JP2007128871A - Binder resin composition for nonaqueous electrolyte system energy device electrode, nonaqueous electrolyte system energy device electrode using the same, and nonaqueous electrolyte system energy device - Google Patents

Binder resin composition for nonaqueous electrolyte system energy device electrode, nonaqueous electrolyte system energy device electrode using the same, and nonaqueous electrolyte system energy device Download PDF

Info

Publication number
JP2007128871A
JP2007128871A JP2006274239A JP2006274239A JP2007128871A JP 2007128871 A JP2007128871 A JP 2007128871A JP 2006274239 A JP2006274239 A JP 2006274239A JP 2006274239 A JP2006274239 A JP 2006274239A JP 2007128871 A JP2007128871 A JP 2007128871A
Authority
JP
Japan
Prior art keywords
energy device
resin composition
binder resin
electrode
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006274239A
Other languages
Japanese (ja)
Other versions
JP5428126B2 (en
Inventor
Kenji Suzuki
健司 鈴木
Kiyotaka Mashita
清孝 真下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2006274239A priority Critical patent/JP5428126B2/en
Publication of JP2007128871A publication Critical patent/JP2007128871A/en
Application granted granted Critical
Publication of JP5428126B2 publication Critical patent/JP5428126B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a binder resin composition for a nonaqueous electrolyte system energy device that is proper in adhesiveness with respect to a collector of an electrode, especially one for an anode, and a swelling preventing properties with respect to electrolyte solution, and with superior in suppleness/flexibility of the electrode, as well as an electrode for a nonaqueous electrolyte system energy device, and a nonaqueous electrolyte system energy device with high capacity and small capacity fall in a charging/discharging cycle with the use of the binder resin composition, especially, anode for a lithium battery and a lithium battery. <P>SOLUTION: The binder resin composition for the nonaqueous electrolyte system energy device electrode, made by containing a nitrile polymer containing 80% by mass or more of repetition units, originated from a nitrile-group-containing monomer, and the nonaqueous electrolyte system energy device electrode, as well as the nonaqueous electrolyte system energy device are provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、非水電解液系エネルギーデバイス電極用バインダ樹脂組成物、これを用いた非水電解液系エネルギーデバイス電極及び非水電解液系エネルギーデバイスに関する。   The present invention relates to a binder resin composition for a non-aqueous electrolyte-based energy device electrode, a non-aqueous electrolyte-based energy device electrode and a non-aqueous electrolyte-based energy device using the same.

ノート型パソコンや携帯電話、PDAといった携帯情報端末の電源として、高いエネルギー密度を有する非水電解液系エネルギーデバイスであるリチウムイオン二次電池が広く使われている。   2. Description of the Related Art Lithium ion secondary batteries, which are non-aqueous electrolyte energy devices having a high energy density, are widely used as power sources for portable information terminals such as notebook personal computers, mobile phones, and PDAs.

このリチウムイオン二次電池(以下、単に「リチウム電池」と記す)には、負極の活物質として、リチウムイオンの層間への挿入(リチウム層間化合物の形成)及び放出が可能な多層構造を有する炭素材料が用いられる。
また、正極の活物質としては、リチウム含有金属複合酸化物が主に用いられる。
In this lithium ion secondary battery (hereinafter simply referred to as “lithium battery”), carbon having a multilayer structure capable of inserting and releasing lithium ions between layers (formation of a lithium intercalation compound) and release as an active material of a negative electrode. Material is used.
In addition, lithium-containing metal composite oxide is mainly used as the positive electrode active material.

リチウム電池の電極は、これらの活物質とバインダ樹脂組成物及び溶媒(N−メチル−2−ピロリドン又は水など)を混練してスラリーを調製し、次いで、これを転写ロール等で集電体である金属箔の片面又は両面に塗布し、溶媒を乾燥除去して合剤層を形成後、ロールプレス機等で圧縮成形して作製される。   A lithium battery electrode is prepared by kneading these active materials, a binder resin composition and a solvent (such as N-methyl-2-pyrrolidone or water) to prepare a slurry, and then using a transfer roll or the like as a current collector. It is applied to one or both sides of a certain metal foil, and after the solvent is removed by drying to form a mixture layer, it is produced by compression molding with a roll press or the like.

上記バインダ樹脂組成物としては、ポリフッ化ビニリデン(以下、PVDFという)が多用されている。
しかし、PVDFは、負極の集電体(銅箔)との接着性に乏しいため、PVDFを用いて負極を作製する場合、合剤層と集電体との界面の接着性を確保するには、負極活物質に対してPVDFを多量に配合しなければならず、リチウム電池の高容量化を妨げる要因となっている。
As the binder resin composition, polyvinylidene fluoride (hereinafter referred to as PVDF) is frequently used.
However, since PVDF has poor adhesion to the current collector (copper foil) of the negative electrode, when producing a negative electrode using PVDF, it is necessary to ensure the adhesion at the interface between the mixture layer and the current collector. Therefore, a large amount of PVDF must be blended with the negative electrode active material, which is a factor that hinders the increase in capacity of lithium batteries.

また、PVDFは、リチウム電池の電解液(充放電に伴う正・負極間でのリチウムイオンの授受を媒介する液体)に対する耐膨潤性が必ずしも十分ではないことから、電解液によって合剤層中のPVDFが膨潤すると、合剤層と集電体との界面や合剤層中の活物質同士の接触がルーズになる。このため、電極の導電ネットワークが次第に崩壊し、リチウム電池が充放電サイクルを繰り返すと、経時的に容量低下を起こす一因となっていた。   In addition, PVDF does not necessarily have sufficient swell resistance to lithium battery electrolytes (liquids that mediate the exchange of lithium ions between the positive and negative electrodes associated with charge / discharge). When PVDF swells, the interface between the mixture layer and the current collector and the contact between the active materials in the mixture layer become loose. For this reason, when the conductive network of the electrode gradually collapses and the lithium battery repeats the charge / discharge cycle, it is a cause of a decrease in capacity over time.

これらの問題の解決策として、特許文献1には、ガラス転移温度が0℃より高い(メタ)アクリロニトリル系重合体と、電極に柔軟性・可とう性を付与するゴム成分(ガラス転移温度が−80〜0℃で、N−メチル−2−ピロリドン溶解性の良好な非フッ化ビニリデン系重合体)をブレンドしたバインダ樹脂組成物が開示されている。 As a solution to these problems, Patent Document 1 discloses a (meth) acrylonitrile-based polymer having a glass transition temperature higher than 0 ° C., and a rubber component that imparts flexibility and flexibility to the electrode (with a glass transition temperature of − A binder resin composition blended with a non-vinylidene fluoride polymer having good solubility in N-methyl-2-pyrrolidone at 80 to 0 ° C. is disclosed.

しかしながら、上記ゴム成分は、活物質表面を覆いやすく、電池の充放電反応を阻害しやすい懸念がある。
一方、特許文献2には、(メタ)アクリロニトリル系重合体と、フッ化ビニリデン系重合体をブレンドしたバインダ樹脂組成物が提案されているが、上記(メタ)アクリロニトリル系重合体は、二トリル基の含有量が少ないので、電解液に対する充分な耐膨潤性が得られにくい。
また、特許文献1と同様、活物質表面を覆いやすく、電池の充放電反応を阻害しやすい問題があった。
However, the rubber component tends to cover the surface of the active material, and there is a concern that the charge / discharge reaction of the battery is likely to be hindered.
On the other hand, Patent Document 2 proposes a binder resin composition in which a (meth) acrylonitrile-based polymer and a vinylidene fluoride-based polymer are blended, but the (meth) acrylonitrile-based polymer has a nitrile group. Therefore, it is difficult to obtain sufficient swelling resistance against the electrolytic solution.
Further, like Patent Document 1, there is a problem that the surface of the active material is easily covered and the charge / discharge reaction of the battery is easily inhibited.

特開2003−282061号公報JP 2003-282061 A 特開2003−317722号公報JP 2003-317722 A

本発明は、電極の集電体、特に負極の集電体との接着性及び電解液に対する耐膨潤性に優れ、なおかつ、電極の柔軟性・可とう性が良好な非水電解液系エネルギーデバイス電極用バインダ樹脂組成物(以下、単に「バインダ樹脂組成物」ということがある)を提供するものである。
また、本発明は、前記のバインダ樹脂組成物を用いることにより、高容量で、なおかつ、充放電サイクルにおける容量低下が小さい充放電特性に優れた非水電解液系エネルギーデバイス、特にリチウム電池の電極及びリチウム電池を提供するものである。
The present invention is a non-aqueous electrolyte-type energy device having excellent adhesion to an electrode current collector, particularly a negative electrode current collector, and swelling resistance to an electrolyte solution, and excellent electrode flexibility and flexibility. The present invention provides an electrode binder resin composition (hereinafter sometimes simply referred to as “binder resin composition”).
In addition, the present invention provides a non-aqueous electrolyte-based energy device, particularly an electrode of a lithium battery, which is excellent in charge / discharge characteristics with a high capacity and a small capacity drop in a charge / discharge cycle by using the binder resin composition. And a lithium battery.

本発明者らは、鋭意研究を重ねた結果、ニトリル基の含有量が多いニトリル系重合体と、電極の柔軟性・可とう性を補うフッ化ビニリデン系重合体のブレンド物を、非水電解液系エネルギーデバイス電極用バインダ樹脂組成物とすることにより、電解液に対する耐膨潤性及び電極の集電体との接着性に優れ、なおかつ、電極の柔軟性・可とう性が良好となることを見出した。   As a result of intensive research, the present inventors have found that a non-aqueous electrolyzed blend of a nitrile polymer having a high nitrile group content and a vinylidene fluoride polymer that supplements the flexibility and flexibility of the electrode. By using a binder resin composition for a liquid energy device electrode, it has excellent swelling resistance to the electrolyte and adhesion to the current collector of the electrode, and the flexibility and flexibility of the electrode are improved. I found it.

本発明は、ニトリル基含有単量体由来の繰り返し単位を80質量%以上含むニトリル系重合体と、フッ化ビニリデン系重合体を含有してなる非水電解液系エネルギーデバイス電極用バインダ樹脂組成物に関する。
また、本発明は、前記ニトリル基含有単量体が、アクリロニトリルである前記の非水電解液系エネルギーデバイス電極用バインダ樹脂組成物に関する。
また、本発明は、前記ニトリル系重合体が、ニトリル基含有単量体由来の繰り返し単位と、カルボキシル基含有単量体由来の繰り返し単位、及び/又は式(I)
The present invention relates to a binder resin composition for a non-aqueous electrolyte energy device electrode comprising a nitrile polymer containing 80% by mass or more of a repeating unit derived from a nitrile group-containing monomer and a vinylidene fluoride polymer. About.
The present invention also relates to the above binder resin composition for non-aqueous electrolyte energy device electrodes, wherein the nitrile group-containing monomer is acrylonitrile.
In the present invention, the nitrile polymer may be a repeating unit derived from a nitrile group-containing monomer, a repeating unit derived from a carboxyl group-containing monomer, and / or formula (I).

Figure 2007128871
(式中、R1はH又はCH3、R2はH又は1価の炭化水素基、nは1〜50の整数である)で表される単量体由来の繰り返し単位とを含有してなる前記の非水電解液系エネルギーデバイス電極用バインダ樹脂組成物に関する。
Figure 2007128871
(Wherein R 1 is H or CH 3 , R 2 is H or a monovalent hydrocarbon group, and n is an integer of 1 to 50). The above-mentioned binder resin composition for non-aqueous electrolyte based energy device electrodes.

また、本発明は、前記カルボキシル基含有単量体が、アクリル酸である前記の非水電解液系エネルギーデバイス電極用バインダ樹脂組成物に関する。
また、本発明は、前記式(I)で表される単量体がメトキシトリエチレングリコールアクリレートである前記の非水電解液系エネルギーデバイス電極用バインダ樹脂組成物に関する。
また、本発明は、前記ニトリル基含有単量体由来の繰り返し単位1モルに対して、前記カルボキシル基含有単量体由来の繰り返し単位が0.01〜0.2モル及び/又は前記式(I)で表される単量体由来の繰り返し単位が0.001〜0.2モルである前記の非水電解液系エネルギーデバイス電極用バインダ樹脂組成物に関する。
The present invention also relates to the binder resin composition for non-aqueous electrolyte energy device electrodes, wherein the carboxyl group-containing monomer is acrylic acid.
The present invention also relates to the binder resin composition for non-aqueous electrolyte energy device electrodes, wherein the monomer represented by the formula (I) is methoxytriethylene glycol acrylate.
In addition, the present invention provides the repeating unit derived from the carboxyl group-containing monomer in an amount of 0.01 to 0.2 mol and / or the formula (I) with respect to 1 mol of the repeating unit derived from the nitrile group-containing monomer. It is related with the said binder resin composition for non-aqueous-electrolyte type | system | group energy device electrodes whose repeating unit derived from the monomer represented by 0.001-0.2 mol.

また、本発明は、集電体と、該集電体の少なくとも1面に設けられた合剤層とを有し、該合剤層が、活物質及び/又は導電性フィラを含む前記の非水電解液系エネルギーデバイス電極用バインダ樹脂組成物からなる、非水電解液系エネルギーデバイス電極に関する。
また、本発明は、前記の非水電解液系エネルギーデバイス電極を含む、非水電解液系エネルギーデバイスに関する。
さらに、本発明は、非水電解液系エネルギーデバイスが、リチウム電池である前記の非水電解液系エネルギーデバイスに関する。
The present invention also includes a current collector and a mixture layer provided on at least one surface of the current collector, wherein the mixture layer includes an active material and / or a conductive filler. The present invention relates to a non-aqueous electrolyte system energy device electrode comprising a binder resin composition for an aqueous electrolyte system energy device electrode.
Moreover, this invention relates to the nonaqueous electrolyte system energy device containing the said nonaqueous electrolyte system energy device electrode.
Furthermore, this invention relates to the said nonaqueous electrolyte system energy device whose nonaqueous electrolyte system energy device is a lithium battery.

本発明の非水電解液系エネルギーデバイス用バインダ樹脂組成物は、集電体に対する接着性及び電解液に対する耐膨潤性に優れたニトリル基の含有量が多いニトリル系重合体と、電極の柔軟性・可とう性を補うフッ化ビニリデン系重合体のブレンド物からなっているので、負極の集電体との接着性及び電解液に対する耐膨潤性に優れ、なおかつ、電極の柔軟性・可とう性が良好である。このため、本発明のバインダ樹脂組成物を用いて作製される電極を使用した非水電解液系エネルギーデバイスであるリチウム電池は、高容量で、なおかつ、充放電サイクルにおける容量低下が小さい。   The binder resin composition for non-aqueous electrolyte-based energy devices of the present invention includes a nitrile polymer having a high nitrile group content and excellent adhesion to a current collector and swelling resistance to an electrolyte, and flexibility of an electrode.・ Because it is made of a blend of vinylidene fluoride polymer that compensates for flexibility, it has excellent adhesion to the current collector of the negative electrode and swelling resistance to the electrolyte, and flexibility and flexibility of the electrode. Is good. For this reason, the lithium battery which is a nonaqueous electrolyte-type energy device using the electrode produced using the binder resin composition of this invention has a high capacity | capacitance, and the capacity | capacitance fall in a charging / discharging cycle is also small.

(1)非水電解液系エネルギーデバイス用バインダ樹脂組成物
本発明の非水電解液系エネルギーデバイス用バインダ樹脂組成物は、ニトリル基含有単量体由来の繰り返し単位を80質量%以上含むニトリル系重合体と、フッ化ビニリデン系重合体を含むことを特徴とする。
(1) Binder resin composition for non-aqueous electrolyte system energy device The binder resin composition for non-aqueous electrolyte system energy device of the present invention is a nitrile system containing 80% by mass or more of a repeating unit derived from a nitrile group-containing monomer. It contains a polymer and a vinylidene fluoride polymer.

(1−1)ニトリル系重合体
本発明におけるニトリル系重合体としては、電解液に対する耐膨潤性等の点から、ニトリル基含有単量体由来の繰り返し単位を、ニトリル系重合体に含まれる全繰り返し単位100質量%に対して、80質量%以上含むものであれば、特に制限はなく、ニトリル基含有単量体の単独重合体をはじめ、20質量%以下の割合で他の単量体由来の繰り返し単位を含む共重合体が挙げられる。例えば、ニトリル系重合体に含まれる全繰り返し単位の質量を100とする場合、ニトリル基含有単量体由来の繰り返し単位/他の単量体由来の繰り返し単位の質量比は、80/20〜100/0、好ましくは、85/15〜99/1、より好ましくは、90/10〜95/5であることが適当である。
(1-1) Nitrile Polymer The nitrile polymer in the present invention includes all repeating units derived from a nitrile group-containing monomer from the viewpoint of swelling resistance to an electrolytic solution. As long as it contains 80% by mass or more with respect to 100% by mass of the repeating unit, there is no particular limitation, including homopolymers of nitrile group-containing monomers and other monomers derived at a rate of 20% by mass or less. The copolymer containing the repeating unit of these is mentioned. For example, when the mass of all repeating units contained in the nitrile polymer is 100, the mass ratio of the repeating unit derived from the nitrile group-containing monomer / the repeating unit derived from another monomer is 80/20 to 100. / 0, preferably 85/15 to 99/1, more preferably 90/10 to 95/5.

(1−1−1)ニトリル基含有単量体
本発明に用いられるニトリル基含有単量体としては、特に制限はないが、例えば、アクリロニトリル及びメタクリロニトリルのようなアクリル系ニトリル基含有単量体、α−シアノアクリレート及びジシアノビニリデンのようなシアン系ニトリル基含有単量体、フマロニトリルのようなフマル系ニトリル基含有単量体などが挙げられる。これらの中では、重合のし易さ、コストパフォーマンス、電極の柔軟性・可とう性等の点で、アクリロニトリルが好ましい。
(1-1-1) Nitrile group-containing monomer The nitrile group-containing monomer used in the present invention is not particularly limited, but for example, an acrylic nitrile group-containing monomer such as acrylonitrile and methacrylonitrile. Body, cyan nitrile group-containing monomers such as α-cyanoacrylate and dicyanovinylidene, and fumaric nitrile group-containing monomers such as fumaronitrile. Among these, acrylonitrile is preferable from the viewpoint of ease of polymerization, cost performance, flexibility and flexibility of the electrode, and the like.

これらのニトリル基含有単量体は、単独で又は二種類以上組み合わせて用いられる。
本発明の二トリル基含有単量体としてアクリロニトリルとメタクリロニトリルとを使用する場合、ニトリル基含有単量体の全量に対して、アクリロニトリルを、例えば、5〜95質量%、好ましくは、50〜95質量%含むことが適当である。
These nitrile group-containing monomers are used alone or in combination of two or more.
When acrylonitrile and methacrylonitrile are used as the nitrile group-containing monomer of the present invention, acrylonitrile is, for example, 5 to 95% by mass, preferably 50 to 50%, based on the total amount of the nitrile group-containing monomer. It is appropriate to contain 95% by mass.

(1−1−2)他の単量体
本発明における他の単量体としては、ニトリル基を含まない単量体であれば特に制限はないが、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート等の短鎖(好ましくは炭素数1〜10、より好ましくは炭素数1〜5)の(メタ)アクリル酸エステル類、塩化ビニル、臭化ビニル、塩化ビニリデン等のハロゲン化ビニル類、マレイン酸イミド、フェニルマレイミド、(メタ)アクリルアミド、スチレン、α−メチルスチレン、酢酸ビニル、(メタ)アリルスルホン酸ナトリウム、(メタ)アリルオキシベンゼンスルホン酸ナトリウム、スチレンスルホン酸ナトリウム、2−アクリルアミド−2−メチルプロパンスルホン酸及びその塩などの単量体が挙げられる。
特に、本発明における他の単量体としては、ニトリル基を含まないカルボキシル基含有単量体及び式(I)で表される単量体が好ましく用いられる。
(1-1-2) Other monomer The other monomer in the present invention is not particularly limited as long as it is a monomer not containing a nitrile group. For example, methyl (meth) acrylate, ethyl ( Short chain (preferably having 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms) (meth) acrylates such as meth) acrylate and propyl (meth) acrylate, vinyl chloride, vinyl bromide, vinylidene chloride, etc. Vinyl halides, maleic imide, phenylmaleimide, (meth) acrylamide, styrene, α-methylstyrene, vinyl acetate, sodium (meth) allylsulfonate, sodium (meth) allyloxybenzenesulfonate, sodium styrenesulfonate , Monomers such as 2-acrylamido-2-methylpropanesulfonic acid and salts thereof.
In particular, as the other monomer in the present invention, a carboxyl group-containing monomer not containing a nitrile group and a monomer represented by the formula (I) are preferably used.

Figure 2007128871
(式中、R1はH又はCH3、R2はH又は1価の炭化水素基、nは1〜50の整数である)
これらの中では、電極の柔軟性・可とう性の向上等の点で式(I)で表される単量体が好ましく、電極の集電体との接着性の向上等の点でカルボキシル基含有単量体が好ましい。
これらの他の単量体は、単独で又は二種類以上組み合わせて用いることができる。他の単量体として上記カルボキシル基含有単量体及び式(I)で表される単量体を組み合わせて使用するときは、例えば、他の単量体由来の繰り返し単位全体の質量を100とする場合、カルボキシル基含有単量体由来の繰り返し単位/式(I)で表される単量体由来の繰り返し単位の質量比は、99/1〜1/99、好ましくは、80/20〜20/80、より好ましくは、50/50であることが適当である。
本発明に用いられるカルボキシル基含有単量体としては、ニトリル基を含まないものであれば特に制限はないが、例えば、アクリル酸及びメタクリル酸のようなアクリル系カルボキシル基含有単量体、クロトン酸のようなクロトン系カルボキシル基含有単量体、マレイン酸及びその無水物のようなマレイン系カルボキシル基含有単量体、イタコン酸及びその無水物のようなイタコン系カルボキシル基含有単量体、シトラコン酸及びその無水物のようなシトラコン系カルボキシル基含有単量体などが挙げられる。これらの中では、重合のし易さ、コストパフォーマンス、電極の柔軟性・可とう性等の点で、アクリル酸が好ましい。
Figure 2007128871
(Wherein R 1 is H or CH 3 , R 2 is H or a monovalent hydrocarbon group, and n is an integer of 1 to 50)
Among these, the monomer represented by the formula (I) is preferable from the viewpoint of improvement of flexibility and flexibility of the electrode, and the carboxyl group is preferable from the viewpoint of improvement of adhesion of the electrode to the current collector. Containing monomers are preferred.
These other monomers can be used alone or in combination of two or more. When the above carboxyl group-containing monomer and the monomer represented by the formula (I) are used in combination as the other monomer, for example, the mass of the entire repeating unit derived from the other monomer is 100. In this case, the mass ratio of the repeating unit derived from the carboxyl group-containing monomer / the repeating unit derived from the monomer represented by formula (I) is 99/1 to 1/99, preferably 80/20 to 20 / 80, more preferably 50/50 is appropriate.
The carboxyl group-containing monomer used in the present invention is not particularly limited as long as it does not contain a nitrile group. For example, acrylic carboxyl group-containing monomers such as acrylic acid and methacrylic acid, crotonic acid Croton-based carboxyl group-containing monomers such as maleic acid and its anhydride maleic carboxyl group-containing monomers, itaconic acid and its anhydride such as itaconic acid and its anhydride, citraconic acid And citraconic carboxyl group-containing monomers such as anhydrides thereof. Among these, acrylic acid is preferable from the viewpoints of ease of polymerization, cost performance, flexibility and flexibility of the electrode, and the like.

これらのカルボキシル基含有単量体は、単独で又は二種類以上組み合わせて用いることができる。
本発明のカルボキシル基含有単量体としてアクリル酸とメタクリル酸とを使用する場合、カルボキシル基含有単量体の全量に対して、アクリル酸を、例えば、5〜95質量%、好ましくは、50〜95質量%含むことが適当である。
These carboxyl group-containing monomers can be used alone or in combination of two or more.
When acrylic acid and methacrylic acid are used as the carboxyl group-containing monomer of the present invention, acrylic acid is, for example, 5 to 95% by mass, preferably 50 to 50% with respect to the total amount of the carboxyl group-containing monomer. It is appropriate to contain 95% by mass.

本発明における式(I)で表される単量体としては、ニトリル基及びカルボキシル基を含まないものであれば、特に限定されない。   The monomer represented by the formula (I) in the present invention is not particularly limited as long as it does not contain a nitrile group and a carboxyl group.

Figure 2007128871
ここで、R1はH又はCH3である。nは1〜50、好ましくは、2〜30、より好ましくは2〜10の整数である。R2は、H又はニトリル基及びカルボキシル基を含まない1価の炭化水素基であり、例えば、炭素数1〜50、好ましくは炭素数1〜25、より好ましくは炭素数1〜12である1価の炭化水素基であることが適当である。炭素数が上記の範囲であれば、電解液に対する十分な耐膨潤性を得ることができる。ここで、炭化水素基としては、例えば、アルキル基、フェニル基が適当である。R2は、特に、炭素数1〜12のアルキル基、フェニル基であることが適当である。このアルキル基は、直鎖あるいは分岐鎖であってもよい。また、このアルキル基やフェニル基は、一部フッ素、塩素、臭素、ヨウ素等のハロゲンや、窒素、リン、芳香環、炭素数3〜10のシクロアルカン等で置換されていてもよい。
Figure 2007128871
Here, R 1 is H or CH 3 . n is an integer of 1 to 50, preferably 2 to 30, more preferably 2 to 10. R 2 is a monovalent hydrocarbon group not containing H or a nitrile group and a carboxyl group, for example, 1 to 50 carbon atoms, preferably 1 to 25 carbon atoms, more preferably 1 to 12 carbon atoms. A valent hydrocarbon group is suitable. When the carbon number is in the above range, sufficient swelling resistance to the electrolytic solution can be obtained. Here, as the hydrocarbon group, for example, an alkyl group and a phenyl group are suitable. R 2 is particularly preferably an alkyl group having 1 to 12 carbon atoms or a phenyl group. This alkyl group may be linear or branched. Further, this alkyl group or phenyl group may be partially substituted with halogen such as fluorine, chlorine, bromine or iodine, nitrogen, phosphorus, aromatic ring, C3-C10 cycloalkane or the like.

具体的には、例えば市販の、エトキシジエチレングリコールアクリレート(共栄社化学(株)製、商品名:ライトアクリレートEC−A)、メトキシトリエチレングリコールアクリレート(共栄社化学(株)製、商品名:ライトアクリレートMTG−A、新中村化学工業(株)製、商品名:NKエステルAM−30G)、メトキシポリ(n=9)エチレングリコールアクリレート(共栄社化学(株)製、商品名:ライトアクリレート130−A、新中村化学工業(株)製、商品名:NKエステルAM−90G)、メトキシポリ(n=13)エチレングリコールアクリレート(商品名:NKエステルAM−130G)、メトキシポリ(n=23)エチレングリコールアクリレート(新中村化学工業(株)製、商品名:NKエステルAM−230G)、オクトキシポリ(n=18)エチレングリコールアクリレート(新中村化学工業(株)製、商品名:NKエステルA−OC−18E)、フェノキシジエチレングリコールアクリレート(共栄社化学(株)製、商品名:ライトアクリレートP−200A、新中村化学工業(株)製、商品名:NKエステルAMP−20GY)、フェノキシポリ(n=6)エチレングリコールアクリレート(新中村化学工業(株)製、商品名:NKエステルAMP−60G)、ノニルフェノールEO付加物(n=4)アクリレート(共栄社化学(株)製、商品名:ライトアクリレートNP−4EA)、ノニルフェノールEO付加物(n=8)アクリレート(共栄社化学(株)製、商品名:ライトアクリレートNP−8EA)、メトキシジエチレングリコールメタクリレート(共栄社化学(株)製、商品名:ライトエステルMC,新中村化学工業(株)製、商品名:NKエステルM−20G)、メトキシトリエチレングリコールメタクリレート(共栄社化学(株)製、商品名:ライトエステルMTG)、メトキシポリ(n=9)エチレングリコールメタクリレート(共栄社化学(株)製、商品名:ライトエステル130MA,新中村化学工業(株)製、商品名:NKエステルM−90G)、メトキシポリ(n=23)エチレングリコールメタクリレート(新中村化学工業(株)製、商品名:NKエステルM−230G)、メトキシポリ(n=30)エチレングリコールメタクリレート(共栄社化学(株)製、商品名:ライトエステル041MA)などが挙げられる。これらの中では、アクリロニトリルと共重合させる場合の反応性等の点から、メトキシトリエチレングリコールアクリレート(一般式(I)のR1がH、R2がCH3、nが3)がより好ましい。これらの一般式(I)で表される単量体は、単独又は二種類以上組み合わせて用いることができる。 Specifically, for example, commercially available ethoxydiethylene glycol acrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light acrylate EC-A), methoxytriethylene glycol acrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light acrylate MTG-) A, manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK ester AM-30G), methoxypoly (n = 9) ethylene glycol acrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light acrylate 130-A, Shin-Nakamura Chemical) Manufactured by Kogyo Co., Ltd., trade name: NK ester AM-90G), methoxypoly (n = 13) ethylene glycol acrylate (trade name: NK ester AM-130G), methoxypoly (n = 23) ethylene glycol acrylate (Shin Nakamura Chemical Co., Ltd.) Product name: NK ester AM-230 ), Octoxypoly (n = 18) ethylene glycol acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK ester A-OC-18E), phenoxydiethylene glycol acrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: light acrylate P) -200A, manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK ester AMP-20GY), phenoxypoly (n = 6) ethylene glycol acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK ester AMP-60G) ), Nonylphenol EO adduct (n = 4) acrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light acrylate NP-4EA), nonylphenol EO adduct (n = 8) acrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name) : Light acrylate NP-8EA), methoxydiethylene glycol Tacrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light Ester MC, Shin-Nakamura Chemical Co., Ltd., trade name: NK Ester M-20G), methoxytriethylene glycol methacrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name) : Light ester MTG), Methoxypoly (n = 9) ethylene glycol methacrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light ester 130MA, Shin-Nakamura Chemical Co., Ltd., trade name: NK ester M-90G), Methoxypoly (N = 23) ethylene glycol methacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK ester M-230G), methoxypoly (n = 30) ethylene glycol methacrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: light ester) 041MA). Among these, methoxytriethylene glycol acrylate (R 1 in the general formula (I) is H, R 2 is CH 3 , and n is 3) is more preferable from the viewpoint of reactivity when copolymerized with acrylonitrile. These monomers represented by the general formula (I) can be used alone or in combination of two or more.

(1−1−3)各単量体繰り返し単位の含有量
二トリル基含有単量体由来の繰り返し単位と、カルボキシル基含有単量体由来の繰り返し単位と、式(I)で表される単量体由来の繰り返し単位とのモル比は、例えば、ニトリル基含有単量体由来の繰り返し単位1モルに対して、カルボキシル基含有単量体由来の繰り返し単位が存在するときは、この単位が0.01〜0.2モル、好ましくは0.02〜0.1、より好ましくは、0.03〜0.06モルであり、式(I)で表される単量体由来の繰り返し単位が存在するときは、この単位が0.001〜0.2モル、好ましくは0.003〜0.05モル、より好ましくは0.005〜0.02モルである。
カルボキシル基含有単量体由来の繰り返し単位が0.01〜0.2モル、式(I)で表される単量体由来の繰り返し単位が0.001〜0.2モルであれば、電解液に対する耐膨潤性を維持した状態で、電極の柔軟性・可とう性の向上並びに集電体、特に銅箔を用いた負極集電体との接着性の向上を図ることができる。
(1-1-3) Content of each monomer repeating unit A repeating unit derived from a nitrile group-containing monomer, a repeating unit derived from a carboxyl group-containing monomer, and a single unit represented by the formula (I) The molar ratio with the repeating unit derived from the monomer is, for example, 0% when the repeating unit derived from the carboxyl group-containing monomer is present per 1 mol of the repeating unit derived from the nitrile group-containing monomer. 0.01 to 0.2 mol, preferably 0.02 to 0.1, more preferably 0.03 to 0.06 mol, and there is a repeating unit derived from the monomer represented by formula (I) In this case, this unit is 0.001 to 0.2 mol, preferably 0.003 to 0.05 mol, more preferably 0.005 to 0.02 mol.
If the repeating unit derived from the carboxyl group-containing monomer is 0.01 to 0.2 mol and the repeating unit derived from the monomer represented by the formula (I) is 0.001 to 0.2 mol, the electrolyte solution In the state where the swelling resistance to the above is maintained, the flexibility and flexibility of the electrode can be improved, and the adhesion with the current collector, particularly the negative electrode current collector using copper foil can be improved.

(1−2)フッ化ビニリデン系重合体
本発明におけるフッ化ビニリデン系重合体としては、特に制限はないが、フッ化ビニリデン系重合体に含まれる全繰り返し単位100質量%に対し、フッ化ビニリデン由来の繰り返し単位を80質量%以上含むものが好ましい。例えば、フッ化ビニリデンの単独重合体をはじめ、20質量%以下の割合でエチレン、プロピレン、フッ化ビニル、トリフルオロエチレン、クロロトリフルオロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン、フルオロアルキルビニルエーテル、アリルグリシジルエーテル、クロトン酸グリシジルエステル、不飽和二塩基酸モノエステル、ビニレンカーボネート等の、フッ化ビニリデン以外の単量体由来の繰り返し単位を含む共重合体が挙げられる。これらの共重合を構成する繰り返し単位は、二種類以上を組み合わせて用いることができる。例えば、フッ化ビニリデン系重合体に含まれる全繰り返し単位の質量を100とする場合、フッ化ビニリデン由来の繰り返し単位/フッ化ビニリデン以外の単量体由来の繰り返し単位の質量比は、80/20〜100/0、好ましくは、85/15〜99/1、より好ましくは、90/10〜95/5であることが適当である。
(1-2) Vinylidene fluoride polymer The vinylidene fluoride polymer in the present invention is not particularly limited, but vinylidene fluoride is used with respect to 100% by mass of all repeating units contained in the vinylidene fluoride polymer. What contains 80 mass% or more of derived repeating units is preferable. Examples include homopolymers of vinylidene fluoride, ethylene, propylene, vinyl fluoride, trifluoroethylene, chlorotrifluoroethylene, tetrafluoroethylene, hexafluoropropylene, fluoroalkyl vinyl ether, allyl glycidyl at a ratio of 20% by mass or less. Examples thereof include copolymers containing repeating units derived from monomers other than vinylidene fluoride, such as ether, glycidyl crotonic acid ester, unsaturated dibasic acid monoester, and vinylene carbonate. These repeating units constituting the copolymer can be used in combination of two or more. For example, when the mass of all repeating units contained in the vinylidene fluoride polymer is 100, the mass ratio of repeating units derived from vinylidene fluoride / repeating units derived from monomers other than vinylidene fluoride is 80/20. It is appropriate that it is ˜100 / 0, preferably 85/15 to 99/1, more preferably 90/10 to 95/5.

(1−3)ニトリル系重合体とフッ化ビニリデン系重合体のブレンド比
本発明の非水電解液系エネルギーデバイス用バインダ樹脂組成物におけるニトリル系重合体とフッ化ビニリデン系重合体のブレンド比は、特に制約はないが、例えば、質量比でニトリル系重合体/フッ化ビニリデン系重合体が5/95〜95/5、好ましくは20/80〜90/10、より好ましくは40/60〜80/20であることが適当である。
(1-3) Blend ratio of nitrile polymer and vinylidene fluoride polymer The blend ratio of nitrile polymer and vinylidene fluoride polymer in the binder resin composition for non-aqueous electrolyte energy devices of the present invention is Although there is no particular limitation, for example, the mass ratio of nitrile polymer / vinylidene fluoride polymer is 5/95 to 95/5, preferably 20/80 to 90/10, more preferably 40/60 to 80. / 20 is appropriate.

(2)非水電解液系エネルギーデバイス用バインダ樹脂組成物の調製法
(2−1)バインダ樹脂組成物の形態
本発明のバインダ樹脂組成物は、通常、ニトリル系重合体とフッ化ビニリデン系重合体を個別に、あるいは両方一緒に、溶媒に溶解したワニスの形態で使用される。ワニス状のバインダ樹脂組成物の調製に用いる溶媒としては、特に制限はないが、例えば、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等のアミド類、N,N−ジメチルエチレンウレア、N,N−ジメチルプロピレンウレア、テトラメチルウレア等のウレア類、γ−ブチロラクトン、γ−カプロラクトン等のラクトン類、プロピレンカーボネート等のカーボネート類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、酢酸メチル、酢酸エチル、酢酸n−ブチル、ブチルセロソルブアセテート、ブチルカルビトールアセテート、エチルセロソルブアセテート、エチルカルビトールアセテート等のエステル類、ジグライム、トリグライム、テトラグライム等のグライム類、トルエン、キシレン、シクロヘキサン等の炭化水素類、ジメチルスルホキシド等のスルホキシド類、スルホラン等のスルホン類、メタノール、イソプロパノール、n−ブタノール等のアルコール類、水などが挙げられる。
(2) Preparation method of binder resin composition for non-aqueous electrolyte based energy device (2-1) Form of binder resin composition The binder resin composition of the present invention is usually a nitrile polymer and vinylidene fluoride heavy The coalescence is used individually or both together in the form of a varnish dissolved in a solvent. The solvent used for the preparation of the varnish-like binder resin composition is not particularly limited. For example, amides such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, N , N-dimethylethyleneurea, N, N-dimethylpropyleneurea, ureas such as tetramethylurea, lactones such as γ-butyrolactone, γ-caprolactone, carbonates such as propylene carbonate, acetone, methyl ethyl ketone, methyl isobutyl ketone, Ketones such as cyclohexanone, methyl acetate, ethyl acetate, n-butyl acetate, butyl cellosolve acetate, esters such as butyl carbitol acetate, ethyl cellosolve acetate, ethyl carbitol acetate, diglyme, triglyme, tetraglyce And the like, hydrocarbons such as toluene, xylene and cyclohexane, sulfoxides such as dimethyl sulfoxide, sulfones such as sulfolane, alcohols such as methanol, isopropanol and n-butanol, and water.

これらの溶媒の中では、本発明のバインダ樹脂組成物を構成する重合体に対する溶解性等の点で、アミド類、ウレア類あるいはラクトン類又はそれを含む混合溶媒が好ましく、これらの中でもN−メチル−2−ピロリドン又はそれを含む混合溶媒がより好ましい。これらの溶媒は、単独で又は二種類以上組み合わせて用いられる。   Among these solvents, amides, ureas, lactones, or mixed solvents containing them are preferable from the viewpoint of solubility in the polymer constituting the binder resin composition of the present invention, and among these, N-methyl is preferable. 2-Pyrrolidone or a mixed solvent containing the same is more preferable. These solvents are used alone or in combination of two or more.

上記溶媒の使用量は、常温でバインダ樹脂組成物を構成する重合体が溶解状態を保てる必要最低限の量以上であれば、特に制限はないが、後の非水電解液系エネルギーデバイスの電極作製におけるスラリー調製工程で、通常、溶媒を加えながら粘度調節を行うため、必要以上に希釈し過ぎない任意の量とすることが好ましい。   The amount of the solvent used is not particularly limited as long as the polymer constituting the binder resin composition is at least a necessary minimum amount capable of maintaining a dissolved state at room temperature, but the electrode of the subsequent non-aqueous electrolyte energy device In the slurry preparation step in production, since the viscosity is usually adjusted while adding a solvent, it is preferable to use an arbitrary amount that is not excessively diluted.

(2−2)その他の添加剤
本発明のバインダ樹脂組成物には、必要に応じて他の材料、例えば、電解液に対する耐膨潤性を補完するための架橋成分、電極の柔軟性・可とう性を補完するためのゴム成分、スラリーの電極塗工性を向上させるための増粘剤、沈降防止剤、消泡剤、レベリング剤といった各種添加剤などを配合することもできる。これらの添加剤は、例えば、本発明のバインダ樹脂組成物全体の乾燥質量に対して、0.01〜100質量%、好ましくは、0.1〜30質量%であることが適当である。
(2-2) Other Additives The binder resin composition of the present invention includes, as necessary, a crosslinking component for complementing swelling resistance to other materials, for example, an electrolytic solution, flexibility and flexibility of electrodes. Various additives such as a rubber component for complementing the property, a thickener for improving the electrode coating property of the slurry, an anti-settling agent, an antifoaming agent, and a leveling agent can be blended. These additives are, for example, 0.01 to 100% by mass, preferably 0.1 to 30% by mass with respect to the dry mass of the entire binder resin composition of the present invention.

(3)本発明のバインダ樹脂組成物の用途
本発明のバインダ樹脂組成物は、エネルギーデバイス、特に非水電解液系のエネルギーデバイスに好適に利用される。
非水電解液系エネルギーデバイスとは、水以外の電解液を用いる蓄電又は発電デバイス(装置)を言う。非水電解液系エネルギーデバイスとしては、例えば、リチウム電池、電気二重層キャパシタ、太陽電池等があげられる。
(3) Use of binder resin composition of this invention The binder resin composition of this invention is utilized suitably for an energy device, especially the energy device of a nonaqueous electrolyte system.
A non-aqueous electrolyte-type energy device refers to an electricity storage or power generation device (apparatus) that uses an electrolyte other than water. Examples of the non-aqueous electrolyte based energy device include a lithium battery, an electric double layer capacitor, and a solar battery.

本発明のバインダ樹脂組成物は、水以外の有機溶媒のような非水電解液に対する耐膨潤性が高い。従って、特にリチウム電池の電極において好ましく使用される。
なお、本発明のバインダ樹脂組成物は、非水電解液系エネルギーデバイスのみならず、塗料、接着剤、硬化剤、印刷インキ、ソルダレジスト、研磨剤、電子部品の封止剤、半導体の表面保護膜や層間絶縁膜、電気絶縁用ワニス、バイオマテリアル等の各種コーティングレジンや成形材料、繊維などに幅広く利用できる。
以下、非水電解液系エネルギーデバイス用電極及びこの電極を用いたリチウム電池を例にとって説明する。
The binder resin composition of the present invention has high swelling resistance against non-aqueous electrolytes such as organic solvents other than water. Therefore, it is preferably used particularly for an electrode of a lithium battery.
The binder resin composition of the present invention is not limited to non-aqueous electrolyte-based energy devices, but also paints, adhesives, curing agents, printing inks, solder resists, abrasives, electronic component sealants, and semiconductor surface protection. It can be widely used for various coating resins such as films, interlayer insulation films, varnishes for electrical insulation, biomaterials, molding materials, and fibers.
Hereinafter, an electrode for a non-aqueous electrolyte based energy device and a lithium battery using this electrode will be described as an example.

(a) 非水電解液系エネルギーデバイス用電極
本発明の非水電解液系エネルギーデバイス用電極は、集電体と、該集電体の少なくとも1面に設けられた合剤層を有するものである。本発明のバインダ樹脂組成物は、この合剤層を構成する材料として使用され得る。
(A) Electrode for non-aqueous electrolyte system energy device The electrode for non-aqueous electrolyte system energy device of the present invention has a current collector and a mixture layer provided on at least one surface of the current collector. is there. The binder resin composition of this invention can be used as a material which comprises this mixture layer.

(a−1)集電体
本発明における集電体は、導電性を有する物質であればよく、例えば、金属が使用できる。具体的な金属としては、アルミニウム、銅及びニッケル等が使用できる。
さらに、集電体の形状は、特に限定はないが、非水電解液系エネルギーデバイスであるリチウム電池の高エネルギー密度化という点から、薄膜状が好ましい。集電体の厚みは、例えば、5〜30μm、好ましくは、8〜25μmである。
(A-1) Current Collector The current collector in the present invention may be a substance having conductivity, and for example, a metal can be used. Specific examples of metals that can be used include aluminum, copper, and nickel.
Furthermore, the shape of the current collector is not particularly limited, but a thin film is preferable from the viewpoint of increasing the energy density of a lithium battery that is a non-aqueous electrolyte energy device. The thickness of a collector is 5-30 micrometers, for example, Preferably, it is 8-25 micrometers.

(a−2)合剤層
本発明における合剤層は、活物質及び/又は導電性フィラ等を含む上記バインダ樹脂組成物からなる。合剤層は、例えば、本発明のバインダ樹脂組成物と、活物質及び/又は導電性フィラとを溶媒に溶解してスラリーを調製し、このスラリーを前記集電体に塗布し、溶媒を乾燥除去することによって得られる。
(A-2) Mixture layer The mixture layer in this invention consists of the said binder resin composition containing an active material and / or an electroconductive filler. For example, the mixture layer is prepared by dissolving the binder resin composition of the present invention and the active material and / or the conductive filler in a solvent to prepare a slurry, applying the slurry to the current collector, and drying the solvent. It is obtained by removing.

(a−2−1)活物質
本発明で使用される活物質は、例えば、非水電解液系エネルギーデバイスであるリチウム電池の充放電により可逆的にリチウムイオンを挿入・放出できるものであれば特に制限はない。
しかしながら、正極は、充電時にリチウムイオンを放出し、放電時にリチウムイオンを受け取るという機能を有する一方、負極は、充電時にリチウムイオンを受け取り、放電時にリチウムイオンを放出するという正極とは逆の機能を有するので、正極及び負極で使用される活物質は、通常、それぞれの有する機能にあわせて、異なる材料が使用される。
(A-2-1) Active material The active material used in the present invention is, for example, any material that can reversibly insert and release lithium ions by charging and discharging a lithium battery that is a non-aqueous electrolyte energy device. There is no particular limitation.
However, the positive electrode has a function of releasing lithium ions at the time of charging and receiving lithium ions at the time of discharging, while the negative electrode has a function opposite to that of the positive electrode of receiving lithium ions at the time of charging and releasing lithium ions at the time of discharging. Therefore, different active materials are usually used for the active material used in the positive electrode and the negative electrode in accordance with the respective functions.

負極活物質としては、例えば、黒鉛、非晶質炭素、炭素繊維、コークス、活性炭等の炭素材料が好ましく、このような炭素材料とシリコン、すず、銀等の金属又はこれらの酸化物との複合物なども使用できる。
一方、正極活物質としては、例えば、リチウム及び鉄、コバルト、ニッケル、マンガンから選ばれる1種類以上の金属を少なくとも含有するリチウム含有金属複合酸化物が好ましい。リチウム含有金属複合酸化物としては、例えば、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム等が挙げられる。これらの活物質は単独で又は二種以上組み合わせて用いられる。
活物質の平均粒径(レーザー回析式粒度分布測定装置(例えば、(株)島津製作所製SALD-3000J)で得られる粒度分布の累積50%粒径(D50)の値)は、例えば1μm〜100μm、好ましくは、5〜50μmである。
As the negative electrode active material, for example, carbon materials such as graphite, amorphous carbon, carbon fiber, coke, activated carbon and the like are preferable, and a composite of such a carbon material and a metal such as silicon, tin, silver, or an oxide thereof. Things can also be used.
On the other hand, as the positive electrode active material, for example, a lithium-containing metal composite oxide containing at least one metal selected from lithium and iron, cobalt, nickel, and manganese is preferable. Examples of the lithium-containing metal composite oxide include lithium cobaltate, lithium manganate, and lithium nickelate. These active materials are used alone or in combination of two or more.
The average particle size of the active material (the value of the cumulative 50% particle size (D50) of the particle size distribution obtained with a laser diffraction particle size distribution analyzer (for example, SALD-3000J, manufactured by Shimadzu Corporation)) is, for example, 1 μm to 100 μm, preferably 5 to 50 μm.

(a−2−2)導電性フィラ
導電性フィラは、電極の合剤層における電子の伝導性を向上するために使用される。本発明で使用される導電性フィラとしては、特に制限はないが、例えば、黒鉛、カーボンブラック、アセチレンブラック等が挙げられ、通常、正極側において、導電助剤として使用される。これらの導電性フィラは、単独又は二種類以上組み合わせて使用してもよい。
導電性フィラの平均一次粒径(電子顕微鏡により観察した際の平均値)は、例えば、1〜200nm、好ましくは、10〜100nmである。
(A-2-2) Conductive filler The conductive filler is used to improve the conductivity of electrons in the electrode mixture layer. The conductive filler used in the present invention is not particularly limited, and examples thereof include graphite, carbon black, acetylene black, and the like. Usually, the conductive filler is used as a conductive aid on the positive electrode side. These conductive fillers may be used alone or in combination of two or more.
The average primary particle size (average value when observed with an electron microscope) of the conductive filler is, for example, 1 to 200 nm, preferably 10 to 100 nm.

(a−2−3)溶媒
合剤層の形成に用いられる溶媒としては、特に制限はなく、バインダ樹脂組成物を均一に溶解または分散できる溶媒であればよい。
このような溶媒としては、バインダ樹脂組成物を溶解してワニスを調製する際に用いられる溶媒がそのまま使用される。例えば、水、有機溶媒等の種々の溶媒を使用することができる。これらのうちでは、アミド類、ウレア類あるいはラクトン類又はそれを含む混合溶媒が好ましく、これらの中でもN−メチル−2−ピロリドン又はそれを含む混合溶媒がより好ましい。
これらの溶媒は、単独で又は二種類以上組み合わせて用いてもよい。
(A-2-3) Solvent The solvent used for forming the mixture layer is not particularly limited as long as it can dissolve or disperse the binder resin composition uniformly.
As such a solvent, the solvent used when preparing a varnish by melt | dissolving a binder resin composition is used as it is. For example, various solvents such as water and organic solvents can be used. Of these, amides, ureas or lactones or mixed solvents containing them are preferred, and among these, N-methyl-2-pyrrolidone or mixed solvents containing it are more preferred.
These solvents may be used alone or in combination of two or more.

(a−3)電極の製法
本発明の非水電解液系エネルギーデバイス用電極は、特に制限なく公知の電極の製造方法を利用して製造することができる。例えば、上記バインダ樹脂組成物、溶媒及び活物質及び/又は導電性フィラ等を含むスラリーを集電体の少なくとも1面に塗布し、次いで溶媒を乾燥除去し、必要に応じて圧延して集電体表面に合剤層を形成することにより製造することができる。
(A-3) Electrode production method The electrode for a non-aqueous electrolyte-based energy device of the present invention can be produced using a known electrode production method without particular limitation. For example, a slurry containing the binder resin composition, a solvent and an active material and / or a conductive filler is applied to at least one surface of a current collector, then the solvent is removed by drying, and the current is collected by rolling as necessary. It can be produced by forming a mixture layer on the body surface.

ここで、塗布は、例えば、マイクロアプリケーター、コンマコーター等を用いて行うことができる。塗布は、対向する電極において、単位面積あたりの負極/正極理論容量比が1以上、好ましくは、1〜1.1、より好ましくは、1〜1.05になるように行うことが適当である。ここで、「単位面積あたりの負極/正極理論容量比」は、下記式:
[(負極理論容量mA/g)×(負極塗布量g/cm2)]÷[(正極理論容量mA/g)×(正極塗布量g/cm2)]
から求めることができる。単位面積あたりの負極/正極理論容量比が1以上であれば、最初の充電で負極に取り込まれたまま放電で放出されないLiイオンをおぎなうことができる。
スラリーの塗布量は、例えば、合剤層の乾燥質量が、例えば、2〜30mg/cm2、好ましくは8〜15mg/cm2となる量である。溶媒の除去は、例えば50〜150℃、好ましくは、80〜120℃で、1〜20分間、好ましくは、3〜10分間乾燥することによって行われる。
Here, application | coating can be performed using a micro applicator, a comma coater, etc., for example. It is appropriate that the application is performed so that the negative electrode / positive electrode theoretical capacity ratio per unit area is 1 or more, preferably 1 to 1.1, and more preferably 1 to 1.05, in the facing electrode. . Here, `` the negative electrode / positive electrode theoretical capacity ratio per unit area '' is the following formula:
[(The negative electrode theoretical capacity mA / g) × (the negative electrode application amount g / cm 2 )] ÷ [(the positive electrode theoretical capacity mA / g) × (the positive electrode application amount g / cm 2 )]
Can be obtained from If the negative electrode / positive electrode theoretical capacity ratio per unit area is 1 or more, Li ions that are taken into the negative electrode during the first charge and are not released by discharge can be removed.
The amount of slurry applied is, for example, such that the dry weight of the mixture layer is, for example, 2 to 30 mg / cm 2 , preferably 8 to 15 mg / cm 2 . The removal of the solvent is performed, for example, by drying at 50 to 150 ° C., preferably 80 to 120 ° C. for 1 to 20 minutes, preferably 3 to 10 minutes.

圧延は、例えばロールプレス機を用いて行われ、合剤層のかさ密度が、負極の合剤層の場合、例えば、1〜2g/cm3、好ましくは、1.2〜1.8g/cm3となるように、正極の合剤層の場合、例えば、2〜5g/cm3、好ましくは、3〜4g/cm3となるようにプレスされる。さらに、電極内の残留溶媒、吸着水の除去等のため、例えば、100〜150℃で1〜20時間真空乾燥してもよい。 Rolling is performed using, for example, a roll press machine, and the bulk density of the mixture layer is, for example, 1 to 2 g / cm 3 , preferably 1.2 to 1.8 g / cm when the mixture layer of the negative electrode is used. In the case of the positive electrode material mixture layer, it is pressed so as to be, for example, 2 to 5 g / cm 3 , preferably 3 to 4 g / cm 3 . Furthermore, in order to remove the residual solvent and adsorbed water in the electrode, for example, vacuum drying may be performed at 100 to 150 ° C. for 1 to 20 hours.

(b) リチウム電池
本発明の非水電解液系エネルギーデバイス用電極は、さらに電解液と組み合わせることにより、非水電解液系エネルギーデバイスであるリチウム電池を製造することができる。
(B) Lithium battery The electrode for non-aqueous electrolyte-based energy devices of the present invention can be further combined with an electrolyte to produce a lithium battery that is a non-aqueous electrolyte-based energy device.

(b−1)電解液
本発明で使用する電解液としては、例えば、非水電解液系エネルギーデバイスであるリチウム電池としての機能を発揮させるものであれば特に制限はない。
電解液としては、水以外の電解液、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等のカーボネート類、γ−ブチロラクトン等のラクトン類、トリメトキシメタン、1,2−ジメトキシエタン、ジエチルエーテル、2−エトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン等のエーテル類、ジメチルスルホキシド等のスルホキシド類、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン等のオキソラン類、アセトニトリル、ニトロメタン、N−メチル−2−ピロリドン等の含窒素類、ギ酸メチル、酢酸メチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、リン酸トリエステル等のエステル類、ジグライム、トリグライム、テトラグライム等のグライム類、アセトン、ジエチルケトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、スルホラン等のスルホン類、3−メチル−2−オキサゾリジノン等のオキサゾリジノン類、1,3−プロパンスルトン、4−ブタンスルトン、ナフタスルトン等のスルトン類などの有機溶媒に、LiClO4、LiBF4、LiI、LiPF6、LiCF3、SO3、LiCF3CO2、LiAsF6、LiSbF6、LiAlCl4、LiCl、LiBr、LiB(C254、LiCH3SO3、LiC49SO3、Li(CF3SO22N、Li[(CO222Bなどの電解質を溶解した溶液などが挙げられる。これらの中では、カーボネート類にLiPF6を溶解した溶液が好ましい。電解液は、例えば上記有機溶媒と電解質を、それぞれ単独で又は二種類以上組み合わせて調製し、用いられる。
(B-1) Electrolytic Solution The electrolytic solution used in the present invention is not particularly limited as long as it functions as a lithium battery that is a nonaqueous electrolytic solution energy device, for example.
As the electrolytic solution, an electrolytic solution other than water, for example, carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate, lactones such as γ-butyrolactone, trimethoxymethane, 1, Ethers such as 2-dimethoxyethane, diethyl ether, 2-ethoxyethane, tetrahydrofuran and 2-methyltetrahydrofuran, sulfoxides such as dimethylsulfoxide, oxolanes such as 1,3-dioxolane and 4-methyl-1,3-dioxolane , Nitrogen-containing compounds such as acetonitrile, nitromethane, N-methyl-2-pyrrolidone, esters such as methyl formate, methyl acetate, butyl acetate, methyl propionate, ethyl propionate, phosphate triester , Glymes such as diglyme, triglyme and tetraglyme, ketones such as acetone, diethyl ketone, methyl ethyl ketone and methyl isobutyl ketone, sulfones such as sulfolane, oxazolidinones such as 3-methyl-2-oxazolidinone, 1,3-propane sultone, 4-butane sultone, in an organic solvent such as sultones such Nafutasuruton, LiClO 4, LiBF 4, LiI , LiPF 6, LiCF 3, SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, LiCl, Solution in which an electrolyte such as LiBr, LiB (C 2 H 5 ) 4 , LiCH 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, Li [(CO 2 ) 2 ] 2 B is dissolved Etc. Among these, solution is preferred in which LiPF 6 was dissolved in carbonates. For example, the above-mentioned organic solvent and electrolyte are used alone or in combination of two or more, as the electrolytic solution.

(b−2)リチウム電池の製法
本発明の非水電解液系エネルギーデバイスであるリチウム電池の製造方法については特に制約はないが、いずれも公知の方法を利用できる。例えば、まず、正極と負極の2つの電極を、ポリエチレン微多孔膜からなるセパレータを介して捲回する。このとき、各電極は、合剤層側が電解液と接するように配置する。
得られたスパイラル状の捲回群を電池缶に挿入し、予め負極の集電体に溶接しておいたタブ端子を電池缶底に溶接する。得られた電池缶に電解液を注入し、さらに予め正極の集電体に溶接しておいたタブ端子を電池の蓋に溶接し、蓋を絶縁性のガスケットを介して電池缶の上部に配置し、蓋と電池缶とが接した部分をかしめて密閉することによって電池を得る。
(B-2) Lithium Battery Manufacturing Method There are no particular restrictions on the manufacturing method of the lithium battery that is the non-aqueous electrolyte energy device of the present invention, but any known method can be used. For example, first, two electrodes of a positive electrode and a negative electrode are wound through a separator made of a polyethylene microporous film. At this time, each electrode is arrange | positioned so that the mixture layer side may contact | connect electrolyte solution.
The obtained spiral wound group is inserted into a battery can, and a tab terminal previously welded to a negative electrode current collector is welded to the bottom of the battery can. Inject the electrolyte into the resulting battery can, weld the tab terminal that was previously welded to the positive electrode current collector to the battery lid, and place the lid on the top of the battery can via an insulating gasket A battery is obtained by caulking and sealing the part where the lid and the battery can are in contact.

以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらによって制限されるものではない。
<バインダ樹脂組成物の調製>
合成例1
[ニトリル系重合体1]
撹拌機、温度計、冷却管及び窒素ガス導入管を装備した3リットルのセパラブルフラスコに、精製水1804gを仕込み、窒素ガス通気量200ml/分の条件下、撹拌しながら、74℃まで昇温した後、窒素ガスの通気を止めた。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not restrict | limited by these.
<Preparation of binder resin composition>
Synthesis example 1
[Nitrile polymer 1]
1804 g of purified water is charged into a 3 liter separable flask equipped with a stirrer, thermometer, cooling pipe and nitrogen gas introduction pipe, and the temperature is raised to 74 ° C. while stirring under a nitrogen gas flow rate of 200 ml / min. After that, the ventilation of nitrogen gas was stopped.

次いで、重合開始剤の過硫酸アンモニウム0.968gを精製水76gに溶かした水溶液を添加し、直ちに、ニトリル基含有単量体のアクリロニトリル183.8g、カルボキシル基含有単量体のアクリル酸9.7g(アクリロニトリル1モルに対して0.039モルの割合)及び式(I)で表される単量体のメトキシトリエチレングリコールアクリレート(新中村化学工業(株)製、商品名:NKエステルAM−30G)6.5g(アクリロニトリル1モルに対して0.0085モルの割合)の混合液を、系の温度を74±2℃に保ちながら、2時間かけて滴下した。   Next, an aqueous solution in which 0.968 g of a polymerization initiator ammonium persulfate was dissolved in 76 g of purified water was added, and immediately, 183.8 g of nitrile group-containing monomer acrylonitrile, 9.7 g of acrylic acid of carboxyl group-containing monomer ( 0.039 mol ratio relative to 1 mol of acrylonitrile) and methoxytriethylene glycol acrylate as a monomer represented by formula (I) (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK ester AM-30G) 6.5 g (a ratio of 0.0085 mol with respect to 1 mol of acrylonitrile) was added dropwise over 2 hours while maintaining the temperature of the system at 74 ± 2 ° C.

同温度で1時間反応を進めた後、懸濁した反応系に、過硫酸アンモニウム1.935gを精製水13gに溶かした水溶液を追加添加し、同温度で更に1時間反応を進めた。
続いて、90℃まで昇温し、系の温度を90±2℃に保ちながら、1時間反応を進めた後、過硫酸アンモニウム0.968gを精製水8gに溶かした水溶液を追加添加し、同温度で更に1時間反応を進めた。
After proceeding the reaction at the same temperature for 1 hour, an aqueous solution obtained by dissolving 1.935 g of ammonium persulfate in 13 g of purified water was further added to the suspended reaction system, and the reaction was further proceeded at the same temperature for 1 hour.
Subsequently, the temperature was raised to 90 ° C., and the reaction was allowed to proceed for 1 hour while maintaining the system temperature at 90 ± 2 ° C. Then, an aqueous solution in which 0.968 g of ammonium persulfate was dissolved in 8 g of purified water was added, and the same temperature was maintained. The reaction was further continued for 1 hour.

その後、1時間かけて40℃まで冷却した後、攪拌を止めて一晩室温で放冷し、本発明におけるニトリル系重合体が沈殿した反応液を得た。この反応液を吸引ろ過し、回収した湿潤状態の沈殿を精製水1800gで3回洗浄した後、80℃で10時間真空乾燥して、単離・精製し、ニトリル基含有単量体由来の繰り返し単位を80重量%以上含むニトリル系重合体1(二トリル基含有単量体由来の繰り返し単位:92質量%)の精製粉末を得た。   Then, after cooling to 40 degreeC over 1 hour, stirring was stopped and it stood to cool at room temperature overnight, and the reaction liquid in which the nitrile polymer in this invention precipitated was obtained. The reaction solution was suction filtered, and the collected wet precipitate was washed 3 times with 1800 g of purified water, then vacuum dried at 80 ° C. for 10 hours, isolated and purified, and repeatedly derived from a nitrile group-containing monomer. A purified powder of nitrile polymer 1 containing 80% by weight or more of units (repeat unit derived from nitrile group-containing monomer: 92% by mass) was obtained.

合成例2
[ニトリル系重合体2]
ニトリル基含有単量体のアクリロニトリルを150.0g、カルボキシル基含有単量体のアクリル酸を25.0g(アクリロニトリル1モルに対して0.123モルの割合)及び式(I)で表される単量体のメトキシトリエチレングリコールアクリレートを25.0g(アクリロニトリル1モルに対して0.041モルの割合)使用する以外は、合成例1と同様にして、ニトリル基含有単量体由来の繰り返し単位の含有量が80質量%未満のニトリル系重合体2(二トリル基含有単量体由来の繰り返し単位:75質量%)の精製粉末を得た。
Synthesis example 2
[Nitrile polymer 2]
150.0 g of the nitrile group-containing monomer acrylonitrile, 25.0 g of the acrylic acid of the carboxyl group-containing monomer (a ratio of 0.123 mol with respect to 1 mol of acrylonitrile) and a single unit represented by the formula (I) A repeating unit derived from a nitrile group-containing monomer was prepared in the same manner as in Synthesis Example 1 except that 25.0 g of methoxytriethylene glycol acrylate was used (ratio of 0.041 mol with respect to 1 mol of acrylonitrile). A purified powder of nitrile polymer 2 having a content of less than 80% by mass (repeating unit derived from a nitrile group-containing monomer: 75% by mass) was obtained.

比較例1
撹拌機、温度計、冷却管及び窒素ガス導入管を装備した3リットルのセパラブルフラスコに合成例1で得られたニトリル系重合体1の精製粉末100g、N−メチル−2−ピロリドン(以下、NMPという)1567gを仕込み、極微量(5ml/分以下)の窒素ガス通気下、攪拌しながら70℃に昇温した。同温度で6時間保持して、ニトリル系重合体をNMPに溶解させた後、常温まで冷却し、ニトリル系重合体1のワニス(樹脂分6質量%)を調製した。
Comparative Example 1
100 g of purified powder of nitrile polymer 1 obtained in Synthesis Example 1 in a 3 liter separable flask equipped with a stirrer, thermometer, cooling pipe and nitrogen gas introduction pipe, N-methyl-2-pyrrolidone (hereinafter, 1567 g (referred to as NMP) was charged, and the temperature was raised to 70 ° C. with stirring under a very small amount (5 ml / min or less) of nitrogen gas. The nitrile polymer was dissolved in NMP after being held at the same temperature for 6 hours, and then cooled to room temperature to prepare a varnish (resin content: 6% by mass) of the nitrile polymer 1.

実施例1
比較例1で調製したニトリル系重合体1のワニス(樹脂分6質量%)1000gに、フッ化ビニリデン系重合体としてPVDFのワニス(呉羽化学工業(株)製、商品名:KF9130、NMP溶液、樹脂分13質量%)462gを加えてブレンド〔ニトリル系重合体/フッ化ビニリデン系重合体=50/50(質量比)〕し、本発明のバインダ樹脂組成物のワニスを調製した。
Example 1
To varnish of nitrile polymer 1 prepared in Comparative Example 1 (resin content: 6% by mass), varnish of PVDF as a vinylidene fluoride polymer (manufactured by Kureha Chemical Industry Co., Ltd., trade name: KF9130, NMP solution, 462 g of resin content (13% by mass) was added and blended [nitrile polymer / vinylidene fluoride polymer = 50/50 (mass ratio)] to prepare a varnish of the binder resin composition of the present invention.

比較例2
ニトリル系重合体1の精製粉末の代わりに、合成例2で得られたニトリル系重合体2の精製粉末100gを使用する以外は、比較例1と同様にして、ニトリル系重合体2のワニス(樹脂分6質量%)を調製した。
Comparative Example 2
Instead of the purified powder of nitrile polymer 1, 100 g of purified powder of nitrile polymer 2 obtained in Synthesis Example 2 was used in the same manner as in Comparative Example 1, except that the varnish of nitrile polymer 2 ( Resin content 6 mass%) was prepared.

比較例3
ニトリル系重合体1のワニスの代わりに、比較例2で調製したニトリル系重合体2のワニス(樹脂分6質量%)1000gを使用する以外は、実施例1と同様にして、ブレンドワニスを調製した。
比較例4
実施例1で用いたPVDFのワニスを用意した。
Comparative Example 3
A blend varnish was prepared in the same manner as in Example 1, except that 1000 g of the nitrile polymer 2 varnish (resin content 6 mass%) prepared in Comparative Example 2 was used instead of the nitrile polymer 1 varnish. did.
Comparative Example 4
The PVDF varnish used in Example 1 was prepared.

実施例1及び比較例1〜4で得られた重合体の組成は以下の通りである。
表A

Figure 2007128871
*1)ニトリル系重合体の単位は、ニトリル系重合体に含まれる全繰り返し単位を100質量%とした場合の質量%である
*2)フッ化ビニリデン系重合体の単位は、ニトリル系重合体+フッ化ビニリデン系重合体を100質量%とした場合の質量%である The compositions of the polymers obtained in Example 1 and Comparative Examples 1 to 4 are as follows.
Table A
Figure 2007128871
* 1) The unit of nitrile polymer is% by mass when all repeating units contained in the nitrile polymer are 100% by mass. * 2) The unit of vinylidene fluoride polymer is nitrile polymer. +% By mass based on 100% by mass of vinylidene fluoride polymer

<バインダ樹脂組成物の評価>
(1)電解液に対する耐膨潤性
実施例1、比較例1〜4の各ワニスを、ポリエチレンテレフタレート(以下、PETという)シートにキャストし、100℃のホットプレート上で5時間乾燥した。その後、乾燥した残部をPETシートから剥がして、120℃の真空乾燥機で5時間真空熱処理し、樹脂フィルムを得た。
次いで、得られたフィルムを1.5cm角で4枚切り出し、アルゴンガス充填雰囲気下のグローブボックス中に移して乾燥質量を測定した後、電解液(キシダ化学(株)製、1Mの濃度でLiPF6を溶解したエチレンカーボネート、ジメチルカーボネート及びジエチルカーボネートの等体積混合溶液、以下同様)に2つの条件下(23℃で24時間、50℃で24時間)で浸漬した。
<Evaluation of binder resin composition>
(1) Swelling resistance with respect to electrolyte solution Each varnish of Example 1 and Comparative Examples 1 to 4 was cast on a polyethylene terephthalate (hereinafter referred to as PET) sheet and dried on a hot plate at 100 ° C. for 5 hours. Thereafter, the dried residue was peeled off from the PET sheet and subjected to vacuum heat treatment with a vacuum dryer at 120 ° C. for 5 hours to obtain a resin film.
Next, the obtained film was cut into four 1.5 cm square pieces, transferred into a glove box under an atmosphere filled with argon gas, and the dry mass was measured. Then, an electrolyte (made by Kishida Chemical Co., Ltd., LiPF at a concentration of 1M) was used. 6 was dissolved in an equal volume mixed solution of ethylene carbonate, dimethyl carbonate and diethyl carbonate (the same applies hereinafter) under two conditions (23 ° C. for 24 hours, 50 ° C. for 24 hours).

その後、フィルムを電解液から引き上げ、乾燥タオルペーパーで表面に付着した電解液を拭きとり、直ちに質量を測定した。電解液に対する耐膨潤性は、下式から算出した膨潤度で評価した。   Thereafter, the film was pulled up from the electrolytic solution, the electrolytic solution adhering to the surface was wiped off with dry towel paper, and the mass was immediately measured. The swelling resistance against the electrolytic solution was evaluated by the degree of swelling calculated from the following formula.

膨潤度(質量%)=[(浸漬後の質量−浸漬前の乾燥質量)/浸漬前の乾燥質量]×100
膨潤度が小さい程、電解液に対する耐膨潤性に優れると判断できる。
Swelling degree (mass%) = [(mass after soaking−dry weight before soaking) / dry weight before soaking] × 100
It can be judged that the smaller the degree of swelling, the better the swelling resistance against the electrolytic solution.

(2)負極集電体との接着性、電極の柔軟性・可とう性
実施例1、比較例1〜4の各ワニスと、負極活物質(日立化成工業(株)製、商品名:MAG、塊状人造黒鉛、平均粒径20μm、比表面積4m2/g)を、固形分換算(前記ワニス中の樹脂分と負極活物質との合計を固形分100質量部とする)で前記ワニス中の樹脂分が3.6質量部、負極活物質が96.4質量部となるように配合した後、NMPを全固形分が45.5質量%となるように加えて混練し、スラリーを調製した。
(2) Adhesiveness with negative electrode current collector, flexibility / flexibility of electrode Each varnish of Example 1 and Comparative Examples 1 to 4, negative electrode active material (manufactured by Hitachi Chemical Co., Ltd., trade name: MAG) , Bulk artificial graphite, average particle size 20 μm, specific surface area 4 m 2 / g) in the varnish in terms of solid content (the total of the resin content and the negative electrode active material in the varnish is 100 mass parts solid content) After blending so that the resin content was 3.6 parts by mass and the negative electrode active material was 96.4 parts by mass, NMP was added and kneaded so that the total solid content was 45.5% by mass to prepare a slurry. .

次いで、得られた各スラリーを合剤層の乾燥質量がそれぞれ7、7.5、8、8.5、9、9.5、10、10.5、11mg/cm2となるように負極集電体(日立電線(株)製、圧延銅箔、厚み10μm、200×100mm)の片側表面にマイクロアプリケーターで均一に塗布した。
続いて、塗工物を、90℃の熱風乾燥機で1時間乾燥して合剤層を形成した後、長さ10cm×幅2cmの寸法で短冊状に切り出した。負極集電体との接着性は、上記短冊状の試験片(合剤層の乾燥質量7mg/cm2)について、両端を合剤層形成面を外側にして合わせたときに、合剤層が負極集電体から剥がれない場合を良好、剥がれる場合を不良と評価した。
Then, the obtained slurry was mixed with the negative electrode so that the dry weight of the mixture layer was 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11 mg / cm 2 , respectively. It apply | coated uniformly with the microapplicator on the one-side surface of the electric body (Hitachi Cable Co., Ltd. product, rolled copper foil, thickness 10 micrometers, 200x100 mm).
Subsequently, the coated material was dried with a hot air dryer at 90 ° C. for 1 hour to form a mixture layer, and then cut into strips with dimensions of 10 cm long × 2 cm wide. Adhesiveness to the negative electrode current collector is determined when the mixture layer is aligned with the strip-shaped test piece (dry weight of the mixture layer 7 mg / cm 2 ) with both ends facing the mixture layer forming surface. The case where it did not peel from the negative electrode current collector was evaluated as good, and the case where it peeled off was evaluated as poor.

一方、電極の柔軟性・可とう性は、上記短冊状の試験片(合剤層の乾燥質量がそれぞれ7、7.5、8、8.5、9、9.5、10、10.5、11mg/cm2)について、合剤層の乾燥質量が少ない試験片から順に、試験片の両端を合剤層形成面を外側にして合わせ、かつ、試験片の中心から両端に向かって各1cm離れた部分を、集電体の面が接するように挟持した際、合剤層にひび割れ等の外観不良が発生するときの試験片の合剤層乾燥質量で評価した。試験片の合剤層乾燥質量が大きい程、電極の柔軟性・可とう性に優れると判断できる。 On the other hand, the flexibility / flexibility of the electrode is determined by the strip-shaped test piece (the dry weight of the mixture layer is 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, respectively). 11 mg / cm 2 ), in order from the test piece with the dry mass of the mixture layer having a small dry mass, both ends of the test piece are aligned with the mixture layer forming surface on the outside, and 1 cm each from the center of the test piece toward both ends. When the separated portion was sandwiched so that the surface of the current collector was in contact, the mixture layer was evaluated by the dry weight of the mixture layer of the test piece when an appearance defect such as a crack occurred in the mixture layer. It can be judged that the larger the mixture layer dry mass of the test piece, the better the flexibility and flexibility of the electrode.

(3)リチウム電池の初回充放電特性
初回充放電特性は、初回充放電時の放電容量、不可逆容量及び充放電効率から判断されるリチウム電池の充放電特性の指針である。初回充放電時の放電容量は、作製された電池の容量の指針となり、初回充放電時の放電容量が大きいほど、容量の大きな電池であるといえる。
(3) Initial charge / discharge characteristic of lithium battery The initial charge / discharge characteristic is a guideline for the charge / discharge characteristic of the lithium battery determined from the discharge capacity, irreversible capacity, and charge / discharge efficiency at the first charge / discharge. The discharge capacity at the time of the first charge / discharge serves as a guideline for the capacity of the manufactured battery. It can be said that the larger the discharge capacity at the first charge / discharge, the larger the capacity of the battery.

初回充放電時の不可逆容量は、[初回充電容量−初回放電容量]から求められ、一般に初回充電時の不可逆容量が小さいほど充放電サイクルを繰り返しても容量低下が起こり難く優れた電池であると判断される。
また、初回充放電時の充放電効率は、次式から求められる。
The irreversible capacity at the time of the first charge / discharge is obtained from [initial charge capacity−initial discharge capacity]. Generally, the smaller the irreversible capacity at the time of the first charge, the less the capacity is reduced even if the charge / discharge cycle is repeated. To be judged.
Moreover, the charging / discharging efficiency at the time of first charge / discharge is calculated | required from following Formula.

充放電効率(%)=(初回放電容量/初回充電容量)×100
初回充放電時の充放電効率が大きいほど、充放電サイクルを繰り返しても容量低下が起こり難く優れた電池であると判断される。
Charge / discharge efficiency (%) = (initial discharge capacity / initial charge capacity) × 100
As the charge / discharge efficiency at the first charge / discharge is larger, it is determined that the battery is more excellent in that the capacity is less likely to decrease even if the charge / discharge cycle is repeated.

上記(2)における、実施例1と比較例3のバインダ樹脂組成物のワニスを用いて調製したスラリーを、それぞれ、合剤層の乾燥質量がそれぞれ12.5mg/cm2となるように負極集電体(日立電線(株)製、圧延銅箔、厚み14μm、200×100mm)の片側表面にマイクロアプリケーターで均一に塗布した。 The slurry prepared using the varnishes of the binder resin compositions of Example 1 and Comparative Example 3 in (2) above was prepared so that the dry weight of the mixture layer was 12.5 mg / cm 2 , respectively. It apply | coated uniformly with the microapplicator on the one-side surface of the electric body (Hitachi Electric Cable Co., Ltd. product, rolled copper foil, thickness 14 micrometers, 200x100 mm).

次いで、塗工物を、90℃の熱風乾燥機で1時間乾燥して合剤層を形成した後、ロールプレス機で合剤層のかさ密度が1.5g/cm3となるように圧縮成形した。続いて、これを120℃の真空乾燥機で5時間真空熱処理し、作用極を準備した。
これとは別に、表面を軽く磨いた厚さ1mmの金属リチウム(三井金属工業(株)製)を対極として準備した。
Next, the coated material is dried with a hot air dryer at 90 ° C. for 1 hour to form a mixture layer, and then compression molded so that the bulk density of the mixture layer is 1.5 g / cm 3 with a roll press. did. Then, this was vacuum-heat-treated for 5 hours with a 120 degreeC vacuum dryer, and the working electrode was prepared.
Separately, 1 mm thick metal lithium (Mitsui Metal Industry Co., Ltd.) with a lightly polished surface was prepared as a counter electrode.

また、作用極と対極とを分離するための絶縁体として、セパレーター(東燃タピルス(株)製、微細孔ポリオレフィン、厚み25μm、以下同様)を電解液でしめらせたものを準備した。アルゴンガス充填雰囲気下のグローブボックス中で、上記作用極と対極を、セパレーター−対極−セパレーター−作用極−セパレーターの順に積層し、積層体を得た。
得られた積層体の上面及び下面にステンレス製の治具を取り付けて積層体が剥離しないように固定した後、ガラス製の容器に入れて密閉構造の単極セルを作製した。
In addition, as an insulator for separating the working electrode and the counter electrode, a separator (manufactured by Tonen Tapils Co., Ltd., microporous polyolefin, thickness 25 μm, the same applies hereinafter) was prepared with an electrolyte. In a glove box under an argon gas filled atmosphere, the working electrode and the counter electrode were laminated in the order of separator-counter electrode-separator-working electrode-separator to obtain a laminate.
A stainless steel jig was attached to the upper and lower surfaces of the obtained laminate to fix the laminate so that it was not peeled off, and then placed in a glass container to produce a sealed monopolar cell.

この単極セルについて、充放電装置(東洋システム(株)製、TOSCAT3100)を用い、アルゴンガス充填雰囲気下のグローブボックス中、23℃、充電電流0.5mA(0.28mA/cm2)で0Vまで定電流充電を行った。
なお、この定電流充電は、対極がリチウム金属であるので、電位の関係上、作用極が正極になるため、正確には放電である。
About this monopolar cell, 0 V at a charging current of 0.5 mA (0.28 mA / cm 2 ) at 23 ° C. in a glove box under an argon gas filled atmosphere using a charge / discharge device (manufactured by Toyo System Co., Ltd., TOSCAT3100). Until constant current charging.
The constant current charging is precisely a discharge because the counter electrode is a lithium metal and the working electrode is a positive electrode due to the potential.

しかし、ここでは、作用極の黒鉛へのリチウムイオンの挿入反応を“充電”と定義する。電圧が0Vに達した時点で定電圧充電に切り替え、さらに電流値が0.02mAに減衰するまで充電を続けた後、放電電流0.5mAで放電終止電圧1.5Vに達するまで定電流放電を行った。このときの黒鉛1g当りの充電容量と放電容量を測定し、さらに不可逆容量及び充放電効率を算出し、単極セルの初回充放電特性を評価した。   However, here, the lithium ion insertion reaction into the working electrode graphite is defined as “charging”. When the voltage reaches 0V, switch to constant voltage charging, continue charging until the current value decays to 0.02mA, and then discharge constant current until the discharge end voltage reaches 1.5V at a discharge current of 0.5mA. went. At this time, the charge capacity and discharge capacity per gram of graphite were measured, and the irreversible capacity and charge / discharge efficiency were calculated to evaluate the initial charge / discharge characteristics of the single electrode cell.

放電容量が、345mAh/g以上、好ましくは、350mAh/g以上であり、不可逆容量が、35mAh/g以下、好ましくは、30mAh/g以下であり、充放電効率が、90%以上、好ましくは、92%以上であれば、単極セルの初回充放電特性は良好と評価される。
上記各ワニスの諸特性の評価結果を表1に示す。
The discharge capacity is 345 mAh / g or more, preferably 350 mAh / g or more, the irreversible capacity is 35 mAh / g or less, preferably 30 mAh / g or less, and the charge / discharge efficiency is 90% or more, preferably If it is 92% or more, the first-time charge / discharge characteristic of a single electrode cell will be evaluated as favorable.
Table 1 shows the evaluation results of various characteristics of each varnish.

Figure 2007128871
*1 接着不良により評価不可
(負極集電体との接着性試験において合剤層剥離)
*2 接着不良により単極セル作製不可
(単極セル作製におけるロールプレス工程において合剤層剥離)
Figure 2007128871
* 1 Cannot be evaluated due to poor adhesion (mixture layer peeling in adhesion test with negative electrode current collector)
* 2 Monopolar cell fabrication is not possible due to poor adhesion (mixture layer peeling in roll press process in monopolar cell fabrication)

表1から、本発明のバインダ樹脂組成物(実施例1)は、比較例2〜4に比べ電解液に対する耐膨潤性に優れ、比較例4に比べ集電体との接着性が良好であり、なおかつ、比較例1、2に比べ電極の柔軟性・可とう性に優れていることがわかる。
また、単極セルの初回充放電特性が良好(放電容量及び充放電効率が大きく、不可逆容量が小さい)であり、比較例1〜4に比べ特性バランスに優れていることがわかる。
From Table 1, the binder resin composition of the present invention (Example 1) is superior in swelling resistance to the electrolytic solution as compared with Comparative Examples 2 to 4, and has better adhesion to the current collector than Comparative Example 4. And it turns out that the softness | flexibility and flexibility of an electrode are excellent compared with the comparative examples 1 and 2. FIG.
In addition, it can be seen that the initial charge / discharge characteristics of the monopolar cell are good (the discharge capacity and charge / discharge efficiency are large and the irreversible capacity is small), and the characteristics balance is superior to Comparative Examples 1 to 4.

ちなみに、耐膨潤性が良い程、初回充放電特性が良い傾向が認められるが、これは、充放電の際、電極の導電ネットワークが崩壊しにくいためと考えられる。このことをもっとはっきりさせるため、耐膨潤性の異なる実施例1と比較例3のバインダ樹脂組成物を用いて、リチウム電池を組み立て、50℃充放電サイクル試験を行った。以下、その評価法と結果について説明する。   Incidentally, the better the swelling resistance, the better the initial charge / discharge characteristics, which is considered to be because the conductive network of the electrode is less likely to collapse during charge / discharge. In order to make this clearer, lithium batteries were assembled using the binder resin compositions of Example 1 and Comparative Example 3 having different swelling resistance, and a 50 ° C. charge / discharge cycle test was performed. Hereinafter, the evaluation method and results will be described.

<リチウム電池の充放電サイクル特性の評価>
(1)負極の作製
実施例2
上記(2)における、実施例1のバインダ樹脂組成物のワニスを用いて調製したスラリーを、合剤層の乾燥質量が29mg/cm2となるように負極集電体(日立電線(株)製、圧延銅箔、厚み10μm、200×100mm)の両側表面に転写ロールで均一に塗布した。
<Evaluation of charge / discharge cycle characteristics of lithium battery>
(1) Production Example 2 of Negative Electrode
The slurry prepared using the binder resin composition varnish of Example 1 in (2) above was prepared by using a negative electrode current collector (manufactured by Hitachi Cable Ltd.) such that the dry weight of the mixture layer was 29 mg / cm 2 . , Rolled copper foil, thickness 10 μm, 200 × 100 mm) was uniformly coated with a transfer roll.

次いで、塗工物を、120℃のコンベア炉で5分間乾燥して合剤層を形成した後、ロールプレス機で合剤層のかさ密度が1.6g/cm3となるように圧縮成形した。これを56mm角に裁断して短冊状のシートを作製し、120℃の真空乾燥機で5時間真空熱処理して負極を得た。 Next, the coated product was dried in a conveyor furnace at 120 ° C. for 5 minutes to form a mixture layer, and then compression molded by a roll press so that the bulk density of the mixture layer was 1.6 g / cm 3 . . This was cut into a 56 mm square to produce a strip-shaped sheet, which was then heat-treated in a vacuum dryer at 120 ° C. for 5 hours to obtain a negative electrode.

比較例5
バインダ樹脂組成物として比較例3のワニスを用いる以外は、実施例2と同様にして負極を得た。
Comparative Example 5
A negative electrode was obtained in the same manner as in Example 2 except that the varnish of Comparative Example 3 was used as the binder resin composition.

(2)正極の作製
作製例1
バインダ樹脂組成物としてPVDFのワニス(呉羽化学工業(株)製、KF1120、NMP溶液、樹脂分12質量%)と、正極活物質としてコバルト酸リチウム(平均粒径10μm)を、人造黒鉛系導電助剤(日本黒鉛工業(株)製、商品名:JSP、平均粒径3μm)及びカーボンブラック系導電助剤(電気化学工業(株)製、商品名:デンカブラックHS−100、平均粒径48nm)を、固形分換算(前記ワニス中の樹脂分:正極活物質:人造黒鉛系導電助剤:カーボンブラック系導電助剤)で3.2:86.0:9.0:1.8(質量比)となるように配合し、ここにNMPを全固形分が60.0質量%となるように加え、混練してスラリーを調製した。
(2) Production Example 1 of Positive Electrode
PVDF varnish (manufactured by Kureha Chemical Industry Co., Ltd., KF1120, NMP solution, resin content 12 mass%) as binder resin composition, lithium cobaltate (average particle size 10 μm) as positive electrode active material, artificial graphite-based conductive assistant Agent (manufactured by Nippon Graphite Industries Co., Ltd., trade name: JSP, average particle size 3 μm) and carbon black conductive auxiliary agent (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: Denka Black HS-100, average particle size 48 nm) Is 3.2: 86.0: 9.0: 1.8 (mass ratio) in terms of solid content (resin content in the varnish: positive electrode active material: artificial graphite conductive aid: carbon black conductive aid) And NMP was added so that the total solid content was 60.0% by mass, and kneaded to prepare a slurry.

これを、合剤層の乾燥質量が65mg/cm2となるように正極集電体(アルミニウム箔、厚み10μm)の両側表面上に、転写ロールで均一に塗布した。
次いで、塗工物を、120℃のコンベア炉で5分間乾燥して合剤層を形成した後、ロールプレス機で合剤層のかさ密度が3.2g/cm3となるように圧縮成形した。これを54mm幅に裁断して短冊状のシートを作製し、120℃の真空乾燥機で5時間真空熱処理して正極を得た。
This was applied uniformly on both side surfaces of the positive electrode current collector (aluminum foil, thickness 10 μm) with a transfer roll so that the dry mass of the mixture layer was 65 mg / cm 2 .
Next, the coated product was dried in a conveyor furnace at 120 ° C. for 5 minutes to form a mixture layer, and then compression molded by a roll press so that the bulk density of the mixture layer was 3.2 g / cm 3 . . This was cut into a width of 54 mm to produce a strip-shaped sheet, and subjected to vacuum heat treatment with a vacuum dryer at 120 ° C. for 5 hours to obtain a positive electrode.

(3)リチウム電池の作製
上記実施例2、比較例5及び作製例1で得られた負極及び正極の集電体露出部にニッケル製の集電タブを超音波溶着した後、これらをセパレーターを介して自動捲回機で捲回し、スパイラル状の捲回群を作製した。この捲回群を電池缶に挿入し、負極の集電タブ端子を電池缶底に溶接した後、正極の集電タブ端子を蓋に溶接した。このとき、負極及び正極は、合剤層側が電解液と接するように配置した。
(3) Production of Lithium Battery After a nickel current collector tab was ultrasonically welded to the current collector exposed portions of the negative electrode and the positive electrode obtained in Example 2, Comparative Example 5 and Production Example 1, these were used as separators. And wound with an automatic winding machine to produce a spiral wound group. The wound group was inserted into a battery can, and the current collecting tab terminal of the negative electrode was welded to the bottom of the battery can, and then the current collecting tab terminal of the positive electrode was welded to the lid. At this time, the negative electrode and the positive electrode were arranged so that the mixture layer side was in contact with the electrolytic solution.

次いで、これを蓋が開口した状態で60℃、12時間真空乾燥した。その後、電池缶にアルゴンガス充填雰囲気下のグローブボックス中で電解液を約5ml注入した。その後、電池缶と蓋とをかしめて密閉し、18650型リチウム電池(円筒形、直径18mm、高さ65mm)を作製した。   Subsequently, this was vacuum-dried at 60 ° C. for 12 hours with the lid opened. Thereafter, about 5 ml of the electrolyte was injected into the battery can in a glove box under an atmosphere filled with argon gas. Thereafter, the battery can and the lid were caulked and sealed to produce a 18650 type lithium battery (cylindrical, 18 mm in diameter, 65 mm in height).

得られた18650型リチウム電池について、充放電装置(東洋システム(株)製、TOSCAT3000)を用い、50℃、充電電流800mAで4.2Vまで定電流充電を行い、電圧が4.2Vに達した時点で定電圧充電に切り替え、さらに電流値が20mAに減衰するまで充電を続けた。その後、放電電流800mAで放電終止電圧3.0Vに達するまで定電流放電を行い、初回放電容量を測定した。   The obtained 18650 type lithium battery was subjected to constant current charging to 4.2 V at 50 ° C. and a charging current of 800 mA using a charge / discharge device (manufactured by Toyo System Co., Ltd., TOSCAT 3000), and the voltage reached 4.2 V. At that time, switching to constant voltage charging was continued until the current value was further attenuated to 20 mA. Thereafter, constant current discharge was performed at a discharge current of 800 mA until the discharge end voltage reached 3.0 V, and the initial discharge capacity was measured.

次いで、この条件での充電・放電を1サイクルとし、200サイクル充放電を繰り返した。18650型リチウム電池の充放電サイクル特性は、初回放電容量を維持率100%とした時の200サイクル後の放電容量維持率で評価した。放電容量維持率は、下記の式より算出した。   Next, charging / discharging under this condition was defined as one cycle, and charging / discharging was repeated 200 cycles. The charge / discharge cycle characteristics of the 18650 type lithium battery were evaluated by the discharge capacity retention rate after 200 cycles when the initial discharge capacity was assumed to be 100%. The discharge capacity retention rate was calculated from the following equation.

放電容量維持率(%)=(200サイクル後の放電容量/初回放電容量)×100
放電容量維持率が、85%以上、好ましくは、90%以上であれば、電池が充放電サイクルを繰り返しても容量低下が起こりにくいため、充放電サイクル特性に優れていると判断できる。その結果を表2に示す。
Discharge capacity retention rate (%) = (discharge capacity after 200 cycles / initial discharge capacity) × 100
If the discharge capacity retention ratio is 85% or more, preferably 90% or more, it is possible to determine that the battery is excellent in charge / discharge cycle characteristics because the capacity hardly decreases even if the battery repeats the charge / discharge cycle. The results are shown in Table 2.

Figure 2007128871
Figure 2007128871

表2から、本発明のバインダ樹脂組成物を用いて作製される電極を使用したリチウム電池(実施例3)は、比較例6に比べ充放電サイクル特性に優れていることがわかる。 Table 2 shows that the lithium battery (Example 3) using the electrode produced using the binder resin composition of the present invention is superior in charge / discharge cycle characteristics as compared with Comparative Example 6.

Claims (9)

ニトリル基含有単量体由来の繰り返し単位を80質量%以上含むニトリル系重合体と、フッ化ビニリデン系重合体を含有してなる非水電解液系エネルギーデバイス電極用バインダ樹脂組成物。   A binder resin composition for a non-aqueous electrolyte-based energy device electrode, comprising a nitrile polymer containing 80% by mass or more of a repeating unit derived from a nitrile group-containing monomer and a vinylidene fluoride polymer. 前記ニトリル基含有単量体が、アクリロニトリルである請求項1記載の非水電解液系エネルギーデバイス電極用バインダ樹脂組成物。   The binder resin composition for a non-aqueous electrolyte-based energy device electrode according to claim 1, wherein the nitrile group-containing monomer is acrylonitrile. 前記ニトリル系重合体が、ニトリル基含有単量体由来の繰り返し単位と、カルボキシル基含有単量体由来の繰り返し単位、及び/又は式(I)
Figure 2007128871
(式中、R1はH又はCH3、R2はH又は1価の炭化水素基、nは1〜50の整数である)
で表される単量体由来の繰り返し単位とを含有してなる請求項1又は2記載の非水電解液系エネルギーデバイス電極用バインダ樹脂組成物。
The nitrile polymer is a repeating unit derived from a nitrile group-containing monomer, a repeating unit derived from a carboxyl group-containing monomer, and / or formula (I).
Figure 2007128871
(Wherein R 1 is H or CH 3 , R 2 is H or a monovalent hydrocarbon group, and n is an integer of 1 to 50)
The binder resin composition for nonaqueous electrolyte system energy device electrodes of Claim 1 or 2 formed by containing the repeating unit derived from the monomer represented by these.
前記カルボキシル基含有単量体が、アクリル酸である請求項3記載の非水電解液系エネルギーデバイス電極用バインダ樹脂組成物。   The binder resin composition for non-aqueous electrolyte system energy device electrodes according to claim 3, wherein the carboxyl group-containing monomer is acrylic acid. 前記式(I)で表される単量体がメトキシトリエチレングリコールアクリレートである請求項3記載の非水電解液系エネルギーデバイス電極用バインダ樹脂組成物。   The binder resin composition for non-aqueous electrolyte system energy device electrodes according to claim 3, wherein the monomer represented by the formula (I) is methoxytriethylene glycol acrylate. 前記ニトリル基含有単量体由来の繰り返し単位1モルに対して、前記カルボキシル基含有単量体由来の繰り返し単位が0.01〜0.2モル及び/又は前記式(I)で表される単量体由来の繰り返し単位が0.001〜0.2モルである請求項3〜5のいずれかに記載の非水電解液系エネルギーデバイス電極用バインダ樹脂組成物。   With respect to 1 mol of the repeating unit derived from the nitrile group-containing monomer, 0.01 to 0.2 mol of the repeating unit derived from the carboxyl group-containing monomer and / or a single unit represented by the formula (I) 6. The binder resin composition for a non-aqueous electrolyte energy device electrode according to claim 3, wherein the repeating unit derived from a monomer is 0.001 to 0.2 mol. 集電体と、該集電体の少なくとも1面に設けられた合剤層とを有し、該合剤層が、活物質及び/又は導電性フィラを含む請求項1〜6のいずれかに記載の非水電解液系エネルギーデバイス電極用バインダ樹脂組成物からなる、非水電解液系エネルギーデバイス電極。   It has a current collector and a mixture layer provided on at least one surface of the current collector, and the mixture layer contains an active material and / or a conductive filler. A non-aqueous electrolyte type energy device electrode comprising the binder resin composition for a non-aqueous electrolyte type energy device electrode as described. 請求項7記載の非水電解液系エネルギーデバイス電極を含む、非水電解液系エネルギーデバイス。   A non-aqueous electrolyte-type energy device comprising the non-aqueous electrolyte-type energy device electrode according to claim 7. 非水電解液系エネルギーデバイスが、リチウム電池である請求項8記載の非水電解液系エネルギーデバイス。   The nonaqueous electrolytic solution energy device according to claim 8, wherein the nonaqueous electrolytic solution energy device is a lithium battery.
JP2006274239A 2005-10-07 2006-10-05 Binder resin composition for non-aqueous electrolyte energy device electrode, non-aqueous electrolyte energy device electrode and non-aqueous electrolyte energy device using the same Expired - Fee Related JP5428126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006274239A JP5428126B2 (en) 2005-10-07 2006-10-05 Binder resin composition for non-aqueous electrolyte energy device electrode, non-aqueous electrolyte energy device electrode and non-aqueous electrolyte energy device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005294881 2005-10-07
JP2005294881 2005-10-07
JP2006274239A JP5428126B2 (en) 2005-10-07 2006-10-05 Binder resin composition for non-aqueous electrolyte energy device electrode, non-aqueous electrolyte energy device electrode and non-aqueous electrolyte energy device using the same

Publications (2)

Publication Number Publication Date
JP2007128871A true JP2007128871A (en) 2007-05-24
JP5428126B2 JP5428126B2 (en) 2014-02-26

Family

ID=38151316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006274239A Expired - Fee Related JP5428126B2 (en) 2005-10-07 2006-10-05 Binder resin composition for non-aqueous electrolyte energy device electrode, non-aqueous electrolyte energy device electrode and non-aqueous electrolyte energy device using the same

Country Status (1)

Country Link
JP (1) JP5428126B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225423A (en) * 2009-03-24 2010-10-07 Daikin Ind Ltd Slurry for electrode mix of lithium secondary battery, electrode, method for manufacturing the same, and lithium secondary battery
JP2011249302A (en) * 2010-04-28 2011-12-08 Hitachi Chem Co Ltd Composite particle, manufacturing method of composite particle, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2012059635A (en) * 2010-09-10 2012-03-22 Hitachi Chem Co Ltd Composite particle, method for producing composite particle, negative electrode for lithium ion secondary battery, method for manufacturing negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2012049967A1 (en) * 2010-10-14 2012-04-19 株式会社クレハ Negative electrode mix for non-aqueous electrolyte secondary batteries, negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
JP2012510142A (en) * 2008-11-27 2012-04-26 ビーワイディー カンパニー リミテッド Silicon-based negative electrode, lithium ion battery, and method for manufacturing silicon-based negative electrode
WO2012093689A1 (en) * 2011-01-06 2012-07-12 三菱レイヨン株式会社 Modifier for polyvinylidene fluoride, binder resin composition for batteries, secondary cell electrode, and battery
WO2014051067A1 (en) * 2012-09-28 2014-04-03 日本ゼオン株式会社 Lithium ion secondary battery
WO2015064099A1 (en) * 2013-10-31 2015-05-07 日本ゼオン株式会社 Slurry composition for positive electrode for lithium ion rechargeable battery, positive electrode for lithium ion rechargeable battery, and lithium ion rechargeable battery
JP2017016950A (en) * 2015-07-03 2017-01-19 日立化成株式会社 Lithium ion secondary battery
WO2018180231A1 (en) * 2017-03-28 2018-10-04 東亞合成株式会社 Binder for non-aqueous electrolyte secondary battery electrodes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302799A (en) * 1997-04-25 1998-11-13 Jsr Corp Binder for nonaqueous battery electrode
JP2000021407A (en) * 1998-06-30 2000-01-21 Toshiba Corp Lithium secondary battery
JP2003317722A (en) * 2002-04-26 2003-11-07 Kureha Chem Ind Co Ltd Binder composition for nonaqueous secondary battery electrode, electrode mix composition, electrode and secondary battery
JP2004185826A (en) * 2002-11-29 2004-07-02 Nippon Zeon Co Ltd Slurry composition for electrode, electrode and secondary battery
WO2006033173A1 (en) * 2004-09-22 2006-03-30 Hitachi Chemical Company, Ltd. Binder resin composition for nonaqueous electrolyte energy device electrode, nonaqueous electrolyte energy device electrode, and nonaqueous electrolyte energy device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302799A (en) * 1997-04-25 1998-11-13 Jsr Corp Binder for nonaqueous battery electrode
JP2000021407A (en) * 1998-06-30 2000-01-21 Toshiba Corp Lithium secondary battery
JP2003317722A (en) * 2002-04-26 2003-11-07 Kureha Chem Ind Co Ltd Binder composition for nonaqueous secondary battery electrode, electrode mix composition, electrode and secondary battery
JP2004185826A (en) * 2002-11-29 2004-07-02 Nippon Zeon Co Ltd Slurry composition for electrode, electrode and secondary battery
WO2006033173A1 (en) * 2004-09-22 2006-03-30 Hitachi Chemical Company, Ltd. Binder resin composition for nonaqueous electrolyte energy device electrode, nonaqueous electrolyte energy device electrode, and nonaqueous electrolyte energy device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012510142A (en) * 2008-11-27 2012-04-26 ビーワイディー カンパニー リミテッド Silicon-based negative electrode, lithium ion battery, and method for manufacturing silicon-based negative electrode
JP2010225423A (en) * 2009-03-24 2010-10-07 Daikin Ind Ltd Slurry for electrode mix of lithium secondary battery, electrode, method for manufacturing the same, and lithium secondary battery
JP2011249302A (en) * 2010-04-28 2011-12-08 Hitachi Chem Co Ltd Composite particle, manufacturing method of composite particle, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2012059635A (en) * 2010-09-10 2012-03-22 Hitachi Chem Co Ltd Composite particle, method for producing composite particle, negative electrode for lithium ion secondary battery, method for manufacturing negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2012049967A1 (en) * 2010-10-14 2012-04-19 株式会社クレハ Negative electrode mix for non-aqueous electrolyte secondary batteries, negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
JPWO2012093689A1 (en) * 2011-01-06 2014-06-09 三菱レイヨン株式会社 Polyvinylidene fluoride modifier, battery binder resin composition, secondary battery electrode and battery
JP5888228B2 (en) * 2011-01-06 2016-03-16 三菱レイヨン株式会社 Polyvinylidene fluoride modifier, battery binder resin composition, secondary battery electrode and battery
EP2662394A4 (en) * 2011-01-06 2013-11-27 Mitsubishi Rayon Co Modifier for polyvinylidene fluoride, binder resin composition for batteries, secondary cell electrode, and battery
CN103429628A (en) * 2011-01-06 2013-12-04 三菱丽阳株式会社 Modifier for polyvinylidene fluoride, binder resin composition for batteries, secondary cell electrode, and battery
EP2662394A1 (en) * 2011-01-06 2013-11-13 Mitsubishi Rayon Co., Ltd. Modifier for polyvinylidene fluoride, binder resin composition for batteries, secondary cell electrode, and battery
WO2012093689A1 (en) * 2011-01-06 2012-07-12 三菱レイヨン株式会社 Modifier for polyvinylidene fluoride, binder resin composition for batteries, secondary cell electrode, and battery
JPWO2014051067A1 (en) * 2012-09-28 2016-08-25 日本ゼオン株式会社 Lithium ion secondary battery
CN104396060A (en) * 2012-09-28 2015-03-04 日本瑞翁株式会社 Lithium ion secondary battery
WO2014051067A1 (en) * 2012-09-28 2014-04-03 日本ゼオン株式会社 Lithium ion secondary battery
KR102060429B1 (en) * 2012-09-28 2019-12-30 제온 코포레이션 Lithium ion secondary battery
WO2015064099A1 (en) * 2013-10-31 2015-05-07 日本ゼオン株式会社 Slurry composition for positive electrode for lithium ion rechargeable battery, positive electrode for lithium ion rechargeable battery, and lithium ion rechargeable battery
JPWO2015064099A1 (en) * 2013-10-31 2017-03-09 日本ゼオン株式会社 Slurry composition for positive electrode of lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2017016950A (en) * 2015-07-03 2017-01-19 日立化成株式会社 Lithium ion secondary battery
WO2018180231A1 (en) * 2017-03-28 2018-10-04 東亞合成株式会社 Binder for non-aqueous electrolyte secondary battery electrodes
CN110476285A (en) * 2017-03-28 2019-11-19 东亚合成株式会社 Non-aqueous electrolyte secondary battery electrode binding agent
JPWO2018180231A1 (en) * 2017-03-28 2020-05-14 東亞合成株式会社 Binder for non-aqueous electrolyte secondary battery electrode
US11870076B2 (en) 2017-03-28 2024-01-09 Toagosei Co., Ltd. Binder for nonaqueous electrolyte secondary battery electrode

Also Published As

Publication number Publication date
JP5428126B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP4636444B2 (en) Binder resin composition for non-aqueous electrolyte system energy device electrode, non-aqueous electrolyte system energy device electrode, and non-aqueous electrolyte system energy device
JP5428126B2 (en) Binder resin composition for non-aqueous electrolyte energy device electrode, non-aqueous electrolyte energy device electrode and non-aqueous electrolyte energy device using the same
JP5803070B2 (en) Binder resin composition, electrode for energy device and energy device
JP2010092719A (en) Adhesion additive for nonaqueous electrolyte energy device electrode, binder resin composition for nonaqueous electrolyte energy device electrode using the same, nonaqueous electrolyte energy device electrode using the same, and nonaqueous electrolyte energy device
JP6226355B2 (en) Binder for lithium ion secondary battery, negative electrode active material layer for lithium ion secondary battery, and lithium ion secondary battery
JP5376771B2 (en) Organic electrolyte and lithium battery using the same
WO2011002097A1 (en) Slurry for electrode mixture of lithium secondary cell, electrode using the slurry, and lithium secondary cell
JP2971451B1 (en) Lithium secondary battery
KR20180041683A (en) A composition for a non-aqueous secondary battery functional layer, a functional layer for a non-aqueous secondary battery, and a non-aqueous secondary battery
CN108140842B (en) Binder for secondary battery electrode, secondary battery electrode composition comprising same, and secondary battery using same
JP2004281055A (en) Binder resin composition for battery, mix slurry, electrode and battery using resin containing carboxyl group
JP2011134492A (en) Binder resin composition for nonaqueous electrolytic energy device electrode, nonaqueous electrolytic energy device electrode, and nonaqueous electrolytic energy device
JP5790193B2 (en) Binder resin material for energy device electrode, energy device electrode and energy device
JP2008311217A (en) Binder resin composition for nonaqueous electrolyte energy device electrode, nonaqueous electrolyte energy device electrode using the composition, and nonaqueous electrolyte energy device
JP6789498B2 (en) Compositions for forming energy device electrodes, positive electrodes for energy devices and energy devices
JPWO2018155714A1 (en) Composite resin for energy device electrode, composition for forming energy device electrode, positive electrode for energy device, and energy device
JP2010174058A (en) Polymer particle and binder resin composition for nonaqueous electrolyte energy device using the same
JP6020615B2 (en) Electrode for energy device, energy device and lithium ion secondary battery
JP6904413B2 (en) Resin for energy device electrode, composition for forming energy device electrode, energy device electrode and energy device
JP5136946B2 (en) Binder resin composition for non-aqueous electrolyte system energy device electrode, electrode for non-aqueous electrolyte system energy device using the same, and non-aqueous electrolyte system energy device
JP2016213027A (en) Binder resin composition for electrodes of nonaqueous electrolyte energy devices, nonaqueous electrolyte energy device electrode arranged by use thereof, and nonaqueous electrolyte energy device
JP2008270142A (en) Binder resin composition for nonaqueous electrolyte system energy device electrode, nonaqueous electrolyte system energy device electrode using this resin composition, and nonaqueous electrolyte system energy device
JP4707312B2 (en) Non-aqueous solvent type secondary battery
JP2005327630A (en) Binder resin composite for lithium cell electrodes, electrode for lithium cells and lithium cell
WO2023282246A1 (en) Composition for forming electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R151 Written notification of patent or utility model registration

Ref document number: 5428126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees