.7m/g)
・正極導電材:アセチレンブラック(電気化学工業製、品名:デンカブラックHS-100)
・正極バインダー:ポリフッ化ビニリデン(PVDF)(クレハ製、L#7208;8%NMP溶液)
(Preparation of positive electrode)
The abbreviations of the materials used for the positive electrode paste are as follows.
-Positive electrode active material: NMC111 (manufactured by Nippon Chemical Industrial Co., Ltd.), composition: LiNi 1/3 Mn 1/3 Co 1/3 O 2 (D50: 6.5 μm, BET specific surface area: 0.7 m 2 / g)
-Positive electrode conductive material: acetylene black (manufactured by Denki Kagaku Kogyo, product name: Denka Black HS-100)
-Positive binder: polyvinylidene fluoride (PVDF) (manufactured by Kureha, L # 7208; 8% NMP solution)
 まず、正極活物質 282g、正極導電材 9g、及び正極バインダー 9gを、非水系溶媒としてNMPを用いて混合し、正極ペーストを調整した。ここで、正極活物質、正極導電材及び正極バインダーの質量比率は94:3:3(固形分換算)とした。上記混合には、ディスパーを用いた混練を行った。作製した正極ペーストを集電体であるアルミ箔上に乾燥後125g/mとなるように厚さを調節してバーコーターで塗工した。塗膜は、送風乾燥器を用いて100℃で5分乾燥し、さらに150℃で10分乾燥した。その後、ロールプレスにより電極密度を2.8~3.2g/cmに調整し、ドライルームにて1晩以上放置し、正極合材層を有する正極を作製した。 First, 282 g of the positive electrode active material, 9 g of the positive electrode conductive material, and 9 g of the positive electrode binder were mixed using NMP as a non-aqueous solvent to prepare a positive electrode paste. Here, the mass ratio of the positive electrode active material, the positive electrode conductive material, and the positive electrode binder was set to 94: 3: 3 (solid content conversion). For the above mixing, kneading using a disper was performed. The prepared positive electrode paste was dried on an aluminum foil as a current collector, adjusted in thickness to 125 g / m 2 , and coated with a bar coater. The coating film was dried at 100 ° C. for 5 minutes using a blower dryer, and further dried at 150 ° C. for 10 minutes. Then, the electrode density was adjusted to 2.8 to 3.2 g / cm 3 by a roll press, and left in a dry room for one night or more to prepare a positive electrode having a positive electrode mixture layer.
(イオン伝導層を有する負極及びバイポーラー電極の作製)
 前記リチウムイオン電池の負極と同様の方法により、負極を作製した。
 前記リチウムイオン電池の作製に用いた負極ペーストと同様の方法により得た負極ペーストを集電体であるステンレス箔の片面に乾燥後80g/mとなるように厚さを調節してバーコーターで塗工した。塗膜は、送風乾燥器を用いて80℃で5分乾燥し、さらに150℃で10分乾燥した。次に、前記正極ペーストを前記箔の他面に乾燥後125g/mとなるように厚さを調節してバーコーターで塗工した。塗膜は、送風乾燥器を用いて100℃で5分乾燥し、バイポーラー電極を得た。
 実施例1のポリマー分散液に、酸化物系固体電解質(オハラ製,Li2O-Al2O3-SiO2-P2O5-TiO2、商品名LICGC粉末)を、固形分重量比10/90となるように混合した後、全固形分濃度が30質量%となるようエタノールで希釈し均一混合して、イオン伝導層用スラリーを得た。
 前記負極およびバイポーラー型電極の負極上に、上記のイオン伝導層用スラリーを、乾燥後の厚さが40μmになるように塗工し、60℃で10分乾燥させ、さらにドライルームにて1晩以上放置し、イオン伝導層Cを有する負極Cおよびバイポーラー型電極Cを得た。
(Manufacturing of a negative electrode and a bipolar electrode having an ion conducting layer)
A negative electrode was produced by the same method as the negative electrode of the lithium ion battery.
The negative electrode paste obtained by the same method as the negative electrode paste used for manufacturing the lithium ion battery is dried on one side of a stainless steel foil as a current collector, and the thickness is adjusted to 80 g / m 2 with a bar coater. Painted. The coating film was dried at 80 ° C. for 5 minutes using a blower dryer, and further dried at 150 ° C. for 10 minutes. Next, the positive electrode paste was applied to the other surface of the foil with a bar coater after drying to adjust the thickness to 125 g / m 2 . The coating film was dried at 100 ° C. for 5 minutes using a blower dryer to obtain a bipolar electrode.
An oxide-based solid electrolyte (manufactured by O'Hara, Li 2 O-Al 2 O 3 -SiO 2 -P 2 O 5 -TiO 2 , trade name LICGC powder) was added to the polymer dispersion of Example 1 in a solid content weight ratio of 10. After mixing to a ratio of / 90, the mixture was diluted with ethanol so that the total solid content concentration was 30% by mass and uniformly mixed to obtain a slurry for an ion conductive layer.
The slurry for the ion conductive layer is coated on the negative electrode of the negative electrode and the bipolar electrode so that the thickness after drying is 40 μm, dried at 60 ° C. for 10 minutes, and further in a dry room. After being left to stand for more than night, a negative electrode C having an ion conductive layer C and a bipolar electrode C were obtained.
(バイポーラー型電池の作製)
 端子取り付け部分を残して、前記負極Cおよび正極を40mm×40mmに打ち抜き、それぞれ端子を取り付けた。バイポーラー型電極Cを40mm×40mmに2枚打ち抜き、最外層を負極Cおよび正極とし、その間に2枚のバイポーラー型電極Cを、全て負極と正極で向き合うように重ね、積層電極を作製した。層間に残留する空隙をなくすために真空下で積層電極をプレスした後、電解液に8時間浸漬して電解液を十分に電極及びイオン伝導層に含侵させ、取り出した積層電極の表面をふき取り、アルミ包材ラミネートフィルムに挟んで、端子側の辺を除く3辺を熱融着により閉じた。内部を真空状態にして端子側も熱融着してセルを密閉し、図1に示すバイポーラー型のリチウムイオン二次電池を作製した。電解液には、濃度1MのLiPF溶液(溶媒:EC/DEC混合溶媒(体積比3/7))に炭酸ビニレン(VC)を1質量%添加したものを用いた。
(Manufacturing of bipolar battery)
The negative electrode C and the positive electrode were punched out to a size of 40 mm × 40 mm, leaving the terminal mounting portion, and the terminals were mounted respectively. Two bipolar type electrodes C were punched out to a size of 40 mm × 40 mm, and the outermost layer was used as a negative electrode C and a positive electrode. .. After pressing the laminated electrode under vacuum to eliminate the voids remaining between the layers, the laminated electrode is immersed in the electrolytic solution for 8 hours to sufficiently impregnate the electrode and the ionic conductive layer, and the surface of the taken-out laminated electrode is wiped off. , It was sandwiched between aluminum packaging material laminated films, and three sides except the side on the terminal side were closed by heat fusion. The inside was evacuated and the terminal side was also heat-sealed to seal the cell, thereby producing a bipolar type lithium ion secondary battery shown in FIG. As the electrolytic solution, a solution of LiPF 6 having a concentration of 1 M (solvent: EC / DEC mixed solvent (volume ratio 3/7)) to which 1% by mass of vinylene carbonate (VC) was added was used.
 以上説明したとおり、電池特性に優れる本開示のイオン伝導層は、リチウムイオン電池を始め、リチウムイオンキャパシタやその他の蓄電デバイスにおいて有用である。 As described above, the ion conductive layer of the present disclosure having excellent battery characteristics is useful in lithium ion batteries, lithium ion capacitors, and other power storage devices.
1 負極集電体、2 負極活物質、3 イオン伝導層C、4 正極活物質、5 バイポーラー型電極集電体、6 正極集電体、7 負極C、8 正極、9 バイポーラー型電極C、10 集電タブ、11 アルミ包材ラミネートフィルム、12 積層部分 1 Negative electrode collector, 2 Negative electrode active material, 3 Ion conduction layer C, 4 Positive electrode active material, 5 Bipolar electrode collector, 6 Positive electrode collector, 7 Negative electrode C, 8 Positive electrode, 9 Bipolar electrode C 10, current collecting tab, 11 aluminum packaging material laminated film, 12 laminated part

Claims (16)

  1.  蓄電デバイスの正極と負極の間に配置されるイオン伝導層であって、
     前記イオン伝導層はアクリル系ポリマーを含有し、
     前記アクリル系ポリマーは、下記式(I)で表される化合物由来の構成単位(A)を含み、
     前記アクリル系ポリマーの全構成単位中の構成単位(A)の含有量が88質量%以上100質量%以下であり、
     前記イオン伝導層の厚さが1μm超500μm以下である、蓄電デバイス用イオン伝導層。
    Figure JPOXMLDOC01-appb-C000001
    式(I)中、Rは、水素原子又はメチル基を示す。Rは、炭素数1以上3以下の直鎖又は分岐鎖のアルキル基を示す。Xは、-O-又は-NH-を示す。
    An ionic conduction layer arranged between the positive electrode and the negative electrode of the power storage device.
    The ionic conductive layer contains an acrylic polymer and has
    The acrylic polymer contains a structural unit (A) derived from a compound represented by the following formula (I).
    The content of the structural unit (A) in all the structural units of the acrylic polymer is 88% by mass or more and 100% by mass or less.
    An ion conductive layer for a power storage device, wherein the thickness of the ion conductive layer is more than 1 μm and 500 μm or less.
    Figure JPOXMLDOC01-appb-C000001
    In formula (I), R 1 represents a hydrogen atom or a methyl group. R 2 represents a linear or branched alkyl group having 1 or more and 3 or less carbon atoms. X indicates -O- or -NH-.
  2.  前記アクリル系ポリマーは、下記式(II)で表される化合物、下記式(III)で表される化合物及び不飽和二塩基酸から選ばれる少なくとも1種の化合物由来の構成単位(B)をさらに含み、
     前記アクリル系ポリマーの全構成単位中の構成単位(B)の含有量が0.01質量%以上12質量%以下である、請求項1記載の蓄電デバイス用イオン伝導層。
    Figure JPOXMLDOC01-appb-C000002
    式(II)中、Rは、水素原子又はメチル基を示し、Mは、水素原子又はカチオンを示す。
    Figure JPOXMLDOC01-appb-C000003
    式(III)中、Rは、水素原子又はメチル基を示し、Xは、-O-又は-NH-を示す。Rは、-(CH)OR、-RSOM、-RN(R)(R)及び-R(R)(R)(R)・Yから選ばれる少なくとも1種を示す。nは、1以上4以下である。Rは、水素原子又はメチル基を示す。Rは、炭素数1以上3以下の直鎖又は分岐鎖のアルキレン基を示す。Mは、水素原子又はカチオンを示す。Rは、炭素数1以上3以下の直鎖又は分岐鎖のアルキレン基を示す。R及びRは同一又は異なり、炭素数1以上3以下の直鎖又は分岐鎖のアルキル基を示す。Rは、炭素数1以上3以下の直鎖又は分岐鎖のアルキル基を示す。Yは、アニオンを示す。
    The acrylic polymer further comprises a structural unit (B) derived from at least one compound selected from a compound represented by the following formula (II), a compound represented by the following formula (III), and an unsaturated dibasic acid. Including
    The ion conductive layer for a power storage device according to claim 1, wherein the content of the structural unit (B) in all the structural units of the acrylic polymer is 0.01% by mass or more and 12% by mass or less.
    Figure JPOXMLDOC01-appb-C000002
    In formula (II), R 1 represents a hydrogen atom or a methyl group, and M represents a hydrogen atom or a cation.
    Figure JPOXMLDOC01-appb-C000003
    In formula (III), R 1 represents a hydrogen atom or a methyl group, and X represents -O- or -NH-. R4 is-(CH 2 ) n OR 3 , -R 5 SO 3 M, -R 6 N (R 7 ) (R 8 ) and -R 6 N + (R 7 ) (R 8 ) (R 9 ). -Indicates at least one selected from Y- . n is 1 or more and 4 or less. R 3 represents a hydrogen atom or a methyl group. R 5 represents a linear or branched alkylene group having 1 or more and 3 or less carbon atoms. M represents a hydrogen atom or a cation. R 6 represents a linear or branched alkylene group having 1 or more and 3 or less carbon atoms. R 7 and R 8 are the same or different, and represent linear or branched alkyl groups having 1 or more and 3 or less carbon atoms. R 9 represents a linear or branched alkyl group having 1 or more and 3 or less carbon atoms. Y indicates an anion.
  3.  前記式(II)及び式(III)におけるMがリチウムイオン及び水素原子から選ばれる少なくとも1種である、請求項2に記載の蓄電デバイス用イオン伝導層。 The ion conduction layer for a power storage device according to claim 2, wherein M in the formulas (II) and (III) is at least one selected from lithium ions and hydrogen atoms.
  4.  前記アクリル系ポリマーは、前記式(I)で表される化合物を含むモノマー混合物を乳化重合させてなり、
     前記イオン伝導層に含まれる乳化剤量がアクリル系ポリマーに対して0質量%以上0.05質量%以下である、請求項1から3のいずれかに記載の蓄電デバイス用イオン伝導層。
    The acrylic polymer is obtained by emulsion polymerization of a monomer mixture containing the compound represented by the formula (I).
    The ion conductive layer for a power storage device according to any one of claims 1 to 3, wherein the amount of the emulsifier contained in the ion conductive layer is 0% by mass or more and 0.05% by mass or less with respect to the acrylic polymer.
  5.  前記アクリル系ポリマーは、架橋性モノマー由来の構成単位(C)をさらに含み、
     前記アクリル系ポリマーの構成単位(C)の含有量は、構成単位(C)以外の構成単位の合計モル数に対して、0.001モル%以上5モル%以下である、請求項1から4のいずれか記載の蓄電デバイス用イオン伝導層。
    The acrylic polymer further contains a structural unit (C) derived from a crosslinkable monomer.
    The content of the constituent unit (C) of the acrylic polymer is 0.001 mol% or more and 5 mol% or less with respect to the total number of moles of the constituent units other than the constituent unit (C), claims 1 to 4. The ion conductive layer for a power storage device according to any one of the above.
  6.  前記架橋性モノマーが、多官能(メタ)アクリレート及びN-メチロールアミド基含有モノマーから選ばれる少なくとも1種である、請求項5に記載の蓄電デバイス用イオン伝導層。 The ion conductive layer for a power storage device according to claim 5, wherein the crosslinkable monomer is at least one selected from a polyfunctional (meth) acrylate and an N-methylolamide group-containing monomer.
  7.  無機酸化物を含まない、請求項1から6のいずれかに記載の蓄電デバイス用イオン伝導層。 The ion conductive layer for a power storage device according to any one of claims 1 to 6, which does not contain an inorganic oxide.
  8.  請求項1から7のいずれかに記載のイオン伝導層を形成するためのアクリル系ポリマー組成物。 An acrylic polymer composition for forming the ionic conductive layer according to any one of claims 1 to 7.
  9.  請求項1から7のいずれかに記載のイオン伝導層を含有し、前記イオン伝導層の厚さが1μm超500μm以下である、蓄電デバイス用部材。 A member for a power storage device containing the ion conductive layer according to any one of claims 1 to 7, wherein the thickness of the ion conductive layer is more than 1 μm and 500 μm or less.
  10.  イオン伝導層中に固体電解質を含有する、請求項9に記載の蓄電デバイス用部材。 The member for a power storage device according to claim 9, which contains a solid electrolyte in the ionic conduction layer.
  11.  イオン伝導層中に無機酸化物を含有する、請求項9又は10に記載の蓄電デバイス用部材。 The member for a power storage device according to claim 9 or 10, which contains an inorganic oxide in the ionic conduction layer.
  12.  蓄電デバイス用部材が、イオン伝導層を有する電解質層、イオン伝導層を有する電極、及び、少なくとも一方の面にイオン伝導層を有するセパレーターから選ばれる少なくとも1種である、請求項9から11のいずれかに記載の蓄電デバイス用部材。 6. A member for a power storage device described in a conductor.
  13.  請求項9から12のいずれかに記載の蓄電デバイス用部材を有する、蓄電デバイス。 A power storage device having the power storage device member according to any one of claims 9 to 12.
  14.  イオン伝導層中に電解液を保持する、請求項13に記載の蓄電デバイス。 The power storage device according to claim 13, which holds an electrolytic solution in an ion conductive layer.
  15.  蓄電デバイス用イオン伝導層を形成するための方法であって、
     イオン伝導層の厚さが1μm超500μm以下になるように、アクリル系ポリマー組成物を含有するスラリーを基材表面に塗布する工程と、
     塗布したスラリーを乾燥してイオン伝導層を形成する工程と、を含み、
     前記アクリル系ポリマー組成物はアクリル系ポリマーの粒子を含有し、
     前記アクリル系ポリマーは、下記式(I)で表される化合物由来の構成単位(A)を含み、
     前記アクリル系ポリマーの全構成単位中における構成単位(A)の含有量は88質量%以上100質量%以下である、イオン伝導層形成方法。
    Figure JPOXMLDOC01-appb-C000004
    式(I)中、Rは、水素原子又はメチル基を示す。Rは、炭素数1以上3以下の直鎖又は分岐鎖のアルキル基を示す。Xは、-O-又は-NH-を示す。
    A method for forming an ion conductive layer for a power storage device.
    A step of applying a slurry containing an acrylic polymer composition to the surface of a substrate so that the thickness of the ionic conductive layer is more than 1 μm and 500 μm or less.
    Including the step of drying the applied slurry to form an ionic conductive layer,
    The acrylic polymer composition contains particles of the acrylic polymer, and the acrylic polymer composition contains particles of the acrylic polymer.
    The acrylic polymer contains a structural unit (A) derived from a compound represented by the following formula (I).
    A method for forming an ionic conductive layer, wherein the content of the structural unit (A) in all the structural units of the acrylic polymer is 88% by mass or more and 100% by mass or less.
    Figure JPOXMLDOC01-appb-C000004
    In formula (I), R 1 represents a hydrogen atom or a methyl group. R 2 represents a linear or branched alkyl group having 1 or more and 3 or less carbon atoms. X indicates -O- or -NH-.
  16.  スラリーを塗布する基材が、多孔性フィルム、又は、電極活物質とバインダーとを含む電極活物質層である、請求項15に記載のイオン伝導層形成方法。
     
    The method for forming an ion conductive layer according to claim 15, wherein the base material to which the slurry is applied is a porous film or an electrode active material layer containing an electrode active material and a binder.
PCT/JP2021/031520 2020-08-28 2021-08-27 Ion conductive layer for electricity storage devices WO2022045295A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022545733A JPWO2022045295A1 (en) 2020-08-28 2021-08-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020144887 2020-08-28
JP2020-144887 2020-08-28

Publications (1)

Publication Number Publication Date
WO2022045295A1 true WO2022045295A1 (en) 2022-03-03

Family

ID=80355383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031520 WO2022045295A1 (en) 2020-08-28 2021-08-27 Ion conductive layer for electricity storage devices

Country Status (2)

Country Link
JP (1) JPWO2022045295A1 (en)
WO (1) WO2022045295A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141962A1 (en) * 2013-03-11 2014-09-18 株式会社村田製作所 All-solid-state battery
JP2014173016A (en) * 2013-03-11 2014-09-22 Takemoto Oil & Fat Co Ltd Organic silicone fine particle, method of producing organic silicone fine particle, modified polyolefin microporous film, method of producing modified polyolefin microporous film and separator for nonaqueous electrolyte electric cell
WO2015064411A1 (en) * 2013-10-31 2015-05-07 日本ゼオン株式会社 Particulate polymer for use in binder for lithium-ion secondary battery; adhesive layer; and porous-membrane composition
WO2016098684A1 (en) * 2014-12-15 2016-06-23 帝人株式会社 Separator for nonaqueous electrolyte cell, nonaqueous electrolyte cell, and method for manufacturing nonaqueous electrolyte cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141962A1 (en) * 2013-03-11 2014-09-18 株式会社村田製作所 All-solid-state battery
JP2014173016A (en) * 2013-03-11 2014-09-22 Takemoto Oil & Fat Co Ltd Organic silicone fine particle, method of producing organic silicone fine particle, modified polyolefin microporous film, method of producing modified polyolefin microporous film and separator for nonaqueous electrolyte electric cell
WO2015064411A1 (en) * 2013-10-31 2015-05-07 日本ゼオン株式会社 Particulate polymer for use in binder for lithium-ion secondary battery; adhesive layer; and porous-membrane composition
WO2016098684A1 (en) * 2014-12-15 2016-06-23 帝人株式会社 Separator for nonaqueous electrolyte cell, nonaqueous electrolyte cell, and method for manufacturing nonaqueous electrolyte cell

Also Published As

Publication number Publication date
JPWO2022045295A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
KR102303725B1 (en) Thermal crosslinking type slurry for lithium ion battery and method for producing same, electrode for lithium ion battery, separator for lithium ion battery, separator/electrode layered product for lithium ion battery and lithium ion battery
CN109565016B (en) Composition for non-aqueous secondary battery porous membrane, and non-aqueous secondary battery
KR101819067B1 (en) Positive electrode for secondary batteries, method for producing same, slurry composition, and secondary battery
JP4822726B2 (en) Polymer for lithium ion secondary battery and lithium ion secondary battery using the same
WO2017094252A1 (en) Composition for non-aqueous secondary cell adhesive layer, adhesive layer for non-aqueous secondary cell, laminate body, and non-aqueous secondary cell
CN108780892B (en) Binder composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
CN109565017B (en) Composition for functional layer of nonaqueous secondary battery, functional layer for nonaqueous secondary battery, and nonaqueous secondary battery
JPWO2009107778A1 (en) Non-aqueous electrolyte secondary battery electrode binder composition and non-aqueous electrolyte secondary battery
JP7259746B2 (en) Binder composition for electrochemical element functional layer, composition for electrochemical element functional layer, functional layer for electrochemical element, and electrochemical element
TWI746608B (en) Resin composition for electrode of electric storage device
KR20180041683A (en) A composition for a non-aqueous secondary battery functional layer, a functional layer for a non-aqueous secondary battery, and a non-aqueous secondary battery
KR102335861B1 (en) A binder composition for a functional layer of a non-aqueous secondary battery, a composition for a functional layer of a non-aqueous secondary battery, a functional layer for a non-aqueous secondary battery, a battery member for a non-aqueous secondary battery, and a non-aqueous secondary battery
CN107534152B (en) Composition for binder for nonaqueous battery electrode, composition for nonaqueous battery electrode, and nonaqueous battery
WO2018155713A1 (en) Resin for energy device electrode, composition for forming energy device electrode, energy device electrode, and energy device
WO2019004459A1 (en) Binder composition for electrochemical elements, slurry composition for electrochemical element functional layer, slurry composition for electrochemical element adhesion layer, and composite membrane
WO2022045295A1 (en) Ion conductive layer for electricity storage devices
WO2019044720A1 (en) Composition for electrochemical element functional layer, functional layer for electrochemical element, and electrochemical element
WO2021246364A1 (en) Nonaqueous secondary battery electrode binder and nonaqueous secondary battery electrode slurry
CN113892202A (en) Binder composition for heat-resistant layer of nonaqueous secondary battery, slurry composition for heat-resistant layer of nonaqueous secondary battery, heat-resistant layer for nonaqueous secondary battery, and nonaqueous secondary battery
JP2022163577A (en) Ion-conducting layer for power storage devices
WO2019004460A1 (en) Binder composition for electrochemical elements, slurry composition for electrochemical element functional layer, slurry composition for electrochemical element adhesion layer, and composite membrane
CN113728504B (en) Polymer binder, laminated porous film, battery, and electronic device
JP7327404B2 (en) Binder for secondary battery electrode mixture layer, composition for secondary battery electrode mixture layer, and secondary battery electrode
WO2022172843A1 (en) Negative electrode binder composition, negative electrode, and secondary battery
WO2023074728A1 (en) Binder for secondary cell electrode, use thereof, and method for manufacturing binder for secondary cell electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861716

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022545733

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861716

Country of ref document: EP

Kind code of ref document: A1