JP2004185826A - Slurry composition for electrode, electrode and secondary battery - Google Patents

Slurry composition for electrode, electrode and secondary battery Download PDF

Info

Publication number
JP2004185826A
JP2004185826A JP2002347854A JP2002347854A JP2004185826A JP 2004185826 A JP2004185826 A JP 2004185826A JP 2002347854 A JP2002347854 A JP 2002347854A JP 2002347854 A JP2002347854 A JP 2002347854A JP 2004185826 A JP2004185826 A JP 2004185826A
Authority
JP
Japan
Prior art keywords
polymer
electrode
monomer unit
slurry composition
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002347854A
Other languages
Japanese (ja)
Other versions
JP4311002B2 (en
Inventor
Akira Nakayama
昭 中山
Katsuya Nakamura
勝也 中村
Masahiro Yamakawa
雅裕 山川
Hidekazu Mori
英和 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2002347854A priority Critical patent/JP4311002B2/en
Publication of JP2004185826A publication Critical patent/JP2004185826A/en
Application granted granted Critical
Publication of JP4311002B2 publication Critical patent/JP4311002B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a slurry composition for the electrode of a secondary battery which has a low swelling degree against an electrolyte solution and contains a binder of a good binding property, and an electrode manufactured using the slurry composition. <P>SOLUTION: The slurry composition contains a polymer X of which a monomer unit content derived from acrylic nitrile or methacrylic nitrile is 90 to 99 mol% and a monomer unit content derived from a hydroxyl group or a caoboxyl group is 1 to 10 mol%; an electrode active material; and a liquid medium for dissolving the polymer X therein. The electrode manufactured using the slurry composition has a high binding property, and the secondary battery manufactured using the electrode has a large battery capacity, a good charging/discharging cycle property and a good rate property. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は電極用スラリー組成物、それを用いて製造される電極および該電極を有する二次電池に関する。
【0002】
【従来の技術】
近年、ノート型パソコンや携帯電話、PDAなどの携帯端末の普及が著しい。
そしてこれらの電源には、リチウムイオン二次電池が多用されている。最近では、携帯端末の使用時間の延長や充電時間の短縮などの要望が高まり、これに伴い電池の高性能化、特に高容量化と充電速度(レート特性)の向上が強く求められている。
【0003】
リチウムイオン二次電池は、正極と負極とをセパレーターを介して配置し、電解液とともに容器内に収納した構造を有する。電極(正極および負極)は、電極活物質(以下、単に活物質ということがある)と、必要に応じて導電付与剤などとを電極用バインダーポリマー(以下、単にバインダーということがある)によりアルミニウムや銅などの集電体に結着させたものである。電極は、通常、バインダーを液状媒体に溶解または分散させ、これに活物質などを混合して得られる電極用スラリー組成物を集電体に塗布して、該液状媒体を乾燥などにより除去して、電極層として結着させて形成される。
【0004】
電池容量は、活物質の充填量に強く影響される。一方、レート特性は電子の移動の容易さに影響され、レート特性の向上にはカーボンなどの導電付与剤の増量が効果的である。電池という限られた空間内で活物質と導電付与剤を増量するには、バインダー量を低減する必要がある。しかしながら、バインダー量を少なくすると活物質の結着性が損なわれるという問題があった。そのため、使用量が少なくても電極活物質を強く結着できるバインダーが求められている。
【0005】
従来、リチウムイオン二次電池の正極用バインダーとしてはポリフッ化ビニリデンなどのフッ素含有ポリマーが汎用されているが、結着力や柔軟性が不足しているので電池の高容量化やレート特性の向上は困難であった。
【0006】
上記のフッ素含有ポリマーの欠点を改善する方法として、ゴム系高分子バインダーを用いることが提案された(特許文献1参照)。しかし、ゴム系高分子を用いて電極を作成すると結着力や柔軟性は改善し得るものの、電池のサイクル特性が劣り、繰り返し充放電により電池容量が低下したり、レート特性が悪化するという問題があった。これは、バインダーが電解液により膨潤するため、結着性が次第に低下して集電体から活物質が剥離したり、バインダーが集電体を覆って電子の移動を妨げたりするためと考えられる。
このように、これまで、電池の高容量化とレート特性の向上とを両立させることは困難であった。
【0007】
【特許文献1】
特開平4−255670号公報
【0008】
【発明が解決しようとする課題】
本発明の目的は、電解液に対する膨潤度が低く、かつ結着性が良好なバインダーを含有する電極用スラリー組成物、および該スラリー組成物を用いて製造される電極を提供することである。
また本発明の他の目的は、高容量化と改良されたレート特性とを兼ね備えた二次電池を提供することである。
【0009】
【課題を解決するための手段】
本発明者らは、アクリロニトリル単位またはメタクリロニトリル単位と、ヒドロキシル基またはカルボキシル基を有する単量体単位とを含有する特定組成の共重合体からなるバインダーは、電解液に対する膨潤度が低くかつ結着性が良好であることを見出した。さらに、該バインダーを含む電極用スラリー組成物を用いて製造したリチウムイオン二次電池は高い電池容量と良好な充放電サイクル特性およびレート特性を示すことを見出し、これらの知見に基づいて本発明を完成するに至った。
【0010】
かくして本発明によれば、下記[1]〜[5]が提供される。
[1]バインダーと電極活物質と液状媒体とを含有してなる電極用スラリー組成物であって、該バインダーが、アクリロニトリルまたはメタクリロニトリル由来の単量体単位含有量が90〜99モル%であり、かつヒドロキシル基またはカルボキシル基を有する単量体由来の単量体単位含有量が1〜10モル%であるポリマーXを含有し、該液状媒体がポリマーXを溶解するものであることを特徴とする電極用スラリー組成物。
【0011】
[2]バインダーが、ガラス転移温度が−80〜0℃でかつN−メチルピロリドン不溶分量が50重量%以上であるポリマーYをさらに含み、ポリマーXとポリマーYとの量の割合が、重量比で5:1〜1:5である上記[1]記載の電極用スラリー組成物。
上記ポリマーYは、
(1)単官能エチレン性不飽和カルボン酸エステル由来の単量体単位(a)およびα,β−エチレン性不飽和ニトリル由来の単量体単位(b)を有し、(2)単量体単位(a)と単量体単位(b)との量の比が99:1〜60:40(重量比)であり、
(3)単量体単位(a)および単量体単位(b)の合計がポリマーYの全単量体単位に対して70重量%以上であり、
(4)エチレン性炭化水素由来の単量体単位と共役ジエン由来の単量体単位とエチレン性不飽和カルボン酸由来の単量体単位とを実質的に有さないポリマーであることが好ましい。
【0012】
[3]少なくともバインダーと電極活物質とを含有する電極層が集電体に結着してある電極であって、該バインダーが、アクリロニトリルまたはメタクリロニトリル由来の単量体単位含有量が90〜99モル%であり、かつヒドロキシル基またはカルボキシル基を有する単量体由来の単量体単位含有量が1〜10モル%であるポリマーXを含有するものであることを特徴とする電極。
[4]バインダーが、ガラス転移温度が−80〜0℃でかつN−メチルピロリドン不溶分量が50重量%以上であるポリマーYをさらに含み、ポリマーXとポリマーYとの量の割合が、重量比で5:1〜1:5である上記[3]記載の電極。
[5]上記[3]または[4]に記載の電極を有する二次電池。
【0013】
【発明の実施の形態】
以下、本発明を、1)電極用スラリー組成物、2)電極、3)二次電池に項分けして詳細に説明する。
1)電極用スラリー組成物
本発明の電極用スラリー組成物(以下、単に「スラリー組成物」と記すことがある。)は、バインダーと電極活物質と液状媒体とを含有してなるものである。
本発明のスラリー組成物におけるバインダーは、活物質を集電体に結着するために用いられ、アクリロニトリルまたはメタクリロニトリル由来の単量体単位と、ヒドロキシル基またはカルボキシル基を有する単量体(以下、第2の単量体ということがある。)由来の単量体単位を含有するポリマーXを必須成分とする。
【0014】
ポリマーX中のアクリロニトリルまたはメタクリロニトリル由来の単量体単位含有量は、ポリマーXの全量に対して90〜99モル%、好ましくは91〜97モル%である。アクリロニトリルまたはメタクリロニトリル由来の単量体単位含有量が少なすぎるとポリマーの電解液に対する膨潤度が大きくなるため、結着持続性が劣りサイクル特性が低下する。逆に、多すぎると活物質の結着性が劣る。
【0015】
ポリマーX中の、前記第2の単量体由来の単量体単位の含有量は1〜10モル%、好ましくは3〜9モル%である。第2の単量体由来の単量体単位の含有量が少なすぎると活物質の結着性が劣るとともに、スラリー組成物を集電体へ塗布する際に均一に塗布することが困難になる。逆に、過度に多い場合でも、集電体への塗布性が低下し、電池性能が低下する。また、活物質の結着性も低下する。
【0016】
ポリマーXの製法は特に限定されない。例えば、アクリロニトリルまたはメタクリロニトリルと第2の単量体とを、乳化重合法、懸濁重合法、分散重合法、溶液重合法または塊状重合法などの公知の重合法により共重合して製造することができる。
【0017】
第2の単量体として用いられる、ヒドロキシル基を有する単量体としては、アクリル酸ヒドロキシエチル、アクリル酸ヒドロキシプロピル、アクリル酸ヒドロキシブチルなどのヒドロキシアルキル基を有するアクリル酸エステル;メタクリル酸ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸ヒドロキシブチルなどのヒドロキシアルキル基を有するメタクリル酸エステル;クロトン酸ヒドロキシプロピルなどのヒドロキシアルキル基を有するクロトン酸エステル;アリルアルコールなどが挙げられ、中でもヒドロキシアルキル基を有する、アクリル酸エステルおよびメタクリル酸エステルが好ましい。
【0018】
カルボキシル基を有する単量体としては、アクリル酸、メタクリル酸、クロトン酸、イソクロトン酸などのエチレン性不飽和モノカルボン酸;マレイン酸、フマル酸、シトラコン酸、メサコン酸、グルタコン酸、イタコン酸などのエチレン性不飽和ジカルボン酸;などが挙げられ、中でもエチレン性不飽和モノカルボン酸が好ましく、アクリル酸およびメタクリル酸が特に好ましい。
【0019】
また、アルコキシル基、エポキシ基、エステル基、酸無水物基などの基を有する単量体を原料単量体の一部として用いて得られた重合体を加水分解することにより第2の単量体単位由来の構造を有するようにしてもよい。これら第2の単量体単位由来の構造を形成し得る単量体は、単独で用いてもよく、また2種以上を併用してもよい。
【0020】
ポリマーXは、本発明のスラリー組成物に用いる液状媒体に溶解するものであれば、その他の共重合可能な単量体由来の単位を含有していてもよい。これら共重合可能な単量体は2種以上併用してもよく、これらの単量体単位の含有量の合計は9モル%以下、好ましくは5モル%以下である。
【0021】
ポリマーXのTgは通常0℃より高く、好ましくは50〜90℃である。ポリマーXのTgが過度に低いと、電極をプレスして電極密度を高める際に十分に電極密度を上げられない場合がある。
【0022】
本発明の電極用スラリー組成物において、ポリマーXは単独でバインダーとして用いることができるが、他のポリマーと併用してもよい。ポリマーXと併用できるポリマーは特に限定されないが、好ましいポリマーとしては、Tgが−80〜0℃でN−メチルピロリドン(NMP)に対する不溶分量が50重量%以上であるポリマーYが挙げられる。
ポリマーYをポリマーXと併用することにより、バインダー全体としては液状媒体にある程度溶解してスラリー組成物が塗工に好適な粘度になるようにし、かつ、液状媒体に溶解しないバインダーが繊維状ないし粒子状を保持することによりバインダーが活物質の表面を覆い隠して電池反応を阻害することのないようにすることができる。また、スラリー組成物に用いる各成分の均一な混合分散が容易になる。
【0023】
ポリマーYのTgは、−80〜0℃、好ましくは−60〜−5℃、より好ましくは−50〜−10℃である。Tgが高すぎると、電極の柔軟性が低下し、充放電を繰り返した際に活物質の集電体からの剥離が起きやすくなる。また、Tgが低すぎると電池容量の低下を招く場合がある。
【0024】
また、ポリマーYのNMPに対する不溶分量は、50重量%以上、好ましくは60重量%以上、より好ましくは70重量%以上である。NMP不溶分量が過度に小さいと活物質の結着持続性が低下し、繰り返し充放電による容量減が起こる場合がある。
【0025】
NMP不溶分量は、NMP20ミリリットルにポリマーY0.2gを温度60℃で72時間浸漬した後、80メッシュの篩でろ過し、篩上の成分を乾燥して求めた重量を浸漬前のポリマー重量(0.2g)で除して求められる百分率で表わす。
【0026】
ポリマーYの構成単位の単量体としては、特に限定はないが、単官能エチレン性不飽和カルボン酸エステル由来の単量体単位(a)(以下、単に(a)ということがある)とα,β−エチレン性不飽和ニトリル由来の単量体単位(b)(以下、単に(b)ということがある)とを有するのが好ましい。それぞれの含有量は、(a):(b)の重量比で、好ましくは99:1〜60:40、より好ましくは90:10〜70:30である。また、(a)および(b)の含有量の合計は、ポリマーYの全単量体単位中70重量%以上、好ましくは80重量%以上である。
【0027】
またポリマーYは、エチレンやプロピレンなどのエチレン性炭化水素由来の単量体単位、アクリル酸やメタクリル酸などのエチレン性不飽和カルボン酸由来の単量体単位、およびブタジエンやイソプレンなどの共役ジエン由来の単量体単位を実質的に含まないものが好ましい。これらの単量体単位を有する場合、電気化学的安定性が低下することがある。
【0028】
ポリマーYが上記範囲のNMP不溶分量を含有するためには、多官能エチレン性不飽和単量体を単量体成分に加えて架橋重合体を形成させることが好ましい。
ポリマーYが多官能エチレン性不飽和単量体由来の単量体単位(c)(以下、単に(c)ということがある)を含有する場合、その含有量は、通常0.1〜30重量%、好ましくは0.5〜20重量%、より好ましくは0.5〜15重量%である。また、各単量体単位の含有量の割合は、(a)+(c):(b)の重量比で、好ましくは99:1〜60:40、より好ましくは90:10〜70:30である。
【0029】
単官能エチレン性不飽和カルボン酸エステル由来の単量体単位(a)を与える単量体の具体例としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸n−アミル、アクリル酸イソアミル、アクリル酸n−ヘキシル、アクリル酸2−エチルヘキシル、アクリル酸ヒドロキシプロピル、アクリル酸ラウリルなどのアクリル酸アルキルエステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸n−アミル、メタクリル酸イソアミル、メタクリル酸n−ヘキシル、メタクリル酸2−エチルヘキシル、メタクリル酸ヒドロキシプロピル、メタクリル酸ラウリルなどのメタクリル酸アルキルエステル;
【0030】
クロトン酸メチル、クロトン酸エチル、クロトン酸プロピル、クロトン酸ブチル、クロトン酸イソブチル、クロトン酸n−アミル、クロトン酸イソアミル、クロトン酸n−ヘキシル、クロトン酸2−エチルヘキシル、クロトン酸ヒドロキシプロピルなどのクロトン酸アルキルエステル;メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチルなどのアミノ基含有メタクリル酸エステル;メトキシポリエチレングリコールアクリレート、エトキシポリエチレングリコールアクリレート、エトキシジエチレングリコールアクリレート、メトキシジプロピレングリコールアクリレート、メトキシエチルアクリレート、2−エトキシエチルアクリレート、ブトキシエチルアクリレート、フェノキシエチルアクリレートなどのアルコキシル基を含有するアクリル酸エステル;メトキシポリエチレングリコールメタクリレート、エトキシポリエチレングリコールメタクリレート、メトキシジエチレングリコールメタクリレート、メトキシジプロピレングリコールメタクリレート、メトキシエチルメタクリレート、2−エトキシエチルメタクリレート、ブトキシエチルメタクリレート、フェノキシエチルメタクリレート、などのアルコキシル基を含有するメタクリル酸エステル;
【0031】
アルキル基にリン酸残基、スルホン酸残基、ホウ酸残基などを有するアクリル酸アルキルエステルおよびメタクリル酸アルキルエステル;などが挙げられる。
また、ポリマーXに用いられる単量体として例示した、ヒドロキシアルキル基を有する、アクリル酸エステルおよびメタクリル酸エステルも用いることができる。
【0032】
これらの単官能エチレン性不飽和カルボン酸エステルの中でも、アクリル酸アルキルエステルやメタアクリル酸アルキルエステルが好ましく、これらのアルキル部分の炭素数が1〜12であるものがより好ましく、2〜8であるものが特に好ましい。
【0033】
α,β−エチレン性不飽和ニトリル由来の単量体単位(b)を与える単量体の具体例としては、アクリロニトリル、メタクリロニトリル、α−クロロアクリロニトリル、クロトンニトリルなどが挙げられる。これらの中でもアクリロニトリルおよびメタクリロニトリルが好ましく、メタクリロニトリルが特に好ましい。
【0034】
多官能エチレン性不飽和単量体由来の単量体単位(c)を与える単量体の具体例としては、ジビニルベンゼンなどのジビニル化合物;エチレンジメタクリレート、ジエチレングリコールジメタクリレート、エチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレートなどのジメタクリル酸エステル類;トリメチロールプロパントリメタクリレートなどのトリメタクリル酸エステル類;ジエチレングリコールジアクリレート、1,3−ブチレングリコールジアクリレート、ポリエチレングリコールジアクリレートなどのジアクリル酸エステル類;トリメチロールプロパントリアクリレートなどのトリアクリル酸エステル類;が挙げられる。
【0035】
ポリマーYの具体例としては、アクリル酸2−エチルヘキシル/メタクリロニトリル/エチレングリコールジメタクリレート共重合体、アクリル酸2−エチルヘキシル/メタクリロニトリル/テトラエチレングリコールジメタクリレート共重合体、アクリル酸2−エチルヘキシル/メタクリロニトリル/メトキシポリエチレングリコール/エチレングリコールジメタクリレート共重合体、アクリル酸ブチル/アクリロニトリル/ジエチレングリコールジメタクリレート共重合体、メタクリル酸2−エチルヘキシル/アクリル酸エチル/メタクリロニトリル/ポリエチレングリコールジアクリレート共重合体などのアクリルゴムが挙げられる。
【0036】
ポリマーYの粒子径は、好ましくは0.005〜1000μm、より好ましくは0.01〜100μm、特に好ましくは0.05〜10μmである。粒子径が大きすぎるとバインダーとして必要な量が多くなりすぎ、電極の内部抵抗が増加する。逆に、粒子径が小さすぎると活物質の表面を覆い隠して電池反応を阻害してしまう。ここで、粒子径は、透過型電子顕微鏡写真で無作為に選んだポリマー粒子100個の径を測定し、その算術平均値として算出される個数平均粒子径である。
【0037】
ポリマーYの製法は特に限定されず、例えば、乳化重合法、懸濁重合法、分散重合法または溶液重合法などの公知の重合法により重合して得ることができるが、乳化重合法で製造することが、液状媒体に分散したときの粒子径の制御が容易であるので好ましい。
【0038】
本発明のスラリー組成物におけるバインダーとして、ポリマーX、ポリマーY以外のポリマーを併用してもよい。そのような任意のポリマー成分としては、スラリー組成物に用いる液状媒体に可溶なポリマーが好ましく、具体的には、アクリロニトリル/ブタジエン共重合体およびその水素化物、エチレン/アクリル酸メチル共重合体、スチレン/ブタジエン共重合体、ブタジエンゴム、エチレン/プロピレン/非共役ジエン三元共重合体(EPDM)、エチレン/ビニルアルコール共重合体、ポリフッ化ビニリデン(PVDF)などが挙げられ、アクリロニトリル/ブタジエン共重合体およびその水素化物が特に好ましい。ポリマーXおよびポリマーY以外のポリマー成分の使用量は、全バインダー量に対して通常70重量%以下、好ましくは50重量%以下、より好ましくは40重量%以下である。
【0039】
本発明における全バインダーの量は、活物質100重量部に対して、好ましくは0.1〜5重量部、より好ましくは0.2〜4重量部、特に好ましくは0.5〜3重量部である。全バインダー量が少なすぎると電極から活物質が脱落しやすくなるおそれがあり、逆に多すぎると活物質がバインダーに覆い隠されて電池反応が阻害される可能性がある。
【0040】
本発明の電極用スラリー組成物に用いる液状媒体は、前記ポリマーXを溶解する液体であれば特に制限されないが、常圧における沸点が好ましくは80℃以上350℃以下、より好ましくは100℃以上300℃以下のものである。
【0041】
かかる液状媒体の例としては、N−メチルピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミドなどのアミド類が挙げられる。中でもN−メチルピロリドンが、集電体への塗布性やポリマーYの分散性が良好なので特に好ましい。
【0042】
液状媒体の使用量は特に限定されず、バインダーや後述する活物質および導電付与剤の種類に応じ、塗工に好適なスラリー粘度になるように適宜調整することができる。スラリー組成物において、バインダー、活物質および導電付与剤を合わせた固形分の濃度は、好ましくは50〜95重量%、より好ましくは70〜90重量%である。
【0043】
本発明のスラリー組成物に用いられる電極活物質は、電池やキャパシタの種類により適宜選択される。本発明のスラリー組成物は、正極、負極のいずれにも使用することができ、正極に使用するのが好ましく、リチウムイオン二次電池の正極に用いるのがより好ましい。
【0044】
リチウムイオン二次電池に用いる場合、活物質は、通常のリチウムイオン二次電池で使用されるものであれば、いずれであっても用いることができる。正極活物質としては、例えば、LiCoO、LiNiO、LiMnO、LiMnなどのリチウム含有複合金属酸化物;TiS、TiS、非晶質MoSなどの遷移金属硫化物;Cu、非晶質VO−P、MoO、V、V13などの遷移金属酸化物;が例示される。さらに、ポリアセチレン、ポリ−p−フェニレンなどの導電性高分子を用いることもできる。
【0045】
また、負極活物質としては、例えば、アモルファスカーボン、グラファイト、天然黒鉛、メゾカーボンマイクロビーズ(MCMB)、ピッチ系炭素繊維などの炭素質材料、ポリアセン等の導電性高分子などが挙げられる。活物質の形状や大きさについては特に制限はなく、機械的改質法により表面に導電付与剤を付着させたものも使用できる。
【0046】
電気化学キャパシタに用いる場合、活物質は、通常の電気化学キャパシタで使用されるものであれば、いずれも用いることができる。正極および負極の活物質としては、例えば、活性炭が挙げられる。
【0047】
本発明のスラリー組成物には、必要に応じて導電付与剤が添加される。導電付与剤の使用量は、活物質100重量部あたり、通常、1〜20重量部、好ましくは2〜10重量部である。
【0048】
導電付与剤としては、リチウムイオン二次電池ではカーボンが用いられる。
ニッケル水素二次電池で用いられる導電付与剤は、正極では酸化コバルト、負極ではニッケル粉末、酸化コバルト、酸化チタン、カーボンなどを挙げることができる。
上記両電池において、カーボンとしては、グラファイト、活性炭、アセチレンブラック、ファーネスブラック、黒鉛、炭素繊維、フラーレン類を挙げることができる。中でも、グラファイト、活性炭、アセチレンブラック、ファーネスブラックが好ましい。
【0049】
本発明のスラリー組成物には、その他必要に応じて粘度調整剤、流動化剤などを添加してもよい。
【0050】
本発明のスラリー組成物は、前記各成分を混合して製造される。混合方法および混合順序は特に限定されない。例えば、ポリマーYを液状媒体に分散させた分散液にポリマーXと活物質と導電付与剤を加え、混合機により混合して製造できる。分散の程度は粒ゲージにより測定可能であり、凝集物の粒子径が100μm以下となるように混合分散することが好ましい。混合機としては、ボールミル、サンドミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ホバートミキサーなどを用いることができる。
【0051】
2)電極
本発明の電極は、少なくともバインダーと電極活物質とを含有する電極層が集電体に結着してある電極であって、該バインダーが、前記ポリマーXを含有するものである。該バインダーは、前記ポリマーYをさらに含み、ポリマーXとポリマーYとの量の割合が、重量比で5:1〜1:5であることが好ましい。本発明の電極は、正極、負極のいずれとして使用することができ、正極に使用するのが好ましく、リチウムイオン二次電池の正極に用いるのがより好ましい。
【0052】
集電体は、導電性材料からなるものであれば特に制限されない。リチウムイオン二次電池では、鉄、銅、アルミニウム、ニッケル、ステンレスなどの金属製のものであるが、特に正極にアルミニウムを、負極に銅を用いた場合、本発明のバインダー組成物の効果が最もよく現れる。リチウムイオン二次電池の集電体の形状は特に制限されないが、通常、厚さ0.001〜0.5mm程度のシート状のものである。
ニッケル水素二次電池の集電体には、パンチングメタル、エキスパンドメタル、金網、発泡金属、網状金属繊維焼結体、金属メッキ樹脂板などを用いることができる。
【0053】
本発明の電極は、集電体に、本発明の電極用スラリー組成物を塗布し、乾燥することにより、バインダーおよび活物質、さらに必要に応じ加えられた導電付与剤、増粘剤などを含有する電極層を結着させることで製造することができる。
【0054】
スラリー組成物の集電体への塗布方法は特に制限されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。塗布するスラリー量も特に制限されないが、液状媒体を乾燥して除去した後に形成される、活物質、バインダーなどからなる電極層の厚さが、通常、0.005〜5mm、好ましくは0.01〜2mmになる量が一般的である。乾燥方法も特に制限されず、例えば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。乾燥速度は、通常は応力集中によって電極層に亀裂が入ったり、電極層が集電体から剥離したりしない程度の速度範囲の中で、できるだけ早く液状媒体が除去できるように調整する。更に、乾燥後の集電体をプレスすることにより電極の活物質の密度を高めてもよい。プレス方法は、金型プレスやロールプレスなどの方法が挙げられる。
【0055】
3)二次電池
本発明の二次電池は、上記の電極を有するものである。二次電池としては、リチウムイオン二次電池やニッケル水素二次電池が挙げられ、リチウムイオン二次電池が好ましい。
二次電池は、上記の電極や電解液、セパレーター等の部品を用いて、常法に従って製造することができる。具体的な製造方法としては、例えば、負極と正極とをセパレーターを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する。また必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを入れ、電池内部の圧力上昇、過充放電の防止をする事もできる。電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型など何れであってもよい。
【0056】
電解液は、通常の二次電池に用いられるものであれば、液状でもゲル状でもよく、負極活物質、正極活物質の種類に応じて電池としての機能を発揮するものを選択すればよい。
【0057】
リチウムイオン二次電池の電解質としては、従来より公知のリチウム塩がいずれも使用でき、LiClO、LiBF、LiPF、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、LiCl、LiBr、LiB(C、LiCFSO、LiCHSO、LiC、Li(CFSON、低級脂肪酸カルボン酸リチウムなどが挙げられる。
【0058】
これらの電解質を溶解させる媒体は特に限定されるものではない。具体例としてはプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートなどのカーボネート類;γ−ブチロラクトンなどのラクトン類;トリメトキシメタン、1,2−ジメトキシエタン、ジエチルエーテル、2−エトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル類;ジメチルスルホキシドなどのスルホキシド類等が挙げられ、これらは単独もしくは二種以上の混合溶媒として使用することができる。
また、ニッケル水素二次電池の電解質としては、例えば、従来公知の濃度が5モル/リットル以上の水酸化カリウム水溶液を使用することができる。
【0059】
【実施例】
以下に、実施例を挙げて本発明を説明するが、本発明はこれに限定されるものではない。なお、本実施例における部および%は、特に断りがない限り重量基準である。
実施例および比較例中の試験および評価は以下の方法で行った。
【0060】
(1)ポリマーの電解液溶媒膨潤度
ポリマー0.2gをN−メチルピロリドン(NMP)10ミリリットルに溶解させた液をポリテトラフロオロエチレン製シートにキャストし、乾燥してキャストフィルムを得る。このキャストフィルム4cmを切り取って重量を測定した後、温度60℃の電解液溶媒中に浸漬する。浸漬したフィルムを72時間後に引き上げ、タオルペーパーで拭きとってすぐに重量を測定し、(浸漬後重量)/(浸漬前重量)の値を電解液溶媒膨潤度とした。なお、電解液溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートの5種の溶媒を20℃での体積比で1:1:1:1:1の割合で混合した混合溶媒を用いた。
【0061】
(2)NMP不溶分量
ポリマーのNMP不溶分量は、ポリマー0.2gをNMP20ミリリットルに60℃で72時間浸漬した後、80メッシュの篩で濾過し、篩上の成分を乾燥して求めた重量の、元のポリマー重量に対する百分率で示す。
(3)ガラス転移温度(Tg)
ポリマーのTgは、示差走査型熱量計(DSC)により、10℃/分で昇温して測定した。
【0062】
(4)ピール強度
電極の製造
正極用スラリーをアルミニウム箔(厚さ20μm)にドクターブレード法によって均一に塗布し、120℃で45分間乾燥機で乾燥した。さらに真空乾燥機にて0.6kPa、120℃で2時間減圧乾燥した後、2軸のロールプレスによって電極密度が3.3g/cmとなるように圧縮して正極を得た。
ピール強度の測定
上記により得た電極を幅2.5cm×長さ10cmの矩形に切り、電極表面にセロハンテープを貼り付け、電極を固定し、テープを50mm/分の速度で180°方向に剥離したときの強度(N/cm)を10回測定し、その平均値を求めた。この値が大きいほど結着強度が高く、活物質が集電体から剥離しにくいことを示す。
【0063】
(5)電池容量
コイン型電池(正極評価用)の製造
負極としては金属リチウムを用いた。
上記(4)に記す方法で製造した正極を直径15mmの円形に切り抜き、直径18mm、厚さ25μmの円形ポリプロピレン製多孔膜からなるセパレーターを介在させて、負極の金属リチウムが接触するように配置した。セパレーターとは反対側の金属リチウム上にエキスパンドメタルを入れ、ポリプロピレン製パッキンを設置したステンレス鋼製のコイン型外装容器(直径20mm、高さ1.8mm、ステンレス鋼厚さ0.25mm)中に収納した。この容器中に電解液を空気が残らないように注入し、ポリプロピレン製パッキンを介して外装容器に厚さ0.2mmのステンレス鋼のキャップをかぶせて固定し、電池缶を封止して、直径20mm、厚さ約2mmのコイン型電池(正極評価用)を製造した。電解液はエチレンカーボネートとエチルメチルカーボネートを20℃での体積比で1:2の割合で混合した混合溶媒にLiPFを1モル/リットルの濃度で溶解させた溶液を用いた。
【0064】
電池容量の測定
上記の方法で製造したコイン型電池を用いて、3Vから4.2Vまで25℃で0.1Cの定電流法によって測定した3サイクル目の放電容量(初期放電容量)として電池容量を求めた。単位はmAh/g(活物質当たり)である。
【0065】
(6)充放電サイクル特性
初期放電容量の測定と同様にして3サイクル目および50サイクル目の放電容量を測定し、3サイクル目の放電容量に対する50サイクル目の放電容量の割合を百分率で算出した。この値が大きいほど容量減が少ないことを示す。
【0066】
(7)充放電レート特性
測定条件を、定電流量を1Cに変更したほかは、初期放電容量の測定と同様に各定電流量における3サイクル目の放電容量を測定した。3サイクル目における0.1Cでの放電容量に対する1Cでの放電容量の割合を百分率で算出した。この値が大きいほど、高速充放電が可能なことを示す。
【0067】
バインダーとして用いた各ポリマーの組成および物性を、ポリマーX成分とポリマーY成分に分けてそれぞれ表1、2に示す。
【0068】
【表1】

Figure 2004185826
【0069】
【表2】
Figure 2004185826
【0070】
実施例1
懸濁重合で製造したポリマーX−1 1.5部をNMPに溶解した溶液に、活物質としてコバルト酸リチウム(LiCoO)100部、導電付与剤としてアセチレンブラック(電気化学社製:HS−100)3部を混合し、固形分が77%となるようにさらにNMPを添加して、プラネタリーミキサーで攪拌・混合して均一な正極用スラリーを得た。このスラリーを用いて正極およびリチウムイオン二次電池を作製した。正極のピール強度、およびこの正極を用いて製造したリチウムイオン二次電池の特性を測定した結果を表3に示す。
【0071】
【表3】
Figure 2004185826
【0072】
実施例2〜8、比較例1〜4
ポリマーX成分として表3に示すポリマーを用いた他は実施例1と同様にしてスラリー組成物を調製した。これらのスラリー組成物を用いて作製した正極および二次電池について、実施例1と同様に特性を測定した結果を表3に記す。
【0073】
実施例9
2対のフック型回転翼を有するプラネタリーミキサーにコバルト酸リチウムを100部、導電付与剤としてアセチレンブラック(HS−100)を3部、バインダーとして0.4部のポリマーX−4のNMP溶液および0.8部のポリマーY−1のNMP分散液を仕込み、さらにNMPを加えて固形分濃度79%として10分間混合してリチウムイオン二次電池正極用スラリー組成物を得た。このスラリー組成物を用いて作製した正極および二次電池の特性を測定した結果を表4に記す。
【0074】
【表4】
Figure 2004185826
【0075】
実施例10、11、比較例5〜8
表4に示す成分および量の配合で実施例9と同様にしてスラリー組成物を調製した。なお、ポリマーX成分、ポリマーY成分以外のバインダーとしては、アクリロニトリル/ブタジエン共重合体水素化物(HNBR)またはポリフッ化ビニリデン(PVDF)を使用し、ポリマーX成分と共にNMPに溶解して用いた。
これらのスラリー組成物を用いて作製した正極および二次電池の特性を実施例9と同様に試験した。試験結果を表4に記す。なお、比較例5においては、結着力が弱く、作成した電極にひびが入ったため、電池性能の測定はできなかった。
【0076】
実施例12
ポリマーX−4 0.4部と、HNBR 0.4部とのNMP溶液に導電付与剤としてアセチレンブラック(HS−100)3部を加えて顔料分散機で分散し、NMPを加えて固形分濃度35%のカーボン塗料を調製した。
次いで2対のフック型回転翼を有するプラネタリーミキサーにコバルト酸リチウム(LiCoO)100部と、ポリマーY−4 0.4部をNMPに分散した分散液とを仕込み、ここに上記のカーボン塗料とNMPとを加えて固形分濃度85%として1時間混合した後、さらにNMPを加えて固形分濃度78%として10分間混合してリチウムイオン二次電池正極用スラリー組成物を得た。このスラリー組成物を用いて作製した正極および二次電池の特性を試験した結果を表4に記す。
【0077】
以上から明らかなように、本発明のスラリー組成物を用いて電極を作成すると、バインダーポリマーの使用量が少なくてもピール強度が大きく、高い結着性能を示す。また、この電極を有するリチウムイオン二次電池は、高い電池容量を有し、かつ良好な充放電サイクル特性およびレート特性を示した。
【0078】
【発明の効果】
本発明の電極用スラリー組成物を用いると、電解液に対する膨潤性が低く、活物質の結着性に優れた電極が得られるので、各種電池や電気化学キャパシタなどの電極の製造に好適に使用できる。特にリチウムイオン二次電池の正極用として優れており、この電極を備えたリチウムイオン二次電池は、高い充放電容量と良好なサイクル特性を有し、かつレート特性にも優れる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a slurry composition for an electrode, an electrode manufactured using the same, and a secondary battery having the electrode.
[0002]
[Prior art]
2. Description of the Related Art In recent years, portable terminals such as notebook personal computers, mobile phones, and PDAs have become remarkably popular.
For these power supplies, lithium ion secondary batteries are frequently used. Recently, there has been an increasing demand for extending the use time of the portable terminal and shortening the charging time, and accordingly, there has been a strong demand for higher performance of the battery, particularly higher capacity and higher charging speed (rate characteristics).
[0003]
The lithium ion secondary battery has a structure in which a positive electrode and a negative electrode are arranged via a separator, and are housed in a container together with an electrolytic solution. The electrodes (positive electrode and negative electrode) are made of an electrode active material (hereinafter sometimes simply referred to as an active material) and, if necessary, a conductivity-imparting agent or the like by an electrode binder polymer (hereinafter sometimes simply referred to as a binder). It is bound to a current collector such as copper or copper. The electrode is usually prepared by dissolving or dispersing a binder in a liquid medium, applying an electrode slurry composition obtained by mixing an active material and the like to a current collector, and removing the liquid medium by drying or the like. Is formed by binding as an electrode layer.
[0004]
Battery capacity is strongly affected by the amount of active material charged. On the other hand, the rate characteristics are affected by the ease of electron transfer, and increasing the amount of a conductivity-imparting agent such as carbon is effective for improving the rate characteristics. In order to increase the amount of the active material and the conductivity-imparting agent in the limited space of the battery, it is necessary to reduce the amount of the binder. However, when the amount of the binder is reduced, there is a problem that the binding property of the active material is impaired. Therefore, there is a demand for a binder that can strongly bind the electrode active material even if the amount used is small.
[0005]
Conventionally, fluorine-containing polymers such as polyvinylidene fluoride have been widely used as the binder for the positive electrode of lithium ion secondary batteries, but because of insufficient binding power and flexibility, it is not possible to increase the capacity of the batteries and improve the rate characteristics. It was difficult.
[0006]
As a method for improving the above-mentioned disadvantages of the fluorine-containing polymer, use of a rubber-based polymer binder has been proposed (see Patent Document 1). However, when an electrode is formed using a rubber-based polymer, the binding force and flexibility can be improved, but the cycle characteristics of the battery are inferior, and the battery capacity is reduced due to repeated charging and discharging, and the rate characteristics are deteriorated. there were. This is considered to be because the binder swells with the electrolytic solution, the binding property gradually decreases, and the active material peels off from the current collector, or the binder covers the current collector and hinders the movement of electrons. .
As described above, it has been difficult to achieve both high battery capacity and improved rate characteristics.
[0007]
[Patent Document 1]
JP-A-4-255670
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide a slurry composition for an electrode containing a binder having a low degree of swelling with respect to an electrolytic solution and having good binding properties, and an electrode manufactured using the slurry composition.
Another object of the present invention is to provide a secondary battery having both high capacity and improved rate characteristics.
[0009]
[Means for Solving the Problems]
The present inventors have found that a binder composed of a copolymer having a specific composition containing an acrylonitrile unit or a methacrylonitrile unit and a monomer unit having a hydroxyl group or a carboxyl group has a low degree of swelling in an electrolytic solution and a low binder. It was found that the adhesion was good. Further, the inventors have found that a lithium ion secondary battery produced using the slurry composition for an electrode containing the binder exhibits high battery capacity and good charge / discharge cycle characteristics and rate characteristics. It was completed.
[0010]
Thus, according to the present invention, the following [1] to [5] are provided.
[1] A slurry composition for an electrode comprising a binder, an electrode active material, and a liquid medium, wherein the binder has a monomer unit content of 90 to 99 mol% derived from acrylonitrile or methacrylonitrile. And containing a polymer X having a monomer unit content of 1 to 10 mol% derived from a monomer having a hydroxyl group or a carboxyl group, wherein the liquid medium dissolves the polymer X. Electrode slurry composition.
[0011]
[2] The binder further includes a polymer Y having a glass transition temperature of −80 to 0 ° C. and an N-methylpyrrolidone insoluble content of 50% by weight or more, and the ratio of the amount of the polymer X to the amount of the polymer Y is determined by weight ratio. The slurry composition for an electrode according to the above [1], wherein the ratio is 5: 1 to 1: 5.
The polymer Y is
(1) having a monomer unit (a) derived from a monofunctional ethylenically unsaturated carboxylic acid ester and a monomer unit (b) derived from α, β-ethylenically unsaturated nitrile; The ratio of the amount of the unit (a) to the monomer unit (b) is 99: 1 to 60:40 (weight ratio),
(3) the total of the monomer units (a) and (b) is 70% by weight or more based on all monomer units of the polymer Y;
(4) It is preferable that the polymer is substantially free from a monomer unit derived from an ethylenic hydrocarbon, a monomer unit derived from a conjugated diene and a monomer unit derived from an ethylenically unsaturated carboxylic acid.
[0012]
[3] An electrode in which an electrode layer containing at least a binder and an electrode active material is bound to a current collector, wherein the binder has a monomer unit content derived from acrylonitrile or methacrylonitrile of 90 to 90. An electrode comprising 99 mol% and a polymer X having a monomer unit content of 1 to 10 mol% derived from a monomer having a hydroxyl group or a carboxyl group.
[4] The binder further includes a polymer Y having a glass transition temperature of −80 to 0 ° C. and an N-methylpyrrolidone insoluble content of 50% by weight or more, and the ratio of the amount of the polymer X to the amount of the polymer Y is determined by weight. The electrode according to the above [3], wherein the ratio is 5: 1 to 1: 5.
[5] A secondary battery having the electrode according to [3] or [4].
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail by dividing into 1) a slurry composition for an electrode, 2) an electrode, and 3) a secondary battery.
1) Slurry composition for electrodes
The electrode slurry composition of the present invention (hereinafter sometimes simply referred to as "slurry composition") contains a binder, an electrode active material, and a liquid medium.
The binder in the slurry composition of the present invention is used for binding the active material to the current collector, and a monomer unit derived from acrylonitrile or methacrylonitrile and a monomer having a hydroxyl group or a carboxyl group (hereinafter, referred to as , A second monomer.) The polymer X containing a monomer unit derived from the second monomer is an essential component.
[0014]
The content of the monomer unit derived from acrylonitrile or methacrylonitrile in the polymer X is 90 to 99 mol%, preferably 91 to 97 mol%, based on the total amount of the polymer X. If the content of the monomer unit derived from acrylonitrile or methacrylonitrile is too small, the degree of swelling of the polymer in the electrolytic solution increases, so that the binding durability is poor and the cycle characteristics are deteriorated. Conversely, if it is too large, the binding properties of the active material will be poor.
[0015]
The content of the monomer unit derived from the second monomer in the polymer X is 1 to 10 mol%, preferably 3 to 9 mol%. When the content of the monomer unit derived from the second monomer is too small, the binding property of the active material is inferior, and it becomes difficult to apply the slurry composition uniformly to the current collector. . Conversely, even when the amount is excessively large, the applicability to the current collector is reduced, and the battery performance is reduced. Further, the binding property of the active material is also reduced.
[0016]
The method for producing the polymer X is not particularly limited. For example, it is produced by copolymerizing acrylonitrile or methacrylonitrile and the second monomer by a known polymerization method such as an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method, a solution polymerization method or a bulk polymerization method. be able to.
[0017]
Examples of the monomer having a hydroxyl group used as the second monomer include acrylates having a hydroxyalkyl group such as hydroxyethyl acrylate, hydroxypropyl acrylate and hydroxybutyl acrylate; hydroxyethyl methacrylate; Methacrylic acid esters having a hydroxyalkyl group such as hydroxypropyl methacrylate and hydroxybutyl methacrylate; crotonic acid esters having a hydroxyalkyl group such as hydroxypropyl crotonate; allyl alcohol; and acrylics having a hydroxyalkyl group. Acid esters and methacrylic esters are preferred.
[0018]
Examples of the monomer having a carboxyl group include ethylenically unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, and isocrotonic acid; maleic acid, fumaric acid, citraconic acid, mesaconic acid, glutaconic acid, itaconic acid, and the like. Ethylenically unsaturated dicarboxylic acid; among others, ethylenically unsaturated monocarboxylic acid is preferred, and acrylic acid and methacrylic acid are particularly preferred.
[0019]
The second monomer is obtained by hydrolyzing a polymer obtained by using a monomer having a group such as an alkoxyl group, an epoxy group, an ester group or an acid anhydride group as a part of the raw material monomer. It may have a structure derived from a body unit. These monomers capable of forming a structure derived from the second monomer unit may be used alone or in combination of two or more.
[0020]
The polymer X may contain a unit derived from another copolymerizable monomer as long as it can be dissolved in the liquid medium used in the slurry composition of the present invention. Two or more of these copolymerizable monomers may be used in combination, and the total content of these monomer units is 9 mol% or less, preferably 5 mol% or less.
[0021]
The Tg of polymer X is usually higher than 0C, preferably 50-90C. If the Tg of the polymer X is too low, the electrode density may not be sufficiently increased when the electrode is pressed to increase the electrode density.
[0022]
In the electrode slurry composition of the present invention, the polymer X can be used alone as a binder, but may be used in combination with another polymer. The polymer that can be used in combination with the polymer X is not particularly limited, but a preferred polymer is a polymer Y having a Tg of -80 to 0 ° C and an insoluble content in N-methylpyrrolidone (NMP) of 50% by weight or more.
By using the polymer Y in combination with the polymer X, the binder as a whole dissolves to some extent in the liquid medium so that the slurry composition has a viscosity suitable for coating, and the binder that does not dissolve in the liquid medium is in the form of fibers or particles. By maintaining the shape, it is possible to prevent the binder from covering the surface of the active material and hindering the battery reaction. In addition, uniform mixing and dispersion of each component used in the slurry composition is facilitated.
[0023]
The Tg of the polymer Y is -80 to 0C, preferably -60 to -5C, and more preferably -50 to -10C. If the Tg is too high, the flexibility of the electrode decreases, and the active material is likely to peel off from the current collector when charge and discharge are repeated. If the Tg is too low, the battery capacity may be reduced.
[0024]
In addition, the amount of the polymer Y insoluble in NMP is 50% by weight or more, preferably 60% by weight or more, and more preferably 70% by weight or more. If the NMP insoluble content is too small, the binding continuity of the active material may decrease, and the capacity may decrease due to repeated charging and discharging.
[0025]
The amount of NMP-insoluble matter was determined by immersing 0.2 g of polymer Y in 20 ml of NMP at a temperature of 60 ° C. for 72 hours, filtering through a 80-mesh sieve, and drying the components on the sieve. .2 g).
[0026]
The monomer of the structural unit of the polymer Y is not particularly limited, but a monomer unit (a) derived from a monofunctional ethylenically unsaturated carboxylic acid ester (hereinafter sometimes simply referred to as (a)) and α , Β-ethylenically unsaturated nitrile-containing monomer unit (b) (hereinafter sometimes simply referred to as (b)). The respective contents are (a) :( b) in a weight ratio of preferably 99: 1 to 60:40, and more preferably 90:10 to 70:30. The total content of (a) and (b) is at least 70% by weight, preferably at least 80% by weight, based on all monomer units of polymer Y.
[0027]
The polymer Y is a monomer unit derived from an ethylenic hydrocarbon such as ethylene or propylene, a monomer unit derived from an ethylenically unsaturated carboxylic acid such as acrylic acid or methacrylic acid, or a conjugated diene such as butadiene or isoprene. Those which do not substantially contain a monomer unit are preferred. When these monomer units are present, the electrochemical stability may decrease.
[0028]
In order for the polymer Y to contain the NMP insoluble content in the above range, it is preferable to add a polyfunctional ethylenically unsaturated monomer to the monomer component to form a crosslinked polymer.
When the polymer Y contains a monomer unit (c) derived from a polyfunctional ethylenically unsaturated monomer (hereinafter sometimes simply referred to as (c)), the content is usually 0.1 to 30% by weight. %, Preferably 0.5 to 20% by weight, more preferably 0.5 to 15% by weight. The content ratio of each monomer unit is (a) + (c) :( b) weight ratio, preferably 99: 1 to 60:40, more preferably 90:10 to 70:30. It is.
[0029]
Specific examples of the monomer giving the monomer unit (a) derived from a monofunctional ethylenically unsaturated carboxylic acid ester include methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, and n-butyl acrylate. Alkyl acrylates such as isobutyl acrylate, n-amyl acrylate, isoamyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, hydroxypropyl acrylate and lauryl acrylate; methyl methacrylate, ethyl methacrylate, Propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, n-amyl methacrylate, isoamyl methacrylate, n-hexyl methacrylate, 2-ethylhexyl methacrylate, hydroxypro methacrylate Le, an alkyl methacrylate such as lauryl methacrylate;
[0030]
Crotonic acids such as methyl crotonate, ethyl crotonate, propyl crotonate, butyl crotonate, isobutyl crotonate, n-amyl crotonate, isoamyl crotonate, n-hexyl crotonate, 2-ethylhexyl crotonate, hydroxypropyl crotonate Alkyl esters; Amino group-containing methacrylates such as dimethylaminoethyl methacrylate and diethylaminoethyl methacrylate; methoxypolyethylene glycol acrylate, ethoxypolyethylene glycol acrylate, ethoxydiethylene glycol acrylate, methoxydipropylene glycol acrylate, methoxyethyl acrylate, 2-ethoxyethyl Alkoxy such as acrylate, butoxyethyl acrylate and phenoxyethyl acrylate Acrylic ester containing a methoxy group; methoxypolyethylene glycol methacrylate, ethoxypolyethylene glycol methacrylate, methoxydiethylene glycol methacrylate, methoxydipropylene glycol methacrylate, methoxyethyl methacrylate, 2-ethoxyethyl methacrylate, butoxyethyl methacrylate, phenoxyethyl methacrylate, etc. Methacrylic esters containing groups;
[0031]
Alkyl acrylates and methacrylic acid alkyl esters having a phosphoric acid residue, a sulfonic acid residue, a boric acid residue or the like in the alkyl group;
Further, acrylic acid esters and methacrylic acid esters having a hydroxyalkyl group, which have been exemplified as the monomers used for the polymer X, can also be used.
[0032]
Among these monofunctional ethylenically unsaturated carboxylic acid esters, alkyl acrylates and alkyl methacrylates are preferable, and those having 1 to 12 carbon atoms in the alkyl portion are more preferable, and 2 to 8 carbon atoms. Those are particularly preferred.
[0033]
Specific examples of the monomer giving the monomer unit (b) derived from α, β-ethylenically unsaturated nitrile include acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, crotonnitrile and the like. Among these, acrylonitrile and methacrylonitrile are preferred, and methacrylonitrile is particularly preferred.
[0034]
Specific examples of the monomer giving the monomer unit (c) derived from the polyfunctional ethylenically unsaturated monomer include divinyl compounds such as divinylbenzene; ethylene dimethacrylate, diethylene glycol dimethacrylate, ethylene glycol dimethacrylate, Dimethacrylates such as ethylene glycol dimethacrylate; trimethacrylates such as trimethylolpropane trimethacrylate; diacrylates such as diethylene glycol diacrylate, 1,3-butylene glycol diacrylate, polyethylene glycol diacrylate; Triacrylates such as methylolpropane triacrylate;
[0035]
Specific examples of the polymer Y include 2-ethylhexyl acrylate / methacrylonitrile / ethylene glycol dimethacrylate copolymer, 2-ethylhexyl acrylate / methacrylonitrile / tetraethylene glycol dimethacrylate copolymer, 2-ethylhexyl acrylate / Methacrylonitrile / methoxypolyethylene glycol / ethylene glycol dimethacrylate copolymer, butyl acrylate / acrylonitrile / diethylene glycol dimethacrylate copolymer, 2-ethylhexyl methacrylate / ethyl acrylate / methacrylonitrile / polyethylene glycol diacrylate copolymer Acrylic rubber such as coalescence is used.
[0036]
The particle diameter of the polymer Y is preferably 0.005 to 1000 μm, more preferably 0.01 to 100 μm, and particularly preferably 0.05 to 10 μm. If the particle size is too large, the amount required as a binder will be too large, and the internal resistance of the electrode will increase. Conversely, if the particle size is too small, the surface of the active material is covered and the battery reaction is hindered. Here, the particle diameter is a number average particle diameter calculated by measuring the diameter of 100 randomly selected polymer particles in a transmission electron micrograph and calculating the arithmetic average value.
[0037]
The method for producing the polymer Y is not particularly limited. For example, the polymer Y can be obtained by polymerization by a known polymerization method such as an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method, or a solution polymerization method. It is preferable to control the particle diameter when dispersed in a liquid medium.
[0038]
As the binder in the slurry composition of the present invention, a polymer other than polymer X and polymer Y may be used in combination. As such an optional polymer component, a polymer soluble in a liquid medium used in the slurry composition is preferable, and specifically, an acrylonitrile / butadiene copolymer and a hydride thereof, an ethylene / methyl acrylate copolymer, Styrene / butadiene copolymer, butadiene rubber, ethylene / propylene / non-conjugated diene terpolymer (EPDM), ethylene / vinyl alcohol copolymer, polyvinylidene fluoride (PVDF), etc., and acrylonitrile / butadiene copolymer Combinations and their hydrides are particularly preferred. The amount of the polymer component other than the polymer X and the polymer Y used is usually 70% by weight or less, preferably 50% by weight or less, more preferably 40% by weight or less based on the total amount of the binder.
[0039]
The amount of the total binder in the present invention is preferably 0.1 to 5 parts by weight, more preferably 0.2 to 4 parts by weight, particularly preferably 0.5 to 3 parts by weight based on 100 parts by weight of the active material. is there. If the total amount of the binder is too small, the active material may easily fall off from the electrode. If the total amount is too large, the active material may be covered by the binder and the battery reaction may be inhibited.
[0040]
The liquid medium used in the slurry composition for an electrode of the present invention is not particularly limited as long as it is a liquid that dissolves the polymer X, but the boiling point at normal pressure is preferably 80 ° C or higher and 350 ° C or lower, more preferably 100 ° C or higher and 300 ° C or lower. It is less than ° C.
[0041]
Examples of such a liquid medium include amides such as N-methylpyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide. Among them, N-methylpyrrolidone is particularly preferred because of its good coatability on the current collector and good dispersibility of the polymer Y.
[0042]
The amount of the liquid medium to be used is not particularly limited, and can be appropriately adjusted according to the type of the binder, the active material described later, and the conductivity-imparting agent so that the slurry viscosity is suitable for coating. In the slurry composition, the concentration of the solid content including the binder, the active material, and the conductivity-imparting agent is preferably 50 to 95% by weight, more preferably 70 to 90% by weight.
[0043]
The electrode active material used in the slurry composition of the present invention is appropriately selected depending on the type of battery or capacitor. The slurry composition of the present invention can be used for both a positive electrode and a negative electrode, and is preferably used for a positive electrode, and more preferably for a positive electrode of a lithium ion secondary battery.
[0044]
When used for a lithium ion secondary battery, any active material can be used as long as it is used for a normal lithium ion secondary battery. As the positive electrode active material, for example, LiCoO2, LiNiO2, LiMnO2, LiMn2O4Lithium-containing composite metal oxide such as TiS;2, TiS3, Amorphous MoS3Transition metal sulfide such as Cu2V2O3, Amorphous V2OP2O5, MoO3, V2O5, V6OThirteenAnd transition metal oxides. Further, conductive polymers such as polyacetylene and poly-p-phenylene can also be used.
[0045]
Examples of the negative electrode active material include amorphous carbon, graphite, natural graphite, mesocarbon microbeads (MCMB), carbonaceous materials such as pitch-based carbon fibers, and conductive polymers such as polyacene. The shape and size of the active material are not particularly limited, and those having a conductivity imparting agent adhered to the surface by a mechanical modification method can be used.
[0046]
When used for an electrochemical capacitor, any active material can be used as long as it is used for a normal electrochemical capacitor. Examples of the active material of the positive electrode and the negative electrode include activated carbon.
[0047]
A conductivity imparting agent is added to the slurry composition of the present invention as needed. The amount of the conductivity imparting agent to be used is generally 1 to 20 parts by weight, preferably 2 to 10 parts by weight, per 100 parts by weight of the active material.
[0048]
As the conductivity imparting agent, carbon is used in a lithium ion secondary battery.
Examples of the conductivity imparting agent used in the nickel-hydrogen secondary battery include cobalt oxide for the positive electrode, nickel powder, cobalt oxide, titanium oxide, and carbon for the negative electrode.
In both batteries, examples of carbon include graphite, activated carbon, acetylene black, furnace black, graphite, carbon fiber, and fullerenes. Among them, graphite, activated carbon, acetylene black and furnace black are preferred.
[0049]
A viscosity modifier, a fluidizing agent, and the like may be added to the slurry composition of the present invention as needed.
[0050]
The slurry composition of the present invention is produced by mixing the above components. The mixing method and the mixing order are not particularly limited. For example, it can be produced by adding a polymer X, an active material, and a conductivity-imparting agent to a dispersion obtained by dispersing a polymer Y in a liquid medium, and mixing with a mixer. The degree of dispersion can be measured by a grain gauge, and it is preferable to mix and disperse the aggregates so that the particle diameter is 100 μm or less. As a mixer, a ball mill, a sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, a Hobart mixer, or the like can be used.
[0051]
2) Electrode
The electrode of the present invention is an electrode in which an electrode layer containing at least a binder and an electrode active material is bound to a current collector, and the binder contains the polymer X. The binder preferably further contains the polymer Y, and the ratio of the amount of the polymer X to the amount of the polymer Y is preferably 5: 1 to 1: 5 by weight. The electrode of the present invention can be used as either a positive electrode or a negative electrode, and is preferably used for a positive electrode, and more preferably for a positive electrode of a lithium ion secondary battery.
[0052]
The current collector is not particularly limited as long as it is made of a conductive material. Lithium ion secondary batteries are made of metal such as iron, copper, aluminum, nickel, and stainless steel. Particularly, when aluminum is used for the positive electrode and copper is used for the negative electrode, the effect of the binder composition of the present invention is most effective. Appear well. The shape of the current collector of the lithium ion secondary battery is not particularly limited, but is usually a sheet having a thickness of about 0.001 to 0.5 mm.
As the current collector of the nickel-metal hydride secondary battery, a punching metal, an expanded metal, a wire mesh, a foamed metal, a sintered reticulated metal fiber, a metal-plated resin plate, or the like can be used.
[0053]
The electrode of the present invention contains a binder and an active material, and further includes a conductivity-imparting agent, a thickener, and the like added as needed by applying the electrode slurry composition of the present invention to a current collector and drying the slurry. It can be manufactured by binding an electrode layer to be formed.
[0054]
The method for applying the slurry composition to the current collector is not particularly limited. For example, methods such as a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method are exemplified. Although the amount of the slurry to be applied is not particularly limited, the thickness of the electrode layer formed of the active material and the binder formed after drying and removing the liquid medium is usually 0.005 to 5 mm, preferably 0.01 to 5 mm. An amount of about 2 mm is common. The drying method is not particularly limited, and examples thereof include drying with warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams. The drying speed is adjusted so that the liquid medium can be removed as quickly as possible within a speed range in which the electrode layer is not cracked due to stress concentration or the electrode layer does not peel off from the current collector. Further, the density of the active material of the electrode may be increased by pressing the dried current collector. As a pressing method, a method such as a mold press or a roll press is used.
[0055]
3) Secondary battery
The secondary battery of the present invention has the above-mentioned electrode. Examples of the secondary battery include a lithium ion secondary battery and a nickel hydride secondary battery, and a lithium ion secondary battery is preferable.
The secondary battery can be manufactured according to a conventional method using the above-mentioned components such as the electrode, the electrolytic solution, and the separator. As a specific manufacturing method, for example, a negative electrode and a positive electrode are overlapped with a separator interposed therebetween, and this is wound into a battery container according to the shape of the battery, folded, and placed in a battery container. I do. Also, if necessary, an overcurrent prevention element such as an expanded metal, a fuse, and a PTC element, a lead plate, and the like may be inserted to prevent an increase in pressure inside the battery and overcharge / discharge. The shape of the battery may be any of a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type and the like.
[0056]
The electrolyte may be in a liquid or gel form as long as it is used for a normal secondary battery, and an electrolyte exhibiting a function as a battery may be selected according to the types of the negative electrode active material and the positive electrode active material.
[0057]
As the electrolyte of the lithium ion secondary battery, any of conventionally known lithium salts can be used.4, LiBF4, LiPF6, LiCF3CO2, LiAsF6, LiSbF6, LiB10Cl10, LiAlCl4, LiCl, LiBr, LiB (C2H5)4, LiCF3SO3, LiCH3SO3, LiC4F9S3, Li (CF3SO2)2N, lithium lower fatty acid carboxylate and the like.
[0058]
The medium in which these electrolytes are dissolved is not particularly limited. Specific examples include carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate; lactones such as γ-butyrolactone; trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, Ethers such as ethoxyethane, tetrahydrofuran, and 2-methyltetrahydrofuran; sulfoxides such as dimethyl sulfoxide; and the like, and these can be used alone or as a mixed solvent of two or more kinds.
As the electrolyte of the nickel-hydrogen secondary battery, for example, a conventionally known aqueous solution of potassium hydroxide having a concentration of 5 mol / liter or more can be used.
[0059]
【Example】
Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited thereto. The parts and percentages in the examples are on a weight basis unless otherwise specified.
The tests and evaluations in Examples and Comparative Examples were performed by the following methods.
[0060]
(1) Degree of swelling of polymer in electrolyte solvent
A solution prepared by dissolving 0.2 g of the polymer in 10 ml of N-methylpyrrolidone (NMP) is cast on a polytetrafluoroethylene sheet and dried to obtain a cast film. This cast film 4cm2And then immersed in an electrolyte solvent at a temperature of 60 ° C. The immersed film was pulled up after 72 hours, wiped off with a towel paper, immediately weighed, and the value of (weight after immersion) / (weight before immersion) was defined as the degree of swelling of the electrolyte solvent. In addition, as an electrolytic solution solvent, five kinds of solvents of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate were mixed at a volume ratio at 20 ° C. of 1: 1: 1: 1: 1. A mixed solvent was used.
[0061]
(2) NMP insoluble content
The NMP-insoluble content of the polymer was determined by immersing 0.2 g of the polymer in 20 ml of NMP at 60 ° C. for 72 hours, filtering through an 80-mesh sieve, and drying the components on the sieve to determine the weight based on the original polymer weight. Shown as a percentage.
(3) Glass transition temperature (Tg)
The Tg of the polymer was measured by a differential scanning calorimeter (DSC) at a rate of 10 ° C./min.
[0062]
(4) Peel strength
Manufacture of electrodes
The slurry for the positive electrode was uniformly applied to an aluminum foil (thickness: 20 μm) by a doctor blade method, and dried at 120 ° C. for 45 minutes by a drier. Further, after drying under reduced pressure at 0.6 kPa and 120 ° C. for 2 hours using a vacuum dryer, the electrode density was 3.3 g / cm by a biaxial roll press.3Thus, a positive electrode was obtained.
Measuring peel strength
The electrode obtained as described above was cut into a rectangle of 2.5 cm width × 10 cm length, a cellophane tape was stuck on the electrode surface, the electrode was fixed, and the tape was peeled in the direction of 180 ° at a speed of 50 mm / min. (N / cm) was measured 10 times, and the average value was determined. The larger the value, the higher the binding strength, indicating that the active material is less likely to be separated from the current collector.
[0063]
(5) Battery capacity
Manufacture of coin-type batteries (for positive electrode evaluation)
Metallic lithium was used as the negative electrode.
The positive electrode manufactured by the method described in the above (4) was cut into a circular shape having a diameter of 15 mm, and was arranged so that metallic lithium of the negative electrode was in contact with a separator made of a circular polypropylene porous film having a diameter of 18 mm and a thickness of 25 μm. . Expanded metal is placed on lithium metal on the opposite side of the separator, and housed in a stainless steel coin-type outer container (diameter 20 mm, height 1.8 mm, stainless steel thickness 0.25 mm) with polypropylene packing installed. did. The electrolyte was injected into the container so that air did not remain, and a 0.2 mm-thick stainless steel cap was fixed on the outer container via a polypropylene packing, and the battery can was sealed. A coin-type battery (for positive electrode evaluation) having a thickness of 20 mm and a thickness of about 2 mm was manufactured. The electrolyte solution was LiPF in a mixed solvent of ethylene carbonate and ethyl methyl carbonate mixed at a volume ratio of 1: 2 at 20 ° C.6Was used at a concentration of 1 mol / liter.
[0064]
Battery capacity measurement
Using the coin-type battery manufactured by the above method, the battery capacity was determined as the discharge capacity (initial discharge capacity) at the third cycle measured from 3 V to 4.2 V at 25 ° C. and a constant current method of 0.1 C at 25 ° C. The unit is mAh / g (per active material).
[0065]
(6) Charge / discharge cycle characteristics
The discharge capacity at the third cycle and the 50th cycle was measured in the same manner as the measurement of the initial discharge capacity, and the ratio of the discharge capacity at the 50th cycle to the discharge capacity at the third cycle was calculated as a percentage. The larger the value, the smaller the capacity reduction.
[0066]
(7) Charge / discharge rate characteristics
The discharge capacity at the third cycle at each constant current was measured in the same manner as the measurement of the initial discharge capacity except that the measurement conditions were changed to a constant current of 1C. The ratio of the discharge capacity at 1 C to the discharge capacity at 0.1 C in the third cycle was calculated as a percentage. The larger the value, the faster the charge / discharge is possible.
[0067]
The compositions and physical properties of each polymer used as the binder are shown in Tables 1 and 2 separately for the polymer X component and the polymer Y component.
[0068]
[Table 1]
Figure 2004185826
[0069]
[Table 2]
Figure 2004185826
[0070]
Example 1
Lithium cobaltate (LiCoO 2) was used as an active material in a solution prepared by dissolving 1.5 parts of polymer X-1 produced by suspension polymerization in NMP.2) 100 parts, 3 parts of acetylene black (manufactured by Denki Kagaku KK: HS-100) as a conductivity-imparting agent were mixed, NMP was further added so that the solid content became 77%, and the mixture was stirred and mixed with a planetary mixer. Thus, a uniform slurry for the positive electrode was obtained. Using this slurry, a positive electrode and a lithium ion secondary battery were produced. Table 3 shows the results of measuring the peel strength of the positive electrode and the characteristics of the lithium ion secondary battery manufactured using the positive electrode.
[0071]
[Table 3]
Figure 2004185826
[0072]
Examples 2 to 8, Comparative Examples 1 to 4
A slurry composition was prepared in the same manner as in Example 1 except that the polymer shown in Table 3 was used as the polymer X component. Table 3 shows the results of measuring the characteristics of the positive electrode and the secondary battery manufactured using these slurry compositions in the same manner as in Example 1.
[0073]
Example 9
100 parts of lithium cobalt oxide, 3 parts of acetylene black (HS-100) as a conductivity-imparting agent, 0.4 part of a binder as a binder, and an NMP solution of polymer X-4 in a planetary mixer having two pairs of hook-type rotors, and 0.8 part of an NMP dispersion liquid of the polymer Y-1 was charged, and NMP was further added to mix to a solid content of 79% for 10 minutes to obtain a slurry composition for a lithium ion secondary battery positive electrode. Table 4 shows the measurement results of the characteristics of the positive electrode and the secondary battery manufactured using the slurry composition.
[0074]
[Table 4]
Figure 2004185826
[0075]
Examples 10 and 11, Comparative Examples 5 to 8
A slurry composition was prepared in the same manner as in Example 9 using the components and amounts shown in Table 4. As a binder other than the polymer X component and the polymer Y component, acrylonitrile / butadiene copolymer hydride (HNBR) or polyvinylidene fluoride (PVDF) was used and dissolved in NMP together with the polymer X component.
The characteristics of the positive electrode and the secondary battery produced using these slurry compositions were tested in the same manner as in Example 9. Table 4 shows the test results. In Comparative Example 5, the battery performance was not able to be measured because the binding force was weak and the formed electrode was cracked.
[0076]
Example 12
To an NMP solution of 0.4 part of polymer X-4 and 0.4 part of HNBR, 3 parts of acetylene black (HS-100) was added as a conductivity-imparting agent, and the mixture was dispersed with a pigment disperser. A 35% carbon coating was prepared.
Subsequently, lithium cobaltate (LiCoO) was placed in a planetary mixer having two pairs of hook-type rotors.2) 100 parts and a dispersion prepared by dispersing 0.4 part of polymer Y-4 in NMP were charged, and the above-mentioned carbon paint and NMP were added thereto to obtain a solid content of 85%, mixed for 1 hour, and further mixed with NMP. Was added to a solid content concentration of 78% and mixed for 10 minutes to obtain a lithium ion secondary battery positive electrode slurry composition. Table 4 shows the results of testing the characteristics of the positive electrode and the secondary battery manufactured using this slurry composition.
[0077]
As is clear from the above, when an electrode is prepared using the slurry composition of the present invention, the peel strength is high and high binding performance is exhibited even when the amount of the binder polymer used is small. Further, the lithium ion secondary battery having this electrode had a high battery capacity and exhibited good charge / discharge cycle characteristics and rate characteristics.
[0078]
【The invention's effect】
When the electrode slurry composition of the present invention is used, an electrode having a low swelling property with respect to an electrolytic solution and an excellent binding property of an active material can be obtained. it can. Particularly, it is excellent as a positive electrode of a lithium ion secondary battery, and a lithium ion secondary battery provided with this electrode has high charge / discharge capacity, good cycle characteristics, and excellent rate characteristics.

Claims (6)

バインダーと電極活物質と液状媒体とを含有してなる電極用スラリー組成物であって、該バインダーが、アクリロニトリルまたはメタクリロニトリル由来の単量体単位含有量が90〜99モル%であり、かつヒドロキシル基またはカルボキシル基を有する単量体由来の単量体単位含有量が1〜10モル%であるポリマーXを含有し、該液状媒体がポリマーXを溶解するものであることを特徴とする電極用スラリー組成物。An electrode slurry composition containing a binder, an electrode active material, and a liquid medium, wherein the binder has a monomer unit content of 90 to 99 mol% derived from acrylonitrile or methacrylonitrile, and An electrode comprising a polymer X having a monomer unit content of 1 to 10 mol% derived from a monomer having a hydroxyl group or a carboxyl group, and wherein the liquid medium dissolves the polymer X. Slurry composition for use. バインダーが、ガラス転移温度が−80〜0℃でかつN−メチルピロリドン不溶分量が50重量%以上であるポリマーYをさらに含み、ポリマーXとポリマーYとの量の割合が、重量比で5:1〜1:5である請求項1記載の電極用スラリー組成物。The binder further includes a polymer Y having a glass transition temperature of −80 to 0 ° C. and an N-methylpyrrolidone insoluble content of 50% by weight or more, and the ratio of the amount of the polymer X to the amount of the polymer Y is 5: The slurry composition for an electrode according to claim 1, wherein the ratio is from 1 to 1: 5. ポリマーYが、
(1)単官能エチレン性不飽和カルボン酸エステル由来の単量体単位(a)およびα,β−エチレン性不飽和ニトリル由来の単量体単位(b)を有し、
(2)単量体単位(a)と単量体単位(b)との量の比が99:1〜60:40(重量比)であり、
(3)単量体単位(a)および単量体単位(b)の合計がポリマーYの全単量体単位に対して70重量%以上であり、
(4)エチレン性炭化水素由来の単量体単位と共役ジエン由来の単量体単位とエチレン性不飽和カルボン酸由来の単量体単位とを実質的に有さないポリマーである、請求項2記載の電極用スラリー組成物。
Polymer Y is
(1) having a monomer unit (a) derived from a monofunctional ethylenically unsaturated carboxylic acid ester and a monomer unit (b) derived from α, β-ethylenically unsaturated nitrile;
(2) the ratio of the amount of the monomer unit (a) to the amount of the monomer unit (b) is 99: 1 to 60:40 (weight ratio);
(3) the total of the monomer units (a) and (b) is 70% by weight or more based on all monomer units of the polymer Y;
(4) A polymer substantially free of a monomer unit derived from an ethylenic hydrocarbon, a monomer unit derived from a conjugated diene and a monomer unit derived from an ethylenically unsaturated carboxylic acid. The slurry composition for an electrode according to the above.
少なくともバインダーと電極活物質とを含有する電極層が集電体に結着してある電極であって、該バインダーが、アクリロニトリルまたはメタクリロニトリル由来の単量体単位含有量が90〜99モル%であり、かつヒドロキシル基またはカルボキシル基を有する単量体由来の単量体単位含有量が1〜10モル%であるポリマーXを含有するものであることを特徴とする電極。An electrode in which an electrode layer containing at least a binder and an electrode active material is bound to a current collector, wherein the binder has a monomer unit content of 90 to 99 mol% derived from acrylonitrile or methacrylonitrile. And containing a polymer X having a monomer unit content of 1 to 10 mol% derived from a monomer having a hydroxyl group or a carboxyl group. バインダーが、ガラス転移温度が−80〜0℃でかつN−メチルピロリドン不溶分量が50重量%以上であるポリマーYをさらに含み、ポリマーXとポリマーYとの量の割合が、重量比で5:1〜1:5である請求項4記載の電極。The binder further includes a polymer Y having a glass transition temperature of −80 to 0 ° C. and an N-methylpyrrolidone insoluble content of 50% by weight or more, and the ratio of the amount of the polymer X to the amount of the polymer Y is 5: The electrode according to claim 4, wherein the ratio is from 1 to 1: 5. 請求項4または5に記載の電極を有する二次電池。A secondary battery having the electrode according to claim 4.
JP2002347854A 2002-11-29 2002-11-29 Slurry composition for electrode, electrode and secondary battery Expired - Fee Related JP4311002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002347854A JP4311002B2 (en) 2002-11-29 2002-11-29 Slurry composition for electrode, electrode and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002347854A JP4311002B2 (en) 2002-11-29 2002-11-29 Slurry composition for electrode, electrode and secondary battery

Publications (2)

Publication Number Publication Date
JP2004185826A true JP2004185826A (en) 2004-07-02
JP4311002B2 JP4311002B2 (en) 2009-08-12

Family

ID=32750918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002347854A Expired - Fee Related JP4311002B2 (en) 2002-11-29 2002-11-29 Slurry composition for electrode, electrode and secondary battery

Country Status (1)

Country Link
JP (1) JP4311002B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006033173A1 (en) * 2004-09-22 2006-03-30 Hitachi Chemical Company, Ltd. Binder resin composition for nonaqueous electrolyte energy device electrode, nonaqueous electrolyte energy device electrode, and nonaqueous electrolyte energy device
JP2007128871A (en) * 2005-10-07 2007-05-24 Hitachi Chem Co Ltd Binder resin composition for nonaqueous electrolyte system energy device electrode, nonaqueous electrolyte system energy device electrode using the same, and nonaqueous electrolyte system energy device
JP2008270142A (en) * 2007-03-22 2008-11-06 Hitachi Chem Co Ltd Binder resin composition for nonaqueous electrolyte system energy device electrode, nonaqueous electrolyte system energy device electrode using this resin composition, and nonaqueous electrolyte system energy device
US7931985B1 (en) 2010-11-08 2011-04-26 International Battery, Inc. Water soluble polymer binder for lithium ion battery
JP2011513911A (en) * 2008-04-16 2011-04-28 エルジー・ケム・リミテッド Negative electrode material composition comprising polyacrylonitrile-acrylic acid copolymer binder, method for producing the same, and lithium secondary battery comprising the negative electrode material composition
US8076026B2 (en) 2010-02-05 2011-12-13 International Battery, Inc. Rechargeable battery using an aqueous binder
US8102642B2 (en) 2010-08-06 2012-01-24 International Battery, Inc. Large format ultracapacitors and method of assembly
JP2012099251A (en) * 2010-10-29 2012-05-24 Nippon Zeon Co Ltd Anode for lithium secondary battery, conducting agent composition, composition for lithium secondary battery anode, and manufacturing method of anode for lithium secondary battery
JP2012160431A (en) * 2011-01-14 2012-08-23 Jsr Corp Binder composition for electrode, slurry for electrode, electrode, and electrochemical device
JP2013004407A (en) * 2011-06-20 2013-01-07 Hitachi Chem Co Ltd Binder resin material for energy device electrode, energy device electrode and energy device
JP2013122914A (en) * 2011-11-11 2013-06-20 Mitsubishi Rayon Co Ltd Binder resin for electrode for secondary battery, slurry for electrode for secondary battery containing the same, electrode for secondary battery, and secondary battery
WO2013129658A1 (en) * 2012-03-02 2013-09-06 日本ゼオン株式会社 Positive electrode for secondary battery, and secondary battery
JP2013182822A (en) * 2012-03-02 2013-09-12 Mitsubishi Rayon Co Ltd Electrode mixture for secondary battery, manufacturing method thereof, electrode for secondary battery, and secondary battery
WO2013150778A1 (en) * 2012-04-03 2013-10-10 株式会社Gsユアサ Positive electrode for cell, and cell
WO2013151062A1 (en) * 2012-04-03 2013-10-10 株式会社Gsユアサ Positive electrode paste for cell
JP5617634B2 (en) * 2008-08-05 2014-11-05 日本ゼオン株式会社 Electrode for lithium ion secondary battery
JP2016149313A (en) * 2015-02-13 2016-08-18 日本ゼオン株式会社 Binder composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery and lithium ion secondary battery
WO2018087897A1 (en) * 2016-11-11 2018-05-17 日立化成株式会社 Resin for energy device electrodes, composition for forming energy device electrode, energy device electrode, and energy device
JP2018120674A (en) * 2017-01-23 2018-08-02 日立化成株式会社 Electrode for energy device, and energy device
WO2018155712A1 (en) * 2017-02-27 2018-08-30 日立化成株式会社 Resin for energy device electrode, composition for forming energy device electrode, energy device electrode and energy device
WO2020004145A1 (en) * 2018-06-29 2020-01-02 日本ゼオン株式会社 Binder composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery electrode and method for producing same, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
WO2020004526A1 (en) * 2018-06-29 2020-01-02 日本ゼオン株式会社 Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode and method for producing same, non-aqueous secondary battery electrode, and non-aqueous secondary battery
WO2021131980A1 (en) * 2019-12-27 2021-07-01 日本ゼオン株式会社 Binder composition for non-aqueous secondary battery electrodes, slurry composition for non-aqueous secondary battery electrodes, electrode for non-aqueous secondary batteries, and non-aqueous secondary battery
CN113227153A (en) * 2018-12-17 2021-08-06 阿朗新科德国有限责任公司 Method for preparing HNBR solution by using alternative solvent
WO2022113860A1 (en) * 2020-11-30 2022-06-02 日本ゼオン株式会社 Binder composition for nonaqueous lithium ion secondary battery electrodes, method for producing same, binder solution for nonaqueous lithium ion secondary battery electrodes, slurry composition for nonaqueous lithium ion secondary battery electrodes, electrode for nonaqueous lithium ion secondary batteries, and nonaqueous lithium ion secondary battery
TWI785014B (en) * 2017-02-27 2022-12-01 日商昭和電工材料股份有限公司 Composite resin for energy device electrode, composition for forming energy device electrode, positive electrode for energy device, and energy device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5500949B2 (en) * 2009-11-06 2014-05-21 三菱レイヨン株式会社 Binder resin composition for electrodes

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8043747B2 (en) 2004-09-22 2011-10-25 Hitachi Chemical Company, Ltd. Binder resin composition for nonaqueous electrolyte energy device electrode, nonaqueous electrolyte energy device electrode, and nonaqueous electrolyte energy device
JPWO2006033173A1 (en) * 2004-09-22 2008-05-15 日立化成工業株式会社 Binder resin composition for non-aqueous electrolyte system energy device electrode, non-aqueous electrolyte system energy device electrode, and non-aqueous electrolyte system energy device
WO2006033173A1 (en) * 2004-09-22 2006-03-30 Hitachi Chemical Company, Ltd. Binder resin composition for nonaqueous electrolyte energy device electrode, nonaqueous electrolyte energy device electrode, and nonaqueous electrolyte energy device
JP4636444B2 (en) * 2004-09-22 2011-02-23 日立化成工業株式会社 Binder resin composition for non-aqueous electrolyte system energy device electrode, non-aqueous electrolyte system energy device electrode, and non-aqueous electrolyte system energy device
KR100935986B1 (en) * 2004-09-22 2010-01-08 히다치 가세고교 가부시끼가이샤 Binder resin composition for nonaqueous electrolyte energy device electrode, non-aqueous electrolyte energy device electrode, and nonaqueous electrolyte energy device
JP2007128871A (en) * 2005-10-07 2007-05-24 Hitachi Chem Co Ltd Binder resin composition for nonaqueous electrolyte system energy device electrode, nonaqueous electrolyte system energy device electrode using the same, and nonaqueous electrolyte system energy device
JP2008270142A (en) * 2007-03-22 2008-11-06 Hitachi Chem Co Ltd Binder resin composition for nonaqueous electrolyte system energy device electrode, nonaqueous electrolyte system energy device electrode using this resin composition, and nonaqueous electrolyte system energy device
US9012088B2 (en) 2008-04-16 2015-04-21 Lg Chem, Ltd. Anode composition comprising acrylonitrile-acrylic acid copolymer as binder, method for preparing the anode composition and lithium secondary battery using the anode composition
JP2011513911A (en) * 2008-04-16 2011-04-28 エルジー・ケム・リミテッド Negative electrode material composition comprising polyacrylonitrile-acrylic acid copolymer binder, method for producing the same, and lithium secondary battery comprising the negative electrode material composition
JP5617634B2 (en) * 2008-08-05 2014-11-05 日本ゼオン株式会社 Electrode for lithium ion secondary battery
US8076026B2 (en) 2010-02-05 2011-12-13 International Battery, Inc. Rechargeable battery using an aqueous binder
US8102642B2 (en) 2010-08-06 2012-01-24 International Battery, Inc. Large format ultracapacitors and method of assembly
JP2012099251A (en) * 2010-10-29 2012-05-24 Nippon Zeon Co Ltd Anode for lithium secondary battery, conducting agent composition, composition for lithium secondary battery anode, and manufacturing method of anode for lithium secondary battery
US8092557B2 (en) 2010-11-08 2012-01-10 International Battery, Inc. Water soluble polymer binder for lithium ion battery
US7931985B1 (en) 2010-11-08 2011-04-26 International Battery, Inc. Water soluble polymer binder for lithium ion battery
JP2012160431A (en) * 2011-01-14 2012-08-23 Jsr Corp Binder composition for electrode, slurry for electrode, electrode, and electrochemical device
JP2013004407A (en) * 2011-06-20 2013-01-07 Hitachi Chem Co Ltd Binder resin material for energy device electrode, energy device electrode and energy device
JP2013122914A (en) * 2011-11-11 2013-06-20 Mitsubishi Rayon Co Ltd Binder resin for electrode for secondary battery, slurry for electrode for secondary battery containing the same, electrode for secondary battery, and secondary battery
WO2013129658A1 (en) * 2012-03-02 2013-09-06 日本ゼオン株式会社 Positive electrode for secondary battery, and secondary battery
JP2013182822A (en) * 2012-03-02 2013-09-12 Mitsubishi Rayon Co Ltd Electrode mixture for secondary battery, manufacturing method thereof, electrode for secondary battery, and secondary battery
US10033042B2 (en) 2012-03-02 2018-07-24 Zeon Corporation Positive electrode for secondary battery, and secondary battery
CN104137311A (en) * 2012-03-02 2014-11-05 日本瑞翁株式会社 Positive electrode for secondary battery, and secondary battery
JPWO2013129658A1 (en) * 2012-03-02 2015-07-30 日本ゼオン株式会社 Positive electrode for secondary battery and secondary battery
WO2013150778A1 (en) * 2012-04-03 2013-10-10 株式会社Gsユアサ Positive electrode for cell, and cell
KR20150005528A (en) * 2012-04-03 2015-01-14 가부시키가이샤 지에스 유아사 Positive electrode paste for cell
CN104205444A (en) * 2012-04-03 2014-12-10 株式会社杰士汤浅国际 Positive electrode paste for cell
WO2013151062A1 (en) * 2012-04-03 2013-10-10 株式会社Gsユアサ Positive electrode paste for cell
JPWO2013151062A1 (en) * 2012-04-03 2015-12-17 株式会社Gsユアサ Positive electrode paste for batteries
JPWO2013150778A1 (en) * 2012-04-03 2015-12-17 株式会社Gsユアサ Battery positive electrode and battery
CN108539123A (en) * 2012-04-03 2018-09-14 株式会社杰士汤浅国际 Positive electrode for battery and battery
KR102054737B1 (en) * 2012-04-03 2020-01-22 가부시키가이샤 지에스 유아사 Positive electrode paste for cell
CN104115315A (en) * 2012-04-03 2014-10-22 株式会社杰士汤浅国际 Positive electrode for cell, and cell
US10211460B2 (en) 2012-04-03 2019-02-19 Gs Yuasa International Ltd. Positive electrode for battery, and battery
CN108767258A (en) * 2012-04-03 2018-11-06 株式会社杰士汤浅国际 Positive electrode for battery paste
JP2016149313A (en) * 2015-02-13 2016-08-18 日本ゼオン株式会社 Binder composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery and lithium ion secondary battery
WO2018087897A1 (en) * 2016-11-11 2018-05-17 日立化成株式会社 Resin for energy device electrodes, composition for forming energy device electrode, energy device electrode, and energy device
JP2018120674A (en) * 2017-01-23 2018-08-02 日立化成株式会社 Electrode for energy device, and energy device
JP7091602B2 (en) 2017-01-23 2022-06-28 昭和電工マテリアルズ株式会社 Electrodes for energy devices and energy devices
TWI785014B (en) * 2017-02-27 2022-12-01 日商昭和電工材料股份有限公司 Composite resin for energy device electrode, composition for forming energy device electrode, positive electrode for energy device, and energy device
KR20190112035A (en) * 2017-02-27 2019-10-02 히타치가세이가부시끼가이샤 Resin for energy device electrode, composition for forming energy device electrode, energy device electrode and energy device
CN110326138A (en) * 2017-02-27 2019-10-11 日立化成株式会社 Energy device electrode resin, energy device composition for electrode formation, energy device electrode and energy device
CN110326139A (en) * 2017-02-27 2019-10-11 日立化成株式会社 Energy device electrode resin, energy device composition for electrode formation, energy device electrode and energy device
JPWO2018155712A1 (en) * 2017-02-27 2019-12-26 日立化成株式会社 Resin for energy device electrode, composition for forming energy device electrode, energy device electrode and energy device
KR102340089B1 (en) 2017-02-27 2021-12-15 쇼와덴코머티리얼즈가부시끼가이샤 Resin for energy device electrode, composition for forming energy device electrode, energy device electrode and energy device
US11482706B2 (en) 2017-02-27 2022-10-25 Showa Denko Materials Co., Ltd. Resin for energy device electrode, composition for forming energy device electrode, energy device electrode, and energy device
WO2018155712A1 (en) * 2017-02-27 2018-08-30 日立化成株式会社 Resin for energy device electrode, composition for forming energy device electrode, energy device electrode and energy device
JPWO2018155713A1 (en) * 2017-02-27 2020-04-23 日立化成株式会社 Resin for energy device electrode, composition for forming energy device electrode, energy device electrode and energy device
EP3588635A4 (en) * 2017-02-27 2020-10-28 Hitachi Chemical Company, Ltd. Resin for energy device electrode, composition for forming energy device electrode, energy device electrode and energy device
EP3588637A4 (en) * 2017-02-27 2020-10-28 Hitachi Chemical Company, Ltd. Resin for energy device electrode, composition for forming energy device electrode, energy device electrode, and energy device
WO2018154786A1 (en) * 2017-02-27 2018-08-30 日立化成株式会社 Resin for energy device electrode, composition for forming energy device electrode, energy device electrode and energy device
WO2018155713A1 (en) * 2017-02-27 2018-08-30 日立化成株式会社 Resin for energy device electrode, composition for forming energy device electrode, energy device electrode, and energy device
CN112136236A (en) * 2018-06-29 2020-12-25 日本瑞翁株式会社 Binder composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery electrode and method for producing same, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JPWO2020004145A1 (en) * 2018-06-29 2021-07-15 日本ゼオン株式会社 Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode and its manufacturing method, non-aqueous secondary battery electrode, and non-aqueous secondary battery
JPWO2020004526A1 (en) * 2018-06-29 2021-08-02 日本ゼオン株式会社 Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode and its manufacturing method, non-aqueous secondary battery electrode, and non-aqueous secondary battery
CN112189272A (en) * 2018-06-29 2021-01-05 日本瑞翁株式会社 Binder composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery electrode and method for producing same, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
WO2020004526A1 (en) * 2018-06-29 2020-01-02 日本ゼオン株式会社 Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode and method for producing same, non-aqueous secondary battery electrode, and non-aqueous secondary battery
WO2020004145A1 (en) * 2018-06-29 2020-01-02 日本ゼオン株式会社 Binder composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery electrode and method for producing same, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP7359145B2 (en) 2018-06-29 2023-10-11 日本ゼオン株式会社 Binder composition for non-aqueous secondary battery electrodes, slurry composition for non-aqueous secondary battery electrodes and manufacturing method thereof, electrode for non-aqueous secondary batteries, and non-aqueous secondary battery
US11929507B2 (en) 2018-06-29 2024-03-12 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode and method of producing same, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
CN113227153A (en) * 2018-12-17 2021-08-06 阿朗新科德国有限责任公司 Method for preparing HNBR solution by using alternative solvent
CN113227153B (en) * 2018-12-17 2023-11-14 阿朗新科德国有限责任公司 Method for preparing HNBR solution by using alternative solvent
WO2021131980A1 (en) * 2019-12-27 2021-07-01 日本ゼオン株式会社 Binder composition for non-aqueous secondary battery electrodes, slurry composition for non-aqueous secondary battery electrodes, electrode for non-aqueous secondary batteries, and non-aqueous secondary battery
WO2022113860A1 (en) * 2020-11-30 2022-06-02 日本ゼオン株式会社 Binder composition for nonaqueous lithium ion secondary battery electrodes, method for producing same, binder solution for nonaqueous lithium ion secondary battery electrodes, slurry composition for nonaqueous lithium ion secondary battery electrodes, electrode for nonaqueous lithium ion secondary batteries, and nonaqueous lithium ion secondary battery

Also Published As

Publication number Publication date
JP4311002B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
JP4311002B2 (en) Slurry composition for electrode, electrode and secondary battery
KR100960757B1 (en) Slurry composition, electrode and secondary cell
EP1249882B1 (en) Binder for use in electrolyte of lithium ion secondary cell and use thereof
JP4218244B2 (en) Slurry composition for secondary battery electrode, secondary battery electrode and secondary battery
JP4736804B2 (en) Binder for lithium ion secondary battery electrode
EP1244157B1 (en) Binder composition for lithium ion secondary battery electrodes and use thereof
JP5195749B2 (en) Method for producing slurry for lithium ion secondary battery electrode
JP4433509B2 (en) Binder composition for lithium ion secondary battery electrode and use thereof
US8802289B2 (en) Composition for electrode comprising an iron compound with carbon and a (meth)acrylate-nitrile copolymer
JPWO2002039518A1 (en) Slurry composition for secondary battery positive electrode, secondary battery positive electrode and secondary battery
JP4273687B2 (en) Binder composition for secondary battery electrode and secondary battery
JP2002110169A (en) Binder for electrode of lithium ion secondary battery and use of the same
JP4258614B2 (en) Slurry composition for electrode, electrode and secondary battery
JP4207443B2 (en) Slurry composition for secondary battery electrode, secondary battery electrode and secondary battery
JP4200349B2 (en) Slurry composition for electrode, electrode and lithium ion secondary battery
JP2002231251A (en) Binder composition for lithium ion secondary battery electrode and lithium ion secondary battery
JP4415453B2 (en) Binder for lithium ion secondary battery electrode and use thereof
JP4337331B2 (en) Slurry composition for electrode, electrode and lithium ion secondary battery
JP5707804B2 (en) Slurry composition for positive electrode of non-aqueous electrolyte secondary battery
JP4751497B2 (en) Lithium ion secondary battery electrode manufacturing method, electrode and battery
JP5232353B2 (en) Non-aqueous electrolyte secondary battery electrode composition, electrode and battery using the same
KR101083129B1 (en) 2 method for preparing slurry composition for electrode of secondary cell
JP2005063825A (en) Slurry composition for positive electrode of nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081215

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090504

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4311002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees