JP6936661B2 - Manufacturing method of all-solid-state battery - Google Patents

Manufacturing method of all-solid-state battery Download PDF

Info

Publication number
JP6936661B2
JP6936661B2 JP2017162328A JP2017162328A JP6936661B2 JP 6936661 B2 JP6936661 B2 JP 6936661B2 JP 2017162328 A JP2017162328 A JP 2017162328A JP 2017162328 A JP2017162328 A JP 2017162328A JP 6936661 B2 JP6936661 B2 JP 6936661B2
Authority
JP
Japan
Prior art keywords
solid
solid electrolyte
state battery
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017162328A
Other languages
Japanese (ja)
Other versions
JP2019040759A (en
Inventor
英丈 岡本
英丈 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2017162328A priority Critical patent/JP6936661B2/en
Publication of JP2019040759A publication Critical patent/JP2019040759A/en
Application granted granted Critical
Publication of JP6936661B2 publication Critical patent/JP6936661B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、固体電解質層を備える全固体電池の製造方法に関する。 The present invention relates to a method for manufacturing an all-solid-state battery including a solid electrolyte layer.

様々な二次電池が開発されている中、高いエネルギー密度が得られ易いリチウムイオン二次電池(LIB)が最も有望視されている。一方、電池の用途拡大に伴って、自動車用電池や据え置き型電池などの大型電池が注目されている。大型電池では、小型電池に比べて安全性の確保がさらに重要になる。無機系の固体電解質を用いる全固体電池は、電解液を用いるLIBに比べて、大型化しても安全性を確保し易く、高容量化し易いと期待されている。 Among various secondary batteries being developed, the lithium ion secondary battery (LIB), which can easily obtain a high energy density, is the most promising. On the other hand, with the expansion of battery applications, large batteries such as automobile batteries and stationary batteries are attracting attention. Ensuring safety is even more important for large batteries than for small batteries. An all-solid-state battery using an inorganic solid electrolyte is expected to be easier to secure safety and to have a higher capacity even if the size is increased, as compared with a LIB using an electrolytic solution.

全固体電池は、一般に、正極、負極、およびこれらの間に介在する固体電解質層を備える電極群を含む。固体電解質層には、固体電解質が含まれ、正極および負極にはそれぞれ、活物質および固体電解質が含まれる。全固体電池では、充放電反応が、全て固体と固体との界面で生じる。そのため、全固体電池では、電解液を用いる電池とは異なり、固体と固体との界面における接触抵抗が電池の性能を大きく左右する。 An all-solid-state battery generally includes a positive electrode, a negative electrode, and a group of electrodes having a solid electrolyte layer interposed between them. The solid electrolyte layer contains a solid electrolyte, and the positive electrode and the negative electrode contain an active material and a solid electrolyte, respectively. In an all-solid-state battery, all charge / discharge reactions occur at the interface between solids. Therefore, in an all-solid-state battery, unlike a battery using an electrolytic solution, the contact resistance at the interface between solids greatly affects the performance of the battery.

特許文献1では、全固体LIBの出力特性を高める観点から、正極と電解質層とに、硫化物系固体電解質を用いることを提案している。特許文献1では、加圧成形で形成した電解質層に、正極合材を載せてさらに加圧成形し、電解質層の正極合材とは反対側にインジウム箔を配置して、電池を作製している。 Patent Document 1 proposes the use of a sulfide-based solid electrolyte for the positive electrode and the electrolyte layer from the viewpoint of enhancing the output characteristics of the all-solid LIB. In Patent Document 1, a positive electrode mixture is placed on an electrolyte layer formed by pressure molding and further pressure molded, and an indium foil is placed on the side of the electrolyte layer opposite to the positive electrode mixture to produce a battery. There is.

特開2010−245039号公報Japanese Unexamined Patent Publication No. 2010-24039

しかし、特許文献1では、電解質層に正極合材を加圧成形しているに過ぎないため、活物質粒子と固体電解質粒子との界面など、固体と固体との界面における接触抵抗を低減するのには限界がある。 However, in Patent Document 1, since the positive electrode mixture is merely pressure-molded on the electrolyte layer, the contact resistance at the interface between the solid and the solid, such as the interface between the active material particles and the solid electrolyte particles, is reduced. Has its limits.

本発明の一局面は、正極と、固体電解質層と、負極とを備える電極群を含む全固体電池を組み立てる第1工程と、
前記全固体電池を、未充電状態で、80℃以上の温度で加熱する第2工程と、
前記第2工程の後、前記全固体電池を未充電状態で45℃以下の温度に冷却する第3工程と、を備え、
前記固体電解質層と、前記正極および前記負極の少なくとも一方とは、それぞれ、固体電解質を含み、
前記第1工程において、前記正極、前記固体電解質層、および前記負極が積層された積層体を形成し、前記積層体を加圧し、
前記第2工程において、全固体電池を加熱する温度は、前記固体電解質の相転移、ガラス転移、または化学変化が起こる温度よりも低い、全固体電池の製造方法に関する。
One aspect of the present invention is a first step of assembling an all-solid-state battery including an electrode group including a positive electrode, a solid electrolyte layer, and a negative electrode.
The second step of heating the all-solid-state battery at a temperature of 80 ° C. or higher in an uncharged state, and
After the second step, a third step of cooling the all-solid-state battery to a temperature of 45 ° C. or lower in an uncharged state is provided.
The solid electrolyte layer and at least one of the positive electrode and the negative electrode each contain a solid electrolyte.
In the first step, a laminate in which the positive electrode, the solid electrolyte layer, and the negative electrode are laminated is formed, and the laminate is pressurized.
The present invention relates to a method for producing an all-solid-state battery, wherein in the second step, the temperature at which the all-solid-state battery is heated is lower than the temperature at which the phase transition, the glass transition, or the chemical change of the solid electrolyte occurs.

上記局面に係る製造方法により得られる全固体電池では、高い出力を確保することができるとともに、高いサイクル特性を確保することができる。 In the all-solid-state battery obtained by the manufacturing method according to the above aspect, high output can be ensured and high cycle characteristics can be ensured.

本発明の一実施形態に係る製造方法により得られる全固体電池に含まれる電極群を概略的に示す縦断面図である。It is a vertical cross-sectional view which shows typically the electrode group included in the all-solid-state battery obtained by the manufacturing method which concerns on one Embodiment of this invention.

本発明の一実施形態に係る全固体電池の製造方法は、正極と、固体電解質層と、負極とを備える電極群を含む全固体電池を組み立てる工程(第1工程)と、全固体電池を、未充電状態で、80℃以上の温度で加熱する工程(第2工程)と、第2工程の後、全固体電池を未充電状態で45℃以下の温度に冷却する工程(第3工程)と、を備える。固体電解質層と、正極および負極の少なくとも一方とは、それぞれ、固体電解質を含む。第1工程において、正極、固体電解質層、および負極が積層された積層体を形成し、積層体を加圧する。第2工程において、全固体電池を加熱する温度は、固体電解質の相転移、ガラス転移、または化学変化が起こる温度よりも低い。 The method for manufacturing an all-solid-state battery according to an embodiment of the present invention includes a step of assembling an all-solid-state battery including an electrode group including a positive electrode, a solid electrolyte layer, and a negative electrode (first step), and an all-solid-state battery. A step of heating at a temperature of 80 ° C. or higher in an uncharged state (second step), and a step of cooling the all-solid-state battery to a temperature of 45 ° C. or lower in an uncharged state after the second step (third step). , Equipped with. The solid electrolyte layer and at least one of the positive electrode and the negative electrode each contain a solid electrolyte. In the first step, a laminate in which the positive electrode, the solid electrolyte layer, and the negative electrode are laminated is formed, and the laminate is pressurized. In the second step, the temperature at which the all-solid-state battery is heated is lower than the temperature at which the phase transition, glass transition, or chemical change of the solid electrolyte occurs.

全固体電池の電極や固体電解質層では、一般に、固体電解質は、粒子状で存在して、活物質粒子や固体電解質粒子同士で接触している。全固体電池では、電解液が存在しないため、固体電解質粒子同士や固体電解質粒子と活物質粒子との界面における接触抵抗が、出力や容量に影響し易い。 In the electrodes and the solid electrolyte layer of the all-solid-state battery, the solid electrolyte generally exists in the form of particles, and the active material particles and the solid electrolyte particles are in contact with each other. Since there is no electrolytic solution in the all-solid-state battery, the contact resistance at the interface between the solid electrolyte particles and the solid electrolyte particles and the active material particles tends to affect the output and the capacity.

本実施形態では、全固体電池を組み立てる際に、正極、固体電解質層および負極が積層された積層体を加圧するとともに、組み立てた全固体電池を、未充電状態で、80℃以上、かつ固体電解質の相転移、ガラス転移または化学変化が起こる温度よりも低い温度で加熱する。そのため、固体電解質粒子同士や固体電解質粒子と活物質粒子とが接触または近接した状態で、固体電解質粒子を適度にゆっくりなじませることができる。これにより、固体電解質粒子同士や固体電解質粒子と活物質粒子とを密着させることができる。よって、高い出力を確保することができる。高い出力を確保するには、積層体を加圧して、各層内においてできるだけ空隙を少なくし、固体電解質粒子同士や、固体電解質粒子と活物質粒子とを接触または近接させた状態とすることも重要である。このような状態で、上記の温度で加熱することにより、固体電解質粒子同士や、固体電解質粒子と活物質粒子とをなじませることが可能となる。このようにして、固体と固体との接触状態が改善される。また、未充電状態の全固体電池を、加熱後45℃以下に冷却することで、固体電解質粒子や活物質粒子の組成変化や変質が生じたり、固体電解質粒子と活物質粒子との界面で副反応が生じたりすることが抑制される。よって、充放電サイクルを繰り返した後も高い放電容量を確保し易くなるため、サイクル特性の低下を抑制できる。 In the present embodiment, when assembling the all-solid-state battery, the laminate in which the positive electrode, the solid electrolyte layer and the negative electrode are laminated is pressed, and the assembled all-solid-state battery is heated to 80 ° C. or higher and the solid electrolyte in an uncharged state. Heat at a temperature lower than the temperature at which the phase transition, glass transition, or chemical change occurs. Therefore, the solid electrolyte particles can be appropriately and slowly blended in a state where the solid electrolyte particles are in contact with each other or the solid electrolyte particles and the active material particles are in contact with each other or in close proximity to each other. As a result, the solid electrolyte particles or the solid electrolyte particles and the active material particles can be brought into close contact with each other. Therefore, high output can be secured. In order to secure high output, it is also important to pressurize the laminate to reduce the voids in each layer as much as possible so that the solid electrolyte particles or the solid electrolyte particles and the active material particles are in contact with each other or in close contact with each other. Is. By heating at the above temperature in such a state, it becomes possible to blend the solid electrolyte particles with each other or the solid electrolyte particles and the active material particles. In this way, the contact state between the solids is improved. Further, by cooling the uncharged all-solid-state battery to 45 ° C. or lower after heating, the composition of the solid electrolyte particles and the active material particles may be changed or altered, or the interface between the solid electrolyte particles and the active material particles may be secondary. The reaction is suppressed. Therefore, it becomes easy to secure a high discharge capacity even after repeating the charge / discharge cycle, and it is possible to suppress the deterioration of the cycle characteristics.

なお、ひとたび充電した状態の全固体電池を加熱工程に供しても、出力は向上しない。また、加熱した全固体電池を、冷却せずに充放電を行なうと、出力が低下したり、充放電効率やサイクル特性が低下する場合がある。これは、充電した状態で全固体電池を加熱した全固体電池を冷却せずに充放電すると、充電時に副反応が生じることで、抵抗が上がったり、活物質から酸素が放出されることなどにより電極材料が劣化したり、熱の作用により、電解質や活物質の組成変化や変質が生じたりするためと考えられる。そのため、本実施形態では、未充電状態の全固体電池を加熱することおよび加熱した全固体電池を未充電状態で冷却することが重要である。 Even if the all-solid-state battery once charged is subjected to the heating step, the output does not improve. Further, if the heated all-solid-state battery is charged and discharged without being cooled, the output may be lowered, and the charge / discharge efficiency and the cycle characteristics may be lowered. This is because when the all-solid-state battery, which is heated in the charged state, is charged and discharged without cooling, a side reaction occurs during charging, which increases resistance and releases oxygen from the active material. This is thought to be due to the deterioration of the material and the change or alteration of the composition of the electrolyte and active material due to the action of heat. Therefore, in the present embodiment, it is important to heat the uncharged all-solid-state battery and to cool the heated all-solid-state battery in the uncharged state.

未充電状態の全固体電池とは、一度も充電していない全固体電池を言う。一般に、全固体電池は、慣らし充放電(予備充放電)を経てから、充放電に供される。本明細書における未充電状態の全固体電池とは、慣らし充放電を行なう前の全固体電池である。 An uncharged all-solid-state battery is an all-solid-state battery that has never been charged. Generally, an all-solid-state battery is subjected to a break-in charge / discharge (preliminary charge / discharge) before being charged / discharged. The uncharged all-solid-state battery in the present specification is an all-solid-state battery before running-in charging and discharging.

固体電解質の相転移、ガラス転移、または化学変化が起こる温度とは、固体電解質の結晶化、転移融解などの相転移が起こる温度、ガラス転移点、もしくは各種化学変化(例えば、熱分解、燃焼、酸化、還元など)が起こる温度などを意味する。つまり、本実施形態では、これらの転移や変化が起こらない温度で全固体電池を加熱する。 The temperature at which a phase transition, glass transition, or chemical change of a solid electrolyte occurs is the temperature at which a phase transition such as crystallization, transition melting, etc. of the solid electrolyte occurs, the glass transition point, or various chemical changes (eg, thermal decomposition, combustion, etc.). It means the temperature at which oxidation, reduction, etc. occur. That is, in the present embodiment, the all-solid-state battery is heated at a temperature at which these transitions and changes do not occur.

以下に、本実施形態に係る全固体電池の製造方法についてより詳細に説明する。
全固体電池の製造方法は、全固体電池を組み立てる第1工程と、未充電状態の全固体電池を加熱する第2工程と、加熱した全固体電池を未充電状態で冷却する第3工程とを備える。
The method for manufacturing the all-solid-state battery according to the present embodiment will be described in more detail below.
The method for manufacturing an all-solid-state battery includes a first step of assembling the all-solid-state battery, a second step of heating the uncharged all-solid-state battery, and a third step of cooling the heated all-solid-state battery in the uncharged state. Be prepared.

(第1工程)
第1工程では、例えば、電極群を電池ケースに収容することにより全固体電池が組み立てられる。
電極群は、正極と、固体電解質層と、負極とが積層された積層体を形成し、積層体を加圧することにより形成される。電極や固体電解質層の形成順序は特に制限されない。例えば、積層体は、固体電解質層を形成した後、固体電解質層の一方の主面に正極および負極のうち一方の電極を作製し、他方の主面に他方の電極を形成することにより作製してもよい。また、正極および負極のうち一方の電極を形成し、この一方の電極上に固体電解質層を形成し、固体電解質層上に他方の電極を形成することで積層体を作製してもよい。型枠に、正極および負極のうち一方の電極の材料を充填し、この上に、固体電解質層の材料を充填し、この上に他方の電極の材料を充填し、圧縮することにより積層体(または電極群)を形成してもよい。
(First step)
In the first step, for example, an all-solid-state battery is assembled by accommodating a group of electrodes in a battery case.
The electrode group is formed by forming a laminate in which a positive electrode, a solid electrolyte layer, and a negative electrode are laminated, and pressurizing the laminate. The order of forming the electrodes and the solid electrolyte layer is not particularly limited. For example, the laminate is prepared by forming a solid electrolyte layer, then forming one electrode of a positive electrode and a negative electrode on one main surface of the solid electrolyte layer, and forming the other electrode on the other main surface. You may. Further, a laminate may be produced by forming one electrode of a positive electrode and a negative electrode, forming a solid electrolyte layer on the one electrode, and forming the other electrode on the solid electrolyte layer. The mold is filled with the material of one of the positive electrode and the negative electrode, the material of the solid electrolyte layer is filled therein, and the material of the other electrode is filled therein, and the laminate is compressed. Alternatively, an electrode group) may be formed.

本実施形態では、固体電解質層と、正極および負極の少なくとも一方とが、それぞれ、固体電解質を含んでいる。そして、全固体電池の組み立て工程において、正極、固体電解質層、および負極の積層体を形成し、積層体を加圧する。そのため、電池の加熱工程に先立って、固体電解質粒子同士や、固体電解質粒子と電極に含まれる活物質粒子とを接触させ易くなる。 In the present embodiment, the solid electrolyte layer and at least one of the positive electrode and the negative electrode each contain a solid electrolyte. Then, in the process of assembling the all-solid-state battery, a laminate of the positive electrode, the solid electrolyte layer, and the negative electrode is formed, and the laminate is pressurized. Therefore, prior to the heating step of the battery, it becomes easy to bring the solid electrolyte particles into contact with each other or the solid electrolyte particles and the active material particles contained in the electrode.

第1工程では、積層体を加圧することで電極群を形成し、形成した電極群を電池ケースに収容してもよく、積層体を電池ケースに収容した後に積層体を加圧することにより電池ケース内で電極群を形成してもよい。例えば、電池ケースがラミネートフィルムなどである場合には、積層体を電池ケースに収容した後に電池ケースごと、積層体を加圧すればよい。 In the first step, an electrode group may be formed by pressurizing the laminated body, and the formed electrode group may be housed in the battery case. The battery case may be housed in the battery case and then the laminated body is pressurized. A group of electrodes may be formed within. For example, when the battery case is a laminated film or the like, the laminated body may be pressurized together with the battery case after the laminated body is housed in the battery case.

積層体を加圧する際の圧力は、例えば、200MPa以上であり、固体電解質層と正極および/または負極との密着性をさらに高める観点からは、300MPa以上または500MPa以上にすることが好ましく、700MPa以上または900MPa以上にすることがさらに好ましい。圧力の上限は特に制限されないが、例えば、1500MPa以下である。加圧を複数回行なう場合には、同じ圧力で加圧してもよく、圧力を変更してもよい。加圧を複数回行なう場合には、例えば、加圧する圧力を徐々に大きくしてもよい。 The pressure when pressurizing the laminate is, for example, 200 MPa or more, and from the viewpoint of further enhancing the adhesion between the solid electrolyte layer and the positive electrode and / or the negative electrode, it is preferably 300 MPa or more or 500 MPa or more, preferably 700 MPa or more. Alternatively, it is more preferably 900 MPa or more. The upper limit of the pressure is not particularly limited, but is, for example, 1500 MPa or less. When the pressurization is performed a plurality of times, the pressurization may be performed at the same pressure, or the pressure may be changed. When the pressurization is performed a plurality of times, for example, the pressurizing pressure may be gradually increased.

なお、電極群の正極および負極には、それぞれリードの一端部が接続される。リードの他端部は電池ケースの外部に露出した外部端子と電気的に接続される。
以下に電極群の構成についてより具体的に説明する。
One end of the lead is connected to the positive electrode and the negative electrode of the electrode group, respectively. The other end of the lead is electrically connected to an external terminal exposed to the outside of the battery case.
The configuration of the electrode group will be described in more detail below.

(電極)
固体電解質は、正極および負極の少なくとも一方に含まれていればよいが、双方に含まれることで第2工程による粒子間の接触抵抗の低減効果が得られ易くなる。特に、正極では、抵抗により電位が変化し易いため、第2工程による効果が顕著に現れ易い。
(electrode)
The solid electrolyte may be contained in at least one of the positive electrode and the negative electrode, but if it is contained in both of them, the effect of reducing the contact resistance between the particles in the second step can be easily obtained. In particular, in the positive electrode, the potential is likely to change due to resistance, so that the effect of the second step is likely to appear remarkably.

正極および負極は、それぞれ、通常、活物質と固体電解質とを含む電極合材を含む。これらの電極は、それぞれ、電極合材を成膜し、加圧することにより得ることができる。集電体の表面に、電極合材層を形成することにより電極を形成してもよい。成膜は、公知の手順で行なうことができるが、簡便でコスト的に有利であるため、乾式成膜が好ましい。 The positive electrode and the negative electrode each usually include an electrode mixture containing an active material and a solid electrolyte. Each of these electrodes can be obtained by forming an electrode mixture and applying pressure. An electrode may be formed by forming an electrode mixture layer on the surface of the current collector. The film formation can be carried out by a known procedure, but a dry film formation is preferable because it is simple and cost-effective.

電極合材層の加圧は、例えば、100MPa以上の圧力で行なうことが好ましく、150MPa以上の圧力で行なうことがさらに好ましい。このときの圧力の上限は特に制限されないが、積層体を上記の圧力で加圧するため、200MPaより小さい圧力であってもよい。電極合材層の加圧は、少なくとも一回行なえばよく、複数回行なってもよい。加圧を複数回行なう場合には、同じ圧力で加圧してもよく、圧力を変更してもよい。例えば、一方の電極と固体電解質層とを積層した後に、他方の電極の電極合材層を固体電解質層上に形成する場合、一旦、このような圧力で加圧した後に、形成される積層体を上述の圧力(200MPa以上の圧力)で加圧することで電極群を形成することが好ましい。 The pressurization of the electrode mixture layer is preferably performed at a pressure of 100 MPa or more, more preferably 150 MPa or more. The upper limit of the pressure at this time is not particularly limited, but since the laminated body is pressurized with the above pressure, the pressure may be less than 200 MPa. The pressurization of the electrode mixture layer may be performed at least once, or may be performed a plurality of times. When the pressurization is performed a plurality of times, the pressurization may be performed at the same pressure, or the pressure may be changed. For example, when the electrode mixture layer of the other electrode is formed on the solid electrolyte layer after laminating one electrode and the solid electrolyte layer, the laminate is formed after being pressed with such a pressure once. It is preferable to form an electrode group by pressurizing with the above-mentioned pressure (pressure of 200 MPa or more).

(活物質)
正極に使用される活物質としては、全固体電池において、正極活物質として使用されるものを特に制限なく用いることができる。全固体LIBを例に挙げて説明すると、正極活物質としては、例えば、コバルト、ニッケル、および/またはマンガンなどを含むリチウム含有酸化物[例えば、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、ニッケルコバルト酸リチウム(LiNi0.85Co0.152など)、ニッケルコバルトマンガン酸リチウム(LiNi1/3Co1/3Mn1/32など)、マンガン酸リチウム(スピネル型マンガン酸リチウム(LiMn24など)など)など]、Li過剰の複合酸化物(Li2MnO3−LiM12)などの酸化物の他、酸化物以外の化合物も挙げられる。酸化物以外の化合物としては、例えば、オリビン系化合物(LiM1PO4)、イオウ含有化合物(Li2Sなど)などが挙げられる。なお、上記式中、M1は遷移金属を示す。正極活物質は、一種を単独でまたは二種以上を組み合わせて使用できる。高容量が得られ易い観点からは、Co、NiおよびMnからなる群より選択される少なくとも一種を含むリチウム含有酸化物が好ましい。リチウム含有酸化物は、さらにAlなどの典型金属元素を含んでもよい。Alを含むリチウム含有酸化物としては、例えば、アルミニウム含有ニッケルコバルト酸リチウムなどが挙げられる。
(Active material)
As the active material used for the positive electrode, those used as the positive electrode active material in the all-solid-state battery can be used without particular limitation. Taking an all-solid LIB as an example, examples of the positive electrode active material include lithium-containing oxides containing, for example, cobalt, nickel, and / or manganese [for example, lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO). 2 ), Lithium nickel cobalt oxide (LiNi 0.85 Co 0.15 O 2 etc.), Lithium nickel cobalt manganate (LiNi 1/3 Co 1/3 Mn 1/3 O 2 etc.), Lithium manganate (spinnel type lithium manganate (such as spinel type lithium manganate) LiMn 2 O 4 etc.), etc.], oxides such as complex oxides with excess Li (Li 2 MnO 3- LiM 1 O 2 ), and compounds other than oxides can also be mentioned. Examples of compounds other than oxides include olivine compounds (LiM 1 PO 4 ) and sulfur-containing compounds (Li 2 S, etc.). In the above formula, M 1 represents a transition metal. The positive electrode active material may be used alone or in combination of two or more. From the viewpoint that a high capacity can be easily obtained, a lithium-containing oxide containing at least one selected from the group consisting of Co, Ni and Mn is preferable. The lithium-containing oxide may further contain a main group element such as Al. Examples of the lithium-containing oxide containing Al include aluminum-containing lithium nickel cobalt oxide.

結晶構造の安定性および充放電ヒステリシスの低減、電子伝導性を高め易くなる観点から、正極活物質のうち、Niを含むリチウム含有酸化物が好ましい。このような正極活物質としては、例えば、式(1):Li1+x(Niy11-y11-x2で表される酸化物が挙げられる。式(1)中、Mは、Co、Mn、Fe、およびAlからなる群より選択される少なくとも一種であり、Coを必須成分として含む。xは、0≦x≦1/3であることが好ましい。xがこのような範囲である場合、金属酸化物を高容量化することができるとともに、充放電を安定に行うことができる。NiおよびMの合計に占めるNiのモル比y1は、0.2≦y1≦0.9を充足する。元素Mは、Coおよび/またはAlを含む場合が好ましく、Coおよび/またはAlとこれら以外の元素を含んでもよい。元素Mは、Niのみからなる場合も好ましく、Niと、Co、Mn、Fe、および/またはAlとの組み合わせである場合も好ましい。 Among the positive electrode active materials, a lithium-containing oxide containing Ni is preferable from the viewpoint of stability of the crystal structure, reduction of charge / discharge hysteresis, and easy increase of electron conductivity. Examples of such a positive electrode active material include oxides represented by the formula (1): Li 1 + x ( Ny1 M 1-y1 ) 1-x O 2. In formula (1), M is at least one selected from the group consisting of Co, Mn, Fe, and Al, and contains Co as an essential component. It is preferable that x is 0 ≦ x ≦ 1/3. When x is in such a range, the capacity of the metal oxide can be increased and charging / discharging can be stably performed. The molar ratio y1 of Ni to the total of Ni and M satisfies 0.2 ≦ y1 ≦ 0.9. The element M preferably contains Co and / or Al, and may contain Co and / or Al and other elements. The element M is preferably composed of only Ni, and is also preferably a combination of Ni and Co, Mn, Fe, and / or Al.

なお、上記式(1)では、金属酸化物を二酸化物として記載したが、酸素の係数「2」は、「2±δ」であってもよく、酸素の係数が2±δである式(A)や式(1)の金属酸化物も本実施形態に含まれる。ここで、δは、酸素過剰量または酸素欠損量であり、例えば、0〜0.2である。 In the above formula (1), the metal oxide is described as carbon dioxide, but the oxygen coefficient “2” may be “2 ± δ”, and the oxygen coefficient is 2 ± δ ( A) and the metal oxide of the formula (1) are also included in the present embodiment. Here, δ is an excess oxygen amount or an oxygen deficiency amount, and is, for example, 0 to 0.2.

式(1)の金属酸化物の具体例としては、LiNi0.8Co0.15Al0.052などのLi1+x(Ni0.8Co0.15Al0.051-x2、LiNi1/3Co1/3Mn1/32、LiNi0.5Co0.2Mn0.32、LiNi0.6Co0.2Mn0.22、LiNi0.8Co0.1Mn0.12などが挙げられる。 Specific examples of the metal oxide of the formula (1) include Li 1 + x (Ni 0.8 Co 0.15 Al 0.05 ) 1-x O 2, LiNi 1/3 Co 1/3 such as LiNi 0.8 Co 0.15 Al 0.05 O 2. Examples thereof include Mn 1/3 O 2, LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2, LiNi 0.8 Co 0.1 Mn 0.1 O 2.

負極に使用される活物質としては、全固体LIBで使用される公知の負極活物質が利用できる。全固体LIBを例に挙げて説明すると、負極活物質としては、例えば、リチウムイオンを挿入および脱離可能な炭素質材料の他、リチウムイオンを合金化および脱合金化することが可能な金属や半金属の単体、合金、または化合物などが挙げられる。炭素質材料としては、黒鉛(天然黒鉛、人造黒鉛など)、ハードカーボン、非晶質炭素などが例示できる。金属や半金属の単体、合金としては、リチウム金属や合金、Si単体などが挙げられる。化合物としては、例えば、酸化物、硫化物、窒化物、水素化物、シリサイド(リチウムシリサイドなど)などが挙げられる。酸化物としては、チタン酸化物、ケイ素酸化物などが挙げられる。負極活物質は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。例えば、ケイ素酸化物と炭素質材料とを併用してもよい。負極活物質のうち、黒鉛が好ましく、黒鉛粒子と黒鉛粒子を被覆する非晶質炭素とを含む被覆粒子を用いてもよい。 As the active material used for the negative electrode, a known negative electrode active material used in an all-solid-state LIB can be used. Taking an all-solid LIB as an example, examples of the negative electrode active material include a carbonaceous material capable of inserting and desorbing lithium ions, a metal capable of alloying and dealloying lithium ions, and the like. Examples include simple substances of semi-metals, alloys, or compounds. Examples of the carbonaceous material include graphite (natural graphite, artificial graphite, etc.), hard carbon, amorphous carbon, and the like. Examples of simple substances and alloys of metals and semimetals include lithium metals, alloys, and Si alone. Examples of the compound include oxides, sulfides, nitrides, hydrides, VDD (lithium silicide and the like) and the like. Examples of the oxide include titanium oxide and silicon oxide. As the negative electrode active material, one type may be used alone, or two or more types may be used in combination. For example, a silicon oxide and a carbonaceous material may be used in combination. Among the negative electrode active materials, graphite is preferable, and coated particles containing graphite particles and amorphous carbon that coats the graphite particles may be used.

黒鉛などの炭素質材料の粒子は、比較的硬いため、一般には、固体電解質粒子との接触抵抗を低減し難いが、本実施形態では、第2工程により全固体電池を加熱するため、炭素質材料の粒子を用いる場合でも、固体電解質粒子とのなじみを向上することができる。 Since the particles of the carbonaceous material such as graphite are relatively hard, it is generally difficult to reduce the contact resistance with the solid electrolyte particles. However, in the present embodiment, since the all-solid-state battery is heated by the second step, the carbonaceous material is used. Even when the particles of the material are used, the compatibility with the solid electrolyte particles can be improved.

(固体電解質)
電極(具体的には、電極合材層)に使用する固体電解質としては、イオン伝導性を示す固体電解質が使用される。固体電解質としては、硫化物(硫化物系固体電解質)、水素化物(水素化物系固体電解質)などの無機固体電解質が好ましい。水素化物には、一般に、錯体水素化物と呼ばれる固体電解質も含まれる。
(Solid electrolyte)
As the solid electrolyte used for the electrode (specifically, the electrode mixture layer), a solid electrolyte exhibiting ionic conductivity is used. As the solid electrolyte, an inorganic solid electrolyte such as a sulfide (sulfide-based solid electrolyte) or a hydride (hydride-based solid electrolyte) is preferable. The hydride also includes a solid electrolyte, commonly referred to as a complex hydride.

固体電解質の相転移、ガラス転移、または化学変化する温度は、例えば、210℃よりも大きく、220℃以上であってもよい。 The temperature at which the solid electrolyte undergoes a phase transition, a glass transition, or a chemical change is, for example, greater than 210 ° C and may be 220 ° C or higher.

固体電解質について、全固体LIBの場合を例に挙げて説明すると、例えば、Liと、Sと、周期表第13族元素、第14族元素、および第15族元素からなる群より選択された少なくとも一種の元素とを含むもの(例えば、硫化物)が好ましい。周期表第13〜15族元素としては、特に限定されるものではないが、例えば、P、Si、Ge、As、Sb、Al等を挙げることができ、中でもP、Si、Geが好ましい。中でも、Li、P、およびSを含む固体電解質(例えば、硫化物)が好ましい。 The solid electrolyte will be described by taking the case of an all-solid LIB as an example. For example, at least selected from the group consisting of Li, S, Group 13 element, Group 14 element, and Group 15 element of the periodic table. Those containing one kind of element (for example, sulfide) are preferable. The elements of Groups 13 to 15 of the periodic table are not particularly limited, and examples thereof include P, Si, Ge, As, Sb, and Al, and P, Si, and Ge are preferable. Of these, a solid electrolyte containing Li, P, and S (for example, a sulfide) is preferable.

硫化物としては、例えば、Li2Sと、周期表第13族元素、第14族元素、および第15族元素からなる群より選択された少なくとも一種の元素を含む一種または二種以上の硫化物とを含むものが好ましい。硫化物の具体例としては、Li2S−SiS2、Li2S−P25、Li2S−GeS2、Li2S−B23、Li2S−Ga23、Li2S−Al23、Li2S−GeS2−P25、Li2S−Al23−P25、Li2S−P23、Li2S−P23−P25、LiX−Li2S−P25、LiX−Li2S−SiS2、LiX−Li2S−B23(X:I、Br、Cl、またはI)などが挙げられる。 Examples of the sulfide, and Li 2 S, Group 13 elements of the periodic table, Group 14 elements, and at least one or more kinds of sulfides containing one element selected from the group consisting of Group 15 Those containing and are preferable. Specific examples of sulfides include Li 2 S-SiS 2 , Li 2 S-P 2 S 5 , Li 2 S-GeS 2 , Li 2 S-B 2 S 3 , Li 2 S-Ga 2 S 3 , Li. 2 S-Al 2 S 3 , Li 2 S-GeS 2- P 2 S 5 , Li 2 S-Al 2 S 3- P 2 S 5 , Li 2 SP 2 S 3 , Li 2 SP 2 S 3- P 2 S 5 , LiX-Li 2 S-P 2 S 5 , LiX-Li 2 S-SiS 2 , LiX-Li 2 SB 2 S 3 (X: I, Br, Cl, or I), etc. Can be mentioned.

水素化物としては、例えば、水素化ホウ素リチウムの錯体水素化物などが挙げられる。錯体水素化物としては、例えば、LiBH−LiI系錯体水素化物およびLiBH−LiNH系錯体水素化物、LiBH−P、LiBH−Pなどが挙げられる。
固体電解質は、一種を単独で用いてもよく、必要に応じて、二種以上を併用してもよい。
正極および負極に含まれる固体電解質は、同じ種類であってもよく、異なっていてもよい。
Examples of the hydride include a complex hydride of lithium borohydride. Examples of the complex hydride include LiBH 4- LiI-based complex hydride, LiBH 4- LiNH 2- based complex hydride, LiBH 4- P 2 S 5 , LiBH 4- P 2 I 4 and the like.
As the solid electrolyte, one type may be used alone, or two or more types may be used in combination, if necessary.
The solid electrolytes contained in the positive electrode and the negative electrode may be of the same type or may be different.

各電極には、必要に応じて、全固体電池で電極に使用される公知の成分、例えば、バインダ、導電助剤、その他の添加剤などを添加してもよい。 If necessary, known components used in the electrodes in all-solid-state batteries, such as binders, conductive auxiliaries, and other additives, may be added to each electrode.

集電体としては、高温で電極材料や固体電解質に金属イオンが溶出、拡散しないものであれば特に制限なく使用することができる。このような集電体の形態としては、例えば、金属箔、板状体、粉体の集合体などが挙げられ、集電体の材質を成膜したものを用いてもよい。金属箔は、電解箔、エッチド箔などであってもよい。集電体は、電極合材層や活物質の層を形成する際に、波打ったり、破れたりしない強度を有するものが望ましい。 The current collector can be used without particular limitation as long as the metal ions do not elute and diffuse into the electrode material or the solid electrolyte at a high temperature. Examples of the form of such a current collector include a metal foil, a plate-like body, an aggregate of powders, and the like, and a film formed of a material of the current collector may be used. The metal foil may be an electrolytic foil, an etched foil, or the like. It is desirable that the current collector has a strength that does not wavy or tear when forming the electrode mixture layer or the active material layer.

正極に使用する集電体の材質としては、正極の酸化還元電位において安定な材質、例えば、アルミニウム、マグネシウム、ステンレス鋼、チタン、鉄、コバルト、亜鉛、スズ、またはこれらの合金などが例示される。負極に使用する集電体の材質としては、負極の酸化還元電位において安定な材質、例えば、銅、ニッケル、ステンレス鋼、チタン、これらの合金などが挙げられる。 Examples of the material of the current collector used for the positive electrode include materials stable at the redox potential of the positive electrode, for example, aluminum, magnesium, stainless steel, titanium, iron, cobalt, zinc, tin, or alloys thereof. .. Examples of the material of the current collector used for the negative electrode include materials stable at the redox potential of the negative electrode, such as copper, nickel, stainless steel, titanium, and alloys thereof.

集電体の厚みは、例えば、5μm〜300μmの範囲から適宜選択できる。集電体の厚みは、10μm〜50μmであることが好ましい。 The thickness of the current collector can be appropriately selected from the range of, for example, 5 μm to 300 μm. The thickness of the current collector is preferably 10 μm to 50 μm.

(固体電解質層)
固体電解質層は、固体電解質を含む。固体電解質層は、固体電解質を成膜し、加圧することにより形成できる。固体電解質の成膜は、公知の手順で行なうことができるが、高いイオン伝導性を確保し易い観点からは、乾式成膜が好ましく、成膜の際に樹脂などのバインダを用いないことが好ましい。
(Solid electrolyte layer)
The solid electrolyte layer contains a solid electrolyte. The solid electrolyte layer can be formed by forming a solid electrolyte film and applying pressure. The solid electrolyte can be formed by a known procedure, but from the viewpoint of easily ensuring high ionic conductivity, a dry film formation is preferable, and it is preferable not to use a binder such as a resin during the film formation. ..

固体電解質層の加圧は、例えば、100MPa以上の圧力で行なうことが好ましく、150MPa以上の圧力で行なうことがさらに好ましい。このときの圧力の上限は特に制限されないが、積層体を上記の圧力で加圧するため、200MPaより小さい圧力であってもよい。固体電解質層の加圧は、少なくとも一回行なえばよく、複数回行なってもよい。加圧を複数回行なう場合には、同じ圧力で加圧してもよく、圧力を変更してもよい。例えば、双方の電極を先に形成し、電極間に固体電解質層を形成する場合には、双方の電極とこれらの電極間に配置された固体電解質の膜とを、一旦、このような圧力で加圧した後に、形成される積層体を上述の圧力(200MPa以上の圧力)で加圧することで電極群を形成することが好ましい。 The pressure of the solid electrolyte layer is preferably, for example, 100 MPa or more, and more preferably 150 MPa or more. The upper limit of the pressure at this time is not particularly limited, but since the laminated body is pressurized with the above pressure, the pressure may be less than 200 MPa. The pressurization of the solid electrolyte layer may be performed at least once, or may be performed a plurality of times. When the pressurization is performed a plurality of times, the pressurization may be performed at the same pressure, or the pressure may be changed. For example, when both electrodes are formed first and a solid electrolyte layer is formed between the electrodes, both electrodes and a solid electrolyte film arranged between these electrodes are once pressed at such a pressure. After pressurizing, it is preferable to form an electrode group by pressurizing the formed laminate at the above-mentioned pressure (pressure of 200 MPa or more).

固体電解質としては、電極について例示した固体電解質が挙げられ、硫化物や水素化物が好ましい。
使用する固体電解質は、正極および/または負極とで同じであってもよく、いずれの電極とも異なっていてもよい。
Examples of the solid electrolyte include solid electrolytes exemplified for electrodes, and sulfides and hydrides are preferable.
The solid electrolyte used may be the same for the positive electrode and / or the negative electrode, and may be different from any electrode.

固体電解質層には、必要に応じて、全固体電池の固体電解質層に用いられる公知の添加剤を添加してもよい。固体電解質層において高いイオン伝導性を確保する観点から、固体電解質層は、電極合材層の場合と同様に、分散媒やバインダなどの有機成分を用いずに作製することが好ましい。
固体電解質層の厚みは、例えば、20μm〜200μmである。
If necessary, a known additive used for the solid electrolyte layer of the all-solid-state battery may be added to the solid electrolyte layer. From the viewpoint of ensuring high ionic conductivity in the solid electrolyte layer, it is preferable to prepare the solid electrolyte layer without using an organic component such as a dispersion medium or a binder, as in the case of the electrode mixture layer.
The thickness of the solid electrolyte layer is, for example, 20 μm to 200 μm.

(第2工程)
第2工程では、未充電状態の全固体電池を、80℃以上で、かつ固体電解質の相転移、ガラス転移、または化学変化が起こる温度よりも低い温度で加熱する。固体電解質の相転移、ガラス転移、または化学変化が起こる温度以上の温度で加熱すると、固体電解質粒子同士の界面や活物質粒子と固体電解質粒子との界面で固体電解質が変質したり、副生物が生じたりする。これにより、界面における抵抗が高くなるため、出力を向上できなくなる。
(Second step)
In the second step, the uncharged all-solid-state battery is heated at a temperature of 80 ° C. or higher and lower than the temperature at which the phase transition, glass transition, or chemical change of the solid electrolyte occurs. When heated at a temperature higher than the temperature at which the phase transition, glass transition, or chemical change of the solid electrolyte occurs, the solid electrolyte is altered at the interface between the solid electrolyte particles and the interface between the active material particles and the solid electrolyte particles, and by-products are generated. It happens. As a result, the resistance at the interface becomes high, and the output cannot be improved.

固体電解質の種類にもよるが、加熱温度は、100℃以上が好ましい。また、固体電解質粒子同士、固体電解質粒子と活物質粒子との間の接触状態を向上させやすい観点からは、加熱温度は、固体電解質の相転移、ガラス転移、または化学変化が起こる温度よりも、低ければよいが、5℃以上または10℃以上低い温度であることが好ましく、50℃以上または100℃以上低い温度であることがさらに好ましい。同様の理由で、加熱温度は、210℃以下または200℃以下であることが好ましく、150℃以下または120℃以下であることがさらに好ましい。これらの下限値と上限値を任意に組み合わせることができる。加熱温度は、例えば、80℃以上210℃以下、80℃以上200℃以下、80℃以上150℃以下、または80℃以上120℃以下であってもよい。なお、加熱温度は、全固体電池の構成部材(例えば、絶縁材、パッケージ、シーラントなどの樹脂製の部材)の融点または分解温度より低い温度とすることが望ましい。 Although it depends on the type of solid electrolyte, the heating temperature is preferably 100 ° C. or higher. Further, from the viewpoint of easily improving the contact state between the solid electrolyte particles and between the solid electrolyte particles and the active material particles, the heating temperature is higher than the temperature at which the phase transition, the glass transition, or the chemical change of the solid electrolyte occurs. It may be as low as possible, but the temperature is preferably 5 ° C. or higher or 10 ° C. or higher, and more preferably 50 ° C. or higher or 100 ° C. or higher. For the same reason, the heating temperature is preferably 210 ° C. or lower or 200 ° C. or lower, and more preferably 150 ° C. or lower or 120 ° C. or lower. These lower limit values and upper limit values can be arbitrarily combined. The heating temperature may be, for example, 80 ° C. or higher and 210 ° C. or lower, 80 ° C. or higher and 200 ° C. or lower, 80 ° C. or higher and 150 ° C. or lower, or 80 ° C. or higher and 120 ° C. or lower. The heating temperature is preferably lower than the melting point or decomposition temperature of the constituent members of the all-solid-state battery (for example, resin members such as insulating materials, packages, and sealants).

全固体電池の加熱は、加圧下で行なってもよい。全固体電池を加圧する際の圧力は、例えば、0.5MPa以上100MPa以下であり、1MPa以上80MPa以下であることが好ましく、10MPa以上80MPa以下または30MPa以上80MPa以下であることがさらに好ましい。このような圧力を加えながら、全固体電池の加熱を行なうと、固体電解質粒子同士や固体電解質粒子と活物質粒子との密着性が高まり易く、接触抵抗を低減する上で有利である。 The heating of the all-solid-state battery may be performed under pressure. The pressure when pressurizing the all-solid-state battery is, for example, 0.5 MPa or more and 100 MPa or less, preferably 1 MPa or more and 80 MPa or less, and further preferably 10 MPa or more and 80 MPa or less or 30 MPa or more and 80 MPa or less. When the all-solid-state battery is heated while applying such pressure, the adhesion between the solid electrolyte particles and the solid electrolyte particles and the active material particles tends to increase, which is advantageous in reducing the contact resistance.

全固体電池を加熱する時間は、固体電解質粒子同士や固体電解質粒子と活物質粒子とをなじませることができる範囲で適宜決定すればよい。加熱時間は、例えば、0.5時間〜10時間であり、1時間〜6時間が好ましく、1時間〜4時間がさらに好ましい。 The time for heating the all-solid-state battery may be appropriately determined within a range in which the solid electrolyte particles or the solid electrolyte particles and the active material particles can be blended with each other. The heating time is, for example, 0.5 hour to 10 hours, preferably 1 hour to 6 hours, and more preferably 1 hour to 4 hours.

(第3工程)
第3工程では、第2工程で加熱した全固体電池を、未充電状態で冷却する。予備充放電を含めて充放電の前に、加熱した電池を冷却することで、副反応が起こるのを抑制したり、固体電解質粒子および/または活物質粒子の組成変化や変質を抑制することができる。
(Third step)
In the third step, the all-solid-state battery heated in the second step is cooled in an uncharged state. By cooling the heated battery before charging and discharging, including pre-charging and discharging, it is possible to suppress side reactions and suppress composition changes and alterations of solid electrolyte particles and / or active material particles. can.

冷却温度は、45℃以下であればよく、40℃以下の温度が好ましく、常温(例えば、10℃以上35℃以下の温度)またはそれ以下の温度であることがさらに好ましい。このような温度に全固体電池を冷却することで、副反応、固体電解質粒子および/または活物質粒子の組成変化や変質を抑制することができる。冷却温度の下限は特に制限されないが、例えば、10℃以上である。 The cooling temperature may be 45 ° C. or lower, preferably 40 ° C. or lower, and more preferably room temperature (for example, 10 ° C. or higher and 35 ° C. or lower) or lower. By cooling the all-solid-state battery to such a temperature, it is possible to suppress side reactions, composition changes and alterations of the solid electrolyte particles and / or the active material particles. The lower limit of the cooling temperature is not particularly limited, but is, for example, 10 ° C. or higher.

本実施形態に係る製造方法では、全固体電池の電極群において、正極と固体電解質層と負極との積層体を加圧することで、電極および固体電解質層に含まれる固体電解質粒子同士や固体電解質粒子と活物質粒子とを接触または近接した状態とする。そして、この接触または近接した状態の粒子同士を、未充電状態の電池を加熱する際に適度になじませることができ、固体電解質粒子同士、固体電解質粒子と活物質粒子とを密着させることができる。そのため、このような製造方法により得られる全固体電池では、固体電解質粒子同士の界面および固体電解質粒子と活物質粒子との界面における接触抵抗が低減され、高い出力が得られる。また、加熱した全固体電池を、未充電状態で冷却することで、副反応を抑制できるとともに、固体電解質粒子や活物質粒子の組成変化や変質を抑制できる。そのため、全固体電池では、高いサイクル特性を確保することができる。本実施形態には、このような製造方法により得られる全固体電池も包含される。 In the manufacturing method according to the present embodiment, in the electrode group of the all-solid-state battery, the solid electrolyte particles contained in the electrodes and the solid electrolyte layer or the solid electrolyte particles are formed by pressurizing the laminate of the positive electrode, the solid electrolyte layer, and the negative electrode. And the active material particles are in contact with or close to each other. Then, the particles in contact or close contact with each other can be appropriately adapted when heating the uncharged battery, and the solid electrolyte particles and the solid electrolyte particles and the active material particles can be brought into close contact with each other. .. Therefore, in the all-solid-state battery obtained by such a manufacturing method, the contact resistance at the interface between the solid electrolyte particles and the interface between the solid electrolyte particles and the active material particles is reduced, and a high output can be obtained. Further, by cooling the heated all-solid-state battery in an uncharged state, side reactions can be suppressed, and composition changes and alterations of solid electrolyte particles and active material particles can be suppressed. Therefore, in the all-solid-state battery, high cycle characteristics can be ensured. The present embodiment also includes an all-solid-state battery obtained by such a manufacturing method.

図1は、本実施形態に係る製造方法により得られる全固体電池に含まれる電極群を概略的に示す縦断面図である。全固体電池が備える電極群1は、正極2と、負極4と、これらの間に介在する固体電解質層3とを備える。正極2は、正極集電体2bとこれに担持された正極合材層2aとを備える。負極4は、負極集電体4bとこれに担持された負極合材層4aとを備える。正極2と負極4とは、正極合材層2aと負極合材層4aとが対向するように配置される。正極合材層2aと負極合材層4aとの間に、固体電解質層3が配置されている。正極2、固体電解質層3、および負極4は、固体電解質を含む。正極2、固体電解質層3および負極4では、正極、固体電解質層および負極の積層体の加圧と、上述の加熱工程により、固体電解質粒子同士、固体電解質粒子と活物質粒子とがなじんで、粒子間の界面における接触状態が向上しており、接触抵抗が低減されている。 FIG. 1 is a vertical cross-sectional view schematically showing a group of electrodes included in an all-solid-state battery obtained by the manufacturing method according to the present embodiment. The electrode group 1 included in the all-solid-state battery includes a positive electrode 2, a negative electrode 4, and a solid electrolyte layer 3 interposed between them. The positive electrode 2 includes a positive electrode current collector 2b and a positive electrode mixture layer 2a supported on the current collector 2b. The negative electrode 4 includes a negative electrode current collector 4b and a negative electrode mixture layer 4a supported on the negative electrode current collector 4b. The positive electrode 2 and the negative electrode 4 are arranged so that the positive electrode mixture layer 2a and the negative electrode mixture layer 4a face each other. The solid electrolyte layer 3 is arranged between the positive electrode mixture layer 2a and the negative electrode mixture layer 4a. The positive electrode 2, the solid electrolyte layer 3, and the negative electrode 4 contain a solid electrolyte. In the positive electrode 2, the solid electrolyte layer 3 and the negative electrode 4, the solid electrolyte particles, the solid electrolyte particles and the active material particles are blended with each other by the pressurization of the laminate of the positive electrode, the solid electrolyte layer and the negative electrode and the heating step described above. The contact state at the interface between particles is improved, and the contact resistance is reduced.

図1の正極合材層2aと負極合材層4aと固体電解質層3とはほぼ同じサイズの円盤状であり、固体電解質層3を間に挟持した状態で積層され、円柱状の積層体6を形成している。積層体6の側面には、負極合材層4aの側面および固体電解質層3の負極合材層4a側の側面を覆うように、絶縁体5が装着されている。正極集電体2bおよび負極集電体4bは、正極合材層2aおよび負極合材層4aよりもサイズが大きな円状または多角形状(四角形など)の金属箔である。正極集電体2bおよび負極集電体4bは、絶縁体5を装着した状態の積層体6とほぼ同じサイズとなるように形成されている。 The positive electrode mixture layer 2a, the negative electrode mixture layer 4a, and the solid electrolyte layer 3 in FIG. 1 have a disk shape having substantially the same size, and are laminated with the solid electrolyte layer 3 sandwiched between them. Is forming. An insulator 5 is mounted on the side surface of the laminate 6 so as to cover the side surface of the negative electrode mixture layer 4a and the side surface of the solid electrolyte layer 3 on the negative electrode mixture layer 4a side. The positive electrode current collector 2b and the negative electrode current collector 4b are circular or polygonal (square or the like) metal foils having a size larger than that of the positive electrode mixture layer 2a and the negative electrode mixture layer 4a. The positive electrode current collector 2b and the negative electrode current collector 4b are formed so as to have substantially the same size as the laminated body 6 with the insulator 5 attached.

全固体電池は、図1に示す例に限らず、丸型、円筒型、角型、薄層フラット型などの様々なタイプであってもよい。電極群は、複数の正極および/または複数の負極を含んでもよい。 The all-solid-state battery is not limited to the example shown in FIG. 1, and may be of various types such as a round type, a cylindrical type, a square type, and a thin layer flat type. The electrode group may include a plurality of positive electrodes and / or a plurality of negative electrodes.

[実施例]
以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[Example]
Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.

実施例1
下記の手順で図1に示す電極群を備える全固体電池を作製した。
(1)全固体電池の組み立て
(a)固体電解質層3の作製
冷間ダイス鋼(SKD)製の円筒金型(内径10mm、高さ30mm)を立てて設置し、円筒金型の底部に底板となる短ピンを差し込んだ。この状態で、リチウムイオン伝導性の固体電解質であるLi2S−P25固溶体90mgを円筒金型内に層状に充填した。そして、円筒金型の内径に合わせたサイズの円柱状の長ピンを、円筒金型の頂部から内部に差し込み、層の厚み方向に188MPaの圧力で1回加圧プレスすることにより、固体電解質層3を作製した。
Example 1
An all-solid-state battery having the electrode group shown in FIG. 1 was produced by the following procedure.
(1) Assembly of all-solid-state battery (a) Preparation of solid electrolyte layer 3 A cylindrical mold (inner diameter 10 mm, height 30 mm) made of cold die steel (SKD) is erected and installed, and a bottom plate is placed on the bottom of the cylindrical mold. I inserted a short pin. In this state, 90 mg of a Li 2 SP 2 S 5 solid solution, which is a lithium ion conductive solid electrolyte, was packed in a layer in a cylindrical mold. Then, a long columnar pin having a size matching the inner diameter of the cylindrical die is inserted into the inside from the top of the cylindrical die, and the solid electrolyte layer is pressed once at a pressure of 188 MPa in the thickness direction of the layer. 3 was prepared.

(b)負極合材層4aの作製
黒鉛およびLi2S−P25固溶体を、6:4の質量比で用いて、乳鉢内で十分に混合した。得られた混合物15mgを、(a)で作製した、円筒金型内の固体電解質層3上に層状に充填した。そして、層の厚み方向に、3回加圧プレスすることにより、負極合材層4aを作製した。加圧プレスの圧力は、毎回188MPaとした。
(B) Preparation of Negative Electrode Mixture Layer 4a Graphite and Li 2 SP 2 S 5 solid solution were thoroughly mixed in a mortar using a mass ratio of 6: 4. 15 mg of the obtained mixture was layered on the solid electrolyte layer 3 in the cylindrical mold prepared in (a). Then, the negative electrode mixture layer 4a was produced by pressurizing and pressing three times in the thickness direction of the layer. The pressure of the pressure press was 188 MPa each time.

次いで、円筒金型の上下を反対にして短ピンを取り出し、負極合材層4a側に短ピンを差し込み、短ピンが底になるように、円筒金型を配置した。次いで、長ピンを用いて、固体電解質層3および負極合材層4aを、固体電解質層3側から押圧した。 Next, the short pin was taken out with the cylindrical mold turned upside down, the short pin was inserted into the negative electrode mixture layer 4a side, and the cylindrical mold was arranged so that the short pin was at the bottom. Next, the solid electrolyte layer 3 and the negative electrode mixture layer 4a were pressed from the solid electrolyte layer 3 side using a long pin.

(c)正極合材層2aの作製
LiNi0.8Co0.15Al0.052およびLi2S−P25固溶体を、7:3の質量比で用いて、乳鉢内で十分に混合することにより混合物を得た。混合物20mgを、後述の円筒金型内の固体電解質層3上に層状に充填し、層の厚み方向に、それぞれ、376MPa、752MPa、および1050MPaの順で3回加圧プレスすることにより、正極(正極合材層2a)を作製した。
(C) Preparation of positive electrode mixture layer 2a LiNi 0.8 Co 0.15 Al 0.05 O 2 and Li 2 SP 2 S 5 solid solution are used in a mass ratio of 7: 3 and mixed thoroughly in a mortar to form a mixture. Got 20 mg of the mixture is packed in a layer on the solid electrolyte layer 3 in the cylindrical die described later, and pressure-pressed three times in the order of 376 MPa, 752 MPa, and 1050 MPa in the thickness direction of the layer to obtain a positive electrode ( A positive electrode mixture layer 2a) was produced.

(d)全固体電池の組み立て
(a)〜(c)のようにして形成された正極合材層2aと負極合材層4aとで固体電解質層3を挟持した状態の積層体6を、円筒金型から取り出した。負極集電体4bとしてのステンレス鋼板(縦40mm×横40mm、厚み300μm)の一方の表面上に、中央に孔を有する絶縁体5(内径11mm、高さ200μm)を配置した。そして、積層体6(外径10mm)を、負極合材層4aが負極集電体4bに接するように、絶縁体5の孔内に収容した。次いで、積層体6の正極合材層2a上に、正極集電体2bとしてのステンレス鋼板(縦40mm×横40mm、厚み300μm)を配置することにより電極群1を作製した。なお、絶縁体5は、負極合材層4aおよび負極集電体4bと、正極合材層2aおよび正極集電体2bとの接触を抑制するように配される。
(D) Assembly of an all-solid-state battery A cylindrical laminate 6 in a state in which the solid electrolyte layer 3 is sandwiched between the positive electrode mixture layer 2a and the negative electrode mixture layer 4a formed as in (a) to (c). Removed from the mold. An insulator 5 (inner diameter 11 mm, height 200 μm) having a hole in the center was arranged on one surface of a stainless steel plate (length 40 mm × width 40 mm, thickness 300 μm) as the negative electrode current collector 4b. Then, the laminated body 6 (outer diameter 10 mm) was housed in the hole of the insulator 5 so that the negative electrode mixture layer 4a was in contact with the negative electrode current collector 4b. Next, the electrode group 1 was produced by arranging a stainless steel plate (length 40 mm × width 40 mm, thickness 300 μm) as the positive electrode current collector 2b on the positive electrode mixture layer 2a of the laminated body 6. The insulator 5 is arranged so as to suppress contact between the negative electrode mixture layer 4a and the negative electrode current collector 4b and the positive electrode mixture layer 2a and the positive electrode current collector 2b.

負極リードおよび正極リードを有するラミネートセルに、電極群1を収容し、セル内のガスを真空ポンプで吸引しながら密封した。このようにして、全固体電池を作製した。 The electrode group 1 was housed in a laminated cell having a negative electrode lead and a positive electrode lead, and the gas in the cell was sealed while being sucked by a vacuum pump. In this way, an all-solid-state battery was produced.

(2)全固体電池の加熱および冷却
上記(1)で作製した未充電の全固体電池を、58.8MPaで加圧した状態で、100℃の温度に設定された恒温槽内に3時間静置することにより、加熱した。加熱後、未充電の全固体電池を、室温(25℃)まで冷却した。
(2) Heating and cooling of the all-solid-state battery The uncharged all-solid-state battery produced in (1) above is pressurized at 58.8 MPa and allowed to stand still in a constant temperature bath set at a temperature of 100 ° C. for 3 hours. Heated by placing. After heating, the uncharged all-solid-state battery was cooled to room temperature (25 ° C.).

(3)評価
(a)出力特性
上記(2)で得られた全固体電池を、25℃に設定された恒温槽内に入れて、電池温度を25℃で維持し、58.8MPaで加圧した。この状態で、0.1Cの電流で、充電終止電圧4.2Vまで充電し、次いで、0.1Cまたは2.0Cの電流で、放電終止電圧2.8Vまで放電した。このときの充電容量(初期充電容量)および放電容量(初期放電容量)を求めた。
また、2.0Cにおける放電容量の0.1Cにおける放電容量に対する比率(放電容量維持率)(%)を求め、出力特性の指標とした。この数値が大きいほど、出力特性が高いことを意味する。
(3) Evaluation (a) Output characteristics The all-solid-state battery obtained in (2) above is placed in a constant temperature bath set at 25 ° C., the battery temperature is maintained at 25 ° C., and the pressure is increased at 58.8 MPa. bottom. In this state, a current of 0.1 C was used to charge the battery to a final charge voltage of 4.2 V, and then a current of 0.1 C or 2.0 C was used to discharge the battery to a final discharge voltage of 2.8 V. The charge capacity (initial charge capacity) and discharge capacity (initial discharge capacity) at this time were determined.
Further, the ratio of the discharge capacity at 2.0C to the discharge capacity at 0.1C (discharge capacity retention rate) (%) was obtained and used as an index of the output characteristics. The larger this value is, the higher the output characteristic is.

(b)サイクル特性
全固体電池を、0.1Cの電流で、充電終止電圧4.2Vまで充電し、次いで、0.1Cの電流で、放電終止電圧2.8Vまで放電するサイクルを充放電の1サイクルとし、5サイクル後の放電容量の初期放電容量に対する比率(サイクル後の容量維持率)(%)を求めた。
(B) Cycle characteristics An all-solid-state battery is charged with a current of 0.1 C to a final charge voltage of 4.2 V, and then discharged with a current of 0.1 C to a final discharge voltage of 2.8 V. With one cycle, the ratio of the discharge capacity after 5 cycles to the initial discharge capacity (capacity retention rate after the cycle) (%) was determined.

実施例2
未充電の全固体電池を120℃で加熱したこと以外は、実施例1と同様に、全固体電池を作製し、評価を行なった。
Example 2
An all-solid-state battery was prepared and evaluated in the same manner as in Example 1 except that the uncharged all-solid-state battery was heated at 120 ° C.

実施例3
未充電の全固体電池を80℃で加熱したこと以外は、実施例1と同様に、全固体電池を作製し、評価を行なった。
Example 3
An all-solid-state battery was prepared and evaluated in the same manner as in Example 1 except that the uncharged all-solid-state battery was heated at 80 ° C.

実施例4
未充電の全固体電池を加圧せずに100℃で加熱したこと以外は、実施例1と同様に、全固体電池を作製し、評価を行なった。
Example 4
An all-solid-state battery was prepared and evaluated in the same manner as in Example 1 except that the uncharged all-solid-state battery was heated at 100 ° C. without pressurization.

実施例5
未充電の全固体電池を加圧せずに120℃で加熱したこと以外は、実施例1と同様に、全固体電池を作製し、評価を行なった。
Example 5
An all-solid-state battery was prepared and evaluated in the same manner as in Example 1 except that the uncharged all-solid-state battery was heated at 120 ° C. without pressurization.

実施例6
未充電の全固体電池を加圧せずに80℃で加熱したこと以外は、実施例1と同様に、全固体電池を作製し、評価を行なった。
Example 6
An all-solid-state battery was prepared and evaluated in the same manner as in Example 1 except that the uncharged all-solid-state battery was heated at 80 ° C. without pressurization.

比較例1
未充電の全固体電池を加熱する工程を実施しなかったこと以外は、実施例1と同様に、組み立てた電池を用いて評価を行なった。
Comparative Example 1
The evaluation was performed using the assembled battery in the same manner as in Example 1 except that the step of heating the uncharged all-solid-state battery was not performed.

比較例2
実施例1と同様の手順で組み立てた未充電の全固体電池を、0.1Cの電流で充電終止電圧4.2Vまで充電して満充電状態とした。この満充電状態の全固体電池を、未充電の全固体電池に代えて用いる以外は、実施例1と同様に加熱工程を行なった。加熱した満充電状態の全固体電池を用いて実施例1と同様の評価を行なった。ただし、充電容量および放電容量は、満充電状態の全固体電池を、一旦、放電終止電圧2.8Vまで0.1Cの電流で放電した後、さらに0.1Cの電流で充電終止電圧4.2Vまで充電する際、および、次いで0.1Cの電流で放電終止電圧2.8Vまで放電する際に、それぞれ求めた。
Comparative Example 2
The uncharged all-solid-state battery assembled in the same procedure as in Example 1 was charged with a current of 0.1 C to a final charge voltage of 4.2 V to bring it into a fully charged state. The heating step was performed in the same manner as in Example 1 except that the fully charged all-solid-state battery was used instead of the uncharged all-solid-state battery. The same evaluation as in Example 1 was performed using a heated, fully charged all-solid-state battery. However, regarding the charge capacity and discharge capacity, a fully charged all-solid-state battery is once discharged with a current of 0.1 C up to a discharge end voltage of 2.8 V, and then a charge end voltage of 4.2 V is further applied with a current of 0.1 C. It was determined when charging to 2.8 V and then when discharging to a discharge end voltage of 2.8 V with a current of 0.1 C.

比較例3
比較例2と同様にして全固体電池を満充電まで充電し、次いで、0.1Cの電流で放電終止電圧2.8Vまで放電した放電状態(放電末状態)とした。この放電状態の全固体電池を、未充電の全固体電池に代えて用いる以外は、実施例1と同様に加熱工程を行なった。加熱した放電状態の全固体電池を用いて実施例1と同様の評価を行なった。
実施例1〜6および比較例1〜3の結果を表1に示す。
Comparative Example 3
The all-solid-state battery was charged to full charge in the same manner as in Comparative Example 2, and then discharged to a discharge end voltage of 2.8 V with a current of 0.1 C (end-of-discharge state). The heating step was performed in the same manner as in Example 1 except that the discharged all-solid-state battery was used instead of the uncharged all-solid-state battery. The same evaluation as in Example 1 was performed using a heated and discharged all-solid-state battery.
The results of Examples 1 to 6 and Comparative Examples 1 to 3 are shown in Table 1.

Figure 0006936661
Figure 0006936661

表1に示されるように、0.1Cにおける充電容量および放電容量は実施例1〜6と比較例1〜3とでそれほど大きな違いはないが、実施例では2.0Cにおける放電容量が比較例に比べて格段に高くなり、出力特性が向上した。これは、電極および固体電解質層を加圧し、未充電の全固体電池を加熱したことで、固体電解質粒子同士や固体電解質粒子と活物質粒子との界面における接触状態が向上したことによるものと考えられる。また、実施例では、5サイクル充放電後に、99.4%以上の高い容量維持率が得られた。 As shown in Table 1, the charge capacity and discharge capacity at 0.1 C are not so different between Examples 1 to 6 and Comparative Examples 1 to 3, but in the examples, the discharge capacity at 2.0 C is Comparative Example. It is much higher than the above, and the output characteristics are improved. It is considered that this is because the contact state between the solid electrolyte particles and the interface between the solid electrolyte particles and the active material particles was improved by pressurizing the electrodes and the solid electrolyte layer and heating the uncharged all-solid-state battery. Be done. Further, in the examples, a high capacity retention rate of 99.4% or more was obtained after 5 cycles of charging and discharging.

比較例4
実施例2と同様に作製した全固体電池を加熱した後、冷却することなく、120℃に設定された恒温槽内に入れて、電池温度を120℃で維持し、58.8MPaで加圧した。この状態で、実施例1の(3)(a)において、0.1Cの電流で充放電を行い、初期充電容量および初期放電容量を測定し、初期充電容量に対する初期放電容量の比率(0.1C充放電効率)(%)を求めた。また、実施例1の(3)(b)のサイクル特性についての評価を行なった。さらに、実施例1の(3)(b)と同様の充放電条件で、15サイクル充放電を行なった後の放電容量を求め、5サイクル充放電を行なった場合と同様に、初期放電容量に対する比率(容量維持率)(%)を求めた。
また、上記実施例3についても、比較例4の場合と同様に、0.1C充放電効率および15サイクル充放電時の容量維持率を求めた。比較例4および実施例3の結果を表2に示す。
Comparative Example 4
After heating the all-solid-state battery produced in the same manner as in Example 2, the battery was placed in a constant temperature bath set at 120 ° C. without cooling, the battery temperature was maintained at 120 ° C., and the pressure was increased at 58.8 MPa. .. In this state, in (3) and (a) of Example 1, charging and discharging are performed with a current of 0.1 C, the initial charge capacity and the initial discharge capacity are measured, and the ratio of the initial discharge capacity to the initial charge capacity (0. 1C charge / discharge efficiency) (%) was determined. In addition, the cycle characteristics of (3) and (b) of Example 1 were evaluated. Further, the discharge capacity after 15 cycles of charge / discharge is obtained under the same charge / discharge conditions as in (3) and (b) of Example 1, and the initial discharge capacity is obtained in the same manner as in the case of 5 cycles of charge / discharge. The ratio (capacity retention rate) (%) was calculated.
Further, also in Example 3 above, the 0.1C charge / discharge efficiency and the capacity retention rate at the time of 15 cycle charge / discharge were determined as in the case of Comparative Example 4. The results of Comparative Example 4 and Example 3 are shown in Table 2.

Figure 0006936661
Figure 0006936661

表2に示されるように、実施例3では、5サイクル充放電時の容量維持率は99.5%と極めて高く、15サイクル充放電時にも、98.8%の高い容量維持率が得られた。それに対し、未充電の電池を加熱した後、加熱した状態で充放電を行なった比較例4では、5サイクル充放電時の容量維持率は、91.7%であり、15サイクル充放電時には容量維持率は60.7%にまで大きく低下した。このように、未充電状態の電池を加熱し、冷却した後に、充放電を行なった実施例3の電池では、高いサイクル特性が確保できている。また、実施例3では、比較例4に比べて、初期の0.1C充放電効率も高くなっている。 As shown in Table 2, in Example 3, the capacity retention rate during 5-cycle charge / discharge is extremely high at 99.5%, and a high capacity retention rate of 98.8% is obtained even during 15-cycle charge / discharge. rice field. On the other hand, in Comparative Example 4 in which the uncharged battery was heated and then charged / discharged in the heated state, the capacity retention rate at the time of 5 cycles of charging / discharging was 91.7%, and the capacity at the time of 15 cycles of charging / discharging. The maintenance rate dropped significantly to 60.7%. As described above, in the battery of Example 3 in which the uncharged battery is heated, cooled, and then charged / discharged, high cycle characteristics can be ensured. Further, in Example 3, the initial 0.1C charge / discharge efficiency is higher than that in Comparative Example 4.

本発明の製造方法によれば、高出力でサイクル特性に優れる全固体電池を製造できる。得られる全固体電池は、高レートでも充放電を良好に行なうことができ、サイクル特性に優れるため、高出力や高いサイクル特性が求められる様々な用途に有用である。 According to the manufacturing method of the present invention, an all-solid-state battery having high output and excellent cycle characteristics can be manufactured. The obtained all-solid-state battery can be charged and discharged well even at a high rate and has excellent cycle characteristics, and is therefore useful for various applications requiring high output and high cycle characteristics.

1:電極群、2:正極、2a:正極合材層、2b:正極集電体、3:固体電解質層、4:負極、4a:負極合材層、4b:負極集電体、5:絶縁体、6:積層体 1: Electrode group 2: Positive electrode, 2a: Positive electrode mixture layer, 2b: Positive electrode current collector, 3: Solid electrolyte layer, 4: Negative electrode, 4a: Negative electrode mixture layer, 4b: Negative electrode current collector, 5: Insulation Body, 6: Laminate

Claims (8)

正極と、固体電解質層と、負極とを備える電極群を含む全固体電池を組み立てる第1工程と、
前記第1工程の後、前記全固体電池を未充電状態で80℃以上の温度で加熱する第2工程と、
前記第2工程の後、前記全固体電池を未充電状態で45℃以下の温度に冷却する第3工程と、を備え、
前記固体電解質層と、前記正極および前記負極の少なくとも一方とは、それぞれ、固体電解質を含み、
前記第1工程、前記正極、前記固体電解質層、および前記負極が積層された積層体を300MPa以上の第1圧力で加圧する工程と、前記第1圧力を解放する工程と、を含み
前記第2工程において、全固体電池を加熱する温度は、前記固体電解質の相転移、ガラス転移、または化学変化が起こる温度よりも低い、全固体電池の製造方法。
The first step of assembling an all-solid-state battery including an electrode group including a positive electrode, a solid electrolyte layer, and a negative electrode.
After the first step, the second step of heating the all-solid-state battery at a temperature of 80 ° C. or higher in an uncharged state, and
After the second step, a third step of cooling the all-solid-state battery to a temperature of 45 ° C. or lower in an uncharged state is provided.
The solid electrolyte layer and at least one of the positive electrode and the negative electrode each contain a solid electrolyte.
Wherein the first step includes the positive electrode, and the solid electrolyte layer, and the step of the negative electrode is pressurized at a first pressure higher than 300MPa laminates stacked, and a step of releasing the first pressure,
A method for producing an all-solid-state battery, wherein in the second step, the temperature at which the all-solid-state battery is heated is lower than the temperature at which the phase transition, glass transition, or chemical change of the solid electrolyte occurs.
前記第2工程において、前記全固体電池の加熱を、前記全固体電池を第2圧力で加圧しながら行なう、請求項1に記載の全固体電池の製造方法。 The method for manufacturing an all-solid-state battery according to claim 1, wherein in the second step, the all-solid-state battery is heated while pressurizing the all-solid-state battery with a second pressure. 前記第2圧力は、0.5MPa以上100MPa以下である、請求項2に記載の全固体電池の製造方法。 The method for manufacturing an all-solid-state battery according to claim 2, wherein the second pressure is 0.5 MPa or more and 100 MPa or less. 前記第2工程において、前記全固体電池を加熱する温度は、80℃以上210℃以下であり、
前記固体電解質は、硫化物系固体電解質および水素化物系固体電解質からなる群より選択される少なくとも一種を含む、請求項1〜3のいずれか1項に記載の全固体電池の製造方法。
In the second step, the temperature for heating the all-solid-state battery is 80 ° C. or higher and 210 ° C. or lower.
The method for producing an all-solid-state battery according to any one of claims 1 to 3, wherein the solid electrolyte contains at least one selected from the group consisting of a sulfide-based solid electrolyte and a hydride-based solid electrolyte.
前記固体電解質は、Li、PおよびSを含む、請求項1〜4のいずれか1項に記載の全固体電池の製造方法。 The method for producing an all-solid-state battery according to any one of claims 1 to 4, wherein the solid electrolyte contains Li, P, and S. 前記固体電解質層は、有機バインダを含まない、請求項1〜5のいずれか1項に記載の全固体電池の製造方法。 The method for producing an all-solid-state battery according to any one of claims 1 to 5, wherein the solid electrolyte layer does not contain an organic binder. 前記正極は、正極活物質を含み、
前記正極活物質は、式(1):Li1+x(Niy11-y11-x2
(式中、Mは、Co、Mn、Fe、およびAlからなる群より選択される少なくとも一種であり、Coを必須成分として含む。xは、0≦x≦1/3を充足し、y1は、0.2≦y1≦0.9を充足する。)
で表される酸化物を含む、請求項1〜のいずれか1項に記載の全固体電池の製造方法。
The positive electrode contains a positive electrode active material and contains a positive electrode active material.
The positive electrode active material has the formula (1): Li 1 + x ( Ny1 M 1-y1 ) 1-x O 2
(In the formula, M is at least one selected from the group consisting of Co, Mn, Fe, and Al, and Co is contained as an essential component. X satisfies 0 ≦ x ≦ 1/3, and y1 is. , 0.2 ≦ y1 ≦ 0.9.)
The method for producing an all-solid-state battery according to any one of claims 1 to 6 , which comprises an oxide represented by.
前記負極は、負極活物質を含み、
前記負極活物質は、リチウムイオンを挿入および脱離可能な炭素質材料を含む、請求項1〜のいずれか1項に記載の全固体電池の製造方法。
The negative electrode contains a negative electrode active material and contains a negative electrode active material.
The method for producing an all-solid-state battery according to any one of claims 1 to 7 , wherein the negative electrode active material contains a carbonaceous material capable of inserting and removing lithium ions.
JP2017162328A 2017-08-25 2017-08-25 Manufacturing method of all-solid-state battery Active JP6936661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017162328A JP6936661B2 (en) 2017-08-25 2017-08-25 Manufacturing method of all-solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017162328A JP6936661B2 (en) 2017-08-25 2017-08-25 Manufacturing method of all-solid-state battery

Publications (2)

Publication Number Publication Date
JP2019040759A JP2019040759A (en) 2019-03-14
JP6936661B2 true JP6936661B2 (en) 2021-09-22

Family

ID=65726748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017162328A Active JP6936661B2 (en) 2017-08-25 2017-08-25 Manufacturing method of all-solid-state battery

Country Status (1)

Country Link
JP (1) JP6936661B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023121323A1 (en) * 2021-12-24 2023-06-29 주식회사 엘지에너지솔루션 All-solid-state battery comprising two types of solid electrolyte layers and method for manufacturing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022216115A1 (en) 2021-04-09 2022-10-13 주식회사 엘지에너지솔루션 Method for preparing all-solid-state battery and all-solid-state prepared thereby
KR20220140428A (en) 2021-04-09 2022-10-18 주식회사 엘지에너지솔루션 Manufacturing Method of All-Solid State Battery and All-Solid State Battery Thereby
KR102372463B1 (en) * 2021-05-31 2022-03-10 에너진(주) Manufacturing method of all-solid rechargeable battery and all-solid rechargeable battery manufactured thereby

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02114457A (en) * 1988-10-25 1990-04-26 Matsushita Electric Ind Co Ltd Operating method for solid secondary battery
TW529190B (en) * 2000-11-21 2003-04-21 Sony Corp Polymer electrolyte battery and method of producing the same
JP6175934B2 (en) * 2013-06-25 2017-08-09 トヨタ自動車株式会社 Manufacturing method of all solid state battery
JP6296030B2 (en) * 2015-09-24 2018-03-20 トヨタ自動車株式会社 Electrode laminate and method for producing all solid state battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023121323A1 (en) * 2021-12-24 2023-06-29 주식회사 엘지에너지솔루션 All-solid-state battery comprising two types of solid electrolyte layers and method for manufacturing same

Also Published As

Publication number Publication date
JP2019040759A (en) 2019-03-14

Similar Documents

Publication Publication Date Title
US20190372155A1 (en) Methods of manufacturing high-active-material-loading composite electrodes and all-solid-state batteries including composite electrodes
Huang et al. Progress and challenges of prelithiation technology for lithium‐ion battery
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP6934727B2 (en) All-solid-state battery and its manufacturing method
US20110081580A1 (en) Solid-state lithium secondary battery and method for producing the same
JP6936661B2 (en) Manufacturing method of all-solid-state battery
JP2020522854A (en) Method for suppressing the propagation of metals in solid electrolytes
JP5880409B2 (en) Manufacturing method of all-solid lithium secondary battery
JP6944783B2 (en) Manufacturing method of electrodes for all-solid-state batteries and manufacturing method of all-solid-state batteries
KR20070028245A (en) Lithium secondary battery
JP6704295B2 (en) All-solid-state lithium secondary battery and manufacturing method thereof
CN110226255B (en) All-solid-state battery and method for manufacturing same
WO2014141962A1 (en) All-solid-state battery
Lu et al. Wide‐temperature, long‐cycling, and high‐loading pyrite all‐solid‐state batteries enabled by argyrodite thioarsenate superionic conductor
JP2013051171A (en) Electrode body for all solid-state battery and all solid-state battery
WO2019009072A1 (en) Negative electrode for all-solid-state batteries and all-solid-state battery provided with same
JP7042426B2 (en) Solid electrolytes and batteries
JP2009070598A (en) Lithium secondary battery
JPH10208777A (en) Non-aqueous electrolyte secondary battery
JP5648747B2 (en) Solid battery and manufacturing method thereof
CN111224048B (en) Application of fullerene in solid-state battery, solid-state battery and assembly process of solid-state battery
JP2018085310A (en) Positive electrode for all-solid battery, and all-solid battery
JP7370728B2 (en) All-solid-state battery and its manufacturing method
CN115315832A (en) High energy density lithium metal based anode for solid state lithium ion batteries
WO2020085015A1 (en) Electrode and solid-state lithium ion secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170905

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200402

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210827

R150 Certificate of patent or registration of utility model

Ref document number: 6936661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150