WO2018087897A1 - Resin for energy device electrodes, composition for forming energy device electrode, energy device electrode, and energy device - Google Patents

Resin for energy device electrodes, composition for forming energy device electrode, energy device electrode, and energy device Download PDF

Info

Publication number
WO2018087897A1
WO2018087897A1 PCT/JP2016/083606 JP2016083606W WO2018087897A1 WO 2018087897 A1 WO2018087897 A1 WO 2018087897A1 JP 2016083606 W JP2016083606 W JP 2016083606W WO 2018087897 A1 WO2018087897 A1 WO 2018087897A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy device
resin
group
mol
formula
Prior art date
Application number
PCT/JP2016/083606
Other languages
French (fr)
Japanese (ja)
Inventor
駿介 長井
広喜 葛岡
鈴木 健司
信之 小川
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2016/083606 priority Critical patent/WO2018087897A1/en
Publication of WO2018087897A1 publication Critical patent/WO2018087897A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an energy device electrode resin, an energy device electrode forming composition, an energy device electrode, and an energy device.
  • lithium ion secondary batteries are widely used as energy devices having high energy density.
  • a positive electrode, a separator, a negative electrode, and a separator are stacked in this order, and a wound electrode group obtained by winding, or a stacked electrode formed by stacking a positive electrode, a separator, and a negative electrode Groups are used.
  • an active material of the negative electrode a carbon material having a multilayer structure capable of inserting lithium ions between layers (forming a lithium intercalation compound) and releasing is mainly used.
  • the positive electrode active material a lithium-containing composite metal oxide is mainly used.
  • a polyolefin porous film is mainly used for the separator.
  • Such a lithium ion secondary battery has high battery capacity and output, and good charge / discharge cycle characteristics.
  • the electrode of the lithium ion secondary battery is prepared by mixing the active material, binder resin and solvent (N-methyl-2-pyrrolidone, etc.) described above to prepare a slurry, which is then collected by a transfer roll or the like. It is applied to one or both sides of the metal foil, and the solvent is removed by drying to form an electrode mixture layer, and then compression-molded with a roll press or the like.
  • a fluorine resin having high reliability in terms of electrochemical stability is often used because of the high potential at the positive electrode.
  • the fluorine-based resin has low adhesion to other materials.
  • the conventional binder resin has low swelling resistance to the electrolyte solution of lithium ion secondary battery (liquid that mediates the exchange of lithium ions between the positive electrode and the negative electrode due to charge / discharge), and the electrode mixture layer is formed by swelling.
  • the interface between the electrode and the current collector and the contact state between the active materials in the electrode mixture layer are difficult to be maintained. For this reason, when the conductive network in the electrode gradually collapses and the lithium ion secondary battery is repeatedly charged and discharged, this is a cause of a decrease in capacity over time.
  • Patent Document 1 discloses a nitrile group-containing monomer, a relatively long-chain monomer including an oxyethylene skeleton responsible for flexibility and flexibility, and a relatively long-chain monomer.
  • a binder resin composition for a non-aqueous electrolyte-based energy device electrode comprising a copolymer of at least one of monomers having a long alkyl group and any carboxy group-containing monomer responsible for adhesion is disclosed. .
  • the binder resin composition for non-aqueous electrolyte-based energy device electrodes disclosed in Patent Document 1 By using the binder resin composition for non-aqueous electrolyte-based energy device electrodes disclosed in Patent Document 1, the swelling resistance to the electrolyte and the adhesion of the electrode to the current collector are improved, and the electrode Flexibility and flexibility tend to be good. However, the rollability is low, and the electrode density after compression molding may not increase. Today, the demand for higher density energy devices is increasing, and materials with high rollability are desired. In order to increase the electrode density after compression molding, the binder resin is required to have excellent rollability. In the present disclosure, “rollability” refers to a characteristic that the electrode density is easily improved by compression molding when forming the electrode. By increasing the electrode density by compression molding, the capacity of the lithium ion secondary battery can be increased.
  • This invention is made
  • the present invention relates to the following.
  • ⁇ 1> a structural unit derived from a nitrile group-containing monomer;
  • ⁇ 2> The energy device electrode resin according to ⁇ 1>, wherein the group containing an ethylenically unsaturated double bond is at least one selected from the group consisting of an acryloyl group and a methacryloyl group.
  • ⁇ 3> The energy device electrode resin according to ⁇ 1> or ⁇ 2>, wherein the crosslinking agent includes a compound represented by the following formula (I).
  • R 1 and R 2 each independently represent a hydrogen atom or a methyl group, R 3 represents an alkylene group, and n represents an integer of 1 to 50.
  • R 1 and R 2 each independently represent a hydrogen atom or a methyl group, R 3 represents an alkylene group, and n represents an integer of 1 to 50.
  • R 1 and R 2 each independently represent a hydrogen atom or a methyl group, and n represents an integer of 1 to 50.
  • ⁇ 5> The energy device electrode resin according to ⁇ 4>, wherein the compound represented by the formula (II) includes triethylene glycol diacrylate.
  • ⁇ 6> Any one of ⁇ 1> to ⁇ 5>, wherein a ratio of the structural unit derived from the crosslinking agent to 1 mol of the structural unit derived from the nitrile group-containing monomer is 0.0001 mol to 0.02 mol.
  • the ratio of the structural unit derived from the carboxy group-containing monomer and containing a carboxy group to 1 mol of the structural unit derived from the nitrile group-containing monomer is 0.001 mol to 0.2 mol ⁇ Resin for energy device electrodes as described in 7> or ⁇ 8>.
  • R 4 represents a hydrogen atom or a methyl group
  • R 5 represents a hydrogen atom or a monovalent hydrocarbon group
  • m represents an integer of 1 to 50.
  • the ratio of the structural unit derived from the monomer represented by the formula (III) to 1 mol of the structural unit derived from the nitrile group-containing monomer is 0.001 mol to 0.2 mol ⁇ 11
  • R 6 represents a hydrogen atom or a methyl group
  • R 7 represents an alkyl group having 4 to 100 carbon atoms.
  • the ratio of the structural unit derived from the monomer represented by the formula (IV) to 1 mol of the structural unit derived from the nitrile group-containing monomer is 0.001 mol to 0.2 mol ⁇ 15 > Resin for energy device electrodes as described in>.
  • An energy device electrode forming composition comprising the energy device electrode resin according to any one of ⁇ 1> to ⁇ 16>.
  • an energy device electrode resin and an energy device electrode forming composition excellent in rollability Furthermore, according to this invention, the energy device electrode which shows high electrode density, and an energy device using the same are provided.
  • the present invention is not limited to the following embodiments.
  • the components including element steps and the like are not essential unless otherwise specified.
  • the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. It is.
  • numerical values indicated by using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range. Good. Further, in the numerical ranges described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the content of each component in the composition is the sum of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. It means the content rate of.
  • the particle diameter of each component in the composition is a mixture of the plurality of types of particles present in the composition unless there is a specific indication when there are a plurality of types of particles corresponding to each component in the composition. Means the value of.
  • the term “layer” or “film” refers to a part of the region in addition to the case where the layer or the film is formed when the region where the layer or film exists is observed. It is also included when it is formed only.
  • laminate indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
  • (meth) acryl means at least one of acryl and methacryl
  • (meth) acrylate means at least one of acrylate and methacrylate
  • (meth) allyl means at least one of allyl and methallyl. Mean one.
  • the resin for energy device electrodes of the present disclosure comprises a structural unit derived from a nitrile group-containing monomer and a structural unit derived from a crosslinking agent containing at least two groups containing an ethylenically unsaturated double bond in one molecule. Including.
  • the resin for energy device electrodes of the present disclosure is excellent in rollability. The reason is not clear, but is presumed as follows. As described above, when forming an electrode of a lithium ion secondary battery, the electrode mixture layer containing the binder resin, active material, etc. formed on the current collector is subjected to compression molding with a roll press or the like. Is done. In the electrode mixture layer, the active materials are considered to be bound by the binder resin. Therefore, at the time of compression molding, the active materials bound by the binder resin by pressurization are once separated, and the active materials are bound again with the density of the electrode mixture layer increased, It is considered that the active material is rearranged in the electrode mixture layer in a compressed state.
  • the resin for energy device electrodes of the present disclosure includes a structural unit derived from a crosslinking agent, it is considered that the adhesive force is low as compared with a resin not including a structural unit derived from a crosslinking agent. Therefore, it is considered that the binding force between the active materials when the resin for an energy device electrode of the present disclosure is used as a binder resin is lower than that of a resin not including a structural unit derived from a crosslinking agent.
  • the energy device electrode resin of the present disclosure that binds the active materials with a weak binding force as the binder resin the active materials are likely to be separated from each other during compression molding. Since the active materials are easily rearranged by being easily separated from each other, it is assumed that the density of the electrode mixture layer is easily improved and the rollability is improved.
  • binder resin refers to a resin having a function of binding particles such as active materials.
  • nitrile group-containing monomer- There is no restriction
  • examples thereof include acrylic nitrile group-containing monomers such as acrylonitrile and methacrylonitrile, cyan nitrile group-containing monomers such as ⁇ -cyanoacrylate and dicyanovinylidene, and fumaric nitrile group-containing monomers such as fumaronitrile. It is done.
  • acrylonitrile or methacrylonitrile is preferable in terms of cost performance, electrode flexibility, flexibility, and the like, and acrylonitrile is more preferable in terms of ease of polymerization.
  • the ratio of acrylonitrile in the nitrile group-containing monomer is, for example, preferably 50 mol% to 100 mol%, more preferably 80 mol% to 100 mol%, and even more preferably 100 mol%. preferable.
  • One of these nitrile group-containing monomers may be used alone, or two or more thereof may be used in combination.
  • the content of acrylonitrile is preferably, for example, 5% by mass to 95% by mass with respect to the total amount of the nitrile group-containing monomer. 50 mass% to 95 mass% is more preferable.
  • -Crosslinking agent containing at least two groups containing ethylenically unsaturated double bonds in one molecule The crosslinking agent used in the present disclosure is not particularly limited as long as it contains at least two groups containing an ethylenically unsaturated double bond in one molecule.
  • a crosslinking agent containing at least two groups containing an ethylenically unsaturated double bond in one molecule may be referred to as a specific crosslinking agent.
  • Examples thereof include polymerizable functional groups such as acryloyl group, methacryloyl group, vinyl group, styryl group, and allyl group. Among these, at least one selected from the group consisting of an acryloyl group and a methacryloyl group is preferable, and an acryloyl group is more preferable.
  • the number of groups containing an ethylenically unsaturated double bond contained in one molecule of the specific crosslinking agent is preferably 2 to 4, more preferably 2 to 3, More preferably it is.
  • the specific crosslinking agent preferably contains a compound represented by the following formula (I).
  • R 1 and R 2 each independently represent a hydrogen atom or a methyl group, preferably a hydrogen atom.
  • R 3 represents an alkylene group, preferably an alkylene group having 1 to 20 carbon atoms.
  • the alkylene group may have a linear structure or a branched structure. Moreover, even if it has a substituent, it may be unsubstituted. Examples of the substituent that may have include a halogen atom.
  • the alkylene group is more preferably an unsubstituted alkylene group having 1 to 20 carbon atoms, more preferably an unsubstituted alkylene group having 1 to 10 carbon atoms, and an unsubstituted alkylene group having 2 to 6 carbon atoms.
  • a substituted linear alkylene group is particularly preferred.
  • the alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, an octylene group, and a decylene group.
  • the carbon number of the alkylene group does not include the carbon number of the substituent.
  • n represents an integer of 1 to 50, preferably an integer of 2 to 30, and more preferably an integer of 2 to 10.
  • the structural unit derived from the compound represented by formula (I) occupies the structural unit derived from the specific crosslinking agent contained in the energy device electrode resin of the present disclosure.
  • the ratio is preferably 50 mol% to 100 mol%, and more preferably 80 mol% to 100 mol%.
  • the compound represented by the formula (I) preferably includes a compound represented by the following formula (II).
  • R 1 and R 2 each independently represent a hydrogen atom or a methyl group, and n represents an integer of 1 to 50. Preferred ranges of R 1 , R 2 and n in the formula (II) are the same as in the case of the compound represented by the formula (I).
  • the specific crosslinking agent contains a compound represented by formula (II)
  • the structural unit derived from the compound represented by formula (II) occupies the structural unit derived from the specific crosslinking agent contained in the energy device electrode resin of the present disclosure.
  • the ratio is preferably 50 mol% to 100 mol%, and more preferably 80 mol% to 100 mol%.
  • Specific crosslinking agent a commercially available product or a synthetic product may be used.
  • Specific crosslinks available as commercial products are specifically triethylene glycol diacrylate (manufactured by Hitachi Chemical Co., Ltd., trade name: FA-232A), nonanediol diacrylate (manufactured by Hitachi Chemical Co., Ltd., trade name: FA-129AS), EO-modified bisphenol A diacrylate (manufactured by Hitachi Chemical Co., Ltd., trade name: FA-324A), 1,4-butanediol dimethacrylate (manufactured by Hitachi Chemical Co., Ltd., trade name: FA-124M), EO Modified bisphenol A dimethacrylate (trade name: FA-321M, manufactured by Hitachi Chemical Co., Ltd.), neopentyl glycol dimethacrylate (trade name: FA-125M, manufactured by Hitachi Chemical Co., Ltd.), 1,4-bis (acryloyloxy) butane (Manu
  • triethylene glycol diacrylate (manufactured by Hitachi Chemical Co., Ltd., trade name: FA-232A) is preferable from the viewpoint of reactivity.
  • These specific crosslinking agents may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a carboxy group-containing monomer may be used as necessary.
  • the carboxy group-containing monomer include maleic monomers such as acrylic carboxy group-containing monomers such as acrylic acid and methacrylic acid, croton carboxy group-containing monomers such as crotonic acid, maleic acid, and anhydrides thereof.
  • examples include carboxy group-containing monomers, itaconic carboxy group-containing monomers such as itaconic acid and its anhydride, and citraconic carboxy group-containing monomers such as citraconic acid and its anhydride.
  • acrylic acid or methacrylic acid is preferable in terms of cost performance, electrode rollability, and the like, and acrylic acid is more preferable in terms of reactivity during polymerization.
  • One of these carboxy group-containing monomers may be used alone, or two or more thereof may be used in combination.
  • acrylic acid and methacrylic acid are used in combination as the carboxy group-containing monomer, the acrylic acid content is preferably 5% by mass to 95% by mass with respect to the total amount of the carboxy group-containing monomer. 50% by mass to 95% by mass is more preferable.
  • R 4 represents a hydrogen atom or a methyl group
  • R 5 represents a hydrogen atom or a monovalent hydrocarbon group
  • m represents an integer of 1 to 50.
  • R 4 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom.
  • m represents an integer of 1 to 50, preferably an integer of 2 to 30, and more preferably an integer of 2 to 10.
  • R 5 represents a hydrogen atom or a monovalent hydrocarbon group, and is preferably a monovalent hydrocarbon group having 1 to 50 carbon atoms, for example, having 1 to 25 carbon atoms.
  • the monovalent hydrocarbon group is more preferably a monovalent hydrocarbon group having 1 to 12 carbon atoms. If R 5 is a hydrogen atom or a monovalent hydrocarbon group having 50 or less carbon atoms, sufficient swelling resistance to the electrolytic solution tends to be obtained.
  • examples of the hydrocarbon group include an alkyl group and a phenyl group.
  • R 5 is preferably an alkyl group or a phenyl group, and more preferably an alkyl group having 1 to 12 carbon atoms or a phenyl group.
  • the alkyl group may be linear, branched or cyclic.
  • some hydrogen atoms may be substituted with a substituent.
  • Examples of the substituent when R 5 is an alkyl group include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, a substituent containing a nitrogen atom, a substituent containing a phosphorus atom, and an aromatic ring.
  • Examples of the substituent when R 5 is a phenyl group include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, a substituent containing a nitrogen atom, a substituent containing a phosphorus atom, an aromatic ring, and a carbon number. Examples thereof include 3 to 10 cycloalkyl groups. Note that the carbon number of the monovalent hydrocarbon group does not include the carbon number of the substituent.
  • the monomer represented by the formula (III) a commercially available product or a synthetic product may be used.
  • Specific examples of the monomer represented by the formula (III) available as a commercial product include ethoxydiethylene glycol acrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light acrylate EC-A), methoxytriethylene, and the like.
  • methoxytriethylene glycol acrylate (R 4 in the general formula (III) is a hydrogen atom, and R 5 is a methyl group from the viewpoint of reactivity when copolymerized with a nitrile group-containing monomer. And a monomer wherein n is 3) is more preferred.
  • One of these monomers represented by the general formula (III) may be used alone, or two or more thereof may be used in combination.
  • R 6 represents a hydrogen atom or a methyl group
  • R 7 represents an alkyl group having 4 to 100 carbon atoms.
  • R 7 is an alkyl group having 4 to 100 carbon atoms, preferably an alkyl group having 4 to 50 carbon atoms, more preferably an alkyl group having 6 to 30 carbon atoms. More preferably, it is an alkyl group having 8 to 15 carbon atoms. If R 7 is an alkyl group having 4 or more carbon atoms, sufficient flexibility tends to be obtained. When R 7 is an alkyl group having 100 or less carbon atoms, sufficient swelling resistance to the electrolytic solution tends to be obtained.
  • the alkyl group represented by R 7 may be linear, branched or cyclic. In the alkyl group represented by R 7 , some hydrogen atoms may be substituted with a substituent.
  • substituents include halogen atoms such as a fluorine atom, chlorine atom, bromine atom and iodine atom, a substituent containing a nitrogen atom, a substituent containing a phosphorus atom, and an aromatic ring.
  • alkyl group represented by R 7 include linear or branched saturated alkyl groups, and halogenated alkyl groups such as fluoroalkyl groups, chloroalkyl groups, bromoalkyl groups, and iodide iodide groups. . Note that the carbon number of the alkyl group does not include the carbon number of the substituent.
  • a commercially available product or a synthetic product may be used as the monomer represented by the formula (IV).
  • Specific examples of commercially available monomers represented by formula (IV) include n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, and amyl (meth) ) Acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) ) Acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, hexadecyl (meth) acrylate, stearyl (meth)
  • R 7 is a fluoroalkyl group, 1,1-bis (trifluoromethyl) -2,2,2-trifluoroethyl acrylate, 2,2,3,3,4,4,4-heptafluoro Butyl acrylate, 2,2,3,4,4,4-hexafluorobutyl acrylate, nonafluoroisobutyl acrylate, 2,2,3,3,4,4,5,5-octafluoropentyl acrylate, 2,2 , 3,3,4,4,5,5,5-nonafluoropentyl acrylate, 2,2,3,3,4,4,5,5,6,6,6-undecafluorohexyl acrylate, 2, 2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctyl acrylate, 3,3,4,4,5,5,6,6 7, 7, 8, 8, 9, 9, 10, 10, 10-heptadecafluorodecyl acrylate, 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9
  • the resin for energy device electrodes of the present disclosure comprises a structural unit derived from a nitrile group-containing monomer and a structural unit derived from a crosslinking agent containing at least two groups containing an ethylenically unsaturated double bond in one molecule. If included, structural units derived from other monomers different from these monomers can be appropriately combined.
  • monomers are not particularly limited, and short chain (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, vinyl chloride, bromide Vinyl halides such as vinyl and vinylidene chloride, maleic acid imide, phenylmaleimide, (meth) acrylamide, styrene, ⁇ -methylstyrene, vinyl acetate, sodium (meth) allylsulfonate, sodium (meth) allyloxybenzenesulfonate , Sodium styrenesulfonate, 2-acrylamido-2-methylpropanesulfonic acid and its salts.
  • These other monomers may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the ratio of the structural units derived from the respective monomers contained in the energy device electrode resin of the present disclosure is not particularly limited.
  • the ratio of the structural unit derived from the nitrile group-containing monomer to the structural unit derived from each monomer contained in the energy device electrode resin of the present disclosure is preferably 50 mol% to 99.8 mol%. 80 mol% to 99.5 mol% is more preferable, and 90 mol to 99.3 mol% is still more preferable.
  • the ratio of the structural unit derived from the specific crosslinking agent to 1 mol of the structural unit derived from the nitrile group-containing monomer is preferably 0.0001 mol to 0.02 mol, and preferably 0.0001 mol to 0.01 mol. More preferred is 0.0001 mol to 0.005 mol.
  • the ratio of the structural unit derived from the specific cross-linking agent is 0.0001 mol to 0.02 mol, gelation can be suppressed during synthesis, adhesion to the current collector, and swelling resistance to the electrolyte The electrode tends to have good rolling properties.
  • the resin for energy device electrode of the present disclosure is derived from a carboxy group-containing monomer and contains a structural unit containing a carboxy group, derived from a carboxy group-containing monomer with respect to 1 mol of a structural unit derived from a nitrile group-containing monomer
  • the ratio of the structural unit containing a carboxy group is preferably 0.001 mol to 0.2 mol, more preferably 0.001 mol to 0.1 mol, and 0.001 mol to 0 mol. More preferably, it is 0.05 mole.
  • the structural unit represented by the formula (III) When the structural unit derived from the monomer represented by the formula (III) is contained in the energy device electrode resin of the present disclosure, the structural unit represented by the formula (III) with respect to 1 mol of the structural unit derived from the nitrile group-containing monomer.
  • the ratio of structural units derived from monomers is, for example, preferably 0.001 mol to 0.2 mol, more preferably 0.003 mol to 0.05 mol, and 0.005 mol to 0 mol. More preferably, it is 0.02 mol. If the ratio of the structural unit derived from the monomer represented by the formula (III) is 0.001 mol to 0.2 mol, the swelling resistance to the electrolytic solution is excellent and the rolling property of the electrode tends to be better. It is in.
  • the resin is represented by the formula (IV) with respect to 1 mol of the structural unit derived from the nitrile group-containing monomer.
  • the ratio of structural units derived from monomers is, for example, preferably 0.001 mol to 0.2 mol, more preferably 0.003 mol to 0.05 mol, and 0.005 mol to 0 mol. More preferably, it is 0.02 mol. If the ratio of the structural unit derived from the monomer represented by the formula (IV) is 0.001 mol to 0.2 mol, the swelling resistance to the electrolytic solution is excellent and the rolling property of the electrode tends to be better. It is in.
  • the ratio of structural units derived from other monomers to 1 mol of structural units derived from a nitrile group-containing monomer is, for example, 0.005 mol to 0.1 mol is preferable, 0.01 mol to 0.06 mol is more preferable, and 0.03 mol to 0.05 mol is more preferable.
  • the method for producing the energy device electrode resin of the present disclosure is not particularly limited. Polymerization methods such as precipitation polymerization, bulk polymerization, suspension polymerization, emulsion polymerization, and solution polymerization can be applied. Precipitation polymerization in water is preferred in terms of ease of resin synthesis, ease of post-treatment such as recovery and purification. Hereinafter, the precipitation polymerization in water will be described in detail.
  • a water-soluble polymerization initiator As a polymerization initiator for performing precipitation polymerization in water, a water-soluble polymerization initiator is preferably used in view of polymerization initiation efficiency and the like.
  • Water-soluble polymerization initiators include persulfates such as ammonium persulfate, potassium persulfate and sodium persulfate, water-soluble peroxides such as hydrogen peroxide, 2,2′-azobis (2-methylpropionamidine hydrochloride) Combined with water-soluble azo compounds such as persulfate, etc.
  • reducing agents such as sodium bisulfite, ammonium bisulfite, sodium thiosulfate, hydrosulfite and polymerization accelerators such as sulfuric acid, iron sulfate, copper sulfate
  • redox type redox type
  • persulfates, water-soluble azo compounds, and the like are preferable in terms of ease of resin synthesis.
  • ammonium persulfate is particularly preferred.
  • acrylonitrile is selected as the nitrile group-containing monomer and methoxytriethylene glycol acrylate is selected as the monomer represented by the formula (III) to be used as necessary, water precipitation polymerization is performed.
  • the polymerization initiator is preferably used, for example, in the range of 0.001 mol% to 5 mol% with respect to the total amount of monomers used for the synthesis of the energy device electrode resin, 0.01 mol% More preferably, it is used in the range of ⁇ 2 mol%.
  • a chain transfer agent When carrying out precipitation polymerization in water, a chain transfer agent can be used for the purpose of adjusting the molecular weight.
  • the chain transfer agent include mercaptan compounds such as thioglycol, carbon tetrachloride, ⁇ -methylstyrene dimer, and the like. Among these, ⁇ -methylstyrene dimer and the like are preferable from the viewpoint of low odor.
  • a solvent other than water can be added as necessary, for example, by adjusting the particle diameter of the precipitated resin.
  • solvents other than water include amides such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, N, N-dimethylethyleneurea, N, N-dimethylpropyleneurea, tetra Ureas such as methylurea, lactones such as ⁇ -butyrolactone and ⁇ -caprolactone, carbonates such as propylene carbonate, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl acetate, ethyl acetate, n-butyl acetate , Esters such as butyl cellosolve acetate, butyl carbitol acetate, ethyl cellosolv
  • a monomer is introduced into a solvent, and the polymerization temperature is preferably 0 to 100 ° C., more preferably 30 to 90 ° C., preferably 1 to 50 hours, more preferably 2 By holding for 12 hours. If the polymerization temperature is 0 ° C. or higher, the polymerization reaction tends to be promoted. Further, when the polymerization temperature is 100 ° C. or lower, even when water is used as a solvent, the water tends to evaporate and it becomes difficult to perform polymerization. In particular, since the polymerization heat of the nitrile group-containing monomer tends to be large, it is preferable to proceed the polymerization while dropping the nitrile group-containing monomer into the solvent.
  • the weight average molecular weight of the energy device electrode resin of the present disclosure is preferably 10,000 to 1,000,000, more preferably 100,000 to 800,000, and still more preferably 250,000 to 700,000.
  • the weight average molecular weight is a value measured by the following method.
  • a measurement object is dissolved in N-methyl-2-pyrrolidone, and a PTFE (polytetrafluoroethylene) filter (manufactured by Kurashiki Boseki Co., Ltd., HPLC (high performance liquid chromatography) pretreatment, chromatodisc, model number: 13N, pore size: 0.45 ⁇ m] to remove insoluble matter.
  • PTFE polytetrafluoroethylene
  • GPC Pump: L6200 Pump (manufactured by Hitachi, Ltd.), detector: differential refractive index detector L3300 RI Monitor (manufactured by Hitachi, Ltd.), column: TSKgel-G5000HXL and TSKgel-G2000HXL (both in total) (Manufactured by Co., Ltd.) in series, column temperature: 30 ° C., eluent: N-methyl-2-pyrrolidone, flow rate: 1.0 ml / min, standard material: polystyrene], and the weight average molecular weight is measured.
  • the acid value of the energy device electrode resin of the present disclosure is preferably 0 mgKOH / g to 70 mgKOH / g, more preferably 0 mgKOH / g to 20 mgKOH / g, and 0 mgKOH / g to 5 mgKOH / g. Is more preferable.
  • the acid value refers to a value measured by the following method. First, after precisely weighing 1 g of a measurement object, 30 g of acetone is added to the measurement object, and the measurement object is dissolved. Next, an appropriate amount of an indicator, phenolphthalein, is added to the solution to be measured and titrated with a 0.1N aqueous KOH solution.
  • A The nonvolatile content of the solution to be measured is calculated from the residue mass by weighing about 1 ml of the solution to be measured in an aluminum pan, drying it on a hot plate heated to 160 ° C. for 15 minutes.
  • the resin for an energy device electrode of the present disclosure is suitably used for an energy device, particularly a non-aqueous electrolyte type energy device.
  • a non-aqueous electrolyte-based energy device refers to a power storage or power generation device (apparatus) that uses an electrolyte other than water. Examples of the energy device include a lithium ion secondary battery, an electric double layer capacitor, a solar cell, and a fuel cell.
  • the energy device electrode resin of the present disclosure has high swelling resistance against a non-aqueous electrolyte solution such as an organic solvent other than water, and is preferably used in an electrode of a lithium ion secondary battery.
  • the resin for energy device electrodes of the present disclosure is not limited to energy devices, but includes paints, adhesives, curing agents, printing inks, solder resists, abrasives, electronic component sealants, semiconductor surface protective films, and interlayer insulation. It can be widely used for various coating resins such as membranes, varnishes for electrical insulation and biomaterials, molding materials and fibers.
  • composition for energy device electrode formation of this indication contains resin for energy device electrodes of this indication.
  • the composition for energy device electrode formation of this indication should just contain resin for energy device electrodes of this indication, and may contain various other ingredients if needed.
  • the composition for forming an energy device electrode of the present disclosure preferably includes a solvent.
  • a solvent used for preparation of the composition for slurry-like energy device electrode formation For example, the solvent, water, etc. which can be added when performing precipitation polymerization in water mentioned above can be used.
  • amide solvents, urea solvents, lactone solvents, and the like or mixed solvents containing them are preferable from the viewpoint of solubility of the energy device electrode resin, and N-methyl-2-pyrrolidone, ⁇ -butyrolactone is preferable.
  • the mixed solvent containing them is more preferable.
  • These solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the solvent is not particularly limited as long as it is equal to or higher than a necessary minimum amount capable of maintaining the dissolved state of the energy device electrode resin at room temperature (for example, 25 ° C.).
  • a necessary minimum amount capable of maintaining the dissolved state of the energy device electrode resin at room temperature (for example, 25 ° C.).
  • viscosity adjustment is normally performed while adding a solvent, it is preferable to set it as the arbitrary quantity which is not diluted too much more than necessary.
  • the viscosity at 25 ° C. is preferably 500 mPa ⁇ s to 50000 mPa ⁇ s, more preferably 1000 mPa ⁇ s to 20000 mPa ⁇ s, and 2000 mPa ⁇ s. More preferably, it is s to 10,000 mPa ⁇ s.
  • the viscosity is measured at 25 ° C. and a shear rate of 1.0 s ⁇ 1 using a rotary shear viscometer.
  • the composition for forming an energy device electrode of the present disclosure may contain an active material.
  • the active material used in the present disclosure is not particularly limited as long as it can reversibly insert and release lithium ions by, for example, charging and discharging of a lithium ion secondary battery that is an energy device.
  • the positive electrode has a function of releasing lithium ions at the time of charging and receiving lithium ions at the time of discharging, while the negative electrode has a function opposite to that of the positive electrode of receiving lithium ions at the time of charging and releasing lithium ions at the time of discharging. Have. For this reason, as the active material used in the positive electrode and the negative electrode, materials that are suitable for the respective functions are usually used.
  • an active material (negative electrode active material) used for a negative electrode of a lithium ion secondary battery a material capable of occluding and releasing lithium ions, which is commonly used in the field of lithium ion secondary batteries can be used.
  • the negative electrode active material include lithium metal, lithium alloy, intermetallic compound, carbon material, metal complex, and organic polymer compound.
  • a negative electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type. Among these, a carbon material is preferable.
  • Examples of the carbon material include graphite such as natural graphite (such as flake graphite) and artificial graphite, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black, and carbon fiber.
  • the average particle size of the carbon material is preferably 0.1 ⁇ m to 60 ⁇ m, and more preferably 0.5 ⁇ m to 30 ⁇ m.
  • the BET specific surface area of the carbon material is preferably 1 m 2 / g to 10 m 2 / g.
  • carbon materials in particular, from the viewpoint of further improving battery characteristics, graphite having a carbon hexagonal plane spacing (d 002 ) of 3.35 to 3.40 and a c-axis direction crystallite (Lc) of 100 or more. Is preferred.
  • amorphous carbon having an interval (d 002 ) between carbon hexagonal planes in the X-ray wide angle diffraction method of 3.50 mm to 3.95 mm is used. Is preferred.
  • the average particle size is a volume-based particle size measured by dispersing a sample in purified water containing a surfactant and measuring with a laser diffraction particle size distribution analyzer (for example, SALD-3000J manufactured by Shimadzu Corporation). In the distribution, the value when the integration from the small diameter side becomes 50% (median diameter (D50)) is used.
  • a BET specific surface area can be measured from nitrogen adsorption capacity according to JIS Z 8830: 2013, for example.
  • AUTOSORB-1 (trade name) manufactured by QUANTACHROME can be used.
  • pretreatment for removing water by heating when measuring the BET specific surface area.
  • a measurement cell charged with 0.05 g of a measurement sample is depressurized to 10 Pa or less with a vacuum pump, heated at 110 ° C. and held for 3 hours or more, and then kept at a normal temperature ( Cool to 25 ° C).
  • the evaluation temperature is 77K
  • the evaluation pressure range is measured as a relative pressure (equilibrium pressure with respect to saturated vapor pressure) of less than 1.
  • an active material (positive electrode active material) used for a positive electrode of a lithium ion secondary battery those commonly used in this field can be used.
  • a lithium-containing composite metal oxide, an olivine type lithium salt, a chalcogen compound examples include manganese dioxide.
  • the lithium-containing composite metal oxide is a metal oxide containing lithium and a transition metal or a metal oxide in which a part of the transition metal in the metal oxide is substituted with a different element.
  • examples of the different element include Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, V, and B.
  • Mn, Al, Co, Ni, Mg and the like are preferable. Different elements may be used alone or in combination of two or more.
  • lithium-containing composite metal oxide examples include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , and Li x Co y M 1 1-y O z (Li In x Co y M 1 1-y O z , M 1 is at least one selected from the group consisting of Na, Mg, Sc, Y, Mn, Fe, Cu, Zn, Al, Cr, Pb, Sb, V, and B ), Li x Ni 1-y M 2 y O z (in Li x Ni 1-y M 2 y O z , M 2 is Na, Mg, Sc, Y, Mn, Fe, Co, And at least one element selected from the group consisting of Cu, Zn, Al, Cr, Pb, Sb, V and B.), Li x Mn 2 O 4 and Li x Mn 2-y M 3 y O 4 ( In Li x Mn 2-y M 3 y O 4 , M 3 is Na,
  • x is in the range of 0 ⁇ x ⁇ 1.2
  • y is in the range of 0 to 0.9
  • z is in the range of 2.0 to 2.3.
  • the x value indicating the molar ratio of lithium increases or decreases due to charge / discharge.
  • it includes Li 1 Ni 1/3 Mn 1/3 Co 1/3 O 2.
  • the olivine type lithium salts for example, LiFePO 4, and the like.
  • the chalcogen compound include titanium disulfide and molybdenum disulfide.
  • Li 2 MPO 4 F (in Li 2 MPO 4 F, M is Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb , Sb, V and B represents at least one element selected from the group consisting of B).
  • a positive electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the positive electrode active material it is preferable to use a lithium-containing composite metal oxide that has lithium and nickel and has a nickel content of 50 mol% or more in the metal excluding lithium.
  • a resin composition is produced by applying PVDF, which is widely used as a binder resin, to a positive electrode active material in which the proportion of nickel in the metal excluding lithium is 50 mol% or more, the resin composition may be gelled.
  • the resin for energy device electrodes of the present disclosure is used as a binder resin, the gelation of the resin composition tends to be suppressed.
  • the positive electrode active material is represented by the following formula (V). It is preferable to use a positive electrode active material.
  • M in the formula (V) can contain at least one selected from the group consisting of Al, Mn, Mg and Ca.
  • the ratio of M is preferably 0 ⁇ d ⁇ 0.2.
  • the positive electrode active material represented by the formula (V) can be produced by a method commonly used in this field. An example of production is shown below.
  • a metal salt solution of a metal to be introduced into the positive electrode active material is prepared.
  • the metal salt those commonly used in the art can be used, and examples thereof include sulfates, chloride salts, nitrates and acetates. Among them, nitrate is preferable because it functions as an oxidant in the subsequent firing step, so that the oxidation of the metal in the firing raw material is easily promoted, and it is difficult to remain because it volatilizes by firing.
  • the molar ratio of each metal contained in the metal salt solution is preferably equal to the molar ratio of each metal of the positive electrode active material to be produced.
  • the lithium source is suspended in pure water.
  • the lithium source those commonly used in this field can be used, and examples include lithium carbonate, lithium nitrate, lithium hydroxide, lithium acetate, alkyl lithium, fatty acid lithium, and lithium lithium.
  • the metal salt solution of the said metal is added and lithium salt solution slurry is produced.
  • fine lithium-containing carbonate precipitates in the slurry.
  • the average particle diameter of the lithium-containing carbonate in the slurry can be adjusted by the shear rate of the slurry.
  • the precipitated lithium-containing carbonate is filtered off and dried to obtain a precursor of the positive electrode active material.
  • the obtained lithium-containing carbonate is filled in a firing container and fired in a firing furnace. Firing is preferably held in a heated state for a predetermined time in an oxygen-containing atmosphere, preferably in an oxygen atmosphere. Further, the firing is preferably performed under a pressure of 101 kPa to 202 kPa. The amount of oxygen in the composition can be increased by heating under pressure.
  • the firing temperature is preferably 850 ° C. to 1200 ° C., more preferably 850 ° C. to 1100 ° C., and further preferably 850 ° C. to 1000 ° C. When firing in such a temperature range, the crystallinity of the positive electrode active material tends to be improved.
  • the average particle size of the positive electrode active material is preferably 0.1 ⁇ m to 60 ⁇ m, and more preferably 0.5 ⁇ m to 30 ⁇ m. Further, the BET specific surface area of the positive electrode active material is preferably 1 m 2 / g to 10 m 2 / g.
  • a conductive agent may be used in combination with the active material.
  • the conductive agent for example, carbon black, graphite, carbon fiber, metal fiber, or the like can be used.
  • carbon black include acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black.
  • Examples of graphite include natural graphite and artificial graphite.
  • a conductive agent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a crosslinking component for supplementing swelling resistance to other materials, for example, an electrolyte solution, and flexibility and flexibility of the electrode, as necessary.
  • Various additives such as an anti-settling agent, an antifoaming agent, a leveling agent and the like for improving the rubber component and the electrode coatability of the slurry can also be blended.
  • the energy device electrode of the present disclosure includes a current collector, and an electrode mixture layer provided on at least one surface of the current collector and formed from the composition for forming an energy device electrode of the present disclosure.
  • the energy device electrode of the present disclosure can be used as an electrode of a lithium ion secondary battery, an electric double layer capacitor, a solar cell, a fuel cell, or the like.
  • a case where the energy device electrode of the present disclosure is applied to an electrode of a lithium ion secondary battery will be described in detail.
  • the energy device electrode of the present disclosure is not limited to the following contents.
  • the current collector used in the present disclosure is not particularly limited, and a current collector commonly used in the field of lithium ion secondary batteries can be used.
  • Examples of the current collector (positive electrode current collector) used for the positive electrode of the lithium ion secondary battery include sheets and foils containing stainless steel, aluminum, titanium, and the like. Among these, a sheet or foil containing aluminum is preferable.
  • the thickness of the sheet and foil is not particularly limited, and is preferably 1 ⁇ m to 500 ⁇ m, more preferably 2 ⁇ m to 80 ⁇ m, and more preferably 5 ⁇ m, from the viewpoint of ensuring the strength and workability required for the current collector. More preferably, it is ⁇ 50 ⁇ m.
  • Examples of the current collector (negative electrode current collector) used for the negative electrode of the lithium ion secondary battery include sheets and foils containing stainless steel, nickel, copper, and the like. Among these, a sheet or foil containing copper is preferable.
  • the thickness of the sheet and foil is not particularly limited, and is preferably 1 ⁇ m to 500 ⁇ m, more preferably 2 ⁇ m to 100 ⁇ m, and more preferably 5 ⁇ m from the viewpoint of ensuring the strength and workability required for the current collector. More preferably, it is ⁇ 50 ⁇ m.
  • the electrode mixture layer used for a lithium ion secondary battery can be formed using the composition for energy device electrode formation containing an active material, a solvent, etc.
  • a positive electrode mixture layer is formed by using an energy device electrode forming composition containing a positive electrode active material.
  • a negative electrode mixture layer is formed by using an energy device electrode forming composition containing a negative electrode active material.
  • the electrode mixture layer is prepared, for example, by preparing a slurry of the composition for forming an energy device electrode, applying the slurry onto at least one surface of the current collector, and then drying and removing the solvent. It can be formed by rolling.
  • the application of the slurry can be performed using, for example, a comma coater.
  • the coating is suitably performed so that the ratio between the positive electrode capacity and the negative electrode capacity (negative electrode capacity / positive electrode capacity) is 1 or more in the opposing electrode.
  • the amount of slurry applied is, for example, preferably an amount such that the dry mass of the electrode mixture layer is 5 g / m 2 to 30 g / m 2, and is an amount such that 10 g / m 2 to 15 g / m 2.
  • the removal of the solvent is performed, for example, by drying at preferably 50 ° C. to 150 ° C., more preferably 80 ° C. to 120 ° C., preferably 1 minute to 20 minutes, more preferably 3 minutes to 10 minutes.
  • Rolling is performed using, for example, a roll press, and when the density of the electrode mixture layer is a negative electrode mixture layer, for example, 1 g / cm 3 to 2 g / cm 3 , preferably 1.2 g / cm 3 to as will be 1.8 g / cm 3, when the positive electrode mixture layer, for example, 2g / cm 3 ⁇ 5g / cm 3, preferably, is pressed so that 3g / cm 3 ⁇ 4g / cm 3.
  • vacuum drying may be performed at 100 ° C. to 150 ° C. for 1 hour to 20 hours.
  • the energy device of the present disclosure includes the energy device electrode of the present disclosure.
  • Examples of the energy device of the present disclosure include a lithium ion secondary battery, an electric double layer capacitor, a solar cell, and a fuel cell.
  • the energy device of the present disclosure is preferably applied to a non-aqueous electrolyte-based energy device.
  • a non-aqueous electrolyte-based energy device refers to a power storage or power generation device (apparatus) that uses an electrolyte other than water.
  • the energy device is a lithium ion secondary battery will be described in detail, the energy device of the present disclosure is not limited to the following contents.
  • the lithium ion secondary battery includes, for example, a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolytic solution.
  • the energy device electrode of the present disclosure is used as at least one of the positive electrode and the negative electrode. Since the energy device electrode of the present disclosure includes the energy device electrode resin of the present disclosure as a binder resin, the discharge capacity is improved and gas generation tends to be suppressed. The reason for this is not clear, but the energy device electrode resin of the present disclosure forms a film having excellent ion permeability with respect to the components of the energy device electrode such as an active material and a conductive agent, and suppresses decomposition of the electrolyte. It is guessed that this is because. In addition, when electrodes other than the energy device electrode of the present disclosure are used as one of the positive electrode and the negative electrode, those commonly used in this field can be used.
  • the separator is not particularly limited as long as it has ion permeability while electronically insulating between the positive electrode and the negative electrode, and has resistance to oxidation on the positive electrode side and reducibility on the negative electrode side.
  • a material (material) of the separator that satisfies such characteristics a resin, an inorganic substance, or the like is used.
  • an olefin polymer As the resin, an olefin polymer, a fluorine polymer, a cellulose polymer, polyimide, nylon, or the like is used. Specifically, it is preferable to select from materials that are stable with respect to the electrolytic solution and have excellent liquid retention properties, and it is more preferable to use a porous sheet made of polyolefin such as polyethylene or polypropylene, a nonwoven fabric, or the like. .
  • inorganic substances include oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, sulfates such as barium sulfate and calcium sulfate, and glass.
  • oxides such as alumina and silicon dioxide
  • nitrides such as aluminum nitride and silicon nitride
  • sulfates such as barium sulfate and calcium sulfate
  • glass glass
  • thin film-shaped base materials such as a nonwoven fabric, a woven fabric, and a microporous film
  • a substrate having a pore diameter of 0.01 ⁇ m to 1 ⁇ m and a thickness of 5 ⁇ m to 50 ⁇ m is preferably used.
  • a separator in which a composite porous layer is formed using the above-described inorganic material in a fiber shape or a particle shape by using a binder such as a resin can be used as a separator.
  • this composite porous layer may be formed on the surface of the positive electrode or the negative electrode to form a separator.
  • a composite porous layer in which alumina particles having a 90% particle diameter (D90) of less than 1 ⁇ m are bound using a fluororesin as a binder may be formed on the surface of the positive electrode.
  • the electrolytic solution contains a solute (supporting salt) and a nonaqueous solvent, and further contains various additives as necessary. Solutes usually dissolve in non-aqueous solvents.
  • the electrolytic solution is impregnated in the separator.
  • borates include lithium bis (1,2-benzenediolate (2-)-O, O ′) borate, bis (2,3-naphthalenedioleate (2-)-O, O ′) boric acid.
  • imide salts include lithium bistrifluoromethanesulfonate imide ((CF 3 SO 2 ) 2 NLi), lithium trifluoromethanesulfonate nonafluorobutanesulfonate ((CF 3 SO 2 ) (C 4 F 9 SO 2 ) NLi ), Lithium bispentafluoroethanesulfonate imide ((C 2 F 5 SO 2 ) 2 NLi), and the like.
  • a solute may be used individually by 1 type, and may be used in combination of 2 or more type. The amount of the solute dissolved in the nonaqueous solvent is preferably 0.5 mol / L to 2 mol / L.
  • non-aqueous solvent examples thereof include a cyclic carbonate ester, a chain carbonate ester, and a cyclic carboxylate ester.
  • examples of the cyclic carbonate include propylene carbonate (PC) and ethylene carbonate (EC).
  • examples of the chain carbonate include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), and the like.
  • examples of the cyclic carboxylic acid ester include ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL).
  • a non-aqueous solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • VC vinylene carbonate
  • the content when vinylene carbonate (VC) is contained is preferably 0.1% by mass to 2% by mass, and more preferably 0.2% by mass to 1.5% by mass with respect to the total amount of the nonaqueous solvent.
  • the laminate type lithium ion secondary battery can be manufactured, for example, as follows. First, the positive electrode and the negative electrode are cut into squares, and tabs are welded to the respective electrodes to produce a positive electrode terminal and a negative electrode terminal. An electrode laminate is produced by laminating a separator between a positive electrode and a negative electrode, and accommodated in an aluminum laminate pack in that state, and the positive electrode terminal and the negative electrode terminal are taken out of the aluminum laminate pack and sealed. Next, an electrolytic solution is poured into the aluminum laminate pack, and the opening of the aluminum laminate pack is sealed. Thereby, a lithium ion secondary battery is obtained.
  • FIG. 1 shows a cross-sectional view of a lithium ion secondary battery to which the present disclosure is applied.
  • a lithium ion secondary battery 1 of the present disclosure has a bottomed cylindrical battery container 6 made of nickel-plated steel.
  • the battery case 6 accommodates an electrode group 5 in which a strip-like positive electrode plate 2 and a negative electrode plate 3 are wound in a spiral shape with a separator 4 interposed therebetween.
  • the separator 4 has a width of 58 mm and a thickness of 30 ⁇ m.
  • a ribbon-like positive electrode tab terminal made of aluminum and having one end fixed to the positive electrode plate 2 is led out on the upper end surface of the electrode group 5.
  • the other end of the positive electrode tab terminal is joined by ultrasonic welding to the lower surface of a disk-shaped battery lid that is disposed on the upper side of the electrode group 5 and serves as a positive electrode external terminal.
  • a ribbon-like negative electrode tab terminal made of copper with one end fixed to the negative electrode plate 3 is led out on the lower end surface of the electrode group 5.
  • the other end of the negative electrode tab terminal is joined to the inner bottom of the battery container 6 by resistance welding. Therefore, the positive electrode tab terminal and the negative electrode tab terminal are led out to the opposite sides of the both end faces of the electrode group 5, respectively.
  • omitted illustration is given to the outer peripheral surface whole periphery of the electrode group 5.
  • the battery lid is caulked and fixed to the upper part of the battery container 6 via an insulating resin gasket. For this reason, the inside of the lithium ion secondary battery 1 is sealed. In addition, an electrolyte solution (not shown) is injected into the battery container 6.
  • Example 1 Into a 1 liter separable flask equipped with a stirrer, thermometer, cooling pipe, and nitrogen gas introduction pipe, charged with 400 g of purified water and up to 74 ° C. with stirring under a nitrogen gas flow rate of 200 mL / min. After raising the temperature, the nitrogen gas flow was stopped.
  • aqueous solution obtained by dissolving 0.347 g of a polymerization initiator ammonium persulfate in 2.5 g of purified water was added, and immediately, 40.0 g of a nitrile group-containing monomer acrylonitrile (manufactured by Wako Pure Chemical Industries, Ltd.), a formula ( II) 0.5 g of a cross-linking agent represented by triethylene glycol diacrylate (trade name: FA-232A, manufactured by Hitachi Chemical Co., Ltd.), 2.1 g of carboxy group-containing monomer, and formula (III)
  • a mixture of 0.9 g of methoxytriethylene glycol acrylate (trade name: NK ester AM-30G, manufactured by Shin-Nakamura Chemical Co., Ltd.) represented by the following formula is maintained, and the temperature of the reaction system is maintained at 74 ⁇ 2 ° C.
  • Example 2 Into a 1 liter separable flask equipped with a stirrer, thermometer, cooling pipe, and nitrogen gas introduction pipe, charged with 400 g of purified water and up to 74 ° C. with stirring under a nitrogen gas flow rate of 200 mL / min. After raising the temperature, the nitrogen gas flow was stopped.
  • an aqueous solution obtained by dissolving 0.347 g of a polymerization initiator ammonium persulfate in 2.5 g of purified water was added, and immediately, 40.0 g of a nitrile group-containing monomer acrylonitrile (manufactured by Wako Pure Chemical Industries, Ltd.), a formula ( II) 0.5 g of a cross-linking agent represented by triethylene glycol diacrylate (manufactured by Hitachi Chemical Co., Ltd., trade name: FA-232A) and a carboxy group-containing monomer of 2.1 g of acrylic acid, The reaction system was added dropwise over 2 hours while maintaining the temperature of the reaction system at 74 ⁇ 2 ° C.
  • a nitrile group-containing monomer acrylonitrile manufactured by Wako Pure Chemical Industries, Ltd.
  • a formula ( II) 0.5 g of a cross-linking agent represented by triethylene glycol diacrylate (manufactured by Hitachi Chemical Co., Ltd
  • Example 3 Resin in the same manner as in Example 1, except that the amount of the monomer represented by the formula (II), triethylene glycol diacrylate (trade name: FA-232A, manufactured by Hitachi Chemical Co., Ltd.) was 0.05 g C was obtained.
  • Table 1 shows the composition of the monomer and the crosslinking agent.
  • Resin D was obtained in the same manner as in Example 1 except that the amount of acrylic acid used as the carboxy group-containing monomer was changed to 0.1 g. Table 1 shows the composition of the monomer and the crosslinking agent.
  • Example 1 Example except that the amount of the methoxytriethylene glycol acrylate as the monomer represented by the formula (III) was changed to 1.4 g without using the triethylene glycol diacrylate as the crosslinking agent represented by the formula (II). In the same manner as in Example 1, Resin E was obtained. Table 1 shows the composition of the monomer and the crosslinking agent.
  • Example 5 (1) Preparation of binder resin composition
  • a 500 mL separable flask equipped with a stirrer, a thermometer, and a cooling tube 13.5 g of the resin A obtained in Example 1 was charged, and while stirring, N -212 g of methyl-2-pyrrolidone (organic solvent, Wako Pure Chemical Industries, Ltd., special grade) was added and stirred at 100 ⁇ 5 ° C. for 5 hours. After confirming dissolution of the resin, it was cooled to 40 ° C. over 1 hour to obtain a binder resin composition A (N-methyl-2-pyrrolidone solution containing resin A).
  • N-212 g organic solvent, Wako Pure Chemical Industries, Ltd., special grade
  • This positive electrode mixture paste was applied to one side of a 15 ⁇ m-thick aluminum foil (positive electrode current collector, Mitsubishi Aluminum Co., Ltd.) so that the coating amount was 150 ⁇ 1 g / m 2 and dried at 100 ° C. for 30 minutes. . Furthermore, it dried for 12 hours with the vacuum dryer set to 120 degreeC, and obtained the sample A for rollability evaluation.
  • Adhesive evaluation Amorphous carbon having an average particle diameter of 20 ⁇ m and the binder resin composition A obtained in Example 1 were 99.0% by mass in terms of solid content of amorphous carbon and resin A.
  • the slurry was applied to a copper foil (current collector) having a thickness of 10 ⁇ m, and then dried for 1 hour with a blow-type dryer set at 80 ° C. to produce a sheet-like electrode. This was pressed with a roll press to produce an electrode having an electrode mixture layer density of 1.5 g / cm 3 . At this time, the presence or absence of peeling of the electrode mixture layer was visually confirmed.
  • Table 2 The results are shown in Table 2.
  • Example 6 The method shown in Example 1 except that Resin B (Example 6), Resin C (Example 7), Resin D (Example 8) and Resin E (Comparative Example 1) were used instead of Resin A. Evaluation was performed. The results are shown in Table 2.

Abstract

This resin for energy device electrodes contains: a structural unit that is derived from a nitrile group-containing monomer; and a structural unit that is derived from a crosslinking agent containing at least two groups, each of which contains an ethylenically unsaturated double bond, in each molecule.

Description

エネルギーデバイス電極用樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス電極及びエネルギーデバイスResin for energy device electrode, composition for forming energy device electrode, energy device electrode and energy device
 本発明は、エネルギーデバイス電極用樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス電極及びエネルギーデバイスに関する。 The present invention relates to an energy device electrode resin, an energy device electrode forming composition, an energy device electrode, and an energy device.
 ノート型パソコン、携帯電話等の携帯用情報端末の電源として、リチウムイオン二次電池が、高いエネルギー密度を有するエネルギーデバイスとして汎用されている。
 代表的なリチウムイオン二次電池には、正極、セパレータ、負極及びセパレータをこの順番で重ね合わせ、捲回して得られる捲回型電極群、又は正極、セパレータ及び負極を積層してなる積層型電極群が用いられている。負極の活物質としては、リチウムイオンの層間への挿入(リチウム層間化合物の形成)及び放出が可能な多層構造を有する炭素材料が主に用いられる。正極の活物質としては、リチウム含有複合金属酸化物が主に用いられる。セパレータには、ポリオレフィン製多孔質膜が主に用いられる。このようなリチウムイオン二次電池は、電池容量及び出力が高く、充放電サイクル特性も良好である。
As a power source for portable information terminals such as notebook computers and mobile phones, lithium ion secondary batteries are widely used as energy devices having high energy density.
In a typical lithium ion secondary battery, a positive electrode, a separator, a negative electrode, and a separator are stacked in this order, and a wound electrode group obtained by winding, or a stacked electrode formed by stacking a positive electrode, a separator, and a negative electrode Groups are used. As an active material of the negative electrode, a carbon material having a multilayer structure capable of inserting lithium ions between layers (forming a lithium intercalation compound) and releasing is mainly used. As the positive electrode active material, a lithium-containing composite metal oxide is mainly used. A polyolefin porous film is mainly used for the separator. Such a lithium ion secondary battery has high battery capacity and output, and good charge / discharge cycle characteristics.
 リチウムイオン二次電池の電極は、前出の活物質とバインダ樹脂と溶媒(N-メチル-2-ピロリドン等)とを混合してスラリーを調製し、次いで、これを転写ロール等で集電体である金属箔の片面又は両面に塗布し、溶媒を乾燥により除去して電極合剤層を形成後、ロールプレス機等で圧縮成形して作製される。
 正極用のバインダ樹脂としては、正極における電位が高いことから、電気化学的安定性の点で信頼性の高いフッ素系樹脂がよく用いられる。しかし、一般にフッ素系樹脂は他の材料との密着性が低い。そのため、少量で高い密着性を発揮し、なおかつ正極における電位での電気化学的安定性が担保できる樹脂材料が望まれている。
 また、従来のバインダ樹脂では、リチウムイオン二次電池の電解液(充放電に伴う正極及び負極間でのリチウムイオンの授受を媒介する液体)に対する耐膨潤性が低く、膨潤により、電極合剤層と集電体との界面及び電極合剤層中の活物質同士の接触状態が保持されにくい場合があった。このため、電極内の導電ネットワークが次第に崩壊し、リチウムイオン二次電池が充放電を繰り返すと、経時的に容量低下を起こす一因となっていた。
The electrode of the lithium ion secondary battery is prepared by mixing the active material, binder resin and solvent (N-methyl-2-pyrrolidone, etc.) described above to prepare a slurry, which is then collected by a transfer roll or the like. It is applied to one or both sides of the metal foil, and the solvent is removed by drying to form an electrode mixture layer, and then compression-molded with a roll press or the like.
As the binder resin for the positive electrode, a fluorine resin having high reliability in terms of electrochemical stability is often used because of the high potential at the positive electrode. However, in general, the fluorine-based resin has low adhesion to other materials. Therefore, a resin material that exhibits high adhesion in a small amount and that can ensure electrochemical stability at the potential of the positive electrode is desired.
Further, the conventional binder resin has low swelling resistance to the electrolyte solution of lithium ion secondary battery (liquid that mediates the exchange of lithium ions between the positive electrode and the negative electrode due to charge / discharge), and the electrode mixture layer is formed by swelling. In some cases, the interface between the electrode and the current collector and the contact state between the active materials in the electrode mixture layer are difficult to be maintained. For this reason, when the conductive network in the electrode gradually collapses and the lithium ion secondary battery is repeatedly charged and discharged, this is a cause of a decrease in capacity over time.
 これらの問題の解決策として、特許文献1には、ニトリル基含有単量体と、柔軟性及び可とう性を担うオキシエチレン骨格を含む比較的鎖長の長い単量体及び比較的鎖長の長いアルキル基を有する単量体の少なくとも一方と、接着性を担う任意のカルボキシ基含有単量体との共重合体を含む非水電解液系エネルギーデバイス電極用バインダ樹脂組成物が開示されている。 As a solution to these problems, Patent Document 1 discloses a nitrile group-containing monomer, a relatively long-chain monomer including an oxyethylene skeleton responsible for flexibility and flexibility, and a relatively long-chain monomer. A binder resin composition for a non-aqueous electrolyte-based energy device electrode comprising a copolymer of at least one of monomers having a long alkyl group and any carboxy group-containing monomer responsible for adhesion is disclosed. .
特許第4636444号公報Japanese Patent No. 4636444
 特許文献1に開示されている非水電解液系エネルギーデバイス電極用バインダ樹脂組成物を用いることにより、電解液に対する耐膨潤性及び電極の集電体との接着性が向上し、なおかつ、電極の柔軟性及び可とう性が良好となる傾向にある。
 しかし、圧延性が低く、圧縮成形後の電極密度が高くならない場合があった。今日では、エネルギーデバイスの高密度化の要求が高まっており、圧延性の高い材料が望まれている。
 圧縮成形後の電極密度を高めるには、バインダ樹脂に優れた圧延性が求められる。なお、本開示において「圧延性」とは、電極を形成する際の圧縮成形により電極密度が向上しやすい特性をいう。圧縮成形により電極密度を高めることで、リチウムイオン二次電池の高容量化が可能になる。
By using the binder resin composition for non-aqueous electrolyte-based energy device electrodes disclosed in Patent Document 1, the swelling resistance to the electrolyte and the adhesion of the electrode to the current collector are improved, and the electrode Flexibility and flexibility tend to be good.
However, the rollability is low, and the electrode density after compression molding may not increase. Today, the demand for higher density energy devices is increasing, and materials with high rollability are desired.
In order to increase the electrode density after compression molding, the binder resin is required to have excellent rollability. In the present disclosure, “rollability” refers to a characteristic that the electrode density is easily improved by compression molding when forming the electrode. By increasing the electrode density by compression molding, the capacity of the lithium ion secondary battery can be increased.
 本発明は、上記事情に鑑みてなされたものであり、圧延性に優れるエネルギーデバイス電極用樹脂及びエネルギーデバイス電極形成用組成物を提供することを目的とする。さらに本発明は、高い電極密度を示すエネルギーデバイス電極及びそれを用いたエネルギーデバイスを提供することを目的とする。 This invention is made | formed in view of the said situation, and aims at providing the resin for energy device electrodes which is excellent in rolling property, and the composition for energy device electrode formation. Furthermore, this invention aims at providing the energy device electrode which shows high electrode density, and an energy device using the same.
 本発明は、以下のものに関する。
  <1> ニトリル基含有単量体由来の構造単位と、
 エチレン性不飽和二重結合を含む基を一分子中に少なくとも2つ含む架橋剤由来の構造単位と、
を含むエネルギーデバイス電極用樹脂。
  <2> 前記エチレン性不飽和二重結合を含む基が、アクリロイル基及びメタクリロイル基からなる群より選択される少なくとも一つである<1>に記載のエネルギーデバイス電極用樹脂。
  <3> 前記架橋剤が、下記式(I)で表される化合物を含む<1>又は<2>に記載のエネルギーデバイス電極用樹脂。
The present invention relates to the following.
<1> a structural unit derived from a nitrile group-containing monomer;
A structural unit derived from a crosslinking agent containing at least two groups containing an ethylenically unsaturated double bond in one molecule;
Resin for energy device electrode containing.
<2> The energy device electrode resin according to <1>, wherein the group containing an ethylenically unsaturated double bond is at least one selected from the group consisting of an acryloyl group and a methacryloyl group.
<3> The energy device electrode resin according to <1> or <2>, wherein the crosslinking agent includes a compound represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
[式(I)中、R及びRは各々独立に水素原子又はメチル基を示し、Rはアルキレン基を示し、nは1~50の整数を示す。]
  <4> 前記式(I)で表される化合物が、下記式(II)で表される化合物を含む<3>に記載のエネルギーデバイス電極用樹脂。
[In Formula (I), R 1 and R 2 each independently represent a hydrogen atom or a methyl group, R 3 represents an alkylene group, and n represents an integer of 1 to 50. ]
<4> The energy device electrode resin according to <3>, wherein the compound represented by the formula (I) includes a compound represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
[式(II)中、R及びRは各々独立に水素原子又はメチル基を示し、nは1~50の整数を示す。]
  <5> 前記式(II)で表される化合物が、トリエチレングリコールジアクリレートを含む<4>に記載のエネルギーデバイス電極用樹脂。
  <6> 前記ニトリル基含有単量体由来の構造単位1モルに対する前記架橋剤由来の構造単位の比率が、0.0001モル~0.02モルである<1>~<5>のいずれか1項に記載のエネルギーデバイス電極用樹脂。
  <7> カルボキシ基含有単量体由来であってカルボキシ基を含む構造単位をさらに含む<1>~<6>のいずれか1項に記載のエネルギーデバイス電極用樹脂。
  <8> 前記カルボキシ基含有単量体が、アクリル酸を含む<7>に記載のエネルギーデバイス電極用樹脂。
  <9> 前記ニトリル基含有単量体由来の構造単位1モルに対する前記カルボキシ基含有単量体由来であってカルボキシ基を含む構造単位の比率が、0.001モル~0.2モルである<7>又は<8>に記載のエネルギーデバイス電極用樹脂。
  <10> 前記ニトリル基含有単量体が、アクリロニトリルを含む<1>~<9>のいずれか1項に記載のエネルギーデバイス電極用樹脂。
  <11> 下記式(III)で表される単量体由来の構造単位をさらに含む<1>~<10>のいずれか1項に記載のエネルギーデバイス電極用樹脂。
[In Formula (II), R 1 and R 2 each independently represent a hydrogen atom or a methyl group, and n represents an integer of 1 to 50. ]
<5> The energy device electrode resin according to <4>, wherein the compound represented by the formula (II) includes triethylene glycol diacrylate.
<6> Any one of <1> to <5>, wherein a ratio of the structural unit derived from the crosslinking agent to 1 mol of the structural unit derived from the nitrile group-containing monomer is 0.0001 mol to 0.02 mol. The energy device electrode resin according to Item.
<7> The resin for energy device electrodes according to any one of <1> to <6>, further comprising a structural unit derived from a carboxy group-containing monomer and containing a carboxy group.
<8> The energy device electrode resin according to <7>, wherein the carboxy group-containing monomer contains acrylic acid.
<9> The ratio of the structural unit derived from the carboxy group-containing monomer and containing a carboxy group to 1 mol of the structural unit derived from the nitrile group-containing monomer is 0.001 mol to 0.2 mol < Resin for energy device electrodes as described in 7> or <8>.
<10> The energy device electrode resin according to any one of <1> to <9>, wherein the nitrile group-containing monomer includes acrylonitrile.
<11> The energy device electrode resin according to any one of <1> to <10>, further including a structural unit derived from a monomer represented by the following formula (III).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
[式(III)中、Rは水素原子又はメチル基を示し、Rは水素原子又は1価の炭化水素基を示し、mは1~50の整数を示す。]
  <12> 前記式(III)で表される単量体におけるRが、アルキル基又はフェニル基である<11>に記載のエネルギーデバイス電極用樹脂。
  <13> 前記式(III)で表される単量体が、メトキシトリエチレングリコールアクリレートを含む<11>に記載のエネルギーデバイス電極用樹脂。
  <14> 前記ニトリル基含有単量体由来の構造単位1モルに対する前記式(III)で表される単量体由来の構造単位の比率が、0.001モル~0.2モルである<11>~<13>のいずれか1項に記載のエネルギーデバイス電極用樹脂。
  <15> 下記式(IV)で表される単量体由来の構造単位をさらに含む<1>~<14>のいずれか1項に記載のエネルギーデバイス電極用樹脂。
[In the formula (III), R 4 represents a hydrogen atom or a methyl group, R 5 represents a hydrogen atom or a monovalent hydrocarbon group, and m represents an integer of 1 to 50. ]
<12> The resin for energy device electrodes according to <11>, wherein R 5 in the monomer represented by the formula (III) is an alkyl group or a phenyl group.
<13> The energy device electrode resin according to <11>, wherein the monomer represented by the formula (III) includes methoxytriethylene glycol acrylate.
<14> The ratio of the structural unit derived from the monomer represented by the formula (III) to 1 mol of the structural unit derived from the nitrile group-containing monomer is 0.001 mol to 0.2 mol <11 The resin for an energy device electrode according to any one of> to <13>.
<15> The energy device electrode resin according to any one of <1> to <14>, further comprising a structural unit derived from a monomer represented by the following formula (IV).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
[式(IV)中、Rは水素原子又はメチル基を示し、Rは炭素数が4~100のアルキル基を示す。]
  <16> 前記ニトリル基含有単量体由来の構造単位1モルに対する前記式(IV)で表される単量体由来の構造単位の比率が、0.001モル~0.2モルである<15>に記載のエネルギーデバイス電極用樹脂。
  <17> <1>~<16>のいずれか1項に記載のエネルギーデバイス電極用樹脂を含むエネルギーデバイス電極形成用組成物。
  <18> リチウムとニッケルとを有しリチウムを除く金属に占めるニッケルの割合が50モル%以上であるリチウム含有複合金属酸化物を含む正極活物質をさらに含む<17>に記載のエネルギーデバイス電極形成用組成物。
  <19> 前記リチウム含有複合金属酸化物が、下記式(V)で表される化合物を含む<18>に記載のエネルギーデバイス電極形成用組成物。
  LiNiCo2+e  式(V)
[式(V)中、Mは、Al、Mn、Mg及びCaからなる群より選択される少なくとも1種であり、a、b、c、d及びeは、各々0.2≦a≦1.2であり、0.5≦b≦0.9であり、0.1≦c≦0.4であり、0≦d≦0.2であり、-0.2≦e≦0.2であり、b+c+d=1である。]
  <20> 集電体と、
 前記集電体の少なくとも一方の表面上に設けられ、<17>~<19>のいずれか1項に記載のエネルギーデバイス電極形成用組成物から形成される電極合剤層と、
を有するエネルギーデバイス電極。
  <21> <20>に記載のエネルギーデバイス電極を備えるエネルギーデバイス。
  <22> リチウムイオン二次電池である<21>に記載のエネルギーデバイス。
[In the formula (IV), R 6 represents a hydrogen atom or a methyl group, and R 7 represents an alkyl group having 4 to 100 carbon atoms. ]
<16> The ratio of the structural unit derived from the monomer represented by the formula (IV) to 1 mol of the structural unit derived from the nitrile group-containing monomer is 0.001 mol to 0.2 mol <15 > Resin for energy device electrodes as described in>.
<17> An energy device electrode forming composition comprising the energy device electrode resin according to any one of <1> to <16>.
<18> The energy device electrode formation according to <17>, further including a positive electrode active material including a lithium-containing composite metal oxide having lithium and nickel and having a proportion of nickel in the metal excluding lithium of 50 mol% or more. Composition.
<19> The composition for forming an energy device electrode according to <18>, wherein the lithium-containing composite metal oxide includes a compound represented by the following formula (V).
Li a Ni b Co c M d O 2 + e Formula (V)
[In Formula (V), M is at least one selected from the group consisting of Al, Mn, Mg and Ca, and a, b, c, d and e are 0.2 ≦ a ≦ 1. 2, 0.5 ≦ b ≦ 0.9, 0.1 ≦ c ≦ 0.4, 0 ≦ d ≦ 0.2, −0.2 ≦ e ≦ 0.2 B + c + d = 1. ]
<20> current collector;
An electrode mixture layer provided on at least one surface of the current collector and formed from the composition for forming an energy device electrode according to any one of <17> to <19>;
Having energy device electrode.
<21> An energy device comprising the energy device electrode according to <20>.
<22> The energy device according to <21>, which is a lithium ion secondary battery.
 本発明によれば、圧延性に優れるエネルギーデバイス電極用樹脂及びエネルギーデバイス電極形成用組成物が提供される。さらに本発明によれば、高い電極密度を示すエネルギーデバイス電極及びそれを用いたエネルギーデバイスが提供される。 According to the present invention, there are provided an energy device electrode resin and an energy device electrode forming composition excellent in rollability. Furthermore, according to this invention, the energy device electrode which shows high electrode density, and an energy device using the same are provided.
本開示を適用したリチウムイオン二次電池の断面図である。It is sectional drawing of the lithium ion secondary battery to which this indication is applied.
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本明細書において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本明細書において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において組成物中の各成分の含有率は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率を意味する。
 本明細書において組成物中の各成分の粒子径は、組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本明細書において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本明細書において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
 本明細書において「(メタ)アクリル」はアクリル及びメタクリルの少なくとも一方を意味し、「(メタ)アクリレート」はアクリレート及びメタクリレートの少なくとも一方を意味し、「(メタ)アリル」はアリル及びメタリルの少なくとも一方を意味する。
Hereinafter, embodiments for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the components (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and ranges thereof, and the present invention is not limited thereto.
In this specification, the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. It is.
In the present specification, numerical values indicated by using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
In the numerical ranges described stepwise in this specification, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range. Good. Further, in the numerical ranges described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
In the present specification, the content of each component in the composition is the sum of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. It means the content rate of.
In the present specification, the particle diameter of each component in the composition is a mixture of the plurality of types of particles present in the composition unless there is a specific indication when there are a plurality of types of particles corresponding to each component in the composition. Means the value of.
In this specification, the term “layer” or “film” refers to a part of the region in addition to the case where the layer or the film is formed when the region where the layer or film exists is observed. It is also included when it is formed only.
In this specification, the term “lamination” indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
In the present specification, “(meth) acryl” means at least one of acryl and methacryl, “(meth) acrylate” means at least one of acrylate and methacrylate, and “(meth) allyl” means at least one of allyl and methallyl. Mean one.
<エネルギーデバイス電極用樹脂>
 本開示のエネルギーデバイス電極用樹脂は、ニトリル基含有単量体由来の構造単位と、エチレン性不飽和二重結合を含む基を一分子中に少なくとも2つ含む架橋剤由来の構造単位と、を含む。
<Resin for energy device electrode>
The resin for energy device electrodes of the present disclosure comprises a structural unit derived from a nitrile group-containing monomer and a structural unit derived from a crosslinking agent containing at least two groups containing an ethylenically unsaturated double bond in one molecule. Including.
 本開示のエネルギーデバイス電極用樹脂は、圧延性に優れる。その理由は明確ではないが、以下のように推察される。
 上述のように、リチウムイオン二次電池の電極を形成する場合、集電体上に形成されたバインダ樹脂、活物質等を含む電極合剤層に対して、ロールプレス機等で圧縮成形が施される。電極合剤層では、活物質同士がバインダ樹脂によって結着されていると考えられる。そのため、圧縮成形の際には、加圧によりバインダ樹脂により結着していた活物質同士が一旦乖離し、電極合剤層の密度が上昇した状態で再度活物質同士が結着することで、活物質が圧縮された状態で電極合剤層内において再配列されると考えられる。
 本開示のエネルギーデバイス電極用樹脂は、架橋剤由来の構造単位を含むものであるため、架橋剤由来の構造単位を含まない樹脂に比較して、接着力が低いと考えられる。そのため、本開示のエネルギーデバイス電極用樹脂をバインダ樹脂として用いたときの活物質同士の結着力は、架橋剤由来の構造単位を含まない樹脂に比較して低いと考えられる。活物質同士を弱い結着力で結着する本開示のエネルギーデバイス電極用樹脂をバインダ樹脂として用いることで、圧縮成形の際に活物質同士が乖離しやすくなると考えられる。活物質同士が乖離しやすくなることで活物質が再配列されやすくなるため、電極合剤層の密度が向上しやすくなり、圧延性に優れるようになると推察される。
The resin for energy device electrodes of the present disclosure is excellent in rollability. The reason is not clear, but is presumed as follows.
As described above, when forming an electrode of a lithium ion secondary battery, the electrode mixture layer containing the binder resin, active material, etc. formed on the current collector is subjected to compression molding with a roll press or the like. Is done. In the electrode mixture layer, the active materials are considered to be bound by the binder resin. Therefore, at the time of compression molding, the active materials bound by the binder resin by pressurization are once separated, and the active materials are bound again with the density of the electrode mixture layer increased, It is considered that the active material is rearranged in the electrode mixture layer in a compressed state.
Since the resin for energy device electrodes of the present disclosure includes a structural unit derived from a crosslinking agent, it is considered that the adhesive force is low as compared with a resin not including a structural unit derived from a crosslinking agent. Therefore, it is considered that the binding force between the active materials when the resin for an energy device electrode of the present disclosure is used as a binder resin is lower than that of a resin not including a structural unit derived from a crosslinking agent. By using the energy device electrode resin of the present disclosure that binds the active materials with a weak binding force as the binder resin, the active materials are likely to be separated from each other during compression molding. Since the active materials are easily rearranged by being easily separated from each other, it is assumed that the density of the electrode mixture layer is easily improved and the rollability is improved.
 なお、本開示において「バインダ樹脂」とは、活物質等の粒子同士を結着させる機能を有する樹脂をいう。 In the present disclosure, “binder resin” refers to a resin having a function of binding particles such as active materials.
 以下に、本開示のエネルギーデバイス電極用樹脂を構成する成分について詳細に説明する。 Hereinafter, components constituting the energy device electrode resin of the present disclosure will be described in detail.
-ニトリル基含有単量体-
 本開示で用いられるニトリル基含有単量体としては、特に制限はない。例えば、アクリロニトリル、メタクリロニトリル等のアクリル系ニトリル基含有単量体、α-シアノアクリレート、ジシアノビニリデン等のシアン系ニトリル基含有単量体、フマロニトリル等のフマル系ニトリル基含有単量体などが挙げられる。
 これらの中では、コストパフォーマンス、電極の柔軟性、可とう性等の点で、アクリロニトリル又はメタクリロニトリルが好ましく、重合のし易さの点で、アクリロニトリルがより好ましい。ニトリル基含有単量体に占めるアクリロニトリルの比率は、例えば、50モル%~100モル%であることが好ましく、80モル%~100モル%であることがより好ましく、100モル%であることがさらに好ましい。これらのニトリル基含有単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ニトリル基含有単量体としてアクリロニトリルとメタクリロニトリルとを併用する場合、アクリロニトリルの含有率は、ニトリル基含有単量体の全量に対して、例えば、5質量%~95質量%であることが好ましく、50質量%~95質量%であることがより好ましい。
-Nitrile group-containing monomer-
There is no restriction | limiting in particular as a nitrile group containing monomer used by this indication. Examples thereof include acrylic nitrile group-containing monomers such as acrylonitrile and methacrylonitrile, cyan nitrile group-containing monomers such as α-cyanoacrylate and dicyanovinylidene, and fumaric nitrile group-containing monomers such as fumaronitrile. It is done.
Among these, acrylonitrile or methacrylonitrile is preferable in terms of cost performance, electrode flexibility, flexibility, and the like, and acrylonitrile is more preferable in terms of ease of polymerization. The ratio of acrylonitrile in the nitrile group-containing monomer is, for example, preferably 50 mol% to 100 mol%, more preferably 80 mol% to 100 mol%, and even more preferably 100 mol%. preferable. One of these nitrile group-containing monomers may be used alone, or two or more thereof may be used in combination.
When acrylonitrile and methacrylonitrile are used in combination as the nitrile group-containing monomer, the content of acrylonitrile is preferably, for example, 5% by mass to 95% by mass with respect to the total amount of the nitrile group-containing monomer. 50 mass% to 95 mass% is more preferable.
-エチレン性不飽和二重結合を含む基を一分子中に少なくとも2つ含む架橋剤-
 本開示で用いられる架橋剤は、エチレン性不飽和二重結合を含む基を一分子中に少なくとも2つ含むものであれば、特に制限はない。以下、エチレン性不飽和二重結合を含む基を一分子中に少なくとも2つ含む架橋剤を、特定架橋剤と称することがある。
 特定架橋剤に含まれるエチレン性不飽和二重結合を含む基としては、特に制限はない。例えば、アクリロイル基、メタクリロイル基、ビニル基、スチリル基、アリル基等の重合性官能基が挙げられる。これらの中でも、アクリロイル基及びメタクリロイル基からなる群より選択される少なくとも一つであることが好ましく、アクリロイル基であることがより好ましい。
 特定架橋剤の一分子中に含まれるエチレン性不飽和二重結合を含む基の数は、2個~4個であることが好ましく、2個~3個であることがより好ましく、2個であることがさらに好ましい。
-Crosslinking agent containing at least two groups containing ethylenically unsaturated double bonds in one molecule-
The crosslinking agent used in the present disclosure is not particularly limited as long as it contains at least two groups containing an ethylenically unsaturated double bond in one molecule. Hereinafter, a crosslinking agent containing at least two groups containing an ethylenically unsaturated double bond in one molecule may be referred to as a specific crosslinking agent.
There is no restriction | limiting in particular as group containing the ethylenically unsaturated double bond contained in a specific crosslinking agent. Examples thereof include polymerizable functional groups such as acryloyl group, methacryloyl group, vinyl group, styryl group, and allyl group. Among these, at least one selected from the group consisting of an acryloyl group and a methacryloyl group is preferable, and an acryloyl group is more preferable.
The number of groups containing an ethylenically unsaturated double bond contained in one molecule of the specific crosslinking agent is preferably 2 to 4, more preferably 2 to 3, More preferably it is.
 特定架橋剤は、下記式(I)で表される化合物を含むことが好ましい。 The specific crosslinking agent preferably contains a compound represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(I)中、R及びRは各々独立に水素原子又はメチル基を示し、好ましくは水素原子である。
 Rはアルキレン基を示し、炭素数が1~20のアルキレン基であることが好ましい。アルキレン基は、直鎖構造であっても分岐構造であってもよい。また、置換基を有していても、無置換であってもよい。有していてもよい置換基としては、ハロゲン原子等が挙げられる。アルキレン基としては、炭素数が1~20の無置換のアルキレン基であることがより好ましく、炭素数が1~10の無置換のアルキレン基であることがさらに好ましく、炭素数2~6の無置換の直鎖アルキレン基であることが特に好ましい。アルキレン基の具体例としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、オクチレン基、デシレン基等を挙げることができる。なお、アルキレン基の炭素数には、置換基の炭素数が含まれないものとする。
 nは1~50の整数を示し、2~30の整数であることが好ましく、2~10の整数であることがより好ましい。
In formula (I), R 1 and R 2 each independently represent a hydrogen atom or a methyl group, preferably a hydrogen atom.
R 3 represents an alkylene group, preferably an alkylene group having 1 to 20 carbon atoms. The alkylene group may have a linear structure or a branched structure. Moreover, even if it has a substituent, it may be unsubstituted. Examples of the substituent that may have include a halogen atom. The alkylene group is more preferably an unsubstituted alkylene group having 1 to 20 carbon atoms, more preferably an unsubstituted alkylene group having 1 to 10 carbon atoms, and an unsubstituted alkylene group having 2 to 6 carbon atoms. A substituted linear alkylene group is particularly preferred. Specific examples of the alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, an octylene group, and a decylene group. Note that the carbon number of the alkylene group does not include the carbon number of the substituent.
n represents an integer of 1 to 50, preferably an integer of 2 to 30, and more preferably an integer of 2 to 10.
 特定架橋剤が式(I)で表される化合物を含む場合、本開示のエネルギーデバイス電極用樹脂に含まれる特定架橋剤由来の構造単位に占める式(I)で表される化合物由来の構造単位の比率は、50モル%~100モル%であることが好ましく、80モル%~100モル%であることがより好ましい。 When the specific crosslinking agent contains a compound represented by formula (I), the structural unit derived from the compound represented by formula (I) occupies the structural unit derived from the specific crosslinking agent contained in the energy device electrode resin of the present disclosure. The ratio is preferably 50 mol% to 100 mol%, and more preferably 80 mol% to 100 mol%.
 式(I)で表される化合物は、下記式(II)で表される化合物を含むことが好ましい。 The compound represented by the formula (I) preferably includes a compound represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(II)中、R及びRは各々独立に水素原子又はメチル基を示し、nは1~50の整数を示す。式(II)におけるR、R及びnの好ましい範囲等は、式(I)で表される化合物の場合と同様である。
 特定架橋剤が式(II)で表される化合物を含む場合、本開示のエネルギーデバイス電極用樹脂に含まれる特定架橋剤由来の構造単位に占める式(II)で表される化合物由来の構造単位の比率は、50モル%~100モル%であることが好ましく、80モル%~100モル%であることがより好ましい。
In the formula (II), R 1 and R 2 each independently represent a hydrogen atom or a methyl group, and n represents an integer of 1 to 50. Preferred ranges of R 1 , R 2 and n in the formula (II) are the same as in the case of the compound represented by the formula (I).
When the specific crosslinking agent contains a compound represented by formula (II), the structural unit derived from the compound represented by formula (II) occupies the structural unit derived from the specific crosslinking agent contained in the energy device electrode resin of the present disclosure. The ratio is preferably 50 mol% to 100 mol%, and more preferably 80 mol% to 100 mol%.
 特定架橋剤としては、市販品を用いても合成品を用いてもよい。市販品として入手可能な特定架橋としては、具体的には、トリエチレングリコールジアクリレート(日立化成株式会社製、商品名:FA-232A)、ノナンジオールジアクリレート(日立化成株式会社製、商品名:FA-129AS)、EO変性ビスフェノールAジアクリレート(日立化成株式会社製、商品名:FA-324A)、1,4-ブタンジオールジメタクリレート(日立化成株式会社製、商品名:FA-124M)、EO変性ビスフェノールAジメタクリレート(日立化成株式会社製、商品名:FA-321M)、ネオペンチルグリコールジメタクリレート(日立化成株式会社製、商品名:FA-125M)、1,4-ビス(アクリロイルオキシ)ブタン(東京化成工業株式会社製)、1,10-ビス(アクリロイルオキシ)デカン(東京化成工業株式会社製)、1,6-ビス(アクリロイルオキシ)ヘキサン(東京化成工業株式会社製)、1,9-ビス(アクリロイルオキシ)ノナン(東京化成工業株式会社製)、1,6-ビス(アクリロイルオキシ)-2,2,3,3,4,4,5,5-オクタフルオロヘキサン(東京化成工業株式会社製)、1,5-ビス(アクリロイルオキシ)ペンタン(東京化成工業株式会社製)、1,3-ブタンジオールジメタクリレート(東京化成工業株式会社製)、1,6-ヘキサンジオールジメタクリレート(東京化成工業株式会社製)等が挙げられる。これらの中では、反応性の観点から、トリエチレングリコールジアクリレート(日立化成株式会社製、商品名:FA-232A)が好ましい。これら特定架橋剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the specific crosslinking agent, a commercially available product or a synthetic product may be used. Specific crosslinks available as commercial products are specifically triethylene glycol diacrylate (manufactured by Hitachi Chemical Co., Ltd., trade name: FA-232A), nonanediol diacrylate (manufactured by Hitachi Chemical Co., Ltd., trade name: FA-129AS), EO-modified bisphenol A diacrylate (manufactured by Hitachi Chemical Co., Ltd., trade name: FA-324A), 1,4-butanediol dimethacrylate (manufactured by Hitachi Chemical Co., Ltd., trade name: FA-124M), EO Modified bisphenol A dimethacrylate (trade name: FA-321M, manufactured by Hitachi Chemical Co., Ltd.), neopentyl glycol dimethacrylate (trade name: FA-125M, manufactured by Hitachi Chemical Co., Ltd.), 1,4-bis (acryloyloxy) butane (Manufactured by Tokyo Chemical Industry Co., Ltd.), 1,10-bis (acryloyloxy) de (Tokyo Chemical Industry Co., Ltd.), 1,6-bis (acryloyloxy) hexane (Tokyo Chemical Industry Co., Ltd.), 1,9-bis (acryloyloxy) nonane (Tokyo Chemical Industry Co., Ltd.), 1, 6-bis (acryloyloxy) -2,2,3,3,4,4,5,5-octafluorohexane (manufactured by Tokyo Chemical Industry Co., Ltd.), 1,5-bis (acryloyloxy) pentane (Tokyo Chemical Industry Co., Ltd.) Co., Ltd.), 1,3-butanediol dimethacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.), 1,6-hexanediol dimethacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.) and the like. Among these, triethylene glycol diacrylate (manufactured by Hitachi Chemical Co., Ltd., trade name: FA-232A) is preferable from the viewpoint of reactivity. These specific crosslinking agents may be used individually by 1 type, and may be used in combination of 2 or more type.
-カルボキシ基含有単量体-
 本開示では、必要に応じてカルボキシ基含有単量体を用いてもよい。本開示で用いられるカルボキシ基含有単量体としては、特に制限はない。カルボキシ基含有単量体としては、例えば、アクリル酸、メタクリル酸等のアクリル系カルボキシ基含有単量体、クロトン酸等のクロトン系カルボキシ基含有単量体、マレイン酸及びその無水物等のマレイン系カルボキシ基含有単量体、イタコン酸及びその無水物等のイタコン系カルボキシ基含有単量体、シトラコン酸及びその無水物等のシトラコン系カルボキシ基含有単量体などが挙げられる。
 これらの中では、コストパフォーマンス、電極の圧延性等の点で、アクリル酸又はメタクリル酸が好ましく、重合時の反応性の点で、アクリル酸がより好ましい。これらのカルボキシ基含有単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。カルボキシ基含有単量体としてアクリル酸とメタクリル酸とを併用する場合、アクリル酸の含有率は、カルボキシ基含有単量体の全量に対して、例えば、5質量%~95質量%含むことが好ましく、50質量%~95質量%含むことがより好ましい。
-Carboxy group-containing monomer-
In the present disclosure, a carboxy group-containing monomer may be used as necessary. There is no restriction | limiting in particular as a carboxy-group containing monomer used by this indication. Examples of the carboxy group-containing monomer include maleic monomers such as acrylic carboxy group-containing monomers such as acrylic acid and methacrylic acid, croton carboxy group-containing monomers such as crotonic acid, maleic acid, and anhydrides thereof. Examples include carboxy group-containing monomers, itaconic carboxy group-containing monomers such as itaconic acid and its anhydride, and citraconic carboxy group-containing monomers such as citraconic acid and its anhydride.
Among these, acrylic acid or methacrylic acid is preferable in terms of cost performance, electrode rollability, and the like, and acrylic acid is more preferable in terms of reactivity during polymerization. One of these carboxy group-containing monomers may be used alone, or two or more thereof may be used in combination. When acrylic acid and methacrylic acid are used in combination as the carboxy group-containing monomer, the acrylic acid content is preferably 5% by mass to 95% by mass with respect to the total amount of the carboxy group-containing monomer. 50% by mass to 95% by mass is more preferable.
-式(III)で表される単量体-
 本開示では、必要に応じて下記式(III)で表される単量体を用いてもよい。本開示で用いられる式(III)で表される単量体としては、特に制限はない。
-Monomer represented by the formula (III)-
In the present disclosure, a monomer represented by the following formula (III) may be used as necessary. There is no restriction | limiting in particular as a monomer represented by Formula (III) used by this indication.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(III)中、Rは水素原子又はメチル基を示し、Rは水素原子又は1価の炭化水素基を示し、mは1~50の整数を示す。 In the formula (III), R 4 represents a hydrogen atom or a methyl group, R 5 represents a hydrogen atom or a monovalent hydrocarbon group, and m represents an integer of 1 to 50.
 式(III)中、Rは水素原子又はメチル基を示し、水素原子であることが好ましい。
 式(III)中、mは1~50の整数を示し、2~30の整数であることが好ましく、2~10の整数であることがより好ましい。
 式(III)中、Rは、水素原子又は1価の炭化水素基を示し、例えば、炭素数が1~50である1価の炭化水素基であることが好ましく、炭素数が1~25である1価の炭化水素基であることがより好ましく、炭素数が1~12である1価の炭化水素基であることがさらに好ましい。
 Rが水素原子であるか、又は炭素数が50以下の1価の炭化水素基であれば、電解液に対する十分な耐膨潤性を得ることができる傾向にある。ここで、炭化水素基としては、例えば、アルキル基及びフェニル基が挙げられる。Rは、アルキル基又はフェニル基であることが好ましく、炭素数が1~12のアルキル基又はフェニル基であることがより好ましい。アルキル基は、直鎖であっても分岐鎖であっても環状であってもよい。
 Rで示されるアルキル基及びフェニル基は、一部の水素原子が置換基で置換されていてもよい。Rがアルキル基である場合の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、窒素原子を含む置換基、リン原子を含む置換基、芳香環などが挙げられる。Rがフェニル基である場合の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、窒素原子を含む置換基、リン原子を含む置換基、芳香環、炭素数が3~10のシクロアルキル基などが挙げられる。なお、1価の炭化水素基の炭素数には、置換基の炭素数が含まれないものとする。
In formula (III), R 4 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom.
In the formula (III), m represents an integer of 1 to 50, preferably an integer of 2 to 30, and more preferably an integer of 2 to 10.
In formula (III), R 5 represents a hydrogen atom or a monovalent hydrocarbon group, and is preferably a monovalent hydrocarbon group having 1 to 50 carbon atoms, for example, having 1 to 25 carbon atoms. The monovalent hydrocarbon group is more preferably a monovalent hydrocarbon group having 1 to 12 carbon atoms.
If R 5 is a hydrogen atom or a monovalent hydrocarbon group having 50 or less carbon atoms, sufficient swelling resistance to the electrolytic solution tends to be obtained. Here, examples of the hydrocarbon group include an alkyl group and a phenyl group. R 5 is preferably an alkyl group or a phenyl group, and more preferably an alkyl group having 1 to 12 carbon atoms or a phenyl group. The alkyl group may be linear, branched or cyclic.
In the alkyl group and phenyl group represented by R 5 , some hydrogen atoms may be substituted with a substituent. Examples of the substituent when R 5 is an alkyl group include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, a substituent containing a nitrogen atom, a substituent containing a phosphorus atom, and an aromatic ring. . Examples of the substituent when R 5 is a phenyl group include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, a substituent containing a nitrogen atom, a substituent containing a phosphorus atom, an aromatic ring, and a carbon number. Examples thereof include 3 to 10 cycloalkyl groups. Note that the carbon number of the monovalent hydrocarbon group does not include the carbon number of the substituent.
 式(III)で表される単量体としては、市販品を用いても合成品を用いてもよい。市販品として入手可能な式(III)で表される単量体としては、具体的には、例えば、エトキシジエチレングリコールアクリレート(共栄社化学株式会社製、商品名:ライトアクリレートEC-A)、メトキシトリエチレングリコールアクリレート(共栄社化学株式会社製、商品名:ライトアクリレートMTG-A及び新中村化学工業株式会社製、商品名:NKエステルAM-30G)、メトキシポリ(n=9)エチレングリコールアクリレート(共栄社化学株式会社製、商品名:ライトアクリレート130-A及び新中村化学工業株式会社製、商品名:NKエステルAM-90G)、メトキシポリ(n=13)エチレングリコールアクリレート(新中村化学工業株式会社製、商品名:NKエステルAM-130G)、メトキシポリ(n=23)エチレングリコールアクリレート(新中村化学工業株式会社製、商品名:NKエステルAM-230G)、オクトキシポリ(n=18)エチレングリコールアクリレート(新中村化学工業株式会社製、商品名:NKエステルA-OC-18E)、フェノキシジエチレングリコールアクリレート(共栄社化学株式会社製、商品名:ライトアクリレートP-200A及び新中村化学工業株式会社製、商品名:NKエステルAMP-20GY)、フェノキシポリ(n=6)エチレングリコールアクリレート(新中村化学工業株式会社製、商品名:NKエステルAMP-60G)、ノニルフェノールEO付加物(n=4)アクリレート(共栄社化学株式会社製、商品名:ライトアクリレートNP-4EA)、ノニルフェノールEO付加物(n=8)アクリレート(共栄社化学株式会社製、商品名:ライトアクリレートNP-8EA)、メトキシジエチレングリコールメタクリレート(共栄社化学株式会社製、商品名:ライトエステルMC及び新中村化学工業株式会社製、商品名:NKエステルM-20G)、メトキシトリエチレングリコールメタクリレート(共栄社化学株式会社製、商品名:ライトエステルMTG)、メトキシポリ(n=9)エチレングリコールメタクリレート(共栄社化学株式会社製、商品名:ライトエステル130MA及び新中村化学工業株式会社製、商品名:NKエステルM-90G)、メトキシポリ(n=23)エチレングリコールメタクリレート(新中村化学工業株式会社製、商品名:NKエステルM-230G)並びにメトキシポリ(n=30)エチレングリコールメタクリレート(共栄社化学株式会社製、商品名:ライトエステル041MA)が挙げられる。
 これらの中では、ニトリル基含有単量体と共重合させる場合の反応性等の点から、メトキシトリエチレングリコールアクリレート(一般式(III)のRが水素原子であり、Rがメチル基であり、nが3である単量体)がより好ましい。これらの一般式(III)で表される単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
As the monomer represented by the formula (III), a commercially available product or a synthetic product may be used. Specific examples of the monomer represented by the formula (III) available as a commercial product include ethoxydiethylene glycol acrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light acrylate EC-A), methoxytriethylene, and the like. Glycol acrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light acrylate MTG-A and Shin-Nakamura Chemical Co., Ltd., trade name: NK ester AM-30G), methoxypoly (n = 9) ethylene glycol acrylate (Kyoeisha Chemical Co., Ltd.) Product name: Light acrylate 130-A and Shin Nakamura Chemical Co., Ltd., trade name: NK Ester AM-90G), Methoxypoly (n = 13) ethylene glycol acrylate (Shin Nakamura Chemical Co., Ltd., trade name: NK ester AM-130G), methoxypoly (n = 3) Ethylene glycol acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK ester AM-230G), octoxypoly (n = 18) ethylene glycol acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK ester A-OC) -18E), phenoxydiethylene glycol acrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: light acrylate P-200A and Shin Nakamura Chemical Co., Ltd., trade name: NK ester AMP-20GY), phenoxypoly (n = 6) ethylene glycol Acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK ester AMP-60G), nonylphenol EO adduct (n = 4) acrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: light acrylate NP-4EA), nonylphenol EO addition Thing (n = ) Acrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light acrylate NP-8EA), methoxydiethylene glycol methacrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light Ester MC and Shin Nakamura Chemical Co., Ltd., trade name: NK Ester M -20G), methoxytriethylene glycol methacrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light Ester MTG), methoxypoly (n = 9) ethylene glycol methacrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light Ester 130MA and Shin Nakamura Chemical) Manufactured by Kogyo Co., Ltd., trade name: NK ester M-90G), methoxypoly (n = 23) ethylene glycol methacrylate (made by Shin-Nakamura Chemical Co., Ltd., trade name: NK ester M-230G) and methoxypoly (n = 30) ethylene Glycol methacrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light Ester 041MA).
Among these, methoxytriethylene glycol acrylate (R 4 in the general formula (III) is a hydrogen atom, and R 5 is a methyl group from the viewpoint of reactivity when copolymerized with a nitrile group-containing monomer. And a monomer wherein n is 3) is more preferred. One of these monomers represented by the general formula (III) may be used alone, or two or more thereof may be used in combination.
-式(IV)で表される単量体-
 本開示では、必要に応じて下記式(IV)で表される単量体を用いてもよい。本開示で用いられる式(IV)で表される単量体としては、特に制限はない。
-Monomer represented by the formula (IV)-
In the present disclosure, a monomer represented by the following formula (IV) may be used as necessary. There is no restriction | limiting in particular as a monomer represented by Formula (IV) used by this indication.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(IV)中、Rは水素原子又はメチル基を示し、Rは炭素数が4~100のアルキル基を示す。 In the formula (IV), R 6 represents a hydrogen atom or a methyl group, and R 7 represents an alkyl group having 4 to 100 carbon atoms.
 式(IV)中、Rは、炭素数が4~100のアルキル基であり、好ましくは炭素数が4~50のアルキル基であり、より好ましくは炭素数が6~30のアルキル基であり、さらに好ましくは炭素数が8~15のアルキル基である。
 Rが、炭素数が4以上のアルキル基であれば、十分な可とう性を得ることができる傾向にある。Rが、炭素数が100以下のアルキル基であれば、電解液に対する十分な耐膨潤性を得ることができる傾向にある。
 Rで表されるアルキル基は、直鎖であっても分岐鎖であっても環状であってもよい。
 Rで示されるアルキル基は、一部の水素原子が置換基で置換されていてもよい。置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、窒素原子を含む置換基、リン原子を含む置換基、芳香環などが挙げられる。例えば、Rで示されるアルキル基としては、直鎖又は分岐鎖の飽和アルキル基の他、フルオロアルキル基、クロロアルキル基、ブロモアルキル基、ヨウ化アルキル基等のハロゲン化アルキル基などが挙げられる。なお、アルキル基の炭素数には、置換基の炭素数が含まれないものとする。
In the formula (IV), R 7 is an alkyl group having 4 to 100 carbon atoms, preferably an alkyl group having 4 to 50 carbon atoms, more preferably an alkyl group having 6 to 30 carbon atoms. More preferably, it is an alkyl group having 8 to 15 carbon atoms.
If R 7 is an alkyl group having 4 or more carbon atoms, sufficient flexibility tends to be obtained. When R 7 is an alkyl group having 100 or less carbon atoms, sufficient swelling resistance to the electrolytic solution tends to be obtained.
The alkyl group represented by R 7 may be linear, branched or cyclic.
In the alkyl group represented by R 7 , some hydrogen atoms may be substituted with a substituent. Examples of the substituent include halogen atoms such as a fluorine atom, chlorine atom, bromine atom and iodine atom, a substituent containing a nitrogen atom, a substituent containing a phosphorus atom, and an aromatic ring. For example, examples of the alkyl group represented by R 7 include linear or branched saturated alkyl groups, and halogenated alkyl groups such as fluoroalkyl groups, chloroalkyl groups, bromoalkyl groups, and iodide iodide groups. . Note that the carbon number of the alkyl group does not include the carbon number of the substituent.
 式(IV)で表される単量体としては、市販品を用いても合成品を用いてもよい。市販品として入手可能な式(IV)で表される単量体としては、具体的には、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、アミル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等の長鎖(メタ)アクリル酸エステル類が挙げられる。
 また、Rがフルオロアルキル基である場合、1,1-ビス(トリフルオロメチル)-2,2,2-トリフルオロエチルアクリレート、2,2,3,3,4,4,4-ヘプタフルオロブチルアクリレート、2,2,3,4,4,4-へキサフルオロブチルアクリレート、ノナフルオロイソブチルアクリレート、2,2,3,3,4,4,5,5-オクタフルオロペンチルアクリレート、2,2,3,3,4,4,5,5,5-ノナフルオロペンチルアクリレート、2,2,3,3,4,4,5,5,6,6,6-ウンデカフルオロヘキシルアクリレート、2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-ペンタデカフルオロオクチルアクリレート、3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロデシルアクリレート、2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ノナデカフルオロデシルアクリレート等のアクリレート化合物、ノナフルオロ-t-ブチルメタクリレート、2,2,3,3,4,4,4-ヘプタフルオロブチルメタクリレート、2,2,3,3,4,4,5,5-オクタフルオロペンチルメタクリレート、2,2,3,3,4,4,5,5,6,6,7,7-ドデカフルオロヘプチルメタクリレート、ヘプタデカフルオロオクチルメタクリレート、2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-ペンタデカフルオロオクチルメタクリレート、2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9-ヘキサデカフルオロノニルメタクリレート等のメタクリレート化合物などが挙げられる。
 これらの一般式(IV)で表される単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
As the monomer represented by the formula (IV), a commercially available product or a synthetic product may be used. Specific examples of commercially available monomers represented by formula (IV) include n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, and amyl (meth) ) Acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) ) Acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, hexadecyl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate Long chain (meth) acrylic acid esters such relations are exemplified.
When R 7 is a fluoroalkyl group, 1,1-bis (trifluoromethyl) -2,2,2-trifluoroethyl acrylate, 2,2,3,3,4,4,4-heptafluoro Butyl acrylate, 2,2,3,4,4,4-hexafluorobutyl acrylate, nonafluoroisobutyl acrylate, 2,2,3,3,4,4,5,5-octafluoropentyl acrylate, 2,2 , 3,3,4,4,5,5,5-nonafluoropentyl acrylate, 2,2,3,3,4,4,5,5,6,6,6-undecafluorohexyl acrylate, 2, 2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctyl acrylate, 3,3,4,4,5,5,6,6 7, 7, 8, 8, 9, 9, 10, 10, 10-heptadecafluorodecyl acrylate, 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-nonadecafluorodecyl Acrylate compounds such as acrylate, nonafluoro-t-butyl methacrylate, 2,2,3,3,4,4,4-heptafluorobutyl methacrylate, 2,2,3,3,4,4,5,5-octafluoro Pentyl methacrylate, 2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoroheptyl methacrylate, heptadecafluorooctyl methacrylate, 2,2,3,3,4,4 5,5,6,6,7,7,8,8,8-pentadecafluorooctyl methacrylate, 2,2,3,3,4,4,5,5,6,6,7,7,8, 8,9,9-Hexadecaful Methacrylate compounds of b nonyl methacrylate, and the like.
One of these monomers represented by the general formula (IV) may be used alone, or two or more thereof may be used in combination.
-その他の単量体-
 本開示のエネルギーデバイス電極用樹脂は、ニトリル基含有単量体由来の構造単位と、エチレン性不飽和二重結合を含む基を一分子中に少なくとも2つ含む架橋剤由来の構造単位と、を含むものであれば、これらの単量体とは異なるその他の単量体由来の構造単位を適宜組み合わせることもできる。
 他の単量体としては、特に限定されるものではなく、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート等の短鎖(メタ)アクリル酸エステル類、塩化ビニル、臭化ビニル、塩化ビニリデン等のハロゲン化ビニル類、マレイン酸イミド、フェニルマレイミド、(メタ)アクリルアミド、スチレン、α-メチルスチレン、酢酸ビニル、(メタ)アリルスルホン酸ナトリウム、(メタ)アリルオキシベンゼンスルホン酸ナトリウム、スチレンスルホン酸ナトリウム、2-アクリルアミド-2-メチルプロパンスルホン酸及びその塩などが挙げられる。これらその他の単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
-Other monomers-
The resin for energy device electrodes of the present disclosure comprises a structural unit derived from a nitrile group-containing monomer and a structural unit derived from a crosslinking agent containing at least two groups containing an ethylenically unsaturated double bond in one molecule. If included, structural units derived from other monomers different from these monomers can be appropriately combined.
Other monomers are not particularly limited, and short chain (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, vinyl chloride, bromide Vinyl halides such as vinyl and vinylidene chloride, maleic acid imide, phenylmaleimide, (meth) acrylamide, styrene, α-methylstyrene, vinyl acetate, sodium (meth) allylsulfonate, sodium (meth) allyloxybenzenesulfonate , Sodium styrenesulfonate, 2-acrylamido-2-methylpropanesulfonic acid and its salts. These other monomers may be used individually by 1 type, and may be used in combination of 2 or more type.
-各単量体及び架橋剤由来の構造単位の比率-
 本開示のエネルギーデバイス電極用樹脂に含まれる上記各単量体由来の構造単位の比率は、特に限定されるものではない。
 本開示のエネルギーデバイス電極用樹脂に含まれる上記各単量体由来の構造単位に占めるニトリル基含有単量体由来の構造単位の比率は、50モル%~99.8モル%であることが好ましく、80モル%~99.5モル%であることがより好ましく、90モル~99.3モル%であることがさらに好ましい。
 ニトリル基含有単量体由来の構造単位1モルに対する特定架橋剤由来の構造単位の比率は、0.0001モル~0.02モルであることが好ましく、0.0001モル~0.01モルであることがより好ましく、0.0001モル~0.005モルであることがさらに好ましい。特定架橋剤由来の構造単位の比率が0.0001モル~0.02モルであれば、合成の際にゲル化を抑制することができ、集電体との接着性及び電解液に対する耐膨潤性に優れ、電極の圧延性が良好となる傾向にある。
 本開示のエネルギーデバイス電極用樹脂にカルボキシ基含有単量体由来であってカルボキシ基を含む構造単位が含まれる場合、ニトリル基含有単量体由来の構造単位1モルに対するカルボキシ基含有単量体由来であってカルボキシ基を含む構造単位の比率は、0.001モル~0.2モルであることが好ましく、0.001モル~0.1モルであることがより好ましく、0.001モル~0.05モルであることがさらに好ましい。
-Ratio of structural units derived from each monomer and crosslinking agent-
The ratio of the structural units derived from the respective monomers contained in the energy device electrode resin of the present disclosure is not particularly limited.
The ratio of the structural unit derived from the nitrile group-containing monomer to the structural unit derived from each monomer contained in the energy device electrode resin of the present disclosure is preferably 50 mol% to 99.8 mol%. 80 mol% to 99.5 mol% is more preferable, and 90 mol to 99.3 mol% is still more preferable.
The ratio of the structural unit derived from the specific crosslinking agent to 1 mol of the structural unit derived from the nitrile group-containing monomer is preferably 0.0001 mol to 0.02 mol, and preferably 0.0001 mol to 0.01 mol. More preferred is 0.0001 mol to 0.005 mol. When the ratio of the structural unit derived from the specific cross-linking agent is 0.0001 mol to 0.02 mol, gelation can be suppressed during synthesis, adhesion to the current collector, and swelling resistance to the electrolyte The electrode tends to have good rolling properties.
When the resin for energy device electrode of the present disclosure is derived from a carboxy group-containing monomer and contains a structural unit containing a carboxy group, derived from a carboxy group-containing monomer with respect to 1 mol of a structural unit derived from a nitrile group-containing monomer The ratio of the structural unit containing a carboxy group is preferably 0.001 mol to 0.2 mol, more preferably 0.001 mol to 0.1 mol, and 0.001 mol to 0 mol. More preferably, it is 0.05 mole.
 本開示のエネルギーデバイス電極用樹脂に式(III)で表される単量体由来の構造単位が含まれる場合、ニトリル基含有単量体由来の構造単位1モルに対する式(III)で表される単量体由来の構造単位の比率は、例えば、0.001モル~0.2モルであることが好ましく、0.003モル~0.05モルであることがより好ましく、0.005モル~0.02モルであることがさらに好ましい。式(III)で表される単量体由来の構造単位の比率が0.001モル~0.2モルであれば、電解液に対する耐膨潤性に優れ、電極の圧延性がより良好となる傾向にある。 When the structural unit derived from the monomer represented by the formula (III) is contained in the energy device electrode resin of the present disclosure, the structural unit represented by the formula (III) with respect to 1 mol of the structural unit derived from the nitrile group-containing monomer. The ratio of structural units derived from monomers is, for example, preferably 0.001 mol to 0.2 mol, more preferably 0.003 mol to 0.05 mol, and 0.005 mol to 0 mol. More preferably, it is 0.02 mol. If the ratio of the structural unit derived from the monomer represented by the formula (III) is 0.001 mol to 0.2 mol, the swelling resistance to the electrolytic solution is excellent and the rolling property of the electrode tends to be better. It is in.
 本開示のエネルギーデバイス電極用樹脂に式(IV)で表される単量体由来の構造単位が含まれる場合、ニトリル基含有単量体由来の構造単位1モルに対する式(IV)で表される単量体由来の構造単位の比率は、例えば、0.001モル~0.2モルであることが好ましく、0.003モル~0.05モルであることがより好ましく、0.005モル~0.02モルであることがさらに好ましい。式(IV)で表される単量体由来の構造単位の比率が0.001モル~0.2モルであれば、電解液に対する耐膨潤性に優れ、電極の圧延性がより良好となる傾向にある。 When the structural unit derived from the monomer represented by the formula (IV) is contained in the energy device electrode resin of the present disclosure, the resin is represented by the formula (IV) with respect to 1 mol of the structural unit derived from the nitrile group-containing monomer. The ratio of structural units derived from monomers is, for example, preferably 0.001 mol to 0.2 mol, more preferably 0.003 mol to 0.05 mol, and 0.005 mol to 0 mol. More preferably, it is 0.02 mol. If the ratio of the structural unit derived from the monomer represented by the formula (IV) is 0.001 mol to 0.2 mol, the swelling resistance to the electrolytic solution is excellent and the rolling property of the electrode tends to be better. It is in.
 本開示のエネルギーデバイス電極用樹脂にその他の単量体由来の構造単位が含まれる場合、ニトリル基含有単量体由来の構造単位1モルに対するその他の単量体由来の構造単位の比率は、例えば、0.005モル~0.1モルであることが好ましく、0.01モル~0.06モルであることがより好ましく、0.03モル~0.05モルであることがさらに好ましい。 When the energy device electrode resin of the present disclosure contains structural units derived from other monomers, the ratio of structural units derived from other monomers to 1 mol of structural units derived from a nitrile group-containing monomer is, for example, 0.005 mol to 0.1 mol is preferable, 0.01 mol to 0.06 mol is more preferable, and 0.03 mol to 0.05 mol is more preferable.
-エネルギーデバイス電極用樹脂の製造方法-
 本開示のエネルギーデバイス電極用樹脂の製造方法は特に限定されるものではない。沈殿重合、塊状重合、懸濁重合、乳化重合、溶液重合等の重合方法を適用することが可能である。樹脂合成のし易さ、回収、精製等といった後処理のし易さなどの点で、水中沈殿重合が好ましい。
 以下、水中沈殿重合について詳細に説明する。
-Manufacturing method of resin for energy device electrode-
The method for producing the energy device electrode resin of the present disclosure is not particularly limited. Polymerization methods such as precipitation polymerization, bulk polymerization, suspension polymerization, emulsion polymerization, and solution polymerization can be applied. Precipitation polymerization in water is preferred in terms of ease of resin synthesis, ease of post-treatment such as recovery and purification.
Hereinafter, the precipitation polymerization in water will be described in detail.
-重合開始剤-
 水中沈殿重合を行う際の重合開始剤としては、重合開始効率等の点で水溶性重合開始剤を用いることが好ましい。
 水溶性重合開始剤としては、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等の過硫酸塩、過酸化水素等の水溶性過酸化物、2,2’-アゾビス(2-メチルプロピオンアミジンハイドロクロライド)等の水溶性アゾ化合物、過硫酸塩等の酸化剤と亜硫酸水素ナトリウム、亜硫酸水素アンモニウム、チオ硫酸ナトリウム、ハイドロサルファイト等の還元剤と硫酸、硫酸鉄、硫酸銅等の重合促進剤を組合せた酸化還元型(レドックス型)などが挙げられる。
 これらの中では、樹脂合成のし易さ等の点で過硫酸塩、水溶性アゾ化合物等が好ましい。過硫酸塩の中では、過硫酸アンモニウムが特に好ましい。
 なお、ニトリル基含有単量体としてアクリロニトリルを選択し、必要に応じて用いられる式(III)で表される単量体としてメトキシトリエチレングリコールアクリレートを選択して水中沈殿重合を行った場合、単量体の状態では両者とも水溶性であることから、水溶性重合開始剤が有効に作用し、重合がスムーズに始まる。そして、重合が進むにつれて重合物が析出してくるため、反応系が懸濁状態となり、最終的に未反応物の少ないエネルギーデバイス電極用樹脂が高収率で得られる。
 重合開始剤は、エネルギーデバイス電極用樹脂の合成に使用される単量体の総量に対し、例えば、0.001モル%~5モル%の範囲で使用されることが好ましく、0.01モル%~2モル%の範囲で使用されることがより好ましい。
-Polymerization initiator-
As a polymerization initiator for performing precipitation polymerization in water, a water-soluble polymerization initiator is preferably used in view of polymerization initiation efficiency and the like.
Water-soluble polymerization initiators include persulfates such as ammonium persulfate, potassium persulfate and sodium persulfate, water-soluble peroxides such as hydrogen peroxide, 2,2′-azobis (2-methylpropionamidine hydrochloride) Combined with water-soluble azo compounds such as persulfate, etc. and reducing agents such as sodium bisulfite, ammonium bisulfite, sodium thiosulfate, hydrosulfite and polymerization accelerators such as sulfuric acid, iron sulfate, copper sulfate Examples include redox type (redox type).
Of these, persulfates, water-soluble azo compounds, and the like are preferable in terms of ease of resin synthesis. Of the persulfates, ammonium persulfate is particularly preferred.
In addition, when acrylonitrile is selected as the nitrile group-containing monomer and methoxytriethylene glycol acrylate is selected as the monomer represented by the formula (III) to be used as necessary, water precipitation polymerization is performed. Since both are water-soluble in the state of a monomer, a water-soluble polymerization initiator acts effectively and polymerization starts smoothly. And since a polymer precipitates as superposition | polymerization progresses, a reaction system will be in a suspended state, and resin for energy device electrodes with few unreacted substances will be finally obtained with a high yield.
The polymerization initiator is preferably used, for example, in the range of 0.001 mol% to 5 mol% with respect to the total amount of monomers used for the synthesis of the energy device electrode resin, 0.01 mol% More preferably, it is used in the range of ˜2 mol%.
-連鎖移動剤-
 水中沈殿重合を行う際には、分子量調節等の目的で、連鎖移動剤を用いることができる。連鎖移動剤としては、チオグリコール等のメルカプタン化合物、四塩化炭素、α-メチルスチレンダイマーなどが挙げられる。これらの中では、臭気が少ない等の点で、α-メチルスチレンダイマー等が好ましい。
-Chain transfer agent-
When carrying out precipitation polymerization in water, a chain transfer agent can be used for the purpose of adjusting the molecular weight. Examples of the chain transfer agent include mercaptan compounds such as thioglycol, carbon tetrachloride, α-methylstyrene dimer, and the like. Among these, α-methylstyrene dimer and the like are preferable from the viewpoint of low odor.
-溶媒-
 水中沈殿重合を行う際には、析出する樹脂の粒子径の調節等、必要に応じて、水以外の溶媒を加えることもできる。
 水以外の溶媒としては、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等のアミド類、N,N-ジメチルエチレンウレア、N,N-ジメチルプロピレンウレア、テトラメチルウレア等のウレア類、γ-ブチロラクトン、γ-カプロラクトン等のラクトン類、プロピレンカーボネート等のカーボネート類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、酢酸メチル、酢酸エチル、酢酸n-ブチル、ブチルセロソルブアセテート、ブチルカルビトールアセテート、エチルセロソルブアセテート、エチルカルビトールアセテート等のエステル類、ジグライム、トリグライム、テトラグライム等のグライム類、トルエン、キシレン、シクロヘキサン等の炭化水素類、ジメチルスルホキシド等のスルホキシド類、スルホラン等のスルホン類、メタノール、イソプロパノール、n-ブタノール等のアルコール類などが挙げられる。これらの溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
-solvent-
When performing precipitation polymerization in water, a solvent other than water can be added as necessary, for example, by adjusting the particle diameter of the precipitated resin.
Examples of solvents other than water include amides such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, N, N-dimethylethyleneurea, N, N-dimethylpropyleneurea, tetra Ureas such as methylurea, lactones such as γ-butyrolactone and γ-caprolactone, carbonates such as propylene carbonate, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl acetate, ethyl acetate, n-butyl acetate , Esters such as butyl cellosolve acetate, butyl carbitol acetate, ethyl cellosolve acetate and ethyl carbitol acetate, glymes such as diglyme, triglyme and tetraglyme, carbonized such as toluene, xylene and cyclohexane Examples include hydrogens, sulfoxides such as dimethyl sulfoxide, sulfones such as sulfolane, alcohols such as methanol, isopropanol, and n-butanol. These solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
-重合条件-
 水中沈殿重合は、例えば、単量体を溶媒中に導入し、重合温度を好ましくは0℃~100℃、より好ましくは30℃~90℃として、好ましくは1時間~50時間、より好ましくは2時間~12時間保持することによって行われる。
 重合温度が0℃以上であれば、重合反応が促進される傾向にある。また、重合温度が100℃以下であれば、溶媒として水を使用したときでも、水が蒸発して重合ができなくなりにくい傾向にある。
 特に、ニトリル基含有単量体の重合熱が大きい傾向にあるため、ニトリル基含有単量体を溶媒中に滴下しながら重合を進めることが好ましい。
-Polymerization conditions-
In the precipitation polymerization in water, for example, a monomer is introduced into a solvent, and the polymerization temperature is preferably 0 to 100 ° C., more preferably 30 to 90 ° C., preferably 1 to 50 hours, more preferably 2 By holding for 12 hours.
If the polymerization temperature is 0 ° C. or higher, the polymerization reaction tends to be promoted. Further, when the polymerization temperature is 100 ° C. or lower, even when water is used as a solvent, the water tends to evaporate and it becomes difficult to perform polymerization.
In particular, since the polymerization heat of the nitrile group-containing monomer tends to be large, it is preferable to proceed the polymerization while dropping the nitrile group-containing monomer into the solvent.
 本開示のエネルギーデバイス電極用樹脂の重量平均分子量は、10000~1000000であることが好ましく、100000~800000であることがより好ましく、250000~700000であることがさらに好ましい。
 本開示において、重量平均分子量は下記方法により測定された値をいう。
 測定対象をN-メチル-2-ピロリドンに溶解し、PTFE(ポリテトラフルオロエチレン)製フィルタ〔倉敷紡績株式会社製、HPLC(高速液体クロマトグラフィー)前処理用、クロマトディスク、型番:13N、孔径:0.45μm〕を通して不溶分を除去する。GPC〔ポンプ:L6200 Pump(株式会社日立製作所製)、検出器:示差屈折率検出器L3300 RI Monitor(株式会社日立製作所製)、カラム:TSKgel-G5000HXLとTSKgel-G2000HXL(計2本)(共に東ソー株式会社製)を直列に接続、カラム温度:30℃、溶離液:N-メチル-2-ピロリドン、流速:1.0ml/分、標準物質:ポリスチレン〕を用い、重量平均分子量を測定する。
The weight average molecular weight of the energy device electrode resin of the present disclosure is preferably 10,000 to 1,000,000, more preferably 100,000 to 800,000, and still more preferably 250,000 to 700,000.
In the present disclosure, the weight average molecular weight is a value measured by the following method.
A measurement object is dissolved in N-methyl-2-pyrrolidone, and a PTFE (polytetrafluoroethylene) filter (manufactured by Kurashiki Boseki Co., Ltd., HPLC (high performance liquid chromatography) pretreatment, chromatodisc, model number: 13N, pore size: 0.45 μm] to remove insoluble matter. GPC (pump: L6200 Pump (manufactured by Hitachi, Ltd.), detector: differential refractive index detector L3300 RI Monitor (manufactured by Hitachi, Ltd.), column: TSKgel-G5000HXL and TSKgel-G2000HXL (both in total) (Manufactured by Co., Ltd.) in series, column temperature: 30 ° C., eluent: N-methyl-2-pyrrolidone, flow rate: 1.0 ml / min, standard material: polystyrene], and the weight average molecular weight is measured.
 本開示のエネルギーデバイス電極用樹脂の酸価は、0mgKOH/g~70mgKOH/gであることが好ましく、0mgKOH/g~20mgKOH/gであることがより好ましく、0mgKOH/g~5mgKOH/gであることがさらに好ましい。
 本開示において、酸価は下記方法により測定された値をいう。
 まず、測定対象1gを精秤した後、その測定対象にアセトンを30g添加し、測定対象を溶解する。次いで、指示薬であるフェノールフタレインを測定対象の溶液に適量添加して、0.1NのKOH水溶液を用いて滴定する。そして、滴定結果より下記式(A)により酸価を算出する(式中、Vfはフェノールフタレインの滴定量(mL)を示し、Wpは測定対象の溶液の質量(g)を示し、Iは測定対象の溶液の不揮発分の割合(質量%)を示す。)。
 酸価(mgKOH/g)=10×Vf×56.1/(Wp×I)  (A)
 なお、測定対象の溶液の不揮発分は、測定対象の溶液をアルミパンに約1ml量り取り、160℃に加熱したホットプレート上で15分間乾燥させ、残渣質量から算出する。
The acid value of the energy device electrode resin of the present disclosure is preferably 0 mgKOH / g to 70 mgKOH / g, more preferably 0 mgKOH / g to 20 mgKOH / g, and 0 mgKOH / g to 5 mgKOH / g. Is more preferable.
In the present disclosure, the acid value refers to a value measured by the following method.
First, after precisely weighing 1 g of a measurement object, 30 g of acetone is added to the measurement object, and the measurement object is dissolved. Next, an appropriate amount of an indicator, phenolphthalein, is added to the solution to be measured and titrated with a 0.1N aqueous KOH solution. Then, the acid value is calculated from the titration result by the following formula (A) (where Vf represents the titration amount (mL) of phenolphthalein, Wp represents the mass (g) of the solution to be measured, and I represents (The ratio (% by mass) of the nonvolatile content of the solution to be measured is shown.)
Acid value (mgKOH / g) = 10 × Vf × 56.1 / (Wp × I) (A)
The nonvolatile content of the solution to be measured is calculated from the residue mass by weighing about 1 ml of the solution to be measured in an aluminum pan, drying it on a hot plate heated to 160 ° C. for 15 minutes.
-エネルギーデバイス電極用樹脂の用途-
 本開示のエネルギーデバイス電極用樹脂は、エネルギーデバイス、特に非水電解液系のエネルギーデバイスに好適に利用される。非水電解液系エネルギーデバイスとは、水以外の電解液を用いる蓄電又は発電デバイス(装置)をいう。
 エネルギーデバイスとしては、リチウムイオン二次電池、電気二重層キャパシタ、太陽電池、燃料電池等が挙げられる。本開示のエネルギーデバイス電極用樹脂は、水以外の有機溶媒のような非水電解液に対する耐膨潤性が高く、リチウムイオン二次電池の電極において使用することが好ましい。
 なお、本開示のエネルギーデバイス電極用樹脂は、エネルギーデバイスのみならず、塗料、接着剤、硬化剤、印刷インキ、ソルダーレジスト、研磨剤、電子部品の封止剤、半導体の表面保護膜及び層間絶縁膜、電気絶縁用ワニス、バイオマテリアル等の各種コーティングレジン、成形材料、繊維などに幅広く利用できる。
-Applications of resin for energy device electrodes-
The resin for an energy device electrode of the present disclosure is suitably used for an energy device, particularly a non-aqueous electrolyte type energy device. A non-aqueous electrolyte-based energy device refers to a power storage or power generation device (apparatus) that uses an electrolyte other than water.
Examples of the energy device include a lithium ion secondary battery, an electric double layer capacitor, a solar cell, and a fuel cell. The energy device electrode resin of the present disclosure has high swelling resistance against a non-aqueous electrolyte solution such as an organic solvent other than water, and is preferably used in an electrode of a lithium ion secondary battery.
In addition, the resin for energy device electrodes of the present disclosure is not limited to energy devices, but includes paints, adhesives, curing agents, printing inks, solder resists, abrasives, electronic component sealants, semiconductor surface protective films, and interlayer insulation. It can be widely used for various coating resins such as membranes, varnishes for electrical insulation and biomaterials, molding materials and fibers.
<エネルギーデバイス電極形成用組成物>
 本開示のエネルギーデバイス電極形成用組成物は、本開示のエネルギーデバイス電極用樹脂を含むものである。
 本開示のエネルギーデバイス電極形成用組成物は、本開示のエネルギーデバイス電極用樹脂を含むものであればよく、必要に応じて各種その他の成分を含有していてもよい。
<Composition for energy device electrode formation>
The composition for energy device electrode formation of this indication contains resin for energy device electrodes of this indication.
The composition for energy device electrode formation of this indication should just contain resin for energy device electrodes of this indication, and may contain various other ingredients if needed.
-溶媒-
 本開示のエネルギーデバイス電極形成用組成物をスラリーとして取り扱う場合には、本開示のエネルギーデバイス電極形成用組成物は溶媒を含むことが好ましい。
 スラリー状のエネルギーデバイス電極形成用組成物の調製に用いる溶媒としては、特に制限はなく、例えば、先に述べた水中沈殿重合を行う際に加えることのできる溶媒、水等を使用できる。これらのうちでは、エネルギーデバイス電極用樹脂の溶解性等の点で、アミド系溶媒、ウレア系溶媒、ラクトン系溶媒等又はそれらを含む混合溶媒が好ましく、N-メチル-2-ピロリドン、γ-ブチロラクトン又はそれらを含む混合溶媒がより好ましい。これらの溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
-solvent-
When the composition for forming an energy device electrode of the present disclosure is handled as a slurry, the composition for forming an energy device electrode of the present disclosure preferably includes a solvent.
There is no restriction | limiting in particular as a solvent used for preparation of the composition for slurry-like energy device electrode formation, For example, the solvent, water, etc. which can be added when performing precipitation polymerization in water mentioned above can be used. Of these, amide solvents, urea solvents, lactone solvents, and the like or mixed solvents containing them are preferable from the viewpoint of solubility of the energy device electrode resin, and N-methyl-2-pyrrolidone, γ-butyrolactone is preferable. Or the mixed solvent containing them is more preferable. These solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
 溶媒の含有量は、常温(例えば、25℃)でエネルギーデバイス電極用樹脂が溶解状態を保てる必要最低限の量以上であれば、特に制限はない。なお、エネルギーデバイスの電極作製におけるスラリー調製工程では、通常、溶媒を加えながら粘度調整を行うため、必要以上に希釈し過ぎない任意の量とすることが好ましい。 The content of the solvent is not particularly limited as long as it is equal to or higher than a necessary minimum amount capable of maintaining the dissolved state of the energy device electrode resin at room temperature (for example, 25 ° C.). In addition, in the slurry preparation process in electrode production of an energy device, since viscosity adjustment is normally performed while adding a solvent, it is preferable to set it as the arbitrary quantity which is not diluted too much more than necessary.
 本開示のエネルギーデバイス電極形成用組成物が溶媒を含む場合、25℃における粘度は、500mPa・s~50000mPa・sであることが好ましく、1000mPa・s~20000mPa・sであることがより好ましく、2000mPa・s~10000mPa・sであることがさらに好ましい。
 なお、粘度は回転式せん断粘度計を用いて、25℃、せん断速度1.0s-1で測定される。
When the composition for forming an energy device electrode of the present disclosure contains a solvent, the viscosity at 25 ° C. is preferably 500 mPa · s to 50000 mPa · s, more preferably 1000 mPa · s to 20000 mPa · s, and 2000 mPa · s. More preferably, it is s to 10,000 mPa · s.
The viscosity is measured at 25 ° C. and a shear rate of 1.0 s −1 using a rotary shear viscometer.
-活物質-
 本開示のエネルギーデバイス電極形成用組成物は、活物質を含有していてもよい。本開示で用いられる活物質は、例えば、エネルギーデバイスであるリチウムイオン二次電池の充放電により可逆的にリチウムイオンを挿入及び放出できるものであれば特に制限はない。なお、正極は、充電時にリチウムイオンを放出し、放電時にリチウムイオンを受け取るという機能を有する一方、負極は、充電時にリチウムイオンを受け取り、放電時にリチウムイオンを放出するという正極とは逆の機能を有する。そのため、正極及び負極で使用される活物質は、通常、それぞれの有する機能にあわせた材料が使用される。
-Active material-
The composition for forming an energy device electrode of the present disclosure may contain an active material. The active material used in the present disclosure is not particularly limited as long as it can reversibly insert and release lithium ions by, for example, charging and discharging of a lithium ion secondary battery that is an energy device. The positive electrode has a function of releasing lithium ions at the time of charging and receiving lithium ions at the time of discharging, while the negative electrode has a function opposite to that of the positive electrode of receiving lithium ions at the time of charging and releasing lithium ions at the time of discharging. Have. For this reason, as the active material used in the positive electrode and the negative electrode, materials that are suitable for the respective functions are usually used.
 リチウムイオン二次電池の負極に用いられる活物質(負極活物質)としては、リチウムイオンを吸蔵及び放出可能な材料であって、リチウムイオン二次電池の分野で常用されるものを使用できる。負極活物質としては、例えば、金属リチウム、リチウム合金、金属間化合物、炭素材料、金属錯体、有機高分子化合物等が挙げられる。負極活物質は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中でも、炭素材料が好ましい。炭素材料としては、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等の黒鉛、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック、炭素繊維などが挙げられる。炭素材料の平均粒子径は、0.1μm~60μmであることが好ましく、0.5μm~30μmであることがより好ましい。また、炭素材料のBET比表面積は、1m/g~10m/gであることが好ましい。 As an active material (negative electrode active material) used for a negative electrode of a lithium ion secondary battery, a material capable of occluding and releasing lithium ions, which is commonly used in the field of lithium ion secondary batteries can be used. Examples of the negative electrode active material include lithium metal, lithium alloy, intermetallic compound, carbon material, metal complex, and organic polymer compound. A negative electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type. Among these, a carbon material is preferable. Examples of the carbon material include graphite such as natural graphite (such as flake graphite) and artificial graphite, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black, and carbon fiber. The average particle size of the carbon material is preferably 0.1 μm to 60 μm, and more preferably 0.5 μm to 30 μm. The BET specific surface area of the carbon material is preferably 1 m 2 / g to 10 m 2 / g.
 炭素材料の中でも特に、電池特性をより向上できる観点から、炭素六角平面の間隔(d002)が3.35Å~3.40Åであり、c軸方向の結晶子(Lc)が100Å以上である黒鉛が好ましい。
 また、炭素材料の中でも特に、サイクル特性及び安全性をより向上できる観点からは、X線広角回折法における炭素六角平面の間隔(d002)が3.50Å~3.95Åである非晶質炭素が好ましい。
Among carbon materials, in particular, from the viewpoint of further improving battery characteristics, graphite having a carbon hexagonal plane spacing (d 002 ) of 3.35 to 3.40 and a c-axis direction crystallite (Lc) of 100 or more. Is preferred.
Further, among carbon materials, in particular, from the viewpoint of further improving cycle characteristics and safety, amorphous carbon having an interval (d 002 ) between carbon hexagonal planes in the X-ray wide angle diffraction method of 3.50 mm to 3.95 mm is used. Is preferred.
 本明細書において平均粒子径は、界面活性剤を含んだ精製水に試料を分散させ、レーザー回折式粒度分布測定装置(例えば、株式会社島津製作所製SALD-3000J)で測定される体積基準の粒度分布において、小径側からの積算が50%となるときの値(メジアン径(D50))とする。
 BET比表面積は、例えば、JIS Z 8830:2013に準じて窒素吸着能から測定することができる。評価装置としては、例えば、QUANTACHROME社製:AUTOSORB-1(商品名)を用いることができる。試料表面及び構造中に吸着している水分がガス吸着能に影響を及ぼすと考えられることから、BET比表面積の測定を行う際には、まず加熱による水分除去の前処理を行うことが好ましい。
 前処理では、0.05gの測定試料を投入した測定用セルを、真空ポンプで10Pa以下に減圧した後、110℃で加熱し、3時間以上保持した後、減圧した状態を保ったまま常温(25℃)まで自然冷却する。この前処理を行った後、評価温度を77Kとし、評価圧力範囲を相対圧(飽和蒸気圧に対する平衡圧力)にて1未満として測定する。
In this specification, the average particle size is a volume-based particle size measured by dispersing a sample in purified water containing a surfactant and measuring with a laser diffraction particle size distribution analyzer (for example, SALD-3000J manufactured by Shimadzu Corporation). In the distribution, the value when the integration from the small diameter side becomes 50% (median diameter (D50)) is used.
A BET specific surface area can be measured from nitrogen adsorption capacity according to JIS Z 8830: 2013, for example. As the evaluation apparatus, for example, AUTOSORB-1 (trade name) manufactured by QUANTACHROME can be used. Since water adsorbed on the sample surface and in the structure is considered to affect the gas adsorption capacity, it is preferable to first perform pretreatment for removing water by heating when measuring the BET specific surface area.
In the pretreatment, a measurement cell charged with 0.05 g of a measurement sample is depressurized to 10 Pa or less with a vacuum pump, heated at 110 ° C. and held for 3 hours or more, and then kept at a normal temperature ( Cool to 25 ° C). After performing this pretreatment, the evaluation temperature is 77K, and the evaluation pressure range is measured as a relative pressure (equilibrium pressure with respect to saturated vapor pressure) of less than 1.
 一方、リチウムイオン二次電池の正極に用いられる活物質(正極活物質)としては、この分野で常用されるものを使用でき、例えば、リチウム含有複合金属酸化物、オリビン型リチウム塩、カルコゲン化合物、二酸化マンガン等が挙げられる。リチウム含有複合金属酸化物は、リチウムと遷移金属とを含む金属酸化物又は該金属酸化物中の遷移金属の一部が異種元素によって置換された金属酸化物である。ここで、異種元素としては、例えば、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、V、B等が挙げられ、Mn、Al、Co、Ni、Mg等が好ましい。異種元素は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 On the other hand, as an active material (positive electrode active material) used for a positive electrode of a lithium ion secondary battery, those commonly used in this field can be used. For example, a lithium-containing composite metal oxide, an olivine type lithium salt, a chalcogen compound, Examples include manganese dioxide. The lithium-containing composite metal oxide is a metal oxide containing lithium and a transition metal or a metal oxide in which a part of the transition metal in the metal oxide is substituted with a different element. Here, examples of the different element include Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, V, and B. Mn, Al, Co, Ni, Mg and the like are preferable. Different elements may be used alone or in combination of two or more.
 リチウム含有複合金属酸化物としては、例えば、LiCoO、LiNiO、LiMnO、LiCoNi1-y、LiCo 1-y(LiCo 1-y中、MはNa、Mg、Sc、Y、Mn、Fe、Cu、Zn、Al、Cr、Pb、Sb、V及びBからなる群より選ばれる少なくとも1種の元素を示す。)、LiNi1-y (LiNi1-y 中、MはNa、Mg、Sc、Y、Mn、Fe、Co、Cu、Zn、Al、Cr、Pb、Sb、V及びBからなる群より選ばれる少なくとも1種の元素を示す。)、LiMn及びLiMn2-y (LiMn2-y 中、MはNa、Mg、Sc、Y、Fe、Co、Cu、Zn、Al、Cr、Pb、Sb、V及びBからなる群より選ばれる少なくとも1種の元素を示す。)が挙げられる。ここで、xは0<x≦1.2の範囲であり、yは0~0.9の範囲であり、zは2.0~2.3の範囲である。また、リチウムのモル比を示すx値は、充放電により増減する。さらには、LiNi1/3Mn1/3Co1/3が挙げられる。
 また、オリビン型リチウム塩としては、例えば、LiFePO等が挙げられる。カルコゲン化合物としては、例えば、二硫化チタン、二硫化モリブデン等が挙げられる。また、その他の正極活物質としては、LiMPOF(LiMPOF中、MはNa、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、V及びBからなる群より選ばれる少なくとも1種の元素を示す。)が挙げられる。正極活物質は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of the lithium-containing composite metal oxide include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , and Li x Co y M 1 1-y O z (Li In x Co y M 1 1-y O z , M 1 is at least one selected from the group consisting of Na, Mg, Sc, Y, Mn, Fe, Cu, Zn, Al, Cr, Pb, Sb, V, and B ), Li x Ni 1-y M 2 y O z (in Li x Ni 1-y M 2 y O z , M 2 is Na, Mg, Sc, Y, Mn, Fe, Co, And at least one element selected from the group consisting of Cu, Zn, Al, Cr, Pb, Sb, V and B.), Li x Mn 2 O 4 and Li x Mn 2-y M 3 y O 4 ( In Li x Mn 2-y M 3 y O 4 , M 3 is Na, Mg, And at least one element selected from the group consisting of Sc, Y, Fe, Co, Cu, Zn, Al, Cr, Pb, Sb, V, and B.). Here, x is in the range of 0 <x ≦ 1.2, y is in the range of 0 to 0.9, and z is in the range of 2.0 to 2.3. Further, the x value indicating the molar ratio of lithium increases or decreases due to charge / discharge. Furthermore, it includes Li 1 Ni 1/3 Mn 1/3 Co 1/3 O 2.
Further, as the olivine type lithium salts, for example, LiFePO 4, and the like. Examples of the chalcogen compound include titanium disulfide and molybdenum disulfide. As other positive electrode active materials, Li 2 MPO 4 F (in Li 2 MPO 4 F, M is Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb , Sb, V and B represents at least one element selected from the group consisting of B). A positive electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.
 正極活物質としては、リチウムとニッケルとを有しリチウムを除く金属に占めるニッケルの割合が50モル%以上であるリチウム含有複合金属酸化物を用いることが好ましい。
 リチウムを除く金属に占めるニッケルの割合が50モル%以上である正極活物質に、バインダ樹脂として汎用されるPVDFを適用して樹脂組成物を作製すると、樹脂組成物がゲル化する場合がある。一方、本開示のエネルギーデバイス電極用樹脂をバインダ樹脂として用いると、樹脂組成物のゲル化の発生が抑制される傾向にある。
As the positive electrode active material, it is preferable to use a lithium-containing composite metal oxide that has lithium and nickel and has a nickel content of 50 mol% or more in the metal excluding lithium.
When a resin composition is produced by applying PVDF, which is widely used as a binder resin, to a positive electrode active material in which the proportion of nickel in the metal excluding lithium is 50 mol% or more, the resin composition may be gelled. On the other hand, when the resin for energy device electrodes of the present disclosure is used as a binder resin, the gelation of the resin composition tends to be suppressed.
 特に、上記の正極活物質における単位質量当りの充放電容量を高めて、高容量のエネルギーデバイス用正極が得られるようにするためには、正極活物質として、下記式(V)で表される正極活物質を用いることが好ましい。
LiNiCo2+e  式(V)
 式(V)中、Mは、Al、Mn、Mg及びCaからなる群より選択される少なくとも1種であり、a、b、c、d及びeは、各々0.2≦a≦1.2であり、0.5≦b≦0.9であり、0.1≦c≦0.4であり、0≦d≦0.2であり、-0.2≦e≦0.2であり、b+c+d=1である。
In particular, in order to increase the charge / discharge capacity per unit mass in the positive electrode active material and to obtain a high capacity positive electrode for energy devices, the positive electrode active material is represented by the following formula (V). It is preferable to use a positive electrode active material.
Li a Ni b Co c M d O 2 + e Formula (V)
In the formula (V), M is at least one selected from the group consisting of Al, Mn, Mg and Ca, and a, b, c, d and e are each 0.2 ≦ a ≦ 1.2. 0.5 ≦ b ≦ 0.9, 0.1 ≦ c ≦ 0.4, 0 ≦ d ≦ 0.2, −0.2 ≦ e ≦ 0.2, b + c + d = 1.
 Niの割合が大きくなるほど、正極活物質の容量密度が大きくなり、Niの割合が小さくなるほど、正極活物質の熱力学的な安定性が高くなることから、Niの割合は0.5≦b≦0.9であることが好ましく、0.55≦b≦0.85であることがより好ましく、0.6≦b≦0.8であることがさらに好ましい。また、Coの割合が大きくなるほど、正極活物質の放電性能が向上し、Coの割合が小さい程、正極活物質の容量密度が大きくなることから、0.1≦c≦0.4が好ましい。 As the Ni ratio increases, the capacity density of the positive electrode active material increases. As the Ni ratio decreases, the thermodynamic stability of the positive electrode active material increases. Therefore, the Ni ratio is 0.5 ≦ b ≦. 0.9 is preferable, 0.55 ≦ b ≦ 0.85 is more preferable, and 0.6 ≦ b ≦ 0.8 is further more preferable. Moreover, since the discharge performance of a positive electrode active material improves, so that the ratio of Co becomes large, and the capacity density of a positive electrode active material becomes large, so that the ratio of Co is small, 0.1 <= c <= 0.4 is preferable.
 また、式(V)中のMは、Al、Mn、Mg及びCaからなる群より選択される少なくとも1種を含有させることが可能である。このような元素を含有させると、正極活物質の熱力学的な安定性が高くなること及びニッケルがリチウムサイトに入り込むことで起こる抵抗上昇を抑制することが出来る。一方、Mの割合が小さいほど、正極活物質の容量密度は大きくなる。このような観点から、Mの割合は、0≦d≦0.2が好ましい。 Further, M in the formula (V) can contain at least one selected from the group consisting of Al, Mn, Mg and Ca. When such an element is contained, it is possible to increase the thermodynamic stability of the positive electrode active material and to suppress an increase in resistance caused by nickel entering the lithium site. On the other hand, the smaller the ratio of M, the larger the capacity density of the positive electrode active material. From such a viewpoint, the ratio of M is preferably 0 ≦ d ≦ 0.2.
 式(V)で表される正極活物質は、当該分野で常用される方法で作製できる。作製の一例を以下に示す。 The positive electrode active material represented by the formula (V) can be produced by a method commonly used in this field. An example of production is shown below.
 はじめに正極活物質に導入する金属の金属塩溶液を作製する。金属塩は、当該分野で常用されるものを使用でき、硫酸塩、塩化物塩、硝酸塩、酢酸塩等が挙げられる。
 中でも硝酸塩は、後の焼成工程中で酸化剤として機能するため焼成原料中の金属の酸化を促進させやすく、また、焼成により揮発するため残存し難いことから好ましい。金属塩溶液に含まれる各金属のモル比は、作製する正極活物質の各金属のモル比と同等にすることが好ましい。
First, a metal salt solution of a metal to be introduced into the positive electrode active material is prepared. As the metal salt, those commonly used in the art can be used, and examples thereof include sulfates, chloride salts, nitrates and acetates.
Among them, nitrate is preferable because it functions as an oxidant in the subsequent firing step, so that the oxidation of the metal in the firing raw material is easily promoted, and it is difficult to remain because it volatilizes by firing. The molar ratio of each metal contained in the metal salt solution is preferably equal to the molar ratio of each metal of the positive electrode active material to be produced.
 次に、リチウム源を純水に懸濁させる。リチウム源としては、当該分野で常用されるものを使用でき、炭酸リチウム、硝酸リチウム、水酸化リチウム、酢酸リチウム、アルキルリチウム、脂肪酸リチウム、ハロゲンリチウム等が挙げられる。その後、上記金属の金属塩溶液を添加し、リチウム塩溶液スラリーを作製する。このとき、スラリー中に微粒子のリチウム含有炭酸塩が析出する。スラリー中のリチウム含有炭酸塩の平均粒子径は、スラリーのせん断速度により調整できる。析出したリチウム含有炭酸塩を濾別した後、乾燥することにより、正極活物質の前躯体が得られる。 Next, the lithium source is suspended in pure water. As the lithium source, those commonly used in this field can be used, and examples include lithium carbonate, lithium nitrate, lithium hydroxide, lithium acetate, alkyl lithium, fatty acid lithium, and lithium lithium. Then, the metal salt solution of the said metal is added and lithium salt solution slurry is produced. At this time, fine lithium-containing carbonate precipitates in the slurry. The average particle diameter of the lithium-containing carbonate in the slurry can be adjusted by the shear rate of the slurry. The precipitated lithium-containing carbonate is filtered off and dried to obtain a precursor of the positive electrode active material.
 得られたリチウム含有炭酸塩を焼成容器に充填し、焼成炉で焼成する。焼成は、酸素を含む雰囲気下、好ましくは酸素雰囲気下で所定時間加熱した状態で保持することが好ましい。さらに焼成は101kPa~202kPaでの加圧下で行うことが好ましい。加圧下で加熱することで組成中の酸素量を増加できる。焼成温度は、850℃~1200℃の温度で行うことが好ましく、850℃~1100℃の温度で行うことがより好ましく、850℃~1000℃の温度で行うことがさらに好ましい。このような温度範囲で焼成を行うと、正極活物質の結晶性が向上する傾向にある。 The obtained lithium-containing carbonate is filled in a firing container and fired in a firing furnace. Firing is preferably held in a heated state for a predetermined time in an oxygen-containing atmosphere, preferably in an oxygen atmosphere. Further, the firing is preferably performed under a pressure of 101 kPa to 202 kPa. The amount of oxygen in the composition can be increased by heating under pressure. The firing temperature is preferably 850 ° C. to 1200 ° C., more preferably 850 ° C. to 1100 ° C., and further preferably 850 ° C. to 1000 ° C. When firing in such a temperature range, the crystallinity of the positive electrode active material tends to be improved.
 正極活物質の平均粒子径は、0.1μm~60μmであることが好ましく、0.5μm~30μmであることがより好ましい。また、正極活物質のBET比表面積は、1m/g~10m/gであることが好ましい。 The average particle size of the positive electrode active material is preferably 0.1 μm to 60 μm, and more preferably 0.5 μm to 30 μm. Further, the BET specific surface area of the positive electrode active material is preferably 1 m 2 / g to 10 m 2 / g.
-導電剤-
 活物質には、導電剤が併用されてもよい。
 導電剤としては、例えば、カーボンブラック、黒鉛、炭素繊維、金属繊維等を使用できる。カーボンブラックとしては、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等が挙げられる。黒鉛としては、天然黒鉛、人造黒鉛等が挙げられる。導電剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
-Conductive agent-
A conductive agent may be used in combination with the active material.
As the conductive agent, for example, carbon black, graphite, carbon fiber, metal fiber, or the like can be used. Examples of carbon black include acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black. Examples of graphite include natural graphite and artificial graphite. A conductive agent may be used individually by 1 type, and may be used in combination of 2 or more type.
-その他の添加剤-
 本開示のエネルギーデバイス電極形成用組成物には、必要に応じて他の材料、例えば、電解液に対する耐膨潤性を補完するための架橋成分、電極の柔軟性及び可とう性を補完するためのゴム成分、スラリーの電極塗工性を向上させるための沈降防止剤、消泡剤、レベリング剤等といった各種添加剤などを配合することもできる。
-Other additives-
In the composition for forming an energy device electrode of the present disclosure, a crosslinking component for supplementing swelling resistance to other materials, for example, an electrolyte solution, and flexibility and flexibility of the electrode, as necessary. Various additives such as an anti-settling agent, an antifoaming agent, a leveling agent and the like for improving the rubber component and the electrode coatability of the slurry can also be blended.
<エネルギーデバイス電極>
 本開示のエネルギーデバイス電極は、集電体と、前記集電体の少なくとも一方の表面上に設けられ、本開示のエネルギーデバイス電極形成用組成物から形成される電極合剤層と、を有する。
 本開示のエネルギーデバイス電極は、リチウムイオン二次電池、電気二重層キャパシタ、太陽電池、燃料電池等の電極として用いることができる。
 以下に、本開示のエネルギーデバイス電極をリチウムイオン二次電池の電極に適用した場合について詳細に説明するが、本開示のエネルギーデバイス電極は下記内容に限定されるものではない。
<Energy device electrode>
The energy device electrode of the present disclosure includes a current collector, and an electrode mixture layer provided on at least one surface of the current collector and formed from the composition for forming an energy device electrode of the present disclosure.
The energy device electrode of the present disclosure can be used as an electrode of a lithium ion secondary battery, an electric double layer capacitor, a solar cell, a fuel cell, or the like.
Hereinafter, a case where the energy device electrode of the present disclosure is applied to an electrode of a lithium ion secondary battery will be described in detail. However, the energy device electrode of the present disclosure is not limited to the following contents.
-集電体-
 本開示で用いられる集電体としては、特に限定されるものではなく、リチウムイオン二次電池の分野で常用されるものを使用できる。
 リチウムイオン二次電池の正極に用いられる集電体(正極集電体)としては、例えば、ステンレス鋼、アルミニウム、チタン等を含有するシート、箔などが挙げられる。
 これらの中でも、アルミニウムを含有するシート又は箔が好ましい。シート及び箔の厚さは特に限定されず、集電体として必要な強度及び加工性を確保する観点から、例えば、1μm~500μmであることが好ましく、2μm~80μmであることがより好ましく、5μm~50μmであることがさらに好ましい。
 リチウムイオン二次電池の負極に用いられる集電体(負極集電体)としては、例えば、ステンレス鋼、ニッケル、銅等を含むシート、箔などが挙げられる。
 これらの中でも、銅を含有するシート又は箔が好ましい。シート及び箔の厚さは特に限定されず、集電体として必要な強度及び加工性を確保する観点から、例えば、1μm~500μmであることが好ましく、2μm~100μmであることがより好ましく、5μm~50μmであることがさらに好ましい。
-Current collector-
The current collector used in the present disclosure is not particularly limited, and a current collector commonly used in the field of lithium ion secondary batteries can be used.
Examples of the current collector (positive electrode current collector) used for the positive electrode of the lithium ion secondary battery include sheets and foils containing stainless steel, aluminum, titanium, and the like.
Among these, a sheet or foil containing aluminum is preferable. The thickness of the sheet and foil is not particularly limited, and is preferably 1 μm to 500 μm, more preferably 2 μm to 80 μm, and more preferably 5 μm, from the viewpoint of ensuring the strength and workability required for the current collector. More preferably, it is ˜50 μm.
Examples of the current collector (negative electrode current collector) used for the negative electrode of the lithium ion secondary battery include sheets and foils containing stainless steel, nickel, copper, and the like.
Among these, a sheet or foil containing copper is preferable. The thickness of the sheet and foil is not particularly limited, and is preferably 1 μm to 500 μm, more preferably 2 μm to 100 μm, and more preferably 5 μm from the viewpoint of ensuring the strength and workability required for the current collector. More preferably, it is ˜50 μm.
-電極合剤層-
 リチウムイオン二次電池に用いられる電極合剤層は、活物質、溶媒等を含むエネルギーデバイス電極形成用組成物を用いて形成することができる。
 正極活物質を含むエネルギーデバイス電極形成用組成物を用いることで正極合剤層が形成される。一方、負極活物質を含むエネルギーデバイス電極形成用組成物を用いることで負極合剤層が形成される。
-Electrode mixture layer-
The electrode mixture layer used for a lithium ion secondary battery can be formed using the composition for energy device electrode formation containing an active material, a solvent, etc.
A positive electrode mixture layer is formed by using an energy device electrode forming composition containing a positive electrode active material. On the other hand, a negative electrode mixture layer is formed by using an energy device electrode forming composition containing a negative electrode active material.
 電極合剤層は、例えば、エネルギーデバイス電極形成用組成物のスラリーを調製し、このスラリーを集電体の少なくとも一方の表面上に塗布し、次いで溶媒を乾燥して除去し、必要に応じて圧延して形成することができる。
 スラリーの塗布は、例えば、コンマコーター等を用いて行うことができる。塗布は、対向する電極において、正極容量と負極容量との比率(負極容量/正極容量)が1以上になるように行うことが適当である。
 スラリーの塗布量は、例えば、電極合剤層の乾燥質量が、5g/m~30g/mとなる量であることが好ましく、10g/m~15g/mとなる量であることがより好ましい。
 溶媒の除去は、例えば、好ましくは50℃~150℃、より好ましくは80℃~120℃で、好ましくは1分~20分間、より好ましくは3分~10分間乾燥することによって行われる。
 圧延は、例えばロールプレス機を用いて行われ、電極合剤層の密度が、負極合剤層の場合、例えば、1g/cm~2g/cm、好ましくは、1.2g/cm~1.8g/cmとなるように、正極合剤層の場合、例えば、2g/cm~5g/cm、好ましくは、3g/cm~4g/cmとなるようにプレスされる。
 さらに、電極合剤層内の残留溶媒、吸着水の除去等のため、例えば、100℃~150℃で1時間~20時間真空乾燥してもよい。
The electrode mixture layer is prepared, for example, by preparing a slurry of the composition for forming an energy device electrode, applying the slurry onto at least one surface of the current collector, and then drying and removing the solvent. It can be formed by rolling.
The application of the slurry can be performed using, for example, a comma coater. The coating is suitably performed so that the ratio between the positive electrode capacity and the negative electrode capacity (negative electrode capacity / positive electrode capacity) is 1 or more in the opposing electrode.
The amount of slurry applied is, for example, preferably an amount such that the dry mass of the electrode mixture layer is 5 g / m 2 to 30 g / m 2, and is an amount such that 10 g / m 2 to 15 g / m 2. Is more preferable.
The removal of the solvent is performed, for example, by drying at preferably 50 ° C. to 150 ° C., more preferably 80 ° C. to 120 ° C., preferably 1 minute to 20 minutes, more preferably 3 minutes to 10 minutes.
Rolling is performed using, for example, a roll press, and when the density of the electrode mixture layer is a negative electrode mixture layer, for example, 1 g / cm 3 to 2 g / cm 3 , preferably 1.2 g / cm 3 to as will be 1.8 g / cm 3, when the positive electrode mixture layer, for example, 2g / cm 3 ~ 5g / cm 3, preferably, is pressed so that 3g / cm 3 ~ 4g / cm 3.
Furthermore, in order to remove the residual solvent and adsorbed water in the electrode mixture layer, for example, vacuum drying may be performed at 100 ° C. to 150 ° C. for 1 hour to 20 hours.
<エネルギーデバイス>
 本開示のエネルギーデバイスは、本開示のエネルギーデバイス電極を備える。本開示のエネルギーデバイスとしては、リチウムイオン二次電池、電気二重層キャパシタ、太陽電池、燃料電池等が挙げられる。本開示のエネルギーデバイスは、非水電解液系のエネルギーデバイスに適用されることが好ましい。非水電解液系のエネルギーデバイスとは、水以外の電解液を用いる蓄電又は発電デバイス(装置)をいう。
 以下に、エネルギーデバイスがリチウムイオン二次電池の場合について詳細に説明するが、本開示のエネルギーデバイスは下記内容に限定されるものではない。
<Energy device>
The energy device of the present disclosure includes the energy device electrode of the present disclosure. Examples of the energy device of the present disclosure include a lithium ion secondary battery, an electric double layer capacitor, a solar cell, and a fuel cell. The energy device of the present disclosure is preferably applied to a non-aqueous electrolyte-based energy device. A non-aqueous electrolyte-based energy device refers to a power storage or power generation device (apparatus) that uses an electrolyte other than water.
Hereinafter, although the case where the energy device is a lithium ion secondary battery will be described in detail, the energy device of the present disclosure is not limited to the following contents.
 リチウムイオン二次電池は、例えば、正極と、負極と、前記正極と前記負極との間に介在するセパレータと、電解液と、を備える。
 正極及び負極の少なくとも一方として、本開示のエネルギーデバイス電極が用いられる。本開示のエネルギーデバイス電極はバインダ樹脂として本開示のエネルギーデバイス電極用樹脂を含むため、放電容量が向上し、ガスの発生が抑制される傾向にある。その理由は明確ではないが、活物質、導電剤等のエネルギーデバイス電極の構成成分に対して本開示のエネルギーデバイス電極用樹脂がイオン透過性に優れる被膜を形成し、電解液の分解を抑制しているためと推察される。
 なお、正極又は負極の一方として、本開示のエネルギーデバイス電極以外の電極が用いられる場合、この分野で常用されるものを使用できる。
The lithium ion secondary battery includes, for example, a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolytic solution.
The energy device electrode of the present disclosure is used as at least one of the positive electrode and the negative electrode. Since the energy device electrode of the present disclosure includes the energy device electrode resin of the present disclosure as a binder resin, the discharge capacity is improved and gas generation tends to be suppressed. The reason for this is not clear, but the energy device electrode resin of the present disclosure forms a film having excellent ion permeability with respect to the components of the energy device electrode such as an active material and a conductive agent, and suppresses decomposition of the electrolyte. It is guessed that this is because.
In addition, when electrodes other than the energy device electrode of the present disclosure are used as one of the positive electrode and the negative electrode, those commonly used in this field can be used.
-セパレータ-
 セパレータは、正極及び負極間を電子的には絶縁しつつもイオン透過性を有し、かつ、正極側における酸化性及び負極側における還元性に対する耐性を備えるものであれば特に制限はない。このような特性を満たすセパレータの材料(材質)としては、樹脂、無機物等が用いられる。
-Separator-
The separator is not particularly limited as long as it has ion permeability while electronically insulating between the positive electrode and the negative electrode, and has resistance to oxidation on the positive electrode side and reducibility on the negative electrode side. As a material (material) of the separator that satisfies such characteristics, a resin, an inorganic substance, or the like is used.
 上記樹脂としては、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ナイロン等が用いられる。具体的には、電解液に対して安定で、保液性の優れた材料の中から選ぶことが好ましく、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート、不織布などを用いることがより好ましい。 As the resin, an olefin polymer, a fluorine polymer, a cellulose polymer, polyimide, nylon, or the like is used. Specifically, it is preferable to select from materials that are stable with respect to the electrolytic solution and have excellent liquid retention properties, and it is more preferable to use a porous sheet made of polyolefin such as polyethylene or polypropylene, a nonwoven fabric, or the like. .
 無機物としては、アルミナ、二酸化ケイ素等の酸化物類、窒化アルミニウム、窒化ケイ素等の窒化物類、硫酸バリウム、硫酸カルシウム等の硫酸塩類、ガラスなどが用いられる。例えば、繊維形状又は粒子形状の上記無機物を、不織布、織布、微多孔性フィルム等の薄膜形状の基材に付着させたものをセパレータとして用いることができる。
 薄膜形状の基材としては、孔径が0.01μm~1μmであり、厚さが5μm~50μmのものが好適に用いられる。また、例えば、繊維形状又は粒子形状の上記無機物を、樹脂等の結着剤を用いて複合多孔層としたものをセパレータとして用いることができる。さらに、この複合多孔層を、正極又は負極の表面に形成し、セパレータとしてもよい。例えば、90%粒子径(D90)が1μm未満のアルミナ粒子を、フッ素樹脂を結着剤として結着させた複合多孔層を、正極の表面に形成してもよい。
Examples of inorganic substances include oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, sulfates such as barium sulfate and calcium sulfate, and glass. For example, what made the said inorganic substance of fiber shape or particle shape adhere to thin film-shaped base materials, such as a nonwoven fabric, a woven fabric, and a microporous film, can be used as a separator.
As the thin film-shaped substrate, a substrate having a pore diameter of 0.01 μm to 1 μm and a thickness of 5 μm to 50 μm is preferably used. In addition, for example, a separator in which a composite porous layer is formed using the above-described inorganic material in a fiber shape or a particle shape by using a binder such as a resin can be used as a separator. Furthermore, this composite porous layer may be formed on the surface of the positive electrode or the negative electrode to form a separator. For example, a composite porous layer in which alumina particles having a 90% particle diameter (D90) of less than 1 μm are bound using a fluororesin as a binder may be formed on the surface of the positive electrode.
-電解液-
 電解液は、溶質(支持塩)と非水溶媒とを含み、さらに必要に応じて各種添加剤を含む。溶質は通常非水溶媒中に溶解する。電解液は、例えば、セパレータに含浸される。
-Electrolyte-
The electrolytic solution contains a solute (supporting salt) and a nonaqueous solvent, and further contains various additives as necessary. Solutes usually dissolve in non-aqueous solvents. For example, the electrolytic solution is impregnated in the separator.
 溶質としては、この分野で常用されるものを使用でき、例えば、LiClO、LiBF、LiPF、LiAlCl、LiSbF、LiSCN、LiCFSO、LiCFCO、LiAsF、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、クロロボランリチウム、ホウ酸塩類、イミド塩類等が挙げられる。ホウ酸塩類としては、ビス(1,2-ベンゼンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,3-ナフタレンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,2’-ビフェニルジオレート(2-)-O,O’)ホウ酸リチウム、ビス(5-フルオロ-2-オレート-1-ベンゼンスルホン酸-O,O’)ホウ酸リチウム等が挙げられる。イミド塩類としては、ビストリフルオロメタンスルホン酸イミドリチウム((CFSONLi)、トリフルオロメタンスルホン酸ノナフルオロブタンスルホン酸イミドリチウム((CFSO)(CSO)NLi)、ビスペンタフルオロエタンスルホン酸イミドリチウム((CSONLi)等が挙げられる。溶質は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。溶質の非水溶媒に対する溶解量は、0.5モル/L~2モル/Lとすることが好ましい。 As the solute, those commonly used in this field can be used. For example, LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiB 10 Cl 10 , lower aliphatic lithium carboxylates, LiCl, LiBr, LiI, chloroborane lithium, borates, imide salts and the like. Examples of borates include lithium bis (1,2-benzenediolate (2-)-O, O ′) borate, bis (2,3-naphthalenedioleate (2-)-O, O ′) boric acid. Lithium, bis (2,2′-biphenyldiolate (2-)-O, O ′) lithium borate, bis (5-fluoro-2-olate-1-benzenesulfonic acid-O, O ′) lithium borate Etc. Examples of imide salts include lithium bistrifluoromethanesulfonate imide ((CF 3 SO 2 ) 2 NLi), lithium trifluoromethanesulfonate nonafluorobutanesulfonate ((CF 3 SO 2 ) (C 4 F 9 SO 2 ) NLi ), Lithium bispentafluoroethanesulfonate imide ((C 2 F 5 SO 2 ) 2 NLi), and the like. A solute may be used individually by 1 type, and may be used in combination of 2 or more type. The amount of the solute dissolved in the nonaqueous solvent is preferably 0.5 mol / L to 2 mol / L.
 非水溶媒としては、この分野で常用されるものを使用でき、例えば、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステル等が挙げられる。環状炭酸エステルとしては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)等が挙げられる。鎖状炭酸エステルとしては、例えば、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)等が挙げられる。環状カルボン酸エステルとしては、例えば、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)等が挙げられる。非水溶媒は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the non-aqueous solvent, those commonly used in this field can be used, and examples thereof include a cyclic carbonate ester, a chain carbonate ester, and a cyclic carboxylate ester. Examples of the cyclic carbonate include propylene carbonate (PC) and ethylene carbonate (EC). Examples of the chain carbonate include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), and the like. Examples of the cyclic carboxylic acid ester include γ-butyrolactone (GBL) and γ-valerolactone (GVL). A non-aqueous solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
 また、電池特性をより向上できる観点から、非水溶媒にビニレンカーボネート(VC)を含有することが好ましい。 Moreover, it is preferable to contain vinylene carbonate (VC) in the nonaqueous solvent from the viewpoint of further improving battery characteristics.
 ビニレンカーボネート(VC)を含有する場合の含有率は、非水溶媒全量に対して、0.1質量%~2質量%が好ましく、0.2質量%~1.5質量%がより好ましい。 The content when vinylene carbonate (VC) is contained is preferably 0.1% by mass to 2% by mass, and more preferably 0.2% by mass to 1.5% by mass with respect to the total amount of the nonaqueous solvent.
 以下に、本開示をラミネート型のリチウムイオン二次電池に適用した実施の形態について説明する。 Hereinafter, an embodiment in which the present disclosure is applied to a laminated lithium ion secondary battery will be described.
 ラミネート型のリチウムイオン二次電池は、例えば、次のようにして作製できる。まず、正極と負極を角形に切断し、それぞれの電極にタブを溶接し正極端子及び負極端子を作製する。正極と負極との間にセパレータを介在させ積層した電極積層体を作製し、その状態でアルミニウム製のラミネートパック内に収容し、正極端子及び負極端子をアルミラミネートパックの外に出し密封する。次いで、電解液をアルミラミネートパック内に注液し、アルミラミネートパックの開口部を密封する。これにより、リチウムイオン二次電池が得られる。 The laminate type lithium ion secondary battery can be manufactured, for example, as follows. First, the positive electrode and the negative electrode are cut into squares, and tabs are welded to the respective electrodes to produce a positive electrode terminal and a negative electrode terminal. An electrode laminate is produced by laminating a separator between a positive electrode and a negative electrode, and accommodated in an aluminum laminate pack in that state, and the positive electrode terminal and the negative electrode terminal are taken out of the aluminum laminate pack and sealed. Next, an electrolytic solution is poured into the aluminum laminate pack, and the opening of the aluminum laminate pack is sealed. Thereby, a lithium ion secondary battery is obtained.
 次に、図面を参照して、本開示を18650タイプの円柱状リチウムイオン二次電池に適用した実施の形態について説明する。 Next, an embodiment in which the present disclosure is applied to an 18650 type cylindrical lithium ion secondary battery will be described with reference to the drawings.
 図1は、本開示を適用したリチウムイオン二次電池の断面図を示す。
 図1に示すように、本開示のリチウムイオン二次電池1は、ニッケルメッキが施されたスチール製で有底円筒状の電池容器6を有している。電池容器6には、帯状の正極板2及び負極板3がセパレータ4を介して断面渦巻状に捲回された電極群5が収容されている。セパレータ4は、例えば、幅が58mm、厚さが30μmに設定される。電極群5の上端面には、一端部を正極板2に固定されたアルミニウム製でリボン状の正極タブ端子が導出されている。正極タブ端子の他端部は、電極群5の上側に配置され正極外部端子となる円盤状の電池蓋の下面に超音波溶接で接合されている。一方、電極群5の下端面には、一端部を負極板3に固定された銅製でリボン状の負極タブ端子が導出されている。負極タブ端子の他端部は、電池容器6の内底部に抵抗溶接で接合されている。従って、正極タブ端子及び負極タブ端子は、それぞれ電極群5の両端面の互いに反対側に導出されている。なお、電極群5の外周面全周には、図示を省略した絶縁被覆が施されている。電池蓋は、絶縁性の樹脂製ガスケットを介して電池容器6の上部にカシメ固定されている。このため、リチウムイオン二次電池1の内部は密封されている。また、電池容器6内には、図示しない電解液が注液されている。
FIG. 1 shows a cross-sectional view of a lithium ion secondary battery to which the present disclosure is applied.
As shown in FIG. 1, a lithium ion secondary battery 1 of the present disclosure has a bottomed cylindrical battery container 6 made of nickel-plated steel. The battery case 6 accommodates an electrode group 5 in which a strip-like positive electrode plate 2 and a negative electrode plate 3 are wound in a spiral shape with a separator 4 interposed therebetween. For example, the separator 4 has a width of 58 mm and a thickness of 30 μm. A ribbon-like positive electrode tab terminal made of aluminum and having one end fixed to the positive electrode plate 2 is led out on the upper end surface of the electrode group 5. The other end of the positive electrode tab terminal is joined by ultrasonic welding to the lower surface of a disk-shaped battery lid that is disposed on the upper side of the electrode group 5 and serves as a positive electrode external terminal. On the other hand, a ribbon-like negative electrode tab terminal made of copper with one end fixed to the negative electrode plate 3 is led out on the lower end surface of the electrode group 5. The other end of the negative electrode tab terminal is joined to the inner bottom of the battery container 6 by resistance welding. Therefore, the positive electrode tab terminal and the negative electrode tab terminal are led out to the opposite sides of the both end faces of the electrode group 5, respectively. In addition, the insulation coating which abbreviate | omitted illustration is given to the outer peripheral surface whole periphery of the electrode group 5. FIG. The battery lid is caulked and fixed to the upper part of the battery container 6 via an insulating resin gasket. For this reason, the inside of the lithium ion secondary battery 1 is sealed. In addition, an electrolyte solution (not shown) is injected into the battery container 6.
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
[実施例1]
 撹拌機、温度計、冷却管、及び窒素ガス導入管を装備した1リットルのセパラブルフラスコ内に、精製水400gを仕込み、窒素ガス通気量200mL/分の条件下で、撹拌しながら74℃まで昇温した後、窒素ガスの通気を止めた。次いで、重合開始剤の過硫酸アンモニウム0.347gを精製水2.5gに溶かした水溶液を添加し、直ちに、ニトリル基含有単量体のアクリロニトリル(和光純薬工業株式会社製)40.0g、式(II)で表される架橋剤のトリエチレングリコールジアクリレート(日立化成株式会社製、商品名:FA-232A)0.5g、カルボキシ基含有単量体のアクリル酸2.1g、及び式(III)で表される単量体のメトキシトリエチレングリコールアクリレート(新中村化学工業株式会社製、商品名:NKエステルAM-30G)0.9gの混合液を、反応系の温度を74±2℃に保ちながら、2時間かけて滴下した。続いて、懸濁した反応系に、過硫酸アンモニウム0.42gを精製水3.1gに溶かした水溶液を添加し、さらに2時間、反応系の温度を74±2℃に保持した。その後、反応系の温度を90±5℃まで昇温し、過硫酸アンモニウム0.21gを精製水1.5gに溶かした水溶液を追加添加し、同温度で2時間保持した。その後、1時間かけて40℃まで冷却した後、撹拌を止めて一晩室温(25℃)で静置し、ニトリル基含有単量体由来の構造単位を有する樹脂が沈殿した反応液を得た。この反応液を吸引濾過し、回収した湿潤状態の沈殿物を精製水500gで4回洗浄した後、100℃で8時間乾燥して、ニトリル基含有単量体由来の構造単位を有する樹脂Aを得た。単量体及び架橋剤の組成を表1に示す。
[Example 1]
Into a 1 liter separable flask equipped with a stirrer, thermometer, cooling pipe, and nitrogen gas introduction pipe, charged with 400 g of purified water and up to 74 ° C. with stirring under a nitrogen gas flow rate of 200 mL / min. After raising the temperature, the nitrogen gas flow was stopped. Next, an aqueous solution obtained by dissolving 0.347 g of a polymerization initiator ammonium persulfate in 2.5 g of purified water was added, and immediately, 40.0 g of a nitrile group-containing monomer acrylonitrile (manufactured by Wako Pure Chemical Industries, Ltd.), a formula ( II) 0.5 g of a cross-linking agent represented by triethylene glycol diacrylate (trade name: FA-232A, manufactured by Hitachi Chemical Co., Ltd.), 2.1 g of carboxy group-containing monomer, and formula (III) A mixture of 0.9 g of methoxytriethylene glycol acrylate (trade name: NK ester AM-30G, manufactured by Shin-Nakamura Chemical Co., Ltd.) represented by the following formula is maintained, and the temperature of the reaction system is maintained at 74 ± 2 ° C. However, it was dripped over 2 hours. Subsequently, an aqueous solution in which 0.42 g of ammonium persulfate was dissolved in 3.1 g of purified water was added to the suspended reaction system, and the temperature of the reaction system was maintained at 74 ± 2 ° C. for another 2 hours. Thereafter, the temperature of the reaction system was raised to 90 ± 5 ° C., an aqueous solution in which 0.21 g of ammonium persulfate was dissolved in 1.5 g of purified water was added, and the mixture was held at the same temperature for 2 hours. Then, after cooling to 40 ° C. over 1 hour, stirring was stopped and the mixture was allowed to stand overnight at room temperature (25 ° C.) to obtain a reaction solution in which a resin having a structural unit derived from a nitrile group-containing monomer was precipitated. . The reaction solution was filtered by suction, and the collected wet precipitate was washed 4 times with 500 g of purified water and then dried at 100 ° C. for 8 hours to obtain a resin A having a structural unit derived from a nitrile group-containing monomer. Obtained. Table 1 shows the composition of the monomer and the crosslinking agent.
[実施例2]
 撹拌機、温度計、冷却管、及び窒素ガス導入管を装備した1リットルのセパラブルフラスコ内に、精製水400gを仕込み、窒素ガス通気量200mL/分の条件下で、撹拌しながら74℃まで昇温した後、窒素ガスの通気を止めた。次いで、重合開始剤の過硫酸アンモニウム0.347gを精製水2.5gに溶かした水溶液を添加し、直ちに、ニトリル基含有単量体のアクリロニトリル(和光純薬工業株式会社製)40.0g、式(II)で表される架橋剤のトリエチレングリコールジアクリレート(日立化成株式会社製、商品名:FA-232A)0.5g、及びカルボキシ基含有単量体のアクリル酸2.1gの混合液を、反応系の温度を74±2℃に保ちながら、2時間かけて滴下した。続いて、懸濁した反応系に、過硫酸アンモニウム0.42gを精製水3.1gに溶かした水溶液を追加添加し、さらに2時間、反応系の温度を74±2℃に保持した。その後、反応系の温度を90±5℃まで昇温し、過硫酸アンモニウム0.21gを精製水1.5gに溶かした水溶液を追加添加し、同温度で2時間保持した。その後、1時間かけて40℃まで冷却した後、撹拌を止めて一晩室温(25℃)で静置し、ニトリル基含有単量体由来の構造単位を有する樹脂が沈殿した反応液を得た。この反応液を吸引濾過し、回収した湿潤状態の沈殿物を精製水500gで4回洗浄した後、100℃で8時間乾燥して、ニトリル基含有単量体由来の構造単位を有する樹脂Bを得た。単量体及び架橋剤の組成を表1に示す。
[Example 2]
Into a 1 liter separable flask equipped with a stirrer, thermometer, cooling pipe, and nitrogen gas introduction pipe, charged with 400 g of purified water and up to 74 ° C. with stirring under a nitrogen gas flow rate of 200 mL / min. After raising the temperature, the nitrogen gas flow was stopped. Next, an aqueous solution obtained by dissolving 0.347 g of a polymerization initiator ammonium persulfate in 2.5 g of purified water was added, and immediately, 40.0 g of a nitrile group-containing monomer acrylonitrile (manufactured by Wako Pure Chemical Industries, Ltd.), a formula ( II) 0.5 g of a cross-linking agent represented by triethylene glycol diacrylate (manufactured by Hitachi Chemical Co., Ltd., trade name: FA-232A) and a carboxy group-containing monomer of 2.1 g of acrylic acid, The reaction system was added dropwise over 2 hours while maintaining the temperature of the reaction system at 74 ± 2 ° C. Subsequently, an aqueous solution in which 0.42 g of ammonium persulfate was dissolved in 3.1 g of purified water was added to the suspended reaction system, and the temperature of the reaction system was maintained at 74 ± 2 ° C. for another 2 hours. Thereafter, the temperature of the reaction system was raised to 90 ± 5 ° C., an aqueous solution in which 0.21 g of ammonium persulfate was dissolved in 1.5 g of purified water was added, and the mixture was held at the same temperature for 2 hours. Then, after cooling to 40 ° C. over 1 hour, stirring was stopped and the mixture was allowed to stand overnight at room temperature (25 ° C.) to obtain a reaction solution in which a resin having a structural unit derived from a nitrile group-containing monomer was precipitated. . The reaction solution was filtered by suction, and the collected wet precipitate was washed 4 times with 500 g of purified water and then dried at 100 ° C. for 8 hours to obtain a resin B having a structural unit derived from a nitrile group-containing monomer. Obtained. Table 1 shows the composition of the monomer and the crosslinking agent.
[実施例3]
 式(II)で表される単量体のトリエチレングリコールジアクリレート(日立化成株式会社製、商品名:FA-232A)の使用量を0.05gとした以外は実施例1と同様にして樹脂Cを得た。単量体及び架橋剤の組成を表1に示す。
[Example 3]
Resin in the same manner as in Example 1, except that the amount of the monomer represented by the formula (II), triethylene glycol diacrylate (trade name: FA-232A, manufactured by Hitachi Chemical Co., Ltd.) was 0.05 g C was obtained. Table 1 shows the composition of the monomer and the crosslinking agent.
[実施例4]
 カルボキシ基含有単量体のアクリル酸の使用量を0.1gとした以外は実施例1と同様にして樹脂Dを得た。単量体及び架橋剤の組成を表1に示す。
[Example 4]
Resin D was obtained in the same manner as in Example 1 except that the amount of acrylic acid used as the carboxy group-containing monomer was changed to 0.1 g. Table 1 shows the composition of the monomer and the crosslinking agent.
[比較例1]
 式(II)で表される架橋剤のトリエチレングリコールジアクリレートを用いず、式(III)で表される単量体のメトキシトリエチレングリコールアクリレートの使用量を1.4gとした以外は実施例1と同様にして、樹脂Eを得た。単量体及び架橋剤の組成を表1に示す。
[Comparative Example 1]
Example except that the amount of the methoxytriethylene glycol acrylate as the monomer represented by the formula (III) was changed to 1.4 g without using the triethylene glycol diacrylate as the crosslinking agent represented by the formula (II). In the same manner as in Example 1, Resin E was obtained. Table 1 shows the composition of the monomer and the crosslinking agent.
[実施例5]
(1)バインダ樹脂組成物の調製
 撹拌機、温度計、及び冷却管を装備した500mLのセパラブルフラスコ内に、実施例1で得られた樹脂Aの13.5gを仕込み、撹拌しながら、N-メチル-2-ピロリドン(有機溶媒、和光純薬工業株式会社製、特級)212gを加え、100±5℃で5時間撹拌した。樹脂の溶解を確認し、1時間かけて40℃まで冷却し、バインダ樹脂組成物A(樹脂Aを含有するN-メチル-2-ピロリドン溶液)を得た。
[Example 5]
(1) Preparation of binder resin composition In a 500 mL separable flask equipped with a stirrer, a thermometer, and a cooling tube, 13.5 g of the resin A obtained in Example 1 was charged, and while stirring, N -212 g of methyl-2-pyrrolidone (organic solvent, Wako Pure Chemical Industries, Ltd., special grade) was added and stirred at 100 ± 5 ° C. for 5 hours. After confirming dissolution of the resin, it was cooled to 40 ° C. over 1 hour to obtain a binder resin composition A (N-methyl-2-pyrrolidone solution containing resin A).
(2)圧延性評価用サンプルの作製
 ニッケルマンガンコバルト酸リチウム(正極活物質、LiNi1/3Mn1/3Co1/3(Ni:Mn:Co(モル比)=1:1:1)、平均粒子径:6.5μm)、アセチレンブラック(導電剤、商品名:HS-100、平均粒子径48nm(デンカ株式会社カタログ値)、デンカ株式会社製)、及びバインダ樹脂組成物Aを、固形分の質量比が、正極活物質:導電剤:樹脂A=94.0:4.5:1.5となるように混合し、N-メチル-2-ピロリドン(有機溶媒、和光純薬工業株式会社製、特級)中に十分に分散させ、正極合剤ペーストを調製した。この正極合剤ペーストを厚さ15μmのアルミニウム箔(正極集電体、三菱アルミニウム株式会社)の片面に、塗布量が150±1g/mとなるように塗布し、100℃で30分間乾燥した。さらに、120℃に設定した真空乾燥機で12時間乾燥し、圧延性評価用サンプルAを得た。
(2) Production of Rollability Evaluation Sample Lithium Manganese Cobaltate (Positive Electrode Active Material, LiNi 1/3 Mn 1/3 Co 1/3 O 2 (Ni: Mn: Co (Molar Ratio) = 1: 1: 1) ), Average particle size: 6.5 μm), acetylene black (conductive agent, trade name: HS-100, average particle size 48 nm (Denka Co., Ltd. catalog value), manufactured by Denka Co., Ltd.), and binder resin composition A, N-methyl-2-pyrrolidone (organic solvent, Wako Pure Chemical Industries, Ltd.) was mixed so that the mass ratio of the solid content was positive electrode active material: conductive agent: resin A = 94.0: 4.5: 1.5. It was sufficiently dispersed in a special grade), and a positive electrode mixture paste was prepared. This positive electrode mixture paste was applied to one side of a 15 μm-thick aluminum foil (positive electrode current collector, Mitsubishi Aluminum Co., Ltd.) so that the coating amount was 150 ± 1 g / m 2 and dried at 100 ° C. for 30 minutes. . Furthermore, it dried for 12 hours with the vacuum dryer set to 120 degreeC, and obtained the sample A for rollability evaluation.
(3)圧延性評価
 圧延性評価用サンプルAを幅53mmの短冊状に切断し、室温下、ロールプレス機を用いて70kN/53mmの圧力で1回プレスした後の電極厚を測定した。電極厚の測定はマイクロメーター(株式会社ミツトヨ製)を用いて同一電極内で計10ヶ所行い、その平均値を採用した。合剤密度は、電極厚から合剤密度を算出し、密度が高いものほど圧延性に優れると判断した。結果を表2に示す。
(3) Rollability evaluation Sample A for rollability evaluation was cut into strips having a width of 53 mm, and the electrode thickness after being pressed once at a pressure of 70 kN / 53 mm using a roll press at room temperature was measured. The electrode thickness was measured at a total of 10 locations within the same electrode using a micrometer (manufactured by Mitutoyo Corporation), and the average value was adopted. The mixture density was calculated from the electrode thickness, and the higher the density, the better the rollability. The results are shown in Table 2.
(4)接着性評価
 平均粒子径20μmの非晶質炭素と、実施例1で得られたバインダ樹脂組成物Aとを、非晶質炭素と樹脂Aとの固形分換算で99.0質量%:1.0質量%の比率で混合し、さらに粘度調整のためにN-メチル-2-ピロリドンを加えてスラリーを作製した。スラリーを厚さ10μmの銅箔(集電体)へ塗布したのち、80℃に設定した送風型乾燥機で1時間乾燥してシート状の電極を作製した。これをロールプレス機でプレスして電極合剤層の密度が1.5g/cmの電極を作製した。このとき、電極合剤層の剥離の有無を目視で確認した。結果を表2に示す。
(4) Adhesive evaluation Amorphous carbon having an average particle diameter of 20 μm and the binder resin composition A obtained in Example 1 were 99.0% by mass in terms of solid content of amorphous carbon and resin A. Was mixed at a ratio of 1.0% by mass, and N-methyl-2-pyrrolidone was further added to adjust the viscosity to prepare a slurry. The slurry was applied to a copper foil (current collector) having a thickness of 10 μm, and then dried for 1 hour with a blow-type dryer set at 80 ° C. to produce a sheet-like electrode. This was pressed with a roll press to produce an electrode having an electrode mixture layer density of 1.5 g / cm 3 . At this time, the presence or absence of peeling of the electrode mixture layer was visually confirmed. The results are shown in Table 2.
(5)電解液に対する耐膨潤性
 樹脂AとN-メチル-2-ピロリドン(有機溶媒、和光純薬工業株式会社製、特級)とを混合し、全体に対して6質量%の樹脂Aを含むスラリーを作製した。このスラリーを乾燥後の膜厚が約10μmになるようにガラス基板上に塗布し、120℃の送風型乾燥機で2時間乾燥した後、真空乾燥機(120℃/1torr)で10時間乾燥して樹脂膜を作製した。アルゴン雰囲気のグローブボックス中で、得られた樹脂膜を2cm角に裁断し、質量を測定した。その後、密閉可能な容器に、裁断した樹脂膜と、樹脂膜を浸漬するのに十分な量の電解液(1MのLiPFを含むエチレンカーボネート/ジエチルカーボネート/ジメチルカーボネート=1/1/1混合溶液(体積比))とを加え、密閉した。この樹脂膜と電解液の入った密閉容器を25℃の恒温槽に入れて24時間静置した。密閉容器を再びアルゴン雰囲気のグローブボックスに入れた後、樹脂膜を取り出し、表面についた電解液をろ紙で拭き取ってから浸漬後の質量を測定した。下記計算式から膨潤度を算出した。膨潤度が低いものほど耐膨潤性に優れると判断した。結果を表2に示す。
膨潤度(%)=(浸漬後の質量(g)-浸漬前の質量(g))/(浸漬前の質量(g)×100
(5) Swelling resistance to electrolytic solution Resin A and N-methyl-2-pyrrolidone (organic solvent, manufactured by Wako Pure Chemical Industries, Ltd., special grade) are mixed and contain 6% by mass of resin A based on the whole. A slurry was prepared. This slurry was applied on a glass substrate so that the film thickness after drying was about 10 μm, dried for 2 hours with a 120 ° C. blow-type dryer, and then dried for 10 hours with a vacuum dryer (120 ° C./1 torr). Thus, a resin film was prepared. The obtained resin film was cut into 2 cm square in a glove box in an argon atmosphere, and the mass was measured. Thereafter, the cut resin film and a sufficient amount of electrolyte to immerse the resin film in a sealable container (ethylene carbonate / diethyl carbonate / dimethyl carbonate = 1/1/1 mixed solution containing 1M LiPF 6) (Volume ratio)) was added and sealed. The sealed container containing the resin film and the electrolytic solution was placed in a constant temperature bath at 25 ° C. and allowed to stand for 24 hours. The sealed container was again put in a glove box in an argon atmosphere, the resin film was taken out, the electrolyte solution on the surface was wiped off with filter paper, and the mass after immersion was measured. The degree of swelling was calculated from the following formula. It was judged that the lower the degree of swelling, the better the swelling resistance. The results are shown in Table 2.
Swelling degree (%) = (mass after immersion (g) −mass before immersion (g)) / (mass before immersion (g) × 100
[実施例6~8及び比較例2]
 樹脂Aの代わりに樹脂B(実施例6)、樹脂C(実施例7)、樹脂D(実施例8)及び樹脂E(比較例1)を用いた以外は、実施例1に示した方法で評価を行った。結果を表2に示す。
[Examples 6 to 8 and Comparative Example 2]
The method shown in Example 1 except that Resin B (Example 6), Resin C (Example 7), Resin D (Example 8) and Resin E (Comparative Example 1) were used instead of Resin A. Evaluation was performed. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表2から明らかなように、実施例1~4で得られた樹脂A~Dを使用した実施例5~8の場合は、プレス後膜厚が小さく、プレス後密度が高いことが分かった。メトキシトリエチレングリコールアクリレートを併用した場合(実施例5、7及び8)は、プレス後密度が特に高くなる傾向があった。一方、トリエチレングリコールジアクリレートを使用しない場合(比較例2)は、プレス後膜厚が大きく、プレス後密度が低かった。このことから、特定架橋剤由来の構造単位を含む樹脂A~Dは、圧延性に優れることが分かる。 As is clear from Table 2, in Examples 5 to 8 using the resins A to D obtained in Examples 1 to 4, it was found that the film thickness after pressing was small and the density after pressing was high. When methoxytriethylene glycol acrylate was used in combination (Examples 5, 7 and 8), the density after pressing tended to be particularly high. On the other hand, when triethylene glycol diacrylate was not used (Comparative Example 2), the film thickness after pressing was large and the density after pressing was low. From this, it can be seen that the resins A to D containing the structural unit derived from the specific cross-linking agent are excellent in rollability.
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.

Claims (22)

  1.  ニトリル基含有単量体由来の構造単位と、
     エチレン性不飽和二重結合を含む基を一分子中に少なくとも2つ含む架橋剤由来の構造単位と、
    を含むエネルギーデバイス電極用樹脂。
    A structural unit derived from a nitrile group-containing monomer;
    A structural unit derived from a crosslinking agent containing at least two groups containing an ethylenically unsaturated double bond in one molecule;
    Resin for energy device electrode containing.
  2.  前記エチレン性不飽和二重結合を含む基が、アクリロイル基及びメタクリロイル基からなる群より選択される少なくとも一つである請求項1に記載のエネルギーデバイス電極用樹脂。 The resin for an energy device electrode according to claim 1, wherein the group containing an ethylenically unsaturated double bond is at least one selected from the group consisting of an acryloyl group and a methacryloyl group.
  3.  前記架橋剤が、下記式(I)で表される化合物を含む請求項1又は請求項2に記載のエネルギーデバイス電極用樹脂。
    Figure JPOXMLDOC01-appb-C000001

    [式(I)中、R及びRは各々独立に水素原子又はメチル基を示し、Rはアルキレン基を示し、nは1~50の整数を示す。]
    The resin for energy device electrodes according to claim 1 or 2, wherein the crosslinking agent contains a compound represented by the following formula (I).
    Figure JPOXMLDOC01-appb-C000001

    [In Formula (I), R 1 and R 2 each independently represent a hydrogen atom or a methyl group, R 3 represents an alkylene group, and n represents an integer of 1 to 50. ]
  4.  前記式(I)で表される化合物が、下記式(II)で表される化合物を含む請求項3に記載のエネルギーデバイス電極用樹脂。
    Figure JPOXMLDOC01-appb-C000002

    [式(II)中、R及びRは各々独立に水素原子又はメチル基を示し、nは1~50の整数を示す。]
    The resin for energy device electrodes according to claim 3, wherein the compound represented by the formula (I) includes a compound represented by the following formula (II).
    Figure JPOXMLDOC01-appb-C000002

    [In Formula (II), R 1 and R 2 each independently represent a hydrogen atom or a methyl group, and n represents an integer of 1 to 50. ]
  5.  前記式(II)で表される化合物が、トリエチレングリコールジアクリレートを含む請求項4に記載のエネルギーデバイス電極用樹脂。 The resin for energy device electrodes according to claim 4, wherein the compound represented by the formula (II) contains triethylene glycol diacrylate.
  6.  前記ニトリル基含有単量体由来の構造単位1モルに対する前記架橋剤由来の構造単位の比率が、0.0001モル~0.02モルである請求項1~請求項5のいずれか1項に記載のエネルギーデバイス電極用樹脂。 The ratio of the structural unit derived from the crosslinking agent to 1 mol of the structural unit derived from the nitrile group-containing monomer is 0.0001 mol to 0.02 mol. Resin for energy device electrodes.
  7.  カルボキシ基含有単量体由来であってカルボキシ基を含む構造単位をさらに含む請求項1~請求項6のいずれか1項に記載のエネルギーデバイス電極用樹脂。 The resin for an energy device electrode according to any one of claims 1 to 6, further comprising a structural unit derived from a carboxy group-containing monomer and containing a carboxy group.
  8.  前記カルボキシ基含有単量体が、アクリル酸を含む請求項7に記載のエネルギーデバイス電極用樹脂。 The resin for energy device electrodes according to claim 7, wherein the carboxy group-containing monomer contains acrylic acid.
  9.  前記ニトリル基含有単量体由来の構造単位1モルに対する前記カルボキシ基含有単量体由来であってカルボキシ基を含む構造単位の比率が、0.001モル~0.2モルである請求項7又は請求項8に記載のエネルギーデバイス電極用樹脂。 The ratio of the structural unit derived from the carboxy group-containing monomer and containing a carboxy group to 1 mol of the structural unit derived from the nitrile group-containing monomer is 0.001 mol to 0.2 mol. The resin for energy device electrodes according to claim 8.
  10.  前記ニトリル基含有単量体が、アクリロニトリルを含む請求項1~請求項9のいずれか1項に記載のエネルギーデバイス電極用樹脂。 The energy device electrode resin according to any one of claims 1 to 9, wherein the nitrile group-containing monomer contains acrylonitrile.
  11.  下記式(III)で表される単量体由来の構造単位をさらに含む請求項1~請求項10のいずれか1項に記載のエネルギーデバイス電極用樹脂。
    Figure JPOXMLDOC01-appb-C000003

    [式(III)中、Rは水素原子又はメチル基を示し、Rは水素原子又は1価の炭化水素基を示し、mは1~50の整数を示す。]
    The resin for an energy device electrode according to any one of claims 1 to 10, further comprising a structural unit derived from a monomer represented by the following formula (III).
    Figure JPOXMLDOC01-appb-C000003

    [In the formula (III), R 4 represents a hydrogen atom or a methyl group, R 5 represents a hydrogen atom or a monovalent hydrocarbon group, and m represents an integer of 1 to 50. ]
  12.  前記式(III)で表される単量体におけるRが、アルキル基又はフェニル基である請求項11に記載のエネルギーデバイス電極用樹脂。 The resin for energy device electrodes according to claim 11, wherein R 5 in the monomer represented by the formula (III) is an alkyl group or a phenyl group.
  13.  前記式(III)で表される単量体が、メトキシトリエチレングリコールアクリレートを含む請求項11に記載のエネルギーデバイス電極用樹脂。 The resin for energy device electrodes according to claim 11, wherein the monomer represented by the formula (III) contains methoxytriethylene glycol acrylate.
  14.  前記ニトリル基含有単量体由来の構造単位1モルに対する前記式(III)で表される単量体由来の構造単位の比率が、0.001モル~0.2モルである請求項11~請求項13のいずれか1項に記載のエネルギーデバイス電極用樹脂。 The ratio of the structural unit derived from the monomer represented by the formula (III) to 1 mol of the structural unit derived from the nitrile group-containing monomer is 0.001 mol to 0.2 mol. Item 14. The energy device electrode resin according to any one of Items 13 to 13.
  15.  下記式(IV)で表される単量体由来の構造単位をさらに含む請求項1~請求項14のいずれか1項に記載のエネルギーデバイス電極用樹脂。
    Figure JPOXMLDOC01-appb-C000004

    [式(IV)中、Rは水素原子又はメチル基を示し、Rは炭素数が4~100のアルキル基を示す。]
    The resin for an energy device electrode according to any one of claims 1 to 14, further comprising a structural unit derived from a monomer represented by the following formula (IV).
    Figure JPOXMLDOC01-appb-C000004

    [In the formula (IV), R 6 represents a hydrogen atom or a methyl group, and R 7 represents an alkyl group having 4 to 100 carbon atoms. ]
  16.  前記ニトリル基含有単量体由来の構造単位1モルに対する前記式(IV)で表される単量体由来の構造単位の比率が、0.001モル~0.2モルである請求項15に記載のエネルギーデバイス電極用樹脂。 The ratio of the structural unit derived from the monomer represented by the formula (IV) to 1 mol of the structural unit derived from the nitrile group-containing monomer is 0.001 mol to 0.2 mol. Resin for energy device electrodes.
  17.  請求項1~請求項16のいずれか1項に記載のエネルギーデバイス電極用樹脂を含むエネルギーデバイス電極形成用組成物。 An energy device electrode forming composition comprising the energy device electrode resin according to any one of claims 1 to 16.
  18.  リチウムとニッケルとを有しリチウムを除く金属に占めるニッケルの割合が50モル%以上であるリチウム含有複合金属酸化物を含む正極活物質をさらに含む請求項17に記載のエネルギーデバイス電極形成用組成物。 18. The composition for forming an energy device electrode according to claim 17, further comprising a positive electrode active material containing a lithium-containing composite metal oxide having lithium and nickel and a proportion of nickel in the metal excluding lithium being 50 mol% or more. .
  19.  前記リチウム含有複合金属酸化物が、下記式(V)で表される化合物を含む請求項18に記載のエネルギーデバイス電極形成用組成物。
      LiNiCo2+e  式(V)
    [式(V)中、Mは、Al、Mn、Mg及びCaからなる群より選択される少なくとも1種であり、a、b、c、d及びeは、各々0.2≦a≦1.2であり、0.5≦b≦0.9であり、0.1≦c≦0.4であり、0≦d≦0.2であり、-0.2≦e≦0.2であり、b+c+d=1である。]
    The composition for forming an energy device electrode according to claim 18, wherein the lithium-containing composite metal oxide contains a compound represented by the following formula (V).
    Li a Ni b Co c M d O 2 + e Formula (V)
    [In Formula (V), M is at least one selected from the group consisting of Al, Mn, Mg and Ca, and a, b, c, d and e are 0.2 ≦ a ≦ 1. 2, 0.5 ≦ b ≦ 0.9, 0.1 ≦ c ≦ 0.4, 0 ≦ d ≦ 0.2, −0.2 ≦ e ≦ 0.2 B + c + d = 1. ]
  20.  集電体と、
     前記集電体の少なくとも一方の表面上に設けられ、請求項17~請求項19のいずれか1項に記載のエネルギーデバイス電極形成用組成物から形成される電極合剤層と、
    を有するエネルギーデバイス電極。
    A current collector,
    An electrode mixture layer provided on at least one surface of the current collector and formed from the composition for forming an energy device electrode according to any one of claims 17 to 19,
    Having energy device electrode.
  21.  請求項20に記載のエネルギーデバイス電極を備えるエネルギーデバイス。 An energy device comprising the energy device electrode according to claim 20.
  22.  リチウムイオン二次電池である請求項21に記載のエネルギーデバイス。 The energy device according to claim 21, which is a lithium ion secondary battery.
PCT/JP2016/083606 2016-11-11 2016-11-11 Resin for energy device electrodes, composition for forming energy device electrode, energy device electrode, and energy device WO2018087897A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/083606 WO2018087897A1 (en) 2016-11-11 2016-11-11 Resin for energy device electrodes, composition for forming energy device electrode, energy device electrode, and energy device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/083606 WO2018087897A1 (en) 2016-11-11 2016-11-11 Resin for energy device electrodes, composition for forming energy device electrode, energy device electrode, and energy device

Publications (1)

Publication Number Publication Date
WO2018087897A1 true WO2018087897A1 (en) 2018-05-17

Family

ID=62109615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083606 WO2018087897A1 (en) 2016-11-11 2016-11-11 Resin for energy device electrodes, composition for forming energy device electrode, energy device electrode, and energy device

Country Status (1)

Country Link
WO (1) WO2018087897A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001256980A (en) * 2000-03-09 2001-09-21 Nippon Zeon Co Ltd Binder for lithium ion secondary battery electrode and its utlization
JP2004185826A (en) * 2002-11-29 2004-07-02 Nippon Zeon Co Ltd Slurry composition for electrode, electrode and secondary battery
JP4636444B2 (en) * 2004-09-22 2011-02-23 日立化成工業株式会社 Binder resin composition for non-aqueous electrolyte system energy device electrode, non-aqueous electrolyte system energy device electrode, and non-aqueous electrolyte system energy device
JP2014063753A (en) * 2013-12-03 2014-04-10 Toshiba Corp Nonaqueous electrolyte battery
JP2015099653A (en) * 2013-11-18 2015-05-28 三菱レイヨン株式会社 Secondary battery electrode composition, secondary battery electrode and secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001256980A (en) * 2000-03-09 2001-09-21 Nippon Zeon Co Ltd Binder for lithium ion secondary battery electrode and its utlization
JP2004185826A (en) * 2002-11-29 2004-07-02 Nippon Zeon Co Ltd Slurry composition for electrode, electrode and secondary battery
JP4636444B2 (en) * 2004-09-22 2011-02-23 日立化成工業株式会社 Binder resin composition for non-aqueous electrolyte system energy device electrode, non-aqueous electrolyte system energy device electrode, and non-aqueous electrolyte system energy device
JP2015099653A (en) * 2013-11-18 2015-05-28 三菱レイヨン株式会社 Secondary battery electrode composition, secondary battery electrode and secondary battery
JP2014063753A (en) * 2013-12-03 2014-04-10 Toshiba Corp Nonaqueous electrolyte battery

Similar Documents

Publication Publication Date Title
KR100935986B1 (en) Binder resin composition for nonaqueous electrolyte energy device electrode, non-aqueous electrolyte energy device electrode, and nonaqueous electrolyte energy device
WO2017094252A1 (en) Composition for non-aqueous secondary cell adhesive layer, adhesive layer for non-aqueous secondary cell, laminate body, and non-aqueous secondary cell
JP6908102B2 (en) Resin for energy device electrode, composition for forming energy device electrode, energy device electrode and energy device
JP6789498B2 (en) Compositions for forming energy device electrodes, positive electrodes for energy devices and energy devices
KR102381115B1 (en) Composite resin for energy device electrode, composition for forming energy device electrode, positive electrode for energy device and energy device
JP6885411B2 (en) Electrodes for energy devices and energy devices
JP2015003998A (en) Acrylic polymer particle production method, and acrylic polymer particles obtained thereby
WO2014098233A1 (en) Binder resin material for energy device electrodes, energy device electrode, and energy device
JP2019160690A (en) Electrode binder, electrode mixture, energy device electrode and energy device
JP7283137B2 (en) Electrode binders, electrode mixtures, energy device electrodes and energy devices
WO2018087897A1 (en) Resin for energy device electrodes, composition for forming energy device electrode, energy device electrode, and energy device
JP5760966B2 (en) Binder resin material for energy device electrode, energy device electrode and energy device
JP7091602B2 (en) Electrodes for energy devices and energy devices
JP7192224B2 (en) Electrode binders, electrode mixtures, energy device electrodes and energy devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP