JP6704295B2 - All-solid-state lithium secondary battery and manufacturing method thereof - Google Patents

All-solid-state lithium secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP6704295B2
JP6704295B2 JP2016100431A JP2016100431A JP6704295B2 JP 6704295 B2 JP6704295 B2 JP 6704295B2 JP 2016100431 A JP2016100431 A JP 2016100431A JP 2016100431 A JP2016100431 A JP 2016100431A JP 6704295 B2 JP6704295 B2 JP 6704295B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
positive electrode
porous substrate
solid
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016100431A
Other languages
Japanese (ja)
Other versions
JP2017208250A (en
Inventor
裕史 中嶋
裕史 中嶋
岸見 光浩
光浩 岸見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Maxell Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Holdings Ltd filed Critical Maxell Holdings Ltd
Priority to JP2016100431A priority Critical patent/JP6704295B2/en
Publication of JP2017208250A publication Critical patent/JP2017208250A/en
Application granted granted Critical
Publication of JP6704295B2 publication Critical patent/JP6704295B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、水素化物系固体電解質を用いた実用性の高い全固体リチウム二次電池及びその製造方法に関するものである。 The present invention relates to a highly practical all-solid-state lithium secondary battery using a hydride-based solid electrolyte and a method for manufacturing the same.

近年、携帯電話、ノート型パーソナルコンピュータ等のポータブル電子機器の発達や、電気自動車の実用化等に伴い、小型・軽量で且つ高容量・高エネルギー密度の二次電池が必要とされるようになってきている。 In recent years, with the development of portable electronic devices such as mobile phones and notebook personal computers, and the practical use of electric vehicles, small and lightweight secondary batteries with high capacity and high energy density have been required. Is coming.

現在、この要求に応え得る非水二次電池、特にリチウムイオン二次電池では、正極活物質にコバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)等のリチウム含有複合酸化物を用い、負極活物質に黒鉛等を用い、非水電解質として有機溶媒とリチウム塩とを含む有機電解液が用いられている。そして、非水二次電池の適用機器の更なる発達に伴って、非水二次電池の更なる長寿命化・高容量化・高エネルギー密度化が求められていると共に、長寿命化・高容量化・高エネルギー密度化した非水二次電池の安全性及び信頼性も高く求められている。 Currently, non-aqueous secondary batteries that can meet this demand, particularly lithium ion secondary batteries, use lithium-containing composite oxides such as lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide (LiNiO 2 ) as a positive electrode active material. Graphite or the like is used as the negative electrode active material, and an organic electrolytic solution containing an organic solvent and a lithium salt is used as the non-aqueous electrolyte. With the further development of non-aqueous secondary battery application equipment, further long life, high capacity, and high energy density of non-aqueous secondary batteries are required, as well as long life and high There is also a strong demand for safety and reliability of non-aqueous secondary batteries with increased capacity and higher energy density.

しかし、リチウムイオン二次電池に用いられている有機電解液は、可燃性物質である有機溶媒を含んでいるため、電池に短絡等の異常事態が発生した際に、有機電解液が異常発熱する可能性がある。また、近年の非水二次電池の高エネルギー密度化及び有機電解液中の有機溶媒量の増加傾向に伴い、より一層非水二次電池の安全性及び信頼性が求められている。 However, the organic electrolyte used in lithium-ion secondary batteries contains an organic solvent that is a flammable substance, so when an abnormal situation such as a short circuit occurs in the battery, the organic electrolyte heats up abnormally. there is a possibility. Further, with the recent trend toward higher energy densities of non-aqueous secondary batteries and the increasing trend of the amount of organic solvent in the organic electrolyte, further safety and reliability of non-aqueous secondary batteries are required.

以上のような状況において、有機溶媒を用いない全固体型のリチウム二次電池が注目されている。全固体型のリチウム二次電池は、従来の有機溶媒系電解質に代えて、有機溶媒を用いない固体電解質の成形体を用いるものであり、固体電解質の異常発熱のおそれがなく、高い安全性を備えている。 Under the circumstances as described above, attention is paid to an all-solid-state lithium secondary battery that does not use an organic solvent. The all-solid-state lithium secondary battery uses a molded body of a solid electrolyte that does not use an organic solvent, instead of a conventional organic solvent-based electrolyte, and there is no fear of abnormal heat generation of the solid electrolyte, and high safety is achieved. I have it.

一方、固体電解質の成形体は、脆いため、加工性に乏しく、固体電解質の薄膜化、大面積化が困難である。このため、電池製造時の固体電解質の取り扱い性が悪く、また固体電解質の成形体が厚くなるため、固体電解質のリチウムイオン伝導性が低くなり、電池性能が低下する問題もある。 On the other hand, since the solid electrolyte molded body is brittle, it has poor workability, and it is difficult to make the solid electrolyte into a thin film and to have a large area. Therefore, the handleability of the solid electrolyte at the time of battery production is poor, and the molded body of the solid electrolyte becomes thick, so that the lithium ion conductivity of the solid electrolyte becomes low, and there is a problem that the battery performance deteriorates.

これらの問題を解決するために、例えば特許文献1〜5に記載のとおり、種々の検討がなされている。 In order to solve these problems, various studies have been made as described in Patent Documents 1 to 5, for example.

特開2007−273436号公報JP, 2007-273436, A 特開2005−353309号公報JP, 2005-353309, A 国際公開WO2009/139382号パンフレットInternational publication WO2009/139382 pamphlet 特開平01−115069号公報JP-A-01-115069 特開2008−103258号公報JP, 2008-103258, A

特許文献1には、実用化が極めて有望視される、高いリチウムイオン伝導性を有する硫化物系固体電解質を用いた全固体電池が提案されている。特許文献1では、電極の電気的短絡を防ぎ、安定に動作する固体電解質シートを提供するため、硫化物系固体電解質層の形成にスペーサーとして無機粒子である直径100μmの球状シリカやフッ素樹脂繊維等を分散させて用いている。しかし、硫化物系固体電解質は作業環境、使用できる溶剤が限定され、試作環境及びセル外装材の開裂によってH2Sといった毒性ガスを発生させるおそれがある。そのため、硫化物系固体電解質層の形成に際して、毒性ガスを発生させずにスペーサー粒子や繊維を硫化物系固体電解質に溶媒分散させることが困難である。また、硫化物系固体電解質は、柔軟であり、スペーサー粒子や繊維の添加は、電解質層の機械的強度及び積層体の機械的強度には影響しないため、硫化物系固体電解質層の薄層化は困難であり、電池セルサイズも0.8cm2程度の小面積となっている。 Patent Document 1 proposes an all-solid-state battery using a sulfide-based solid electrolyte having high lithium ion conductivity, which is highly promising for practical use. In Patent Document 1, in order to provide a solid electrolyte sheet that prevents electric short-circuiting of electrodes and operates stably, spherical silica having a diameter of 100 μm, which is an inorganic particle, is used as a spacer for forming a sulfide-based solid electrolyte layer, a fluororesin fiber, or the like. Are dispersed and used. However, the sulfide-based solid electrolyte is limited in working environment and usable solvent, and there is a possibility that a toxic gas such as H 2 S may be generated due to cleavage of the trial environment and cell exterior material. Therefore, when forming the sulfide-based solid electrolyte layer, it is difficult to solvent-disperse the spacer particles or fibers in the sulfide-based solid electrolyte without generating a toxic gas. In addition, the sulfide-based solid electrolyte is flexible, and the addition of spacer particles and fibers does not affect the mechanical strength of the electrolyte layer and the mechanical strength of the laminated body. Is difficult, and the battery cell size is as small as about 0.8 cm 2 .

特許文献2にも同様に硫化物系固体電解質を用いた全固体電池が提案されている。特許文献2では、更に機械的強度に優れた高安全性高信頼性のバルク型全固体リチウム電池が得られる電池素子構成を提供するため、負極層と硫化物系固体電解質の間に中間層を形成し、中間層と硫化物系固体電解質の間に導電性メッシュを配置している。メッシュ内の電極充填物の周辺部に電解質材料を充填することで正負極間の短絡を予防する構成であるが、導電性メッシュであるため、メッシュバリ等によって正負極間が短絡するおそれがある。また、特許文献1と同様に、硫化物系固体電解質はH2Sを発生させるおそれがあり、また電池サイズも0.8cm2程度の小面積となっている。 Similarly, Patent Document 2 proposes an all-solid-state battery using a sulfide-based solid electrolyte. In Patent Document 2, in order to provide a battery element structure capable of obtaining a highly safe and highly reliable bulk type all-solid-state lithium battery further excellent in mechanical strength, an intermediate layer is provided between a negative electrode layer and a sulfide-based solid electrolyte. A conductive mesh is formed between the intermediate layer and the sulfide-based solid electrolyte. By filling the periphery of the electrode filler in the mesh with an electrolyte material, it is possible to prevent a short circuit between the positive and negative electrodes, but since it is a conductive mesh, there is a risk of short circuits between the positive and negative electrodes due to mesh burrs and the like. .. Further, as in Patent Document 1, the sulfide-based solid electrolyte may generate H 2 S, and the battery size is a small area of about 0.8 cm 2 .

特許文献3には、高いリチウムイオン伝導性を有する水素化物系固体電解質を用いた全固体電池が提案されている。特許文献3では、水素化物系固体電解質にアルカリ金属化合物を添加することにより、高いイオン伝導性を実現している。しかし、用いる水素化物系固体電解質層は、依然として機械的強度が低く、水素化物系固体電解質層の薄層化、大面積化は困難であり、また電池サイズも0.8cm2程度の小面積となっている。 Patent Document 3 proposes an all-solid-state battery using a hydride-based solid electrolyte having high lithium ion conductivity. In Patent Document 3, high ionic conductivity is realized by adding an alkali metal compound to a hydride-based solid electrolyte. However, the hydride-based solid electrolyte layer used is still low in mechanical strength, and it is difficult to make the hydride-based solid electrolyte layer thin and have a large area, and the battery size is as small as about 0.8 cm 2. Is becoming

特許文献4には、固体電解質インクを不織布にスプレーで塗布して固体電解質シートを製造する方法が提案されている。また、特許文献5には、固体電解質ガラスセラミックスを不織布に充填した固体電解質シートが提案されている。しかし、特許文献4及び5では、いずれも不織布のような曲路を有する基材に固体電解質を十分に含浸させることができず、固体電解質の伝導パスが切断され、リチウムイオン伝導性が低下するおそれがある。 Patent Document 4 proposes a method of manufacturing a solid electrolyte sheet by applying a solid electrolyte ink to a nonwoven fabric by spraying. Patent Document 5 proposes a solid electrolyte sheet in which a nonwoven fabric is filled with a solid electrolyte glass ceramics. However, in Patent Documents 4 and 5, it is not possible to sufficiently impregnate a base material having a curved path such as a non-woven fabric with a solid electrolyte, the conduction path of the solid electrolyte is cut, and the lithium ion conductivity is reduced. There is a risk.

本発明の全固体リチウム二次電池は、正極と、負極と、前記正極と前記負極との間に配置された固体電解質層とを含む全固体リチウム二次電池であって、前記固体電解質層は、水素化物系固体電解質を含み、
前記正極及び前記負極の少なくとも一方は、導電性多孔質基材と、前記導電性多孔質基材に充填された活物質粒子とを含むことを特徴とする。
The all-solid-state lithium secondary battery of the present invention is an all-solid-state lithium secondary battery including a positive electrode, a negative electrode, and a solid electrolyte layer arranged between the positive electrode and the negative electrode, wherein the solid electrolyte layer is , Including a hydride-based solid electrolyte,
At least one of the positive electrode and the negative electrode includes a conductive porous base material and active material particles filled in the conductive porous base material.

また、本発明の全固体リチウム二次電池の製造方法は、上記本発明の全固体リチウム二次電池の製造方法であって、活物質粒子を乾式で導電性多孔質基材に充填する工程を含むことを特徴とする。 Further, the method for producing the all-solid-state lithium secondary battery of the present invention is a method for producing the all-solid-state lithium secondary battery of the present invention, which comprises a step of filling active material particles in a conductive porous substrate by a dry method. It is characterized by including.

本発明によれば、大面積化が可能で、且つ、毒性ガスが発生しない固体電解質を用いることにより、高容量・高エネルギー密度で、安全性の高い全固体リチウム二次電池を提供することができる。 According to the present invention, it is possible to provide an all-solid-state lithium secondary battery with high capacity, high energy density, and high safety by using a solid electrolyte capable of increasing the area and generating no toxic gas. it can.

図1は、本発明に用いる固体電解質層の一例を示す平面図である。FIG. 1 is a plan view showing an example of a solid electrolyte layer used in the present invention. 図2は、本発明に用いる固体電解質層の他の例を示す平面図である。FIG. 2 is a plan view showing another example of the solid electrolyte layer used in the present invention. 図3は、成形体厚みとプレス圧との関係を示す図である。FIG. 3 is a diagram showing the relationship between the thickness of the compact and the pressing pressure.

(本発明の全固体リチウム二次電池)
本発明の全固体リチウム二次電池は、正極と、負極と、上記正極と上記負極との間に配置された固体電解質層とを備え、上記固体電解質層は、水素化物系固体電解質を含み、上記正極及び上記負極の少なくとも一方は、導電性多孔質基材と、上記導電性多孔質基材に充填された活物質粒子とを含むことを特徴とする。
(All-solid-state lithium secondary battery of the present invention)
The all-solid lithium secondary battery of the present invention comprises a positive electrode, a negative electrode, and a solid electrolyte layer disposed between the positive electrode and the negative electrode, the solid electrolyte layer contains a hydride-based solid electrolyte, At least one of the positive electrode and the negative electrode is characterized by including a conductive porous base material and active material particles filled in the conductive porous base material.

本発明の全固体リチウム二次電池では、活物質粒子が導電性多孔質基材に充填されて形成された正極又は負極を備えているので、固体電解質層を保持する電極の強度が向上し、固体電解質層の大面積化が可能である。より具体的には、上記固体電解質層の主面の大きさを1.0cm2以上とすることができる。これにより、高容量・高エネルギー密度の全固体リチウム二次電池を提供できる。 In the all-solid-state lithium secondary battery of the present invention, since the active material particles are provided with the positive electrode or the negative electrode formed by filling the conductive porous substrate, the strength of the electrode holding the solid electrolyte layer is improved, It is possible to increase the area of the solid electrolyte layer. More specifically, the size of the main surface of the solid electrolyte layer can be 1.0 cm 2 or more. As a result, an all-solid-state lithium secondary battery with high capacity and high energy density can be provided.

また、上記固体電解質層は、水素化物系固体電解質を含んでいるため、水素化物系固体電解質が水分を含む外気と接触しても毒性ガスが発生しない。 Moreover, since the solid electrolyte layer contains the hydride-based solid electrolyte, no toxic gas is generated even when the hydride-based solid electrolyte comes into contact with the outside air containing water.

また、上記導電性多孔質基材は、ストレートポアを有することが好ましい。これにより、活物質粒子の導電性多孔質基材への充填性が向上する。 The conductive porous substrate preferably has straight pores. This improves the filling property of the active material particles in the conductive porous substrate.

また、本発明の全固体リチウム二次電池では、上記固体電解質層は、絶縁性多孔質基材を更に含み、上記水素化物系固体電解質が、上記絶縁性多孔質基材に充填されていることが好ましい。これにより、固体電解質層の強度が向上し、固体電解質層の更なる大面積化が可能となる。 Moreover, in the all-solid-state lithium secondary battery of the present invention, the solid electrolyte layer further includes an insulating porous substrate, and the hydride-based solid electrolyte is filled in the insulating porous substrate. Is preferred. As a result, the strength of the solid electrolyte layer is improved, and the solid electrolyte layer can have a larger area.

また、上記絶縁性多孔質基材は、ストレートポアを有することが好ましい。これにより、水素化物系固体電解質の絶縁性多孔質基材への充填性が向上する。 Further, the insulating porous substrate preferably has straight pores. This improves the filling property of the hydride-based solid electrolyte into the insulating porous substrate.

以下、本発明の全固体リチウム二次電池の実施形態について説明する。下記実施形態の固体電解質層では、絶縁性多孔質基材に固体電解質を充填した形態を示したが、正極及び負極の少なくとも一方が、活物質粒子を充填した導電性多孔質基材を備えていれば、固体電解質層が絶縁性多孔質基材を備えていなくてもよい。この場合、固体電解質層が、イオン伝導の障害となる絶縁性多孔質基材を含まないため、電池の負荷特性を向上させることができる。一方、固体電解質層の強度を高め、電池の信頼性をより向上させるためには、正極及び負極の少なくとも一方に導電性多孔質基材を用い、且つ固体電解質層に絶縁性多孔質基材を用いることが好ましい。 Hereinafter, embodiments of the all-solid-state lithium secondary battery of the present invention will be described. In the solid electrolyte layer of the following embodiment, an insulating porous substrate is shown filled with a solid electrolyte, but at least one of the positive electrode and the negative electrode is provided with a conductive porous substrate filled with active material particles. Then, the solid electrolyte layer does not have to include the insulating porous substrate. In this case, since the solid electrolyte layer does not include an insulating porous base material that hinders ion conduction, the load characteristics of the battery can be improved. On the other hand, in order to increase the strength of the solid electrolyte layer and further improve the reliability of the battery, a conductive porous substrate is used for at least one of the positive electrode and the negative electrode, and an insulating porous substrate is used for the solid electrolyte layer. It is preferable to use.

<固体電解質層>
図1は、本発明に用いる固体電解質層の一例を示す平面図であり、図2は、本発明に用いる固体電解質層の他の例を示す平面図である。
<Solid electrolyte layer>
FIG. 1 is a plan view showing an example of the solid electrolyte layer used in the present invention, and FIG. 2 is a plan view showing another example of the solid electrolyte layer used in the present invention.

図1において、固体電解質層10は、絶縁性多孔質基材11と、絶縁性多孔質基材11の正方形の開孔部を有するストレートポア11aに充填された固体電解質12とを備えている。 In FIG. 1, the solid electrolyte layer 10 includes an insulating porous base material 11 and a solid electrolyte 12 filled in a straight pore 11 a having a square opening portion of the insulating porous base material 11.

固体電解質12は、水素化物系固体電解質から形成されており、上記水素化物系固体電解質は、絶縁性多孔質基材11のストレートポア11aに、押圧されることにより充填され、ストレートポア11a内に固定されている。このため、固体電解質層10の機械的強度を向上でき、固体電解質層10を大面積化しても固体電解質12が破損することはなく、また、絶縁性多孔質基材11から固体電解質12が脱落することも防止できる。また、固体電解質層10を正極と負極との間に配置することにより、正極と負極との間のリチウムイオン伝導性を保持しながら、正極と負極との短絡を防止できる。 The solid electrolyte 12 is formed of a hydride-based solid electrolyte, and the hydride-based solid electrolyte is filled in the straight pores 11a of the insulating porous substrate 11 by being pressed to fill the straight pores 11a. It is fixed. Therefore, the mechanical strength of the solid electrolyte layer 10 can be improved, the solid electrolyte 12 is not damaged even if the solid electrolyte layer 10 has a large area, and the solid electrolyte 12 falls off from the insulating porous substrate 11. It can also be prevented. Further, by disposing the solid electrolyte layer 10 between the positive electrode and the negative electrode, it is possible to prevent a short circuit between the positive electrode and the negative electrode while maintaining lithium ion conductivity between the positive electrode and the negative electrode.

また、図2において、固体電解質層20は、絶縁性多孔質基材21と、絶縁性多孔質基材21の円形の開孔部を有するストレートポア21aに充填された固体電解質22とを備えている。固体電解質22も、水素化物系固体電解質から形成されており、上記水素化物系固体電解質は、絶縁性多孔質基材21のストレートポア21aに、押圧されることにより充填され、ストレートポア21a内に固定されている。図2に示した固体電解質層20も、図1に示した固体電解質層10と同様の作用・効果を発揮できる。 Further, in FIG. 2, the solid electrolyte layer 20 includes an insulating porous base material 21 and a solid electrolyte 22 filled in the straight pores 21a having circular opening portions of the insulating porous base material 21. There is. The solid electrolyte 22 is also formed of a hydride-based solid electrolyte, and the hydride-based solid electrolyte is filled in the straight pores 21a of the insulating porous base material 21 by being pressed to fill the straight pores 21a. It is fixed. The solid electrolyte layer 20 shown in FIG. 2 can also exhibit the same actions and effects as the solid electrolyte layer 10 shown in FIG.

上記水素化物系固体電解質としては、リチウムイオン伝導性を有していれば特に限定されず、例えば、LiBH4、LiAlH4、Li3AlH6、LiBH(Et)3、LiBH(s−Bu)3、LiNH2、Li2NH、Li〔OC(CH333AlH、Li(OCH33AlH、Li(OC253H、LiBH4とLiIとのモル比が1:1〜20:1の固体電解質(LiBH4:LiI=3:1、LiBH4:LiI=7:1など)、Li21212等の水素化リチウム系固体電解質を使用できる。これらの中でも、LiBH4とLiIとのモル比が1:1〜20:1の固体電解質を使用することが望ましく、特に、リチウムイオン伝導性の高い、LiBH4とLiIとのモル比が3:1の固体電解質を使用することが望ましい。なお、LiBH4とLiIとのモル比が1:1〜20:1の固体電解質は、LiBH4とLiIとを混合し、得られた混合物を50℃以上、好ましくは150℃以上、特に好ましくは250℃以上に加熱して溶融又は焼結させ、その後、冷却することにより製造することができる。 The hydride-based solid electrolyte is not particularly limited as long as it has lithium ion conductivity, and includes, for example, LiBH 4 , LiAlH 4 , Li 3 AlH 6 , LiBH(Et) 3 , LiBH(s-Bu) 3. , LiNH 2, Li 2 NH, Li [OC (CH 3) 3] 3 AlH, Li (OCH 3) 3 AlH, Li (OC 2 H 5) 3 H, the molar ratio of LiBH 4 and LiI is 1: 1 A solid electrolyte of ˜20:1 (LiBH 4 :LiI=3:1, LiBH 4 :LiI=7:1, etc.), Li 2 B 12 H 12 etc. can be used. Among these, it is desirable to use a solid electrolyte in which the molar ratio of LiBH 4 and LiI is 1:1 to 20:1, and particularly, the molar ratio of LiBH 4 and LiI, which has high lithium ion conductivity, is 3: It is desirable to use one solid electrolyte. The solid electrolyte having a molar ratio of LiBH 4 and LiI of 1:1 to 20:1 is a mixture of LiBH 4 and LiI, and the obtained mixture is 50° C. or higher, preferably 150° C. or higher, and particularly preferably. It can be produced by heating to 250° C. or higher to melt or sinter, and then cooling.

上記水素化物系固体電解質は、1種を単独で用いることができるが、2種以上を併用することもできる。上記水素化物系固体電解質の形態は、絶縁性多孔質基材への充填性の観点から、粒子状が好ましいが、粒子状以外の形態であってもよい。また、上記水素化物系固体電解質を2種以上併用する場合は、それぞれの固体電解質を粒子状の形態で混合してもよいし、それぞれの固体電解質を分子レベルで混合してもよく、また、それぞれの固体電解質を層状に積層して使用してもよい。 The above hydride-based solid electrolytes may be used alone or in combination of two or more. The form of the hydride-based solid electrolyte is preferably in the form of particles from the viewpoint of filling the insulating porous substrate, but may be in a form other than the form of particles. When two or more hydride-based solid electrolytes are used in combination, the solid electrolytes may be mixed in the form of particles, or the solid electrolytes may be mixed at the molecular level. You may laminate|stack and use each solid electrolyte in layers.

上記絶縁性多孔質基材のストレートポアの開孔部の形状は、正方形、円形に限定されず、例えば、長方形、ひし形、長円形等の形状とすることもできる。上記絶縁性多孔質基材の形態も特に限定されず、絶縁性の薄板や薄膜に多数の開孔部を設けた基材を用いてもよく、また、上記薄板に切れ目を入れて両側に引っ張ってエキスパンド状とした基材を用いてもよいが、充填物の充填性の向上の観点から、網状基材を用いることが好ましい。上記網状基材を用いる場合、網の線径は、10〜300μmとすることができ、網状基材の強度向上の観点からは、20〜200μmとすることが好ましい。 The shape of the open pores of the straight pores of the insulating porous substrate is not limited to a square or a circle, and may be, for example, a rectangle, a rhombus, an oval, or the like. The form of the insulating porous base material is not particularly limited, and an insulating thin plate or a base material provided with a large number of apertures in a thin film may be used, and the thin plate may be cut and pulled on both sides. Although an expanded base material may be used, it is preferable to use a reticulated base material from the viewpoint of improving the filling property of the filling material. When the reticulated substrate is used, the wire diameter of the reticulation can be 10 to 300 μm, and from the viewpoint of improving the strength of the reticulated substrate, it is preferably 20 to 200 μm.

また、上記ストレートポアの開孔径は、40μm以上500μm以下であることが好ましく、100μm以上250μm以下がより好ましい。上記開孔径が大きすぎると、固体電解質層の強度が低下する傾向にあり、また、上記開孔径が小さすぎると、水素化物系固体電解質の絶縁性多孔質基材への充填性が低下する傾向にある。本発明では、上記ストレートポアを厚さ方向から平面視し、その開孔部に内接する円の最大直径を上記ストレートポアの開孔径であると定義する。例えば、ストレートポアの開孔部の形状が正方形の場合には、その正方形の1辺の長さが、そのストレートポアの開孔径となる。 The open pore diameter of the straight pores is preferably 40 μm or more and 500 μm or less, and more preferably 100 μm or more and 250 μm or less. If the pore size is too large, the strength of the solid electrolyte layer tends to decrease, and if the pore size is too small, the filling property of the hydride-based solid electrolyte into the insulating porous substrate tends to decrease. It is in. In the present invention, the straight pore is viewed in plan from the thickness direction, and the maximum diameter of the circle inscribed in the opening is defined as the opening diameter of the straight pore. For example, when the shape of the opening portion of the straight pore is square, the length of one side of the square is the diameter of the opening of the straight pore.

上記絶縁性多孔質基材の材質としては、リチウム金属と反応せず、絶縁性を有していれば特に限定されず、例えば、ポリエチレンテレフタレート、ポリアミド、ポリアリレート、ポリアミドイミド等の樹脂材料を用いることができる。 The material of the insulating porous substrate is not particularly limited as long as it does not react with lithium metal and has an insulating property, and for example, a resin material such as polyethylene terephthalate, polyamide, polyarylate, or polyamideimide is used. be able to.

上記絶縁性多孔質基材の厚さは特に限定されず、例えば、10μm以上100μm以下とすることができ、上記絶縁性多孔質基材の機械的強度の確保と基材の電気抵抗の増加防止とのバランスを図る観点からは、20μm以上50μm以下が好ましい。 The thickness of the insulating porous base material is not particularly limited and can be, for example, 10 μm or more and 100 μm or less, and ensures the mechanical strength of the insulating porous base material and prevents an increase in the electric resistance of the base material. From the viewpoint of achieving a balance with

上記水素化物系固体電解質を粒子状として使用する場合、その平均粒子径は、上記絶縁性多孔質基材のストレートポアの開孔径に対して、4%以下の大きさであることが好ましい。これにより、水素化物系固体電解質の絶縁性多孔質基材への充填性と、固体電解質層の成形性とが向上する。上記水素化物系固体電解質の平均粒子径の下限値は特に限定されないが、上記絶縁性多孔質基材のストレートポアの開孔径に対して、0.07%以上とすればよい。 When the hydride-based solid electrolyte is used in the form of particles, its average particle size is preferably 4% or less of the open pore size of the straight pores of the insulating porous substrate. This improves the filling property of the hydride-based solid electrolyte into the insulating porous substrate and the moldability of the solid electrolyte layer. The lower limit of the average particle diameter of the hydride-based solid electrolyte is not particularly limited, but may be 0.07% or more with respect to the open pore diameter of the straight pores of the insulating porous substrate.

図1及び図2では、ストレートポアを有する絶縁性多孔質基材を用いたが、絶縁性多孔質基材は水素化物系固体電解質を充填できるものであれば、ストレートポアを有するものに限定されず、他の多孔質構造基材を使用することもできる。 1 and 2, the insulating porous substrate having straight pores is used, but the insulating porous substrate is not limited to those having straight pores as long as it can be filled with a hydride-based solid electrolyte. Alternatively, other porous structured substrates can be used.

本発明に用いる固体電解質層は、その機械的強度が大きいため、その主面の大きさを1.0cm2以上とすることができ、また、上記固体電解質層の厚さは、通常、上記絶縁性多孔質基材の厚さと同じとなる。これにより高容量・高エネルギー密度の全固体リチウム二次電池を提供できる。 Since the solid electrolyte layer used in the present invention has a large mechanical strength, the size of the main surface thereof can be 1.0 cm 2 or more, and the thickness of the solid electrolyte layer is usually the above-mentioned insulating layer. The same as the thickness of the porous base material. As a result, an all-solid-state lithium secondary battery with high capacity and high energy density can be provided.

<正極>
上記正極としては、従来から知られているリチウムイオン二次電池に用いられている正極、即ち、Liイオンを吸蔵・放出可能な活物質を含有する正極であれば特に制限はない。例えば、正極活物質としては、LiMxMn2-x4(但し、Mは、Li、B、Mg、Ca、Sr、Ba、Ti、V、Cr、Fe、Co、Ni、Cu、Al、Sn、Sb、In、Nb、Mo、W、Y、Ru及びRhよりなる群から選択される少なくとも1種の元素であり、0.01≦x≦0.5)で表されるスピネル型リチウムマンガン複合酸化物、LixMn(1-y-x)Niyz(2-k)l(但し、Mは、Co、Mg、Al、B、Ti、V、Cr、Fe、Cu、Zn、Zr、Mo、Sn、Ca、Sr及びWよりなる群から選択される少なくとも1種の元素であり、0.8≦x≦1.2、0<y<0.5、0≦z≦0.5、k+l<1、−0.1≦k≦0.2、0≦l≦0.1)で表される層状化合物、LiCo1-xx2(但し、Mは、Al、Mg、Ti、Zr、Fe、Ni、Cu、Zn、Ga、Ge、Nb、Mo、Sn、Sb及びBaよりなる群から選択される少なくとも1種の元素であり、0≦x≦0.5)で表されるリチウムコバルト複合酸化物、LiNi1-xx2(但し、Mは、Al、Mg、Ti、Zr、Fe、Co、Cu、Zn、Ga、Ge、Nb、Mo、Sn、Sb及びBaよりなる群から選択される少なくとも1種の元素であり、0≦x≦0.5)で表されるリチウムニッケル複合酸化物、LiM1-xxPO4(但し、Mは、Fe、Mn及びCoよりなる群から選択される少なくとも1種の元素で、Nは、Al、Mg、Ti、Zr、Ni、Cu、Zn、Ga、Ge、Nb、Mo、Sn、Sb及びBaよりなる群から選択される少なくとも1種の元素であり、0≦x≦0.5)で表されるオリビン型複合酸化物、Li4Ti512で表されるリチウムチタン複合酸化物等が挙げられ、これらのうちの1種のみを用いてもよく、2種以上を併用してもよい。
<Positive electrode>
The positive electrode is not particularly limited as long as it is a positive electrode used in a conventionally known lithium ion secondary battery, that is, a positive electrode containing an active material capable of absorbing and releasing Li ions. For example, as the positive electrode active material, LiM x Mn 2-x O 4 (where M is Li, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Co, Ni, Cu, Al, Spinel type lithium manganese represented by 0.01≦x≦0.5), which is at least one element selected from the group consisting of Sn, Sb, In, Nb, Mo, W, Y, Ru, and Rh. Complex oxide, Li x Mn (1-yx) Ni y M z O (2-k) Fl (where M is Co, Mg, Al, B, Ti, V, Cr, Fe, Cu, Zn, It is at least one element selected from the group consisting of Zr, Mo, Sn, Ca, Sr and W, and 0.8≦x≦1.2, 0<y<0.5, 0≦z≦0. 5, k+l<1, −0.1≦k≦0.2, 0≦l≦0.1), a layered compound, LiCo 1-x M x O 2 (where M is Al, Mg, At least one element selected from the group consisting of Ti, Zr, Fe, Ni, Cu, Zn, Ga, Ge, Nb, Mo, Sn, Sb, and Ba, represented by 0≦x≦0.5) Lithium cobalt composite oxide, LiNi 1-x M x O 2 (where M is Al, Mg, Ti, Zr, Fe, Co, Cu, Zn, Ga, Ge, Nb, Mo, Sn, Sb and At least one element selected from the group consisting of Ba and a lithium nickel composite oxide represented by 0≦x≦0.5, LiM 1-x N x PO 4 (where M is Fe, At least one element selected from the group consisting of Mn and Co, N being a group consisting of Al, Mg, Ti, Zr, Ni, Cu, Zn, Ga, Ge, Nb, Mo, Sn, Sb and Ba. An olivine-type composite oxide represented by 0≦x≦0.5), a lithium titanium composite oxide represented by Li 4 Ti 5 O 12 , and the like, which are at least one element selected from Only one of these may be used, or two or more may be used in combination.

上記正極には、上記正極活物質と、導電助剤やバインダとを含有する正極合剤層を、集電体の片面又は両面に形成した構造のものを使用することができる。 The positive electrode may have a structure in which a positive electrode mixture layer containing the positive electrode active material and a conductive additive or a binder is formed on one side or both sides of a current collector.

上記正極のバインダとしては、例えば、ポリフッ化ビニリデン(PVDF)等のフッ素樹脂等が使用でき、また、上記正極の導電助剤としては、例えば、カーボンブラック等の炭素材料等が使用できるが、固体電解質を用いてもよい。 As the binder of the positive electrode, for example, a fluororesin such as polyvinylidene fluoride (PVDF) can be used, and as the conductive auxiliary agent of the positive electrode, for example, a carbon material such as carbon black can be used. An electrolyte may be used.

また、上記正極の集電体としては、アルミニウム等の金属の箔、パンチングメタル、網、エキスパンドメタル等を用い得るが、本発明では特に網状構造基材等の導電性多孔質基材を用いることが好ましい。 Further, as the current collector of the positive electrode, a foil of metal such as aluminum, punching metal, net, expanded metal or the like may be used, but in the present invention, a conductive porous substrate such as a net-structure substrate is particularly used. Is preferred.

より具体的には、上記正極は、上記導電性多孔質基材と、上記導電性多孔質基材に充填された正極活物質粒子とを備えていることが好ましい。これにより、前述の固体電解質層を保持する正極の強度が向上し、固体電解質層の大面積化が可能となる。更に、上記導電性多孔質基材は、ストレートポアを有することが好ましい。これにより、上記正極活物質粒子の導電性多孔質基材への充填性が向上する。 More specifically, it is preferable that the positive electrode includes the conductive porous base material and positive electrode active material particles filled in the conductive porous base material. Thereby, the strength of the positive electrode holding the solid electrolyte layer described above is improved, and the area of the solid electrolyte layer can be increased. Further, the conductive porous substrate preferably has straight pores. This improves the filling property of the positive electrode active material particles in the conductive porous substrate.

上記導電性多孔質基材のストレートポアの開孔部の形状は特に限定されず、例えば、正方形、円形、長方形、ひし形、長円形等の形状とするができる。 The shape of the opening of the straight pore of the conductive porous substrate is not particularly limited, and may be, for example, a square, a circle, a rectangle, a rhombus, an oval, or the like.

また、上記ストレートポアの開孔径は、40μm以上500μm以下であることが好ましく、100μm以上250μm以下がより好ましい。上記開孔径が大きすぎると、正極の強度が低下する傾向にあり、また、上記開孔径が小さすぎると、正極活物質粒子の導電性多孔質基材への充填性が低下する傾向にある。上記ストレートポアの開孔径の定義は、前述のとおりである。 The open pore diameter of the straight pores is preferably 40 μm or more and 500 μm or less, and more preferably 100 μm or more and 250 μm or less. If the opening diameter is too large, the strength of the positive electrode tends to decrease, and if the opening diameter is too small, the filling property of the positive electrode active material particles into the conductive porous substrate tends to decrease. The definition of the opening diameter of the straight pore is as described above.

上記導電性多孔質基材の材質としては、ある程度強度があり、導電性を有していれば特に限定されず、例えば、銅、ニッケル、ステンレス鋼等の金属材料を用いることができる。 The material of the conductive porous substrate is not particularly limited as long as it has a certain degree of strength and conductivity, and for example, a metal material such as copper, nickel or stainless steel can be used.

上記導電性多孔質基材の厚さは特に限定されず、例えば、10μm以上300μm以下とすることができ、上記導電性多孔質基材の機械的強度の確保と基材の電気抵抗の増加防止とのバランスを図る観点からは、20μm以上200μm以下が好ましい。 The thickness of the conductive porous substrate is not particularly limited, and can be, for example, 10 μm or more and 300 μm or less, and ensures the mechanical strength of the conductive porous substrate and prevents an increase in the electrical resistance of the substrate. From the viewpoint of achieving a balance with

上記正極活物質粒子の平均粒子径は、上記導電性多孔質基材のストレートポアの開孔径に対して、4%以下の大きさであることが好ましい。これにより、正極活物質粒子の導電性多孔質基材への充填性と、正極の成形性とが向上する。上記正極活物質粒子の平均粒子径の下限値は特に限定されないが、上記導電性多孔質基材のストレートポアの開孔径に対して、0.07%以上とすればよい。 The average particle size of the positive electrode active material particles is preferably 4% or less with respect to the open pore size of the straight pores of the conductive porous substrate. This improves the filling property of the positive electrode active material particles in the conductive porous substrate and the moldability of the positive electrode. The lower limit of the average particle diameter of the positive electrode active material particles is not particularly limited, but may be 0.07% or more with respect to the open pore diameter of the straight pores of the conductive porous substrate.

上記正極は、その機械的強度が大きいため、その主面の大きさを1.0cm2以上とすることができ、これにより高容量・高エネルギー密度の全固体リチウム二次電池を提供できる。 Since the positive electrode has a large mechanical strength, the size of the main surface thereof can be 1.0 cm 2 or more, which makes it possible to provide an all-solid-state lithium secondary battery with high capacity and high energy density.

<負極>
上記負極としては、従来から知られているリチウムイオン二次電池に用いられている負極、即ち、Liイオンを吸蔵・放出可能な活物質を含有する負極であれば特に制限はない。例えば、負極活物質として、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、炭素繊維等のリチウムを吸蔵・放出可能な炭素系材料の1種又は2種以上の混合物が用いられる。また、Si、Sn、Ge、Bi、Sb、In等の元素を含む単体、化合物及びその合金、リチウム含有窒化物又はリチウム含有酸化物等のリチウム金属に近い低電圧で充放電できる化合物、若しくはリチウム金属やリチウム/アルミニウム合金も負極活物質として用いることができる。
<Negative electrode>
The negative electrode is not particularly limited as long as it is a negative electrode used in a conventionally known lithium ion secondary battery, that is, a negative electrode containing an active material capable of absorbing and releasing Li ions. For example, as negative electrode active materials, graphite, pyrolytic carbons, cokes, glassy carbons, organic polymer compound fired bodies, mesocarbon microbeads (MCMB), carbon capable of absorbing and releasing lithium such as carbon fibers One kind or a mixture of two or more kinds of base materials is used. Further, a simple substance containing an element such as Si, Sn, Ge, Bi, Sb, or In, a compound and an alloy thereof, a lithium-containing nitride or a lithium-containing oxide, or a compound that can be charged and discharged at a low voltage close to that of lithium metal, or lithium. Metals and lithium/aluminum alloys can also be used as the negative electrode active material.

上記負極には、上記負極活物質に導電助剤(カーボンブラック等の炭素材料、固体電解質等)やPVDF等のバインダ等を適宜添加した負極合剤を、集電体を芯材として成形体(負極合剤層)に仕上げたもの、又は上記の各種合金やリチウム金属の箔を単独、若しくは集電体上に負極剤層として積層したものなどが用いられる。 For the negative electrode, a negative electrode mixture obtained by appropriately adding a conductive auxiliary agent (a carbon material such as carbon black, a solid electrolyte, etc.), a binder such as PVDF, etc. to the negative electrode active material is formed using a current collector as a core material ( A negative electrode material mixture layer), a foil of the above-mentioned various alloys or a lithium metal, or a laminate of a negative electrode material layer on a current collector is used.

上記負極に集電体を用いる場合には、その集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタル等を用い得るが、本発明では特に網状構造基材等の導電性多孔質基材を用いることが好ましい。 When using a current collector for the negative electrode, as the current collector, a foil made of copper or nickel, a punching metal, a net, an expanded metal or the like may be used. It is preferable to use a porous base material.

より具体的には、上記負極は、上記導電性多孔質基材と、上記導電性多孔質基材に充填された負極活物質粒子とを備えていることが好ましい。これにより、前述の固体電解質層を保持する負極の強度が向上し、固体電解質層の大面積化が可能となる。更に、上記導電性多孔質基材は、ストレートポアを有することが好ましい。これにより、上記負極活物質粒子の導電性多孔質基材への充填性が向上する。 More specifically, the negative electrode preferably includes the conductive porous base material and negative electrode active material particles filled in the conductive porous base material. As a result, the strength of the negative electrode holding the solid electrolyte layer described above is improved, and the area of the solid electrolyte layer can be increased. Further, the conductive porous substrate preferably has straight pores. This improves the filling property of the negative electrode active material particles in the conductive porous substrate.

上記導電性多孔質基材のストレートポアの開孔部の形状は特に限定されず、例えば、正方形、円形、長方形、ひし形、長円形等の形状とするができる。 The shape of the opening of the straight pore of the conductive porous substrate is not particularly limited, and may be, for example, a square, a circle, a rectangle, a rhombus, an oval, or the like.

また、上記ストレートポアの開孔径は、40μm以上500μm以下であることが好ましく、100μm以上250μm以下がより好ましい。上記開孔径が大きすぎると、負極の強度が低下する傾向にあり、また、上記開孔径が小さすぎると、負極活物質粒子の導電性多孔質基材への充填性が低下する傾向にある。上記ストレートポアの開孔径の定義は、前述のとおりである。 The open pore diameter of the straight pores is preferably 40 μm or more and 500 μm or less, and more preferably 100 μm or more and 250 μm or less. If the opening diameter is too large, the strength of the negative electrode tends to decrease, and if the opening diameter is too small, the filling property of the negative electrode active material particles into the conductive porous substrate tends to decrease. The definition of the opening diameter of the straight pore is as described above.

上記導電性多孔質基材の材質としては、ある程度強度があり、導電性を有していれば特に限定されず、例えば、銅、ニッケル、ステンレス鋼等の金属材料を用いることができる。 The material of the conductive porous substrate is not particularly limited as long as it has a certain degree of strength and conductivity, and for example, a metal material such as copper, nickel or stainless steel can be used.

上記導電性多孔質基材の厚さは特に限定されず、例えば、10μm以上300μm以下とすることができ、上記導電性多孔質基材の機械的強度の確保と基材の電気抵抗の増加防止とのバランスを図る観点からは、20μm以上200μm以下が好ましい。 The thickness of the conductive porous substrate is not particularly limited, and can be, for example, 10 μm or more and 300 μm or less, and ensures the mechanical strength of the conductive porous substrate and prevents an increase in the electrical resistance of the substrate. From the viewpoint of achieving a balance with

上記負極活物質粒子の平均粒子径は、上記導電性多孔質基材のストレートポアの開孔径に対して、4%以下の大きさであることが好ましい。これにより、負極活物質粒子の導電性多孔質基材への充填性と、負極の成形性とが向上する。上記負極活物質粒子の平均粒子径の下限値は特に限定されないが、上記導電性多孔質基材のストレートポアの開孔径に対して、0.07%以上とすればよい。 The average particle diameter of the negative electrode active material particles is preferably 4% or less of the open pore diameter of the straight pores of the conductive porous substrate. This improves the filling property of the negative electrode active material particles into the conductive porous substrate and the formability of the negative electrode. The lower limit of the average particle diameter of the negative electrode active material particles is not particularly limited, but may be 0.07% or more with respect to the open pore diameter of the straight pores of the conductive porous substrate.

上記負極は、その機械的強度が大きいため、その主面の大きさを1.0cm2以上とすることができ、これにより高容量・高エネルギー密度の全固体リチウム二次電池を提供できる。 Since the negative electrode has a large mechanical strength, the size of the main surface thereof can be 1.0 cm 2 or more, which makes it possible to provide an all-solid-state lithium secondary battery with high capacity and high energy density.

<電極体>
上記正極と上記負極とは、前述の本発明の固体電解質層を介して積層した積層電極体や、更にこの積層電極体を巻回した巻回電極体の形態で用いることができる。
<Electrode body>
The positive electrode and the negative electrode can be used in the form of a laminated electrode body in which the above-mentioned solid electrolyte layer of the present invention is laminated, or a wound electrode body in which the laminated electrode body is further wound.

(本発明の全固体リチウム二次電池の製造方法)
次に、本発明の全固体リチウム二次電池の製造方法について説明する。本発明の全固体リチウム二次電池の製造方法の好適な態様は、電極の製造方法として、活物質粒子を乾式で導電性多孔質基材に充填する工程を備えている。これにより固体電解質層を保持する電極の強度が向上し、固体電解質層の大面積化が可能となる。上記活物質粒子を上記導電性多孔質基材に乾式で充填する具体的方法は特に限定されず、例えば、上記導電性多孔質基材の開孔部に上記活物質粒子を投入して加圧成形する方法等が挙げられる。なお、本発明の全固体リチウム二次電池の製造方法は、上記の方法に限定されず、上記導電性多孔質基材の開孔部に上記活物質粒子のスラリーを流し込み、乾燥後に加圧成形する方法等であってもよい。
(Method of manufacturing all-solid-state lithium secondary battery of the present invention)
Next, a method for manufacturing the all-solid-state lithium secondary battery of the present invention will be described. A preferred embodiment of the method for producing an all-solid-state lithium secondary battery of the present invention comprises a step of dry-filling a conductive porous substrate with active material particles as a method for producing an electrode. Thereby, the strength of the electrode holding the solid electrolyte layer is improved, and the area of the solid electrolyte layer can be increased. The specific method of dry-filling the active material particles into the conductive porous substrate is not particularly limited, and, for example, the active material particles are charged into the openings of the conductive porous substrate and pressurized. Examples of the method include molding. The method for producing the all-solid-state lithium secondary battery of the present invention is not limited to the above method, and the slurry of the active material particles is poured into the open pores of the conductive porous substrate, and pressure molding is performed after drying. The method of doing so may be used.

また、上記電極の製造方法では、上記活物質粒子と共に、水素化物系固体電解質を上記導電性多孔質基材に充填することが好ましい。これにより、電極の導電性を向上できる。 In addition, in the method for producing the electrode, it is preferable that the conductive porous substrate is filled with the hydride-based solid electrolyte together with the active material particles. This can improve the conductivity of the electrode.

次に、本発明で用いる正極の製造方法をより具体的に説明する。本発明で用いる正極の製造方法は特に限定されず、例えば、正極活物質、バインダ及び導電助剤を、N−メチル−2−ピロリドン(NMP)等の溶剤に分散させた正極合剤含有ペースト又はスラリーを調製し、これを集電体の片面又は両面に塗布し、乾燥した後に、必要に応じてカレンダ処理を施す工程を経て製造することができる。また、上記集電体に上記導電性多孔質基材を用いる場合には、正極活物質を導電性多孔質基材に乾式で充填する工程を備えていることが望ましい。上記正極活物質を上記導電性多孔質基材に乾式で充填する具体的方法は特に限定されない。 Next, the method for producing the positive electrode used in the present invention will be described more specifically. The method for producing the positive electrode used in the present invention is not particularly limited, and includes, for example, a positive electrode active material, a binder, and a conductive auxiliary agent, a positive electrode mixture-containing paste obtained by dispersing a solvent such as N-methyl-2-pyrrolidone (NMP), or It can be manufactured by preparing a slurry, applying the slurry to one or both surfaces of a current collector, drying the slurry, and then subjecting it to a calendar treatment, if necessary. Further, when the conductive porous substrate is used for the current collector, it is preferable to include a step of filling the conductive porous substrate with the positive electrode active material in a dry manner. The specific method of dry-filling the positive electrode active material into the conductive porous substrate is not particularly limited.

次に、本発明で用いる負極の製造方法をより具体的に説明する。本発明で用いる負極の製造方法も特に限定されず、例えば、負極活物質及びバインダ、更には必要に応じて導電助剤を、N−メチル−2−ピロリドン(NMP)や水等の溶剤に分散させた負極合剤含有ペースト又はスラリーを調製し、これを集電体の片面又は両面に塗布し、乾燥した後に、必要に応じてカレンダ処理を施す工程を経て製造することができる。また、上記集電体に前述の導電性多孔質基材を用いる場合には、負極活物質を導電性多孔質基材に乾式で充填する工程を備えていることが望ましい。上記負極活物質を上記導電性多孔質基材に乾式で充填する具体的方法は特に限定されない。 Next, the method for producing the negative electrode used in the present invention will be described more specifically. The manufacturing method of the negative electrode used in the present invention is not particularly limited, and, for example, a negative electrode active material and a binder, and further a conductive auxiliary agent if necessary, are dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP) or water. The negative electrode mixture-containing paste or slurry thus prepared is prepared, and the paste or slurry is applied to one side or both sides of the current collector, dried, and then subjected to a calendaring process if necessary, whereby the production can be performed. Further, when the above-mentioned conductive porous substrate is used for the current collector, it is desirable to include a step of filling the conductive porous substrate with the negative electrode active material in a dry method. The specific method of dry-filling the negative electrode active material into the conductive porous substrate is not particularly limited.

上記正極及び上記負極は、固体電解質層と共に積層して一体に加圧成形することが電極体の機械的強度向上の観点から好ましい。 From the viewpoint of improving the mechanical strength of the electrode body, it is preferable that the positive electrode and the negative electrode are laminated together with the solid electrolyte layer and integrally pressure-molded.

また、本発明の全固体リチウム二次電池の製造方法は、固体電解質層の製造方法として、水素化物系固体電解質を乾式で絶縁性多孔質基材に充填する工程を更に備えることが好ましい。これにより、固体電解質層の強度が向上し、固体電解質層の更なる大面積化が可能となる。上記水素化物系固体電解質を上記絶縁性多孔質基材に乾式で充填する具体的方法は特に限定されず、例えば、上記絶縁性多孔質基材の開孔部に上記水素化物系固体電解質を投入して加圧成形する方法等が挙げられる。 Further, the method for producing an all-solid-state lithium secondary battery of the present invention preferably further comprises, as a method for producing a solid electrolyte layer, a step of dryly filling an insulating porous substrate with a hydride-based solid electrolyte. As a result, the strength of the solid electrolyte layer is improved, and the solid electrolyte layer can have a larger area. The specific method of dry-filling the insulating hydride-based solid electrolyte into the insulating porous base material is not particularly limited. For example, the hydride-based solid electrolyte is added to the open pores of the insulating porous base material. Then, the method of pressure molding may be used.

上記固体電解質層の製造方法としては、水素化物系固体電解質を含むスラリーを、絶縁性多孔質基材に流し込み、乾燥後に加圧成形する方法等であってもよい。上記スラリーの流し込み方法としては、スクリーン印刷法、ドクターブレード法、浸漬法等の塗工法を採用できる。上記スラリーは、上記水素化物系固体電解質を溶媒に投入して混合して作製する。但し、上記溶媒としては、水素化物系固体電解質を劣化させにくい溶媒を選択することが必要である。特に、水素化物系固体電解質は、微少水分による潮解が起こるため、ヘキサン、ヘプタン、オクタン、ノナン、デカン、デカリン、トルエン、キシレン等の炭化水素溶媒に代表される非極性非プロトン性溶媒を使用することが好ましい。また、三井・デュポンフロロケミカル社製の"バートレル"(登録商標)、日本ゼオン社製の"ゼオローラ"(登録商標)、住友3M社製の"ノベック"(登録商標)等のフッ素系溶媒、並びに、ジクロロメタン、ジエチルエーテル等の非水系有機溶媒を使用することができる。 The method for producing the solid electrolyte layer may be a method in which a slurry containing a hydride-based solid electrolyte is poured into an insulating porous substrate, dried and then pressure-molded. As a method for pouring the slurry, a coating method such as a screen printing method, a doctor blade method or a dipping method can be adopted. The slurry is prepared by adding the hydride-based solid electrolyte to a solvent and mixing. However, it is necessary to select a solvent that does not easily deteriorate the hydride-based solid electrolyte as the solvent. In particular, hydride-based solid electrolytes use depolarization due to minute water, so use non-polar aprotic solvents represented by hydrocarbon solvents such as hexane, heptane, octane, nonane, decane, decalin, toluene and xylene. Preferably. Further, fluorine-based solvents such as "Bertrel" (registered trademark) manufactured by Mitsui DuPont Fluorochemicals, "Zeorora" (registered trademark) manufactured by Nippon Zeon, "Novec" (registered trademark) manufactured by Sumitomo 3M, A non-aqueous organic solvent such as dichloromethane, diethyl ether or the like can be used.

上記水素化物系固体電解質は、酸化物固体電解質に比べると比較的柔軟であり、粉体を加圧成形することで、容易にペレット成形が可能であり、その成形物を積層することも可能であるため、上記水素化物系固体電解質を上記絶縁性多孔質基材に充填する方法としては、上記水分による固体電解質の潮解を防ぐため、乾式の工程を用い、上記水素化物系固体電解質を上記絶縁性多孔質基材の開孔部に投入して加圧成形する方法がより好ましい。 The hydride-based solid electrolyte is relatively flexible as compared with the oxide solid electrolyte, by pressure molding the powder, it is possible to easily pellet molding, it is also possible to stack the molded product Therefore, as a method for filling the insulating porous substrate with the hydride-based solid electrolyte, in order to prevent deliquescent of the solid electrolyte due to the water content, a dry process is used, and the hydride-based solid electrolyte is insulated from the insulating layer. It is more preferable to use a method in which the porous base material is charged into the open pores and pressure-molded.

以下、実施例に基づいて本発明を詳細に説明する。但し、下記実施例は、本発明を制限するものではない。 Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention.

(実施例1)
<正極層の作製>
先ず、正極活物質である平均粒子径が2μmのLi4Ti512:31.7質量部と、導電助剤であるアセチレンブラック:7.0質量部と、320℃の加熱により合成された、LiBH4とLiIとのモル比が3:1の水素化物系固体電解質:61.3質量部とを混合し、よく混練して正極混合粉末を調製した。
(Example 1)
<Preparation of positive electrode layer>
First, 31.7 parts by mass of Li 4 Ti 5 O 12 having an average particle diameter of 2 μm, which is a positive electrode active material, and 7.0 parts by mass of acetylene black, which is a conductive additive, were synthesized by heating at 320° C. , LiBH 4 and LiI in a molar ratio of 3:1 and a hydride solid electrolyte: 61.3 parts by mass were mixed and well kneaded to prepare a positive electrode mixed powder.

次に、導電性多孔基材として、大和金属社製の円形ステンレスメッシュ(開孔径:400μm、厚さ:100μm、直径:16mm)を準備した。続いて、上記ステンレスメッシュを直径16mmの粉末成形金型に入れ、更に上記正極混合粉末を80.4mg投入し、プレス機を用いて圧力ゲージ表示値1500kgで加圧成型を行い、厚さ268μm、面積2cm2、密度1.5g/cm3の正極層を作製した。 Next, a circular stainless steel mesh (opening diameter: 400 μm, thickness: 100 μm, diameter: 16 mm) manufactured by Daiwa Metal Co., Ltd. was prepared as a conductive porous substrate. Subsequently, the stainless steel mesh was placed in a powder molding die having a diameter of 16 mm, 80.4 mg of the positive electrode mixed powder was further placed, and pressure molding was performed using a press machine at a pressure gauge display value of 1500 kg to obtain a thickness of 268 μm. A positive electrode layer having an area of 2 cm 2 and a density of 1.5 g/cm 3 was produced.

<固体電解質層の作製>
次に、上記粉末成形金型内の上記正極層の上に、太陽金網社製の円形ポリエステルメッシュ(開孔径:124μm、厚さ:72μm、直径:16mm)を乗せ、水素化物系固体電解質として、320℃の加熱により合成された、LiBH4とLiIとのモル比が3:1の固体電解質を70mg投入し、プレス機を用いて圧力ゲージ表示値1500kgで加圧成型を行い、上記正極層の上に、厚さ200μm、面積2cm2、密度1.5g/cm3の固体電解質層を作製した。
<Preparation of solid electrolyte layer>
Next, a circular polyester mesh (opening diameter: 124 μm, thickness: 72 μm, diameter: 16 mm) manufactured by Taiyo Wire Mesh Co., Ltd. was placed on the positive electrode layer in the powder molding die, and as a hydride-based solid electrolyte, 70 mg of a solid electrolyte having a molar ratio of LiBH 4 and LiI of 3:1, which was synthesized by heating at 320° C., was charged, and pressure molding was performed using a press machine at a pressure gauge display value of 1500 kg, and the positive electrode layer A solid electrolyte layer having a thickness of 200 μm, an area of 2 cm 2 and a density of 1.5 g/cm 3 was formed on the above.

<負極層の作製>
次に、上記粉末成形金型内の上記固体電解質層の上に、直径16mm、厚さ0.2mmの円形Li金属を乗せ、更にその上に大和金属社製の円形ステンレスメッシュ(開孔径:400μm、厚さ:100μm、直径:16mm)を乗せ、プレス機を用いて圧力ゲージ表示値1500kgで加圧成型を行い、上記固体電解質層の上に負極層を作製した。
<Preparation of negative electrode layer>
Next, a circular Li metal having a diameter of 16 mm and a thickness of 0.2 mm was placed on the solid electrolyte layer in the powder molding die, and a circular stainless mesh (opening diameter: 400 μm) manufactured by Daiwa Metal Co., Ltd. , Thickness: 100 μm, diameter: 16 mm), and pressure molding was performed with a press machine at a pressure gauge display value of 1500 kg to produce a negative electrode layer on the solid electrolyte layer.

<電極・電解質積層体の作製>
最後に、上記プレス機を用いて圧力ゲージ表示値6000kgで更に加圧成型を行い、その後、140℃で2時間加熱して、各層を接合させ、上記正極層、上記固体電解質層、上記負極層の3層からなる主面の面積が2cm2の電極・電解質積層体を作製した。
<Preparation of electrode/electrolyte laminate>
Finally, pressure molding was further performed using the above press machine at a pressure gauge display value of 6000 kg, and then the layers were bonded by heating at 140° C. for 2 hours to bond the positive electrode layer, the solid electrolyte layer, and the negative electrode layer. An electrode/electrolyte laminate having a main surface area of 2 cm 2 composed of 3 layers was prepared.

<電池の組み立て>
得られた電極・電解質積層体をステンレス鋼製の2016型外装缶に挿入し、封止を行って、全固体リチウムイオン電池を作製した。
<Battery assembly>
The obtained electrode/electrolyte laminate was inserted into a stainless steel 2016 type outer can and sealed to produce an all-solid-state lithium ion battery.

(実施例2)
<正極層の作製>
先ず、正極活物質である平均粒子径が2μmのLi4Ti512:31.7質量部と、導電助剤であるアセチレンブラック:7.0質量部と、実施例1で用いた固体電解質:61.3質量部とを混合し、よく混練して正極混合粉末を調製した。
(Example 2)
<Preparation of positive electrode layer>
First, 31.7 parts by mass of Li 4 Ti 5 O 12 having an average particle size of 2 μm which is a positive electrode active material, 7.0 parts by mass of acetylene black which is a conductive additive, and the solid electrolyte used in Example 1. : 61.3 parts by mass and thoroughly kneaded to prepare a positive electrode mixed powder.

次に、集電体として円形ステンレス箔(厚さ:50μm、直径:16mm)を準備した。続いて、上記ステンレス箔を直径16mmの粉末成形金型に入れ、更に上記正極混合粉末を80.4mg投入し、プレス機を用いて圧力ゲージ表示値1500kgで加圧成型を行い、厚さ268μm、面積2cm2、密度1.5g/cm3の正極層を作製した。 Next, a circular stainless steel foil (thickness: 50 μm, diameter: 16 mm) was prepared as a current collector. Subsequently, the stainless foil was placed in a powder molding die having a diameter of 16 mm, 80.4 mg of the positive electrode mixed powder was further placed, and pressure molding was performed using a press machine at a pressure gauge display value of 1500 kg to obtain a thickness of 268 μm. A positive electrode layer having an area of 2 cm 2 and a density of 1.5 g/cm 3 was produced.

上記正極層を用いた以外は、実施例1と同様にして全固体リチウムイオン電池を作製した。 An all-solid-state lithium-ion battery was produced in the same manner as in Example 1 except that the above positive electrode layer was used.

(実施例3)
<正極層及び固体電解質層の作製>
実施例1と同様にして、正極層の上に固体電解質層を作製した。
(Example 3)
<Preparation of positive electrode layer and solid electrolyte layer>
In the same manner as in Example 1, a solid electrolyte layer was produced on the positive electrode layer.

<負極層の作製>
次に、粉末成形金型内の上記固体電解質層の上に、直径16mm、厚さ0.2mmの円形Li金属を乗せ、更にその上に円形ステンレス箔(厚さ:50μm、直径:16mm)を乗せ、プレス機を用いて圧力ゲージ表示値1500kgで加圧成型を行い、上記固体電解質層の上に負極層を作製した。
<Preparation of negative electrode layer>
Next, a circular Li metal having a diameter of 16 mm and a thickness of 0.2 mm was placed on the solid electrolyte layer in the powder molding die, and a circular stainless foil (thickness: 50 μm, diameter: 16 mm) was further placed thereon. The negative electrode layer was placed on the solid electrolyte layer by pressure-molding using a press machine at a pressure gauge reading of 1500 kg.

上記正極層、上記固体電解質層、上記負極層を用いた以外は、実施例1と同様にして全固体リチウムイオン電池を作製した。 An all-solid-state lithium-ion battery was produced in the same manner as in Example 1 except that the positive electrode layer, the solid electrolyte layer, and the negative electrode layer were used.

(実施例4)
<正極層の作製>
実施例1と同様に正極層を作製した。
(Example 4)
<Preparation of positive electrode layer>
A positive electrode layer was prepared in the same manner as in Example 1.

<固体電解質層の作製>
次に、粉末成形金型内の上記正極層の上に、実施例1で用いた固体電解質を70mg投入し、プレス機を用いて圧力ゲージ表示値1500kgで加圧成型を行い、上記正極層の上に、厚さ200μm、面積2cm2、密度1.5g/cm3の固体電解質層を作製した。
<Preparation of solid electrolyte layer>
Next, 70 mg of the solid electrolyte used in Example 1 was placed on the positive electrode layer in the powder molding die, and pressure molding was performed using a press machine at a pressure gauge display value of 1500 kg to obtain the positive electrode layer of the positive electrode layer. A solid electrolyte layer having a thickness of 200 μm, an area of 2 cm 2 and a density of 1.5 g/cm 3 was formed on the above.

<負極層の作製>
実施例1と同様に負極層を作製した。
<Preparation of negative electrode layer>
A negative electrode layer was prepared in the same manner as in Example 1.

上記正極層、上記固体電解質層、上記負極層を用いた以外は、実施例1と同様にして全固体リチウムイオン電池を作製した。 An all-solid-state lithium-ion battery was produced in the same manner as in Example 1 except that the positive electrode layer, the solid electrolyte layer, and the negative electrode layer were used.

(実施例5)
<正極層の作製>
先ず、正極活物質である平均粒子径が2μmのLi4Ti512:31.7質量部と、導電助剤であるアセチレンブラック:7.0質量部と、実施例1で用いた固体電解質:61.3質量部とを混合し、よく混練して正極混合粉末を調製した。
(Example 5)
<Preparation of positive electrode layer>
First, 31.7 parts by mass of Li 4 Ti 5 O 12 having an average particle size of 2 μm which is a positive electrode active material, 7.0 parts by mass of acetylene black which is a conductive additive, and the solid electrolyte used in Example 1. : 61.3 parts by mass and thoroughly kneaded to prepare a positive electrode mixed powder.

次に、集電体として円形ステンレス箔(厚さ:50μm、直径:16mm)を準備した。続いて、上記ステンレス箔を直径16mmの粉末成形金型に入れ、更に上記正極混合粉末を80.4mg投入し、プレス機を用いて圧力ゲージ表示値1500kgで加圧成型を行い、厚さ268μm、面積2cm2、密度1.5g/cm3の正極層を作製した。 Next, a circular stainless steel foil (thickness: 50 μm, diameter: 16 mm) was prepared as a current collector. Subsequently, the stainless foil was placed in a powder molding die having a diameter of 16 mm, 80.4 mg of the positive electrode mixed powder was further placed, and pressure molding was performed using a press machine at a pressure gauge display value of 1500 kg to obtain a thickness of 268 μm. A positive electrode layer having an area of 2 cm 2 and a density of 1.5 g/cm 3 was produced.

<固体電解質層の作製>
次に、上記粉末成形金型内の上記正極層の上に、実施例1で用いた固体電解質を70mg投入し、プレス機を用いて圧力ゲージ表示値1500kgで加圧成型を行い、上記正極層の上に、厚さ200μm、面積2cm2、密度1.5g/cm3の固体電解質層を作製した。
<Preparation of solid electrolyte layer>
Next, 70 mg of the solid electrolyte used in Example 1 was placed on the positive electrode layer in the powder molding die, and pressure molding was performed using a press machine at a pressure gauge display value of 1500 kg to obtain the positive electrode layer. A solid electrolyte layer having a thickness of 200 μm, an area of 2 cm 2 and a density of 1.5 g/cm 3 was formed on the above.

<負極層の作製>
実施例1と同様に負極層を作製した。
<Preparation of negative electrode layer>
A negative electrode layer was prepared in the same manner as in Example 1.

上記正極層、上記固体電解質層、上記負極層を用いた以外は、実施例1と同様にして全固体リチウムイオン電池を作製した。 An all-solid-state lithium-ion battery was produced in the same manner as in Example 1 except that the positive electrode layer, the solid electrolyte layer, and the negative electrode layer were used.

(実施例6)
<正極層の作製>
実施例1と同様に正極層を作製した。
(Example 6)
<Preparation of positive electrode layer>
A positive electrode layer was prepared in the same manner as in Example 1.

<固体電解質層の作製>
次に、粉末成形金型内の上記正極層の主面上に、大和金属社製の円形ステンレスメッシュ(開孔径:400μm、厚さ:100μm、直径:16mm)を乗せ、実施例1で用いた固体電解質を70mg投入し、プレス機を用いて圧力ゲージ表示値1500kgで加圧成型を行い、上記正極層の上に、厚さ200μm、面積2cm2、密度1.5g/cm3の固体電解質層を作製した。
<Preparation of solid electrolyte layer>
Then, a circular stainless steel mesh (opening diameter: 400 μm, thickness: 100 μm, diameter: 16 mm) manufactured by Daiwa Metal Co., Ltd. was placed on the main surface of the positive electrode layer in the powder molding die, and used in Example 1. 70 mg of solid electrolyte was charged, and pressure molding was performed using a press machine at a pressure gauge reading of 1500 kg, and a solid electrolyte layer having a thickness of 200 μm, an area of 2 cm 2 , and a density of 1.5 g/cm 3 was formed on the positive electrode layer. Was produced.

<負極層の作製>
実施例1と同様に負極層を作製した。
<Preparation of negative electrode layer>
A negative electrode layer was prepared in the same manner as in Example 1.

上記正極層、上記固体電解質層、上記負極層を用いた以外は、実施例1と同様にして全固体リチウムイオン電池を作製した。 An all-solid-state lithium-ion battery was produced in the same manner as in Example 1 except that the positive electrode layer, the solid electrolyte layer, and the negative electrode layer were used.

(実施例7)
<正極層の作製>
実施例1と同様に正極層を作製した。
(Example 7)
<Preparation of positive electrode layer>
A positive electrode layer was prepared in the same manner as in Example 1.

<固体電解質層の作製>
次に、無機粒子である多面体形状のベーマイト合成品(アスペクト比:1.4、D50:0.63μm):40質量部と、実施例1で用いた固体電解質:60質量部とを混合し、よく混練して固体電解質混合粉末を調製した。続いて、粉末成形金型内の上記正極層の上に、上記固体電解質混合粉末を70mg投入し、プレス機を用いて圧力ゲージ表示値1500kgで加圧成型を行い、上記正極層の上に、厚さ200μm、面積2cm2、密度1.5g/cm3の固体電解質層を作製した。
<Preparation of solid electrolyte layer>
Next, 40 parts by mass of a polyhedron-shaped boehmite synthetic product (aspect ratio: 1.4, D50: 0.63 μm), which are inorganic particles, and 60 parts by mass of the solid electrolyte used in Example 1 were mixed, The mixture was thoroughly kneaded to prepare a solid electrolyte mixed powder. Subsequently, 70 mg of the solid electrolyte mixed powder was placed on the positive electrode layer in the powder molding die, and pressure molding was performed using a pressing machine at a pressure gauge display value of 1500 kg, and on the positive electrode layer, A solid electrolyte layer having a thickness of 200 μm, an area of 2 cm 2 and a density of 1.5 g/cm 3 was prepared.

<負極層の作製>
実施例1と同様に負極層を作製した。
<Preparation of negative electrode layer>
A negative electrode layer was prepared in the same manner as in Example 1.

上記正極層、上記固体電解質層、上記負極層を用いた以外は、実施例1と同様にして全固体リチウムイオン電池を作製した。 An all-solid-state lithium-ion battery was produced in the same manner as in Example 1 except that the positive electrode layer, the solid electrolyte layer, and the negative electrode layer were used.

(比較例1)
<正極層の作製>
先ず、正極活物質である平均粒子径が2μmのLi4Ti512:31.7質量部と、導電助剤であるアセチレンブラック:7.0質量部と、硫化物系固体電解質である7Li2S−3P25:61.3質量部とを混合し、よく混練して正極混合粉末を調製した。
(Comparative Example 1)
<Preparation of positive electrode layer>
First, 31.7 parts by mass of Li 4 Ti 5 O 12 having an average particle size of 2 μm which is a positive electrode active material, acetylene black which is a conductive additive: 7.0 parts by mass, and 7Li which is a sulfide-based solid electrolyte. 2 S-3P 2 S 5 :61.3 parts by mass was mixed and well kneaded to prepare a positive electrode mixed powder.

次に、導電性多孔基材として、大和金属社製の円形ステンレスメッシュ(開孔径:400μm、厚さ:100μm、直径:16mm)を準備した。続いて、上記ステンレスメッシュを直径16mmの粉末成形金型に入れ、更に上記正極混合粉末を80.4mg投入し、プレス機を用いて圧力ゲージ表示値1500kgで加圧成型を行い、厚さ268μm、面積2cm2、密度1.5g/cm3の正極層を作製した。 Next, a circular stainless steel mesh (opening diameter: 400 μm, thickness: 100 μm, diameter: 16 mm) manufactured by Daiwa Metal Co., Ltd. was prepared as a conductive porous substrate. Subsequently, the stainless steel mesh was placed in a powder molding die having a diameter of 16 mm, 80.4 mg of the positive electrode mixed powder was further placed, and pressure molding was performed using a press machine at a pressure gauge display value of 1500 kg to obtain a thickness of 268 μm. A positive electrode layer having an area of 2 cm 2 and a density of 1.5 g/cm 3 was produced.

<固体電解質層の作製>
次に、上記粉末成形金型内の上記正極層の主面上に、太陽金網社製の円形ポリエステルメッシュ(開孔径:124μm、厚さ:72μm、直径:16mm)を乗せ、硫化物系固体電解質である7Li2S−3P25を70mg投入し、プレス機を用いて圧力ゲージ表示値1500kgで加圧成型を行い、上記正極層の上に、厚さ200μm、面積2cm2、密度1.5g/cm3の固体電解質層を作製した。
<Preparation of solid electrolyte layer>
Next, a circular polyester mesh (opening diameter: 124 μm, thickness: 72 μm, diameter: 16 mm) manufactured by Taiyo Wire Net Co., Ltd. was placed on the main surface of the positive electrode layer in the powder molding die to form a sulfide-based solid electrolyte. 7 Li 2 S-3P 2 S 5 which is No. 7 was charged and pressure-molded using a press machine at a pressure gauge display value of 1500 kg, and the thickness of the positive electrode layer was 200 μm, the area was 2 cm 2 , and the density was 1. A solid electrolyte layer of 5 g/cm 3 was prepared.

<負極層の作製>
実施例1と同様に負極層を作製した。
<Preparation of negative electrode layer>
A negative electrode layer was prepared in the same manner as in Example 1.

上記正極層、上記固体電解質層、上記負極層を用いた以外は、実施例1と同様にして全固体リチウムイオン電池を作製した。 An all-solid-state lithium-ion battery was produced in the same manner as in Example 1 except that the positive electrode layer, the solid electrolyte layer, and the negative electrode layer were used.

(比較例2)
<正極層の作製>
先ず、正極活物質である平均粒子径が2μmのLi4Ti512:31.7質量部と、導電助剤であるアセチレンブラック:7.0質量部と、実施例1で用いた固体電解質:61.3質量部とを混合し、よく混練して正極混合粉末を調製した。
(Comparative example 2)
<Preparation of positive electrode layer>
First, 31.7 parts by mass of Li 4 Ti 5 O 12 having an average particle size of 2 μm which is a positive electrode active material, 7.0 parts by mass of acetylene black which is a conductive additive, and the solid electrolyte used in Example 1. : 61.3 parts by mass and thoroughly kneaded to prepare a positive electrode mixed powder.

次に、集電体として円形ステンレス箔(厚さ:50μm、直径:16mm)を準備した。続いて、上記ステンレス箔を直径16mmの粉末成形金型に入れ、更に上記正極混合粉末を80.4mg投入し、プレス機を用いて圧力ゲージ表示値1500kgで加圧成型を行い、厚さ268μm、面積2cm2、密度1.5g/cm3の正極層を作製した。 Next, a circular stainless steel foil (thickness: 50 μm, diameter: 16 mm) was prepared as a current collector. Subsequently, the stainless foil was placed in a powder molding die having a diameter of 16 mm, 80.4 mg of the positive electrode mixed powder was further placed, and pressure molding was performed using a press machine at a pressure gauge display value of 1500 kg to obtain a thickness of 268 μm. A positive electrode layer having an area of 2 cm 2 and a density of 1.5 g/cm 3 was produced.

<固体電解質層の作製>
次に、上記粉末成形金型内の上記正極層の上に、実施例1で用いた固体電解質を70mg投入し、プレス機を用いて圧力ゲージ表示値1500kgで加圧成型を行い、上記正極層の上に、厚さ200μm、面積2cm2、密度1.5g/cm3の固体電解質層を作製した。
<Preparation of solid electrolyte layer>
Next, 70 mg of the solid electrolyte used in Example 1 was placed on the positive electrode layer in the powder molding die, and pressure molding was performed using a press machine at a pressure gauge display value of 1500 kg to obtain the positive electrode layer. A solid electrolyte layer having a thickness of 200 μm, an area of 2 cm 2 and a density of 1.5 g/cm 3 was formed on the above.

<負極層の作製>
次に、上記粉末成形金型内の上記固体電解質層の上に、直径16mm、厚さ0.2mmの円形Li金属を乗せ、更にその上に円形ステンレス箔(厚さ:50μm、直径:16mm)を乗せ、プレス機を用いて圧力ゲージ表示値1500kgで加圧成型を行い、上記固体電解質層の上に負極層を作製した。
<Preparation of negative electrode layer>
Next, a circular Li metal having a diameter of 16 mm and a thickness of 0.2 mm was placed on the solid electrolyte layer in the powder molding die, and a circular stainless steel foil (thickness: 50 μm, diameter: 16 mm) was further placed thereon. Was placed, and pressure molding was performed using a pressing machine at a pressure gauge display value of 1500 kg to produce a negative electrode layer on the solid electrolyte layer.

上記正極層、上記固体電解質層、上記負極層を用いた以外は、実施例1と同様にして全固体リチウムイオン電池を作製した。 An all-solid-state lithium-ion battery was produced in the same manner as in Example 1 except that the positive electrode layer, the solid electrolyte layer, and the negative electrode layer were used.

実施例1〜7及び比較例1〜2の電池を用いて下記試験を行い、電池特性を評価した。 The following tests were performed using the batteries of Examples 1 to 7 and Comparative Examples 1 and 2 to evaluate the battery characteristics.

<充放電試験>
作製した電池を、120℃で、電池電圧が1.0Vに達するまで0.14mAの定電流で放電し、その後、0.14mAの定電流で電池電圧が2.0Vになるまで充電した。この一連の操作を1サイクルとして、2サイクルまで繰り返して、2サイクル目の放電容量を測定し、120℃での標準電池容量とした。但し、比較例2の電池は、上記条件での充放電を行うことができず、120℃での標準電池容量は0となった。
<Charge/discharge test>
The manufactured battery was discharged at a constant current of 0.14 mA at 120° C. until the battery voltage reached 1.0 V, and then charged at a constant current of 0.14 mA until the battery voltage became 2.0 V. This series of operations was set as one cycle, repeated up to two cycles, and the discharge capacity at the second cycle was measured to obtain the standard battery capacity at 120°C. However, the battery of Comparative Example 2 could not be charged and discharged under the above conditions, and the standard battery capacity at 120° C. was 0.

<負荷特性試験>
実施例1〜7及び比較例1の電池を、120℃で、電池電圧が1.0Vに達するまで0.72mAの定電流で放電し、その後、0.72mAの定電流で電池電圧が2.0Vになるまで充電した。この一連の操作を1サイクルとして、2サイクルまで繰り返して、2サイクル目の放電容量を測定し、高率電池容量とした。また、充電後の電池を室温まで冷却し、室温で、電池電圧が1.0Vに達するまで1μAの定電流で放電して放電容量を測定し、室温電池容量とした。これらの容量から負荷特性を評価した。
<Load characteristic test>
The batteries of Examples 1 to 7 and Comparative Example 1 were discharged at a constant current of 0.72 mA at 120° C. until the battery voltage reached 1.0 V, and then at a constant current of 0.72 mA and a battery voltage of 2. It was charged until it reached 0V. This series of operations was set as one cycle, repeated up to two cycles, and the discharge capacity at the second cycle was measured to obtain the high-rate battery capacity. Further, the charged battery was cooled to room temperature and discharged at room temperature with a constant current of 1 μA until the battery voltage reached 1.0 V, and the discharge capacity was measured to be the room temperature battery capacity. The load characteristics were evaluated from these capacities.

上記試験結果を、電極構成及び固体電解質構成と合わせて、表1に示す。 The test results are shown in Table 1 together with the electrode constitution and the solid electrolyte constitution.

Figure 0006704295
Figure 0006704295

表1に示されるように、正極及び負極の少なくとも一方を、導電性多孔質基材を用いて構成した実施例1〜7の電池では、電極・電解質積層体の強度を充分に確保することができ、電池として充分な充放電機能を有することが確認できた。特に、固体電解質層において、イオン伝導を阻害する要因となる多孔質基材や絶縁性粒子を用いずに固体電解質層を構成した実施例4及び5の電池は、電極の活物質の利用率及び固体電解質層のイオン伝導性が向上し、上記多孔質基材や絶縁性粒子を用いて固体電解質層を構成した実施例1〜3、実施例6及び実施例7の電池に比べ、標準電池容量が大きく、負荷特性に優れた電池とすることができた。 As shown in Table 1, in the batteries of Examples 1 to 7 in which at least one of the positive electrode and the negative electrode was formed using a conductive porous substrate, it was possible to sufficiently secure the strength of the electrode/electrolyte laminate. It has been confirmed that the battery has a sufficient charge/discharge function as a battery. In particular, in the batteries of Examples 4 and 5 in which the solid electrolyte layer was configured without using the porous base material or the insulating particles that would be a factor that inhibits ionic conduction in the solid electrolyte layer, the utilization rate of the active material of the electrode and the Compared to the batteries of Examples 1 to 3, Example 6 and Example 7 in which the solid electrolyte layer has an improved ionic conductivity and the solid electrolyte layer is formed by using the above-mentioned porous substrate or insulating particles, the standard battery capacity is higher. And a load characteristic was excellent.

実施例1〜7及び比較例1〜2の電池を用いて更に下記試験を行い、電池特性を評価した。 The following tests were further conducted using the batteries of Examples 1 to 7 and Comparative Examples 1 and 2 to evaluate the battery characteristics.

<落下試験>
実施例1〜7及び比較例1の電池について、上記充放電試験を3サイクル行い、充電後の電池を1.6mの高さから30回コンクリート面に落下させ、その後、同様の条件で再度充放電を行い、トータル5サイクル目の放電容量を求めた。また、比較例2の電池については、0.14mAの定電流での充放電ができなかったため、充電及び放電の定電流の電流値を0.07mAに変更して充放電サイクルを行い、以下、上記と同様にして落下試験を行った。
<Drop test>
With respect to the batteries of Examples 1 to 7 and Comparative Example 1, the above charging/discharging test was performed for 3 cycles, and the charged battery was dropped onto the concrete surface from a height of 1.6 m 30 times, and then charged again under the same conditions. After discharging, the total discharge capacity at the 5th cycle was determined. Further, with respect to the battery of Comparative Example 2, since charging/discharging at a constant current of 0.14 mA could not be performed, the current value of the constant current for charging and discharging was changed to 0.07 mA, and the charging/discharging cycle was performed. A drop test was conducted in the same manner as above.

それぞれ10個ずつの電池について上記試験を行い、上記試験の結果、落下試験後の放電容量が、落下試験前の放電容量よりも0.5%以上低下したものを内部短絡が発生したと判断した。 The above test was conducted on 10 batteries each, and as a result of the above test, it was determined that an internal short circuit occurred when the discharge capacity after the drop test was lower than the discharge capacity before the drop test by 0.5% or more. ..

<圧壊試験>
作製した電池を、折れ曲がり潰れるまで押しつぶし、外装体を開裂させ、内部の固体電解質を空気に触れさせた。その際のH2Sガス発生の有無をガス検知管で確認した。
<Crush test>
The produced battery was crushed until it was bent and crushed, the exterior body was cleaved, and the solid electrolyte inside was exposed to air. Whether or not H 2 S gas was generated at that time was confirmed with a gas detector tube.

上記試験結果を表2に示す。落下試験については、内部短絡が発生した電池の個数が0個であった場合を◎、1〜4個であった場合を○、5〜8個であった場合を△、9〜10個であった場合を×で表した。 The test results are shown in Table 2. Regarding the drop test, when the number of batteries having an internal short circuit was 0, it was ⊚, when it was 1 to 4, it was ◯, when it was 5 to 8, it was Δ, and 9 to 10 batteries. If there was, it was represented by x.

Figure 0006704295
Figure 0006704295

表2から明らかなように、正極及び負極の少なくとも一方を、導電性多孔質基材を用いて構成した実施例1〜7の電池では、正極及び負極のいずれにも導電性多孔質基材を用いなかった比較例2の電池に比べて、短絡の発生を低減することができた。また、固体電解質層における固体電解質を、水素化物系固体電解質で構成することにより、H2Sガスの発生は認められず、安全性の高い電池を構成することができた。特に、絶縁性多孔質基材を用いて固体電解質層を構成した実施例1〜3の電池では、電極・電解質積層体の強度がより向上し、短絡発生がなく、信頼性に優れた電池を構成することができた。但し、実施例6も実施例1〜3と同様に多孔質基材を用いて固体電解質層を構成しているものの、導電性を有するステンレスメッシュを用いたため、一部の電池で短絡が生じた。 As is clear from Table 2, in the batteries of Examples 1 to 7 in which at least one of the positive electrode and the negative electrode was configured using the conductive porous substrate, the conductive porous substrate was used for both the positive electrode and the negative electrode. The occurrence of short circuit could be reduced as compared to the battery of Comparative Example 2 which was not used. Further, by forming the solid electrolyte in the solid electrolyte layer with a hydride-based solid electrolyte, generation of H 2 S gas was not observed, and a highly safe battery could be constructed. In particular, in the batteries of Examples 1 to 3 in which the solid electrolyte layer was formed by using the insulating porous base material, the strength of the electrode/electrolyte laminate was further improved, a short circuit did not occur, and a battery having excellent reliability was obtained. Could be configured. However, in Example 6 as well, although the solid electrolyte layer was formed using the porous base material as in Examples 1 to 3, since a conductive stainless mesh was used, a short circuit occurred in some batteries. ..

一方、比較例1では、固体電解質層における固体電解質を、硫化物系固体電解質で構成したため、圧壊試験においてH2Sガスの発生が認められ、また、正極及び負極のいずれにも導電性多孔質基材を用いなかった比較例2では、電極・電解質積層体の強度が不足して、全数の電池で短絡が生じる結果となった。 On the other hand, in Comparative Example 1, since the solid electrolyte in the solid electrolyte layer was composed of the sulfide-based solid electrolyte, generation of H 2 S gas was observed in the crushing test, and the conductive porous material was used for both the positive electrode and the negative electrode. In Comparative Example 2 in which no base material was used, the strength of the electrode/electrolyte laminate was insufficient, resulting in a short circuit in all batteries.

<充填物粒子の平均粒子径と多孔質基材の開孔径との関係の検討>
水素化物系固体電解質粒子、正極活物質粒子及び負極活物質粒子の平均粒子径と多孔質基材の開孔径との関係を検討した。以下では、上記3種の充填物粒子の中から正極活物質粒子を代表充填粒子として用いて上記関係を検討した。
<Study of relationship between average particle size of filler particles and pore size of porous substrate>
The relationship between the average particle size of the hydride-based solid electrolyte particles, the positive electrode active material particles, and the negative electrode active material particles and the pore size of the porous substrate was examined. In the following, the above relationship was examined using positive electrode active material particles as the representative filling particles from the above-mentioned three kinds of filling particles.

具体的には、ストレートポアとして正方形の開孔部(開孔径:0.3mm)を有するステンレス鋼製の網状シートを直径16mmの円形に打ち抜き、直径16mmの成形機の内部に静置して、その上から全量100mgの正極活物質(チタン酸リチウム:Li4Ti512)の粉末を充填し、プレス圧を変化させて成形体を作製し、その成形体の厚みを測定して、充填物粒子の多孔質基材(網状シート)への充填性を評価した。また、成形機から上記成形体を取り出す際の欠けや割れ、変形等の発生状況から、成形体の強度や成形性を評価した。上記正極活物質粉末としては、平均粒子径が0.2μm、7μm、10μm、20μmの4種類の粒子を用いた。 Specifically, a stainless steel mesh sheet having square openings (opening diameter: 0.3 mm) as straight pores is punched out into a circle with a diameter of 16 mm, and left standing inside a molding machine with a diameter of 16 mm. A powder of a positive electrode active material (lithium titanate: Li 4 Ti 5 O 12 ) having a total amount of 100 mg was filled from above, and a press body was manufactured by changing a press pressure, and the thickness of the molded body was measured and filled. The filling property of the material particles into the porous substrate (mesh sheet) was evaluated. Further, the strength and moldability of the molded product were evaluated based on the occurrence of chipping, cracking, deformation, etc. when the molded product was taken out from the molding machine. As the positive electrode active material powder, four types of particles having an average particle diameter of 0.2 μm, 7 μm, 10 μm, and 20 μm were used.

上記結果を図3に示す。図3は、成形体厚みとプレス圧との関係を示す図である。図3から、プレス圧を上昇させると、成形体厚みが減少していき、網状シートへの正極活物質粒子の充填密度が上昇することが分かる。その後、更にプレス圧を上昇させると、網状シートが変形し、成形体厚みを薄くできなくなり、充填密度を上昇させることができなくなることが分かる。また、正極活物質粉末の平均粒子径が上昇するに伴い、充填密度が最高となると考えられる成形体厚みが300μm付近となるプレス圧の範囲が狭くなり、成形体の形成が困難となることが分かる。従って、図3からは、充填物粒子の平均粒子径は、20μm未満であることが好ましいことが分かる。ここで、上記網状シートのストレートポアの開孔径に対する、上記充填物粒子の平均粒子径の大きさの割合(平均粒子径/開孔径比)を計算すると、平均粒子径が20μmでは6.7%、平均粒子径が10μmでは3.3%、平均粒子径が7μmでは2.3%、平均粒子径が0.2μmでは0.07%となる。この結果から、充填物粒子の平均粒子径は、多孔質基材のストレートポアの開孔径に対して、4%以下の大きさであることが好ましく、より好ましくは2%以下、最も好ましくは1%以下であることが分かる。 The above results are shown in FIG. FIG. 3 is a diagram showing the relationship between the thickness of the compact and the pressing pressure. It can be seen from FIG. 3 that when the pressing pressure is increased, the thickness of the molded body is gradually reduced and the packing density of the positive electrode active material particles in the mesh sheet is increased. After that, when the pressing pressure is further increased, the net-like sheet is deformed, and it becomes impossible to reduce the thickness of the molded body and it is impossible to increase the packing density. In addition, as the average particle diameter of the positive electrode active material powder increases, the range of press pressure at which the compact density at which the packing density is considered to be the highest is around 300 μm is narrowed, which makes it difficult to form the compact. I understand. Therefore, it can be seen from FIG. 3 that the average particle diameter of the filler particles is preferably less than 20 μm. Here, the ratio of the average particle size of the filler particles to the open pore size of the straight pores of the reticulated sheet (average particle size/open pore size ratio) was calculated to be 6.7% when the average particle size was 20 μm. When the average particle diameter is 10 μm, it is 3.3%, when the average particle diameter is 7 μm, it is 2.3%, and when the average particle diameter is 0.2 μm, it is 0.07%. From this result, the average particle diameter of the filler particles is preferably 4% or less, more preferably 2% or less, and most preferably 1 with respect to the open pore diameter of the straight pores of the porous substrate. It can be seen that it is less than or equal to %.

<多孔質基材のストレートポアの開孔径の大きさの検討>
次に、上記と同様にして、開孔径が38μm〜1mmのステンレス鋼製の網状シートを用いて、平均粒子径が0.13μm〜7μmの正極活物質(チタン酸リチウム:Li4Ti512)の粉末を充填して、成形性を下記のとおり評価した。その結果を表3に示す。表3では、下記成形性の評価と共に成形体の充填性を示す平均粒子径/開孔径比(%)も示した。
評価A:成形体の成形性が高い場合
評価B:成形体の成形性がやや劣る場合
評価C:成形体の成形性が低い場合
<Examination of the size of the open pore diameter of the straight pore of the porous substrate>
Then, in the same manner as described above, a positive electrode active material (lithium titanate: Li 4 Ti 5 O 12) having an average particle diameter of 0.13 μm to 7 μm was used using a stainless steel mesh sheet having an opening diameter of 38 μm to 1 mm. ), and the moldability was evaluated as follows. The results are shown in Table 3. In Table 3, the following evaluation of moldability and the average particle diameter/opening diameter ratio (%) showing the filling property of the molded product are also shown.
Evaluation A: When the moldability of the molded product is high Evaluation B: When the moldability of the molded product is slightly inferior Evaluation C: When the moldability of the molded product is low

Figure 0006704295
Figure 0006704295

表3から、開孔径が大きすぎると、充填物粒子の平均粒子径を小さくしても成形体の強度を高くすることができず、成形性は低下した。一方、開孔径が小さすぎると、充填物粒子の平均粒子径を小さくしても、充填物粒子を充填できなくなり、成形性が低下した。以上の結果から、多孔質基材のストレートポアの開孔径は、40μm以上500μm以下であることが好ましく、100μm以上250μm以下がより好ましいことが分かる。 From Table 3, if the open pore size is too large, the strength of the molded product cannot be increased even if the average particle size of the filler particles is reduced, and the moldability is deteriorated. On the other hand, if the open pore size is too small, the filler particles cannot be filled even if the average particle diameter of the filler particles is reduced, and the moldability deteriorates. From the above results, it is understood that the open pore diameter of the straight pores of the porous substrate is preferably 40 μm or more and 500 μm or less, and more preferably 100 μm or more and 250 μm or less.

本発明の全固体リチウム二次電池は、大面積化が可能で、且つ、毒性ガスが発生しない固体電解質を用いることにより、高容量・高エネルギー密度で、安全性の高い電池を実現でき、各種の電子機器(特に携帯電話やノート型パソーソナルコンピュータ等のポータブル電子機器)、電源システム、乗り物(電気自動車、電動自転車等)等の各種機器の電源用途等に、好ましく用いることができる The all-solid-state lithium secondary battery of the present invention can realize a battery with high capacity, high energy density, and high safety by using a solid electrolyte that can have a large area and does not generate toxic gas. Can be preferably used for power supply of various devices such as electronic devices (particularly portable electronic devices such as mobile phones and laptop personal computers), power supply systems, vehicles (electric vehicles, electric bicycles, etc.), etc.

Claims (10)

正極と、負極と、前記正極と前記負極との間に配置された固体電解質層とを含む全固体リチウム二次電池であって、
前記固体電解質層は、絶縁性多孔質基材と、前記絶縁性多孔質基材に充填された水素化物系固体電解質を含み、
前記正極及び前記負極の少なくとも一方は、導電性多孔質基材と、前記導電性多孔質基材に充填された活物質粒子とを含むことを特徴とする全固体リチウム二次電池。
A positive electrode, a negative electrode, an all-solid lithium secondary battery comprising a solid electrolyte layer disposed between the positive electrode and the negative electrode,
The solid electrolyte layer comprises an insulating porous substrate and said insulating porous hydride system is filled to a substrate a solid electrolyte,
At least one of the positive electrode and the negative electrode includes a conductive porous base material and active material particles filled in the conductive porous base material, the all-solid-state lithium secondary battery.
前記導電性多孔質基材は、ストレートポアを有する請求項1に記載の全固体リチウム二次電池。 The all-solid-state lithium secondary battery according to claim 1, wherein the conductive porous substrate has straight pores. 前記導電性多孔質基材に充填された活物質粒子の平均粒子径が、前記導電性多孔質基材のストレートポアの開孔径に対して、4%以下の大きさである請求項2に記載の全固体リチウム二次電池。 The average particle diameter of the active material particles filled in the conductive porous substrate is 4% or less of the open pore diameter of the straight pores of the conductive porous substrate. All-solid-state lithium secondary battery. 前記導電性多孔質基材のストレートポアの開孔径が、40μm以上500μm以下である請求項2又は3に記載の全固体リチウム二次電池。 The all-solid-state lithium secondary battery according to claim 2 or 3, wherein the open pore diameter of the straight pores of the conductive porous substrate is 40 µm or more and 500 µm or less. 前記絶縁性多孔質基材は、ストレートポアを有する請求項1〜4のいずれか1項に記載の全固体リチウム二次電池。 The all-solid-state lithium secondary battery according to any one of claims 1 to 4, wherein the insulating porous substrate has straight pores. 前記水素化物系固体電解質は、粒子状の形態を有し、前記水素化物系固体電解質の平均粒子径が、前記絶縁性多孔質基材のストレートポアの開孔径に対して、4%以下の大きさである請求項に記載の全固体リチウム二次電池。 The hydride-based solid electrolyte has a particulate form, and the average particle size of the hydride-based solid electrolyte is 4% or less with respect to the open pore size of the straight pores of the insulating porous substrate. The all-solid-state lithium secondary battery according to claim 5 . 前記絶縁性多孔質基材のストレートポアの開孔径が、40μm以上500μm以下である請求項又はに記載の全固体リチウム二次電池。 The all-solid-state lithium secondary battery according to claim 5 or 6 , wherein the opening diameter of the straight pores of the insulating porous substrate is 40 µm or more and 500 µm or less. 請求項1〜のいずれか1項に記載の全固体リチウム二次電池の製造方法であって、
活物質粒子を乾式で導電性多孔質基材に充填する工程を含むことを特徴とする全固体リチウム二次電池の製造方法。
A method of manufacturing all-solid lithium secondary battery according to any one of claims 1 to 7
A method for manufacturing an all-solid-state lithium secondary battery, comprising a step of filling active material particles in a conductive porous substrate in a dry manner.
前記活物質粒子と共に、水素化物系固体電解質を前記導電性多孔質基材に充填する請求項に記載の全固体リチウム二次電池の製造方法。 The method for manufacturing an all-solid lithium secondary battery according to claim 8 , wherein the conductive porous substrate is filled with a hydride-based solid electrolyte together with the active material particles. 水素化物系固体電解質を乾式で絶縁性多孔質基材に充填する工程を更に含む請求項又はに記載の全固体リチウム二次電池の製造方法。 The method for producing an all-solid-state lithium secondary battery according to claim 8 or 9 , further comprising a step of dryly filling the insulating porous substrate with a hydride-based solid electrolyte.
JP2016100431A 2016-05-19 2016-05-19 All-solid-state lithium secondary battery and manufacturing method thereof Active JP6704295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016100431A JP6704295B2 (en) 2016-05-19 2016-05-19 All-solid-state lithium secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016100431A JP6704295B2 (en) 2016-05-19 2016-05-19 All-solid-state lithium secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2017208250A JP2017208250A (en) 2017-11-24
JP6704295B2 true JP6704295B2 (en) 2020-06-03

Family

ID=60416568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016100431A Active JP6704295B2 (en) 2016-05-19 2016-05-19 All-solid-state lithium secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6704295B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188840A1 (en) * 2018-03-29 2019-10-03 Tdk株式会社 All-solid-state secondary battery
EP3809424A4 (en) * 2018-06-12 2021-08-25 Imec Vzw Solid electrolyte, electrode and capacitor element
JP6992710B2 (en) * 2018-09-03 2022-01-13 トヨタ自動車株式会社 A composite solid electrolyte layer, a method for manufacturing the same, and a method for manufacturing an all-solid-state battery.
WO2020137912A1 (en) * 2018-12-28 2020-07-02 株式会社パワーフォー Secondary battery
JP6836281B2 (en) * 2018-12-28 2021-02-24 株式会社パワーフォー Rechargeable battery
JPWO2020195032A1 (en) * 2019-03-27 2020-10-01
JP7253956B2 (en) * 2019-03-29 2023-04-07 日本特殊陶業株式会社 Method for producing lithium-ion conductor, lithium-ion conductor, and storage device
JP7398269B2 (en) 2019-12-23 2023-12-14 日産自動車株式会社 All-solid-state lithium-ion secondary battery
JP7239551B2 (en) * 2020-12-28 2023-03-14 本田技研工業株式会社 Electrodes for lithium-ion secondary batteries

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140942A1 (en) * 2012-03-22 2013-09-26 住友電気工業株式会社 All-solid-state lithium secondary battery

Also Published As

Publication number Publication date
JP2017208250A (en) 2017-11-24

Similar Documents

Publication Publication Date Title
JP6704295B2 (en) All-solid-state lithium secondary battery and manufacturing method thereof
JP6085370B2 (en) All solid state battery, electrode for all solid state battery and method for producing the same
JP4752574B2 (en) Negative electrode and secondary battery
JP6934727B2 (en) All-solid-state battery and its manufacturing method
KR102648753B1 (en) Solid electrolyte sheet and all-solid lithium secondary battery
JP6259704B2 (en) Method for producing electrode for all solid state battery and method for producing all solid state battery
CN110235284B (en) Method for manufacturing electrode for all-solid-state battery and method for manufacturing all-solid-state battery
JP7042426B2 (en) Solid electrolytes and batteries
JP7345263B2 (en) Manufacturing method for all-solid-state lithium secondary battery
JP2012243645A (en) Electrode and all-solid state nonaqueous electrolyte battery
JP2020126794A (en) All-solid type lithium secondary battery and method for manufacturing the same
WO2020184340A1 (en) Method for producing all-solid-state battery
JP7267163B2 (en) Positive electrodes for all-solid-state batteries and all-solid-state batteries
JP5908714B2 (en) Negative electrode for secondary battery, method for producing the same, and secondary battery
KR20140058508A (en) Lithium accumulator
WO2015159331A1 (en) Solid-state battery, electrode for solid-state battery, and production processes therefor
JP2013247022A (en) Electrode material, method for producing the same, and secondary battery
JP7253941B2 (en) All-solid lithium secondary battery and manufacturing method thereof
CN114342118A (en) Negative electrode for all-solid-state battery and all-solid-state battery
JP2021034325A (en) Solid electrolyte sheet and all-solid type lithium secondary battery
JP2019197728A (en) All-solid battery and manufacturing method thereof
JP6988738B2 (en) Negative electrode for sulfide all-solid-state battery and sulfide all-solid-state battery
US20240047735A1 (en) Lithium sulfur battery
JP7069086B2 (en) Negative electrode material for solid-state batteries and solid-state batteries
WO2024070579A1 (en) All-solid-state battery and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200512

R150 Certificate of patent or registration of utility model

Ref document number: 6704295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250