WO2014068777A1 - All-solid lithium ion secondary battery - Google Patents

All-solid lithium ion secondary battery Download PDF

Info

Publication number
WO2014068777A1
WO2014068777A1 PCT/JP2012/078564 JP2012078564W WO2014068777A1 WO 2014068777 A1 WO2014068777 A1 WO 2014068777A1 JP 2012078564 W JP2012078564 W JP 2012078564W WO 2014068777 A1 WO2014068777 A1 WO 2014068777A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
ion secondary
secondary battery
current collector
solid
Prior art date
Application number
PCT/JP2012/078564
Other languages
French (fr)
Japanese (ja)
Inventor
達哉 遠山
心 ▲高▼橋
正 藤枝
良幸 高森
尚貴 木村
拓也 青柳
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to PCT/JP2012/078564 priority Critical patent/WO2014068777A1/en
Publication of WO2014068777A1 publication Critical patent/WO2014068777A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/745Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a current collector for an all solid lithium ion secondary battery, an electrode for an all solid lithium ion secondary battery using the current collector, and an all solid lithium ion secondary battery.
  • Lithium ion secondary batteries using lithium ion have features such as high volume and weight energy density as compared with other secondary batteries. Therefore, it is widely used as a power supply for consumer devices such as mobile phones and laptop computers. Furthermore, the future, a power source for hybrid vehicles to reduce emissions of CO 2 to be driven by an electric vehicle or a motor and an engine of a motor drive environmentally friendly or solar and power storage of renewable energy of the wind power and the like, It is expected to be deployed as a large-scale application such as a power supply.
  • lithium ion secondary batteries put to practical use at present, most of them use a flammable organic electrolyte solvent for the electrolyte. Therefore, there is a risk of ignition and the like at the time of use, and development of a highly safe lithium ion secondary battery free from these risks is desired.
  • the current all-solid-state lithium ion secondary battery has a problem that the output density of the battery is low because the battery resistance is high compared to the lithium ion secondary battery using an organic electrolyte solvent.
  • Patent Document 1 proposes an all-solid-state battery using a porous metal made of a compact of metal powder as a conductive layer.
  • a porous metal made of a compact of metal powder as a conductive layer.
  • Patent Document 2 proposes an electrode for a non-aqueous electrolyte secondary battery using, as a collector, an aluminum porous sintered body having a three-dimensional network structure in which an Al—Ti compound is dispersed in a skeleton.
  • an aluminum porous sintered body in which such an Al—Ti compound is dispersed is used as a current collector, a battery having high strength and high reliability can be provided.
  • the lithium salt contained in the solvent reacts with the current collector to form a passive film such as aluminum fluoride, so the current collector has a high voltage It is stable even if it is held by
  • the current collector is a lithium ion secondary battery using an organic electrolyte solvent only by contacting with an electrode mixture such as an active material, a conductive material, an all solid electrolyte, and a binder. As a result, no passivation film such as aluminum fluoride is formed.
  • An object of the present invention is to provide an all solid lithium ion secondary battery having a low battery resistance and a low rate of increase in resistance to charge and discharge cycles.
  • an all solid secondary battery of the present invention is an all solid lithium ion secondary battery comprising a positive electrode, a negative electrode, and a solid electrolyte having lithium ion conductivity, wherein the solid electrolyte is Is disposed between the positive electrode and the negative electrode, at least one of the positive electrode and the negative electrode includes a porous current collector and an active material, the current collector is made of aluminum, and has a three-dimensional network structure The surface of the pores is covered with a conductive film, and the pores are filled with the active material.
  • an all solid lithium ion secondary battery having a low resistance between an active material and a current collector and a low rate of increase in resistance with respect to charge and discharge cycles.
  • FIG. 1 is a view showing a power generation element of an all solid lithium ion secondary battery according to an embodiment of the present invention.
  • a solid electrolyte layer 3 is disposed between the positive electrode 1 and the negative electrode 2.
  • the all solid lithium ion secondary battery according to the present invention comprises a positive electrode current collector, a positive electrode active material, a conductive material, a solid electrolyte, a positive electrode 1 containing a binder, a negative electrode current collector, a negative electrode active material, a solid electrolyte, a negative electrode 2 and a solid electrolyte layer 3 containing a solid electrolyte and a binder, wherein at least one of the positive electrode current collector and the negative electrode current collector is an aluminum porous current collector having pores of a three-dimensional network structure, aluminum The skeleton of the porous current collector is covered with a conductive film.
  • the all-solid-state lithium ion secondary battery having such a configuration has low resistance between the active material and the current collector, and a low rate of increase in resistance with respect to charge and discharge cycles.
  • a current collector having pores of a three-dimensional network structure has a large surface area which can be in contact with the active material, and the electron resistance can be reduced.
  • oxygen is released from the active material when held at a high voltage, and the oxygen reacts with the current collector to insulate. Form the oxide film of the body. As a result, there is a problem that the battery resistance increases and the resistance increase rate with respect to the charge and discharge test cycle becomes high.
  • the conductive film prevents the reaction between the current collector and oxygen, thereby forming an oxide film of the insulator. It becomes possible to control the deterioration of the body.
  • the all solid secondary battery of the present invention comprises a positive electrode, a negative electrode, and a solid electrolyte layer having lithium ion conductivity, and has coin, cylindrical, square, laminate, etc. similar to existing lithium ion secondary batteries.
  • a battery structure can be used.
  • the positive electrode is formed by applying a positive electrode mixture to a current collector foil of aluminum or a porous aluminum current collector.
  • the positive electrode mixture includes a positive electrode active material, a solid electrolyte, a conductive material, a binder and the like.
  • FIG. 2 is a view showing an example of the positive electrode of the all solid secondary battery according to the embodiment of the present invention.
  • the positive electrode active material 11 and the solid electrolyte 12 are filled in the pores of the aluminum porous current collector 13.
  • the current collector foil an aluminum foil having a thickness of 5 ⁇ m or more and 25 ⁇ m or less, or a porous current collector covered with a film having conductivity described later can be used.
  • the positive electrode active material is a material that contributes to the storage and release of lithium, and is a transition metal such as LiM 2 O 4 , LiMO 2 , LiMPO 4 (M is Ni, Mn, Co, Fe, etc. However, Li, Al, Mg etc.
  • a known positive electrode active material such as a substitute element may be added.
  • the positive electrode active material is preferably a powder having an average primary particle size of 0.01 to 30 ⁇ m.
  • the solid electrolyte is not particularly limited as long as it is a solid that conducts lithium ions, but from the viewpoint of safety, a nonflammable inorganic solid electrolyte is preferable.
  • a sulfide glass represented by lithium halides such as LiCl and LiI, Li 2 S-SiS 2 , Li 3 PO 4 -Li 2 S-SiS 2 and the like, Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3
  • An oxide glass represented by Li 3.4 V 0.6 Si 0.4 O 4 , Li 2 P 2 O 6 or the like, a perovskite type oxide represented by Li 0.34 La 0.51 TiO 2.94 or the like can be used. It is preferable to use an oxide-based material for the solid electrolyte because sulfide glass has low stability to water and oxygen.
  • the conductive material is for enhancing the conductivity of the positive electrode, and graphite, carbon black or the like is used.
  • the binder is for securing the adhesion to the current collector, and polyvinylidene fluoride (PVDF) or the like is used.
  • PVDF polyvinylidene fluoride
  • the negative electrode is formed by applying a negative electrode mixture to a current collector foil made of copper or aluminum or an aluminum porous current collector covered with a film having conductivity described later.
  • the negative electrode mixture includes a negative electrode active material, a solid electrolyte, a conductive material, a binder, and the like.
  • the negative electrode active material metal lithium, a carbon material, a material capable of inserting lithium ions or capable of forming a lithium compound can be used, and a carbon material is particularly preferable.
  • a carbon material use graphite such as natural graphite and artificial graphite, coal-based coke, carbide of coal-based pitch, petroleum-based coke, carbide of petroleum-based pitch, or amorphous carbon such as carbide of pitch coke it can.
  • the above-mentioned carbon materials are subjected to various surface treatments. These carbon materials can be used not only in one kind but also in combination of two or more kinds.
  • metals such as aluminum, tin, silicon, indium, gallium, magnesium and the like, alloys containing these elements, or metal oxides containing tin, silicon and the like The thing is mentioned. Furthermore, composite materials of these metals, alloys and metal oxides with carbon materials of graphite and amorphous carbon can be mentioned.
  • the solid electrolyte layer comprises a solid electrolyte, a binder and the like.
  • the solid electrolyte is not particularly limited as long as it is a solid that conducts lithium ions, but non-flammable inorganic solid electrolytes are preferable from the viewpoint of safety.
  • An oxide glass represented by Li 3.4 V 0.6 Si 0.4 O 4 , Li 2 P 2 O 6 or the like, a perovskite type oxide represented by Li 0.34 La 0.51 TiO 2.94 or the like can be used. It is preferable to use an oxide-based material for the solid electrolyte because sulfide glass has low stability to water and oxygen.
  • the same type as the solid electrolyte contained in the positive electrode or the negative electrode may be used, or a different type may be used.
  • the porous aluminum current collector can be manufactured by a known method, and preferably has a three-dimensional network structure in which the pores communicate with each other.
  • the communication path of the pores can secure the diffusion path of the ions, and further, the surface area which can be in contact with the positive and negative electrode active materials is large. Resistance decreases.
  • the pore diameter of the aluminum porous current collector is preferably 100 to 800 ⁇ m. The pore size can be measured using a scanning electron microscope (SEM).
  • the framework of the porous aluminum current collector is preferably a strong one obtained by sintering aluminum powder in a non-oxidative atmosphere.
  • the active material is contained in the pores of the aluminum porous current collector, and then rolling is performed to obtain the aluminum porous current collector, the active material, the conductive aid, A binder can be adhered.
  • the porosity can also be controlled by the particle size of the aluminum powder.
  • the average particle size of the aluminum powder is preferably 10 to 50 ⁇ m.
  • the non-oxidizing atmosphere is an atmosphere including an inert atmosphere and a reducing atmosphere.
  • conductive glass As the film having conductivity, conductive glass, conductive polymer, metal particles and the like can be used. In particular, conductive glass is preferred.
  • the main component of the conductive glass is vanadium, and it is desirable to contain phosphorus as another component.
  • P 2 O 5 which is an oxide of phosphorus, is preferable because it easily spreads the layers of the glass material and has the effect of enhancing the lithium ion conductivity.
  • iron, manganese, molybdenum, barium or the like is preferable to add to the conductive glass.
  • the proportion of the film having conductivity is desirably 0.1% by mass or more and 10% by mass or less in mass conversion with respect to the aluminum portion of the aluminum porous current collector.
  • the mass ratio is less than 0.1% by mass, the coverage of the surface of the aluminum porous current collector is low, and a sufficient effect can not be obtained.
  • the mass ratio is 10% by mass or more, the thickness of the film becomes too thick, the filling ratio of the active material decreases, and the capacity of the battery decreases.
  • the conductive glass described herein includes, in addition to the ordinary amorphous glass, a crystallized glass in which crystals are precipitated in an amorphous glass matrix.
  • a known method can be used to coat the conductive film on the aluminum porous current collector. Among them, a method of first synthesizing a powder of the conductive film and mixing the powder of the conductive film when producing the aluminum porous current collector is preferable because of its simplicity and low cost.
  • the porosity is preferably 85 to 95% when the volume occupied by the pores is a porosity relative to the volume occupied by the aluminum porous current collector.
  • the porosity can be adjusted with soluble substances.
  • the porosity is less than 85%, the chargeable amount of the active material filled in the pores at the time of electrode production decreases, and the energy density of the battery decreases.
  • the porosity exceeds 95%, the skeleton of the aluminum porous current collector is broken in the pressing step at the time of electrode production, the electron conductivity is lowered, and the battery resistance is increased.
  • the porosity is 87 to 93%. When the porosity is 87 to 93%, sufficient energy density of the battery can be obtained, and there is no risk that the skeleton of the current collector is broken in the pressing step at the time of electrode production.
  • the thickness of the aluminum porous current collector is preferably 0.2 to 2.0 mm. If the thickness is less than 0.2 mm, the effect due to the increase in the surface area that can be in contact with the positive and negative electrode active materials by the aluminum porous current collector is small, and a decrease in battery resistance can not be expected sufficiently. On the other hand, when the thickness exceeds 2.0 mm, the diffusion distance of lithium becomes long, and there is a problem that sufficient rate characteristics can not be obtained. More preferably, the thickness of the porous aluminum current collector is 0.5 to 1.5 mm. When the thickness of the aluminum porous current collector is 0.5 mm to 1.5 mm, a decrease in battery resistance can be expected due to an increase in the surface area that can be in contact with the active material, and sufficient rate characteristics can be obtained.
  • conductive glass was produced. Obtained by weighing and mixing vanadium pentoxide (V 2 O 5 ), phosphorus pentoxide (P 2 O 5 ), and cobalt oxide (Co 2 O 3 ) in a mass ratio of 16: 2: 1 as raw materials.
  • the mixed powder was placed in a platinum crucible and held at 1100 ° C. for 2 hours using an electric furnace. The temperature rising rate was 10 ° C./min.
  • the mixed powder in the platinum crucible was stirred so as to be uniformly mixed. Then, it took out from an electric furnace, it flowed on the stainless steel plate previously heated at 300 degreeC, and obtained the glass material by cooling naturally.
  • the produced glass material was crushed using a ball mill so as to have an average particle diameter of about 1 ⁇ m.
  • an aluminum porous current collector having pores of a three-dimensional network structure was produced.
  • the aluminum powder, paraffin particles, and the produced glass powder were weighed and mixed so as to have a mass ratio of 28: 70: 2, and a polyvinyl alcohol aqueous solution was mixed as a binder.
  • the resulting mixture was stretched to a thickness of 2 mm with a doctor blade and dried at 70 ° C. in air. Thereafter, the resultant was cut into a disc having a diameter of 14 mm, and paraffin particles were removed using an organic solvent to obtain a compact.
  • the obtained molded product was held at 500 ° C. for 1 hour under argon flow, and then heat-treated at 600 ° C. for 5 hours.
  • the structure of the obtained aluminum porous current collector was evaluated using SEM.
  • the obtained aluminum porous current collector had a three-dimensional network structure, and a coating in which glass powder was dissolved and diffused was formed on the skeleton.
  • the porosity was 88%.
  • the positive electrode of the test battery was produced using the obtained aluminum porous current collector.
  • a slurry was prepared using PVDF dissolved in methyl -2- pyridinone (NMP) and mixed in the ratio of 75: 5: 15: 5, expressed as a percentage by mass, respectively.
  • the prepared slurry was impregnated into an aluminum porous current collector having pores of a three-dimensional network structure, and subjected to heat forming and drying treatment to produce a 0.8 mm thick positive electrode for a test battery.
  • Graphite is used as a negative electrode active material
  • Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 is used as a solid electrolyte
  • PVDF is previously dissolved in NMP as a binder.
  • the slurry was prepared by mixing at a ratio of five.
  • the prepared slurry was applied to a copper foil with a thickness of 10 ⁇ m, subjected to heating and drying, and a negative electrode sheet with a thickness of 0.4 mm was obtained.
  • the resultant was punched into a disk shape having a diameter of 14 mm to prepare a negative electrode for a test battery.
  • Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 is used as the solid electrolyte, PVDF is previously dissolved in NMP as the binder, and the slurry is mixed at a ratio of 97: 3 by mass percent, respectively. Made.
  • the prepared slurry was applied to a polyimide sheet, subjected to heat molding and drying treatment, punched into a disk shape of 15 mm in diameter, and separated from the polyimide sheet to prepare a solid electrolyte layer for a test battery.
  • V 2 O 5 vanadium pentoxide
  • P 2 O 5 phosphorus pentoxide
  • Fe 2 O 3 ferric oxide
  • V 2 O 5 vanadium pentoxide
  • P 2 O 5 phosphorus pentoxide
  • Fe 2 O 3 ferric oxide
  • MnO 2 manganese dioxide
  • V 2 O 5 vanadium pentoxide
  • P 2 O 5 phosphorus pentoxide
  • Fe 2 O 3 ferric oxide
  • MoO 3 molybdenum trioxide
  • Test batteries As a raw material of conductive glass, vanadium pentoxide (V 2 O 5 ) and phosphorus pentoxide (P 2 O 5 ), ferric oxide (Fe 2 O 3 ), and barium oxide (BaO) in a mass ratio of 7: 1 Test batteries were produced in the same manner as in Example 1 except that they were weighed and mixed so as to be 1: 1.
  • a slurry was prepared using the dissolved PVDF and mixing at a ratio of 75: 5: 15: 5, expressed as weight percent, respectively.
  • the prepared slurry was impregnated into the porous aluminum current collector having pores of a three-dimensional network structure coated with a conductive glass prepared in Example 1, subjected to heat forming and drying treatment, and the thickness was determined.
  • a 0.8 mm negative electrode for a test battery was produced.
  • a test battery was produced in the same manner as in Example 1 except for the above.
  • Comparative Example 1 is compared with Examples 1 to 6 in the case where the aluminum porous current collector is not covered with the conductive film.
  • Comparative Example 1 without preparing a conductive glass, the aluminum powder and paraffin particles are weighed and mixed so as to have a mass ratio of 3: 7 as a raw material of an aluminum porous collector having pores of a three-dimensional network structure. Then, a test battery was produced in the same manner as in Example 1 except that an aluminum porous current collector was produced.
  • the battery's resistance is the slope of the voltage drop width ( ⁇ V / I) for each current value by obtaining the voltage drop width ( ⁇ V) for 10 seconds when discharged at each current value (I) of 0.1 C, 1 C, 10 C
  • a discharge rate of 1 C to 3.0 V (100% in 1 hour) The constant current discharge was performed at the speed at which the discharge was completed, and after repeating this for 100 cycles, the battery resistance was calculated again.
  • the all-solid-state lithium ion secondary battery of this example had a lower rate of increase in resistance during charge and discharge cycles as compared with the comparative example.

Abstract

This all-solid lithium ion secondary battery is provided with a positive electrode, a negative electrode, and a solid electrolyte having lithium ion conductivity. The all-solid lithium ion secondary battery is characterized in that: the positive electrode and/or the negative electrode is provided with a porous current collector and an active material; the current collector is formed of aluminum, and has holes in a three-dimensional mesh structure; the plane of the holes is coated with a conductive film; and the holes are filled with the active material. The all-solid lithium ion secondary battery having low battery resistance, and low resistance increase rate with respect to charge/discharge cycle can be provided using the all-solid lithium ion secondary battery.

Description

全固体リチウムイオン二次電池All solid lithium ion rechargeable battery
 本発明は、全固体リチウムイオン二次電池用の集電体、及びこの集電体を用いた全固体リチウムイオン二次電池用電極、全固体リチウムイオン二次電池に関する。 The present invention relates to a current collector for an all solid lithium ion secondary battery, an electrode for an all solid lithium ion secondary battery using the current collector, and an all solid lithium ion secondary battery.
 リチウムイオンを用いるリチウムイオン二次電池は、他の二次電池と比較して、体積・重量エネルギー密度が高いといった特長を有する。そのため、携帯電話やノート型パソコン等の民生機器用電源として広く使用されている。さらに、今後は、CO2の排出を抑制し環境に配慮したモータ駆動の電気自動車やモータとエンジンで駆動するハイブリッド車用の電源、または太陽光発電や風力発電等の再生可能エネルギーの電力貯蔵用の電源などの大型用途として展開されることが期待されている。 Lithium ion secondary batteries using lithium ion have features such as high volume and weight energy density as compared with other secondary batteries. Therefore, it is widely used as a power supply for consumer devices such as mobile phones and laptop computers. Furthermore, the future, a power source for hybrid vehicles to reduce emissions of CO 2 to be driven by an electric vehicle or a motor and an engine of a motor drive environmentally friendly or solar and power storage of renewable energy of the wind power and the like, It is expected to be deployed as a large-scale application such as a power supply.
 ここで、現在実用化されているリチウムイオン二次電池については、その多くが電解質に可燃性の有機系電解質溶媒を使用している。そのため、濫用時に発火するなどの危険性があり、これらの危険性のない、高安全なリチウムイオン二次電池の開発が望まれている。 Here, with regard to lithium ion secondary batteries put to practical use at present, most of them use a flammable organic electrolyte solvent for the electrolyte. Therefore, there is a risk of ignition and the like at the time of use, and development of a highly safe lithium ion secondary battery free from these risks is desired.
 この、発火の危険性がないリチウムイオン二次電池として、電解質にリチウムイオン伝導性を有する不燃性の固体電解質を用いた全固体リチウムイオン二次電池の開発が進められている。しかし、現状の全固体リチウムイオン二次電池は、有機系電解質溶媒を使用したリチウムイオン二次電池と比較して、電池抵抗が高いため、電池の出力密度が低いといった課題がある。 As a lithium ion secondary battery having no risk of ignition, development of an all solid lithium ion secondary battery using a nonflammable solid electrolyte having lithium ion conductivity as an electrolyte has been promoted. However, the current all-solid-state lithium ion secondary battery has a problem that the output density of the battery is low because the battery resistance is high compared to the lithium ion secondary battery using an organic electrolyte solvent.
 この問題を解決するため、特許文献1では、金属粉の成形体からなる多孔質金属を導電層として用いた全固体電池が提案されている。このような多孔質金属を用いると、導電層と活物質との接触面積が増加し、電子抵抗が低減するといった効果が得られる。また、特許文献2では、骨格にAl-Ti化合物が分散した三次元網目構造のアルミニウム多孔質焼結体を集電体として用いる非水電解質二次電池用電極が提案されている。このようなAl-Ti化合物が分散したアルミニウム多孔質焼結体を集電体として用いると、強度が高く、信頼性の高い電池を提供することができる。 In order to solve this problem, Patent Document 1 proposes an all-solid-state battery using a porous metal made of a compact of metal powder as a conductive layer. When such a porous metal is used, the contact area between the conductive layer and the active material is increased, and the effect of reducing the electron resistance is obtained. Further, Patent Document 2 proposes an electrode for a non-aqueous electrolyte secondary battery using, as a collector, an aluminum porous sintered body having a three-dimensional network structure in which an Al—Ti compound is dispersed in a skeleton. When an aluminum porous sintered body in which such an Al—Ti compound is dispersed is used as a current collector, a battery having high strength and high reliability can be provided.
特開2005-56827号公報JP 2005-56827 A 特開2011-49023号公報JP, 2011-49023, A
 有機系電解質溶媒を使用したリチウムイオン二次電池では、溶媒中に含まれるリチウム塩が集電体と反応して、フッ化アルミニウム等の不動態被膜が形成されるため、集電体は高電圧に保持されても安定に存在する。しかしながら、全固体リチウムイオン二次電池では、集電体は、活物質、導電材、全固体電解質、バインダ等の電極合剤と接触するのみで、有機系電解質溶媒を使用したリチウムイオン二次電池のように、フッ化アルミニウム等の不動態被膜は形成されない。したがって、全固体リチウムイオン二次電池では、高電圧に保持されて活物質から酸素が放出されると、酸素が集電体と反応して絶縁性の酸化被膜を形成し、電池抵抗が増加してしまうといった課題がある。特に、特許文献1及び2のような多孔質集電体は、表面積が大きいため、十分な耐食性が必要とされる。 In a lithium ion secondary battery using an organic electrolyte solvent, the lithium salt contained in the solvent reacts with the current collector to form a passive film such as aluminum fluoride, so the current collector has a high voltage It is stable even if it is held by However, in the all solid lithium ion secondary battery, the current collector is a lithium ion secondary battery using an organic electrolyte solvent only by contacting with an electrode mixture such as an active material, a conductive material, an all solid electrolyte, and a binder. As a result, no passivation film such as aluminum fluoride is formed. Therefore, in the all solid lithium ion secondary battery, when oxygen is released from the active material while being held at high voltage, oxygen reacts with the current collector to form an insulating oxide film, and the battery resistance increases. There is a problem that In particular, porous current collectors such as Patent Documents 1 and 2 require a sufficient corrosion resistance because of their large surface area.
 そこで、本発明は、電池抵抗が低く、かつ充放電サイクルに対する抵抗上昇率の低い全固体リチウムイオン二次電池を提供することを、目的とする。 An object of the present invention is to provide an all solid lithium ion secondary battery having a low battery resistance and a low rate of increase in resistance to charge and discharge cycles.
 上記課題を解決するために、本発明の全固体二次電池は、正極と、負極と、リチウムイオン伝導性を有する固体電解質とを備えた全固体リチウムイオン二次電池であって、前記固体電解質は前記正極と前記負極の間に配置され、前記正極及び前記負極の少なくともいずれかは多孔質の集電体と、活物質とを具備し、前記集電体はアルミニウムよりなり、三次元網目構造の空孔を有し、前記空孔の表面が導電性を有する被膜で覆われており、前記空孔内に、前記活物質が充填されていることを特徴とする。 In order to solve the above problems, an all solid secondary battery of the present invention is an all solid lithium ion secondary battery comprising a positive electrode, a negative electrode, and a solid electrolyte having lithium ion conductivity, wherein the solid electrolyte is Is disposed between the positive electrode and the negative electrode, at least one of the positive electrode and the negative electrode includes a porous current collector and an active material, the current collector is made of aluminum, and has a three-dimensional network structure The surface of the pores is covered with a conductive film, and the pores are filled with the active material.
 本発明によれば、活物質と集電体間の抵抗が低く、かつ充放電サイクルに対する抵抗上昇率の低い全固体リチウムイオン二次電池を提供することができる。 According to the present invention, it is possible to provide an all solid lithium ion secondary battery having a low resistance between an active material and a current collector and a low rate of increase in resistance with respect to charge and discharge cycles.
本発明の実施形態による全固体リチウムイオン二次電池の発電素子を示す図である。It is a figure which shows the electric power generation element of the all-solid-state lithium ion secondary battery by embodiment of this invention. 本発明の実施形態による全固体リチウムイオン二次電池の正極を示す図である。It is a figure which shows the positive electrode of the all-solid-state lithium ion secondary battery by embodiment of this invention.
 以下、本発明による全固体リチウムイオン二次電池について説明する。図1は、本発明の実施形態による全固体リチウムイオン二次電池の発電素子を示す図である。正極1及び負極2の間に固体電解質層3が配置されている。本発明による全固体リチウムイオン二次電池は、正極集電体、正極活物質、導電材、固体電解質、バインダを含む正極1と、負極集電体、負極活物質、固体電解質、バインダを含む負極2と、固体電解質とバインダを含む固体電解質層3とを備え、正極集電体、負極集電体の少なくともいずれかが三次元網目構造の空孔を有するアルミニウム多孔質集電体であり、アルミニウム多孔質集電体の骨格が、導電性を有する被膜で覆われている。 Hereinafter, the all solid lithium ion secondary battery according to the present invention will be described. FIG. 1 is a view showing a power generation element of an all solid lithium ion secondary battery according to an embodiment of the present invention. A solid electrolyte layer 3 is disposed between the positive electrode 1 and the negative electrode 2. The all solid lithium ion secondary battery according to the present invention comprises a positive electrode current collector, a positive electrode active material, a conductive material, a solid electrolyte, a positive electrode 1 containing a binder, a negative electrode current collector, a negative electrode active material, a solid electrolyte, a negative electrode 2 and a solid electrolyte layer 3 containing a solid electrolyte and a binder, wherein at least one of the positive electrode current collector and the negative electrode current collector is an aluminum porous current collector having pores of a three-dimensional network structure, aluminum The skeleton of the porous current collector is covered with a conductive film.
 このような構成の全固体リチウムイオン二次電池は、活物質と集電体間の抵抗が低く、かつ充放電サイクルに対する抵抗上昇率が低い。三次元網目構造の空孔を有する集電体は、活物質と接触可能な表面積が大きく、電子抵抗を低減することが可能となる。また、全固体リチウムイオン二次電池では、活物質にリチウム等の金属酸化物を用いた場合、高電圧に保持されると活物質から酸素が放出され、酸素が集電体を反応して絶縁体の酸化被膜を形成する。その結果、電池抵抗が増加し、充放電試験サイクルに対する抵抗上昇率が高くなってしまうという問題があった。これに対し、集電体の骨格表面に導電性有する被膜を設けた本発明では、導電性を有する被膜が集電体と酸素の反応を防ぎ、絶縁体の酸化被膜が形成することによる集電体の劣化を抑制することが可能となる。 The all-solid-state lithium ion secondary battery having such a configuration has low resistance between the active material and the current collector, and a low rate of increase in resistance with respect to charge and discharge cycles. A current collector having pores of a three-dimensional network structure has a large surface area which can be in contact with the active material, and the electron resistance can be reduced. In addition, in the all solid lithium ion secondary battery, when a metal oxide such as lithium is used as the active material, oxygen is released from the active material when held at a high voltage, and the oxygen reacts with the current collector to insulate. Form the oxide film of the body. As a result, there is a problem that the battery resistance increases and the resistance increase rate with respect to the charge and discharge test cycle becomes high. On the other hand, in the present invention in which the conductive film is provided on the surface of the skeleton of the current collector, the conductive film prevents the reaction between the current collector and oxygen, thereby forming an oxide film of the insulator. It becomes possible to control the deterioration of the body.
 上記の構成によれば、全固体リチウムイオン二次電池の課題であった、高い電池抵抗、アルミ集電体の酸化被膜形成を防止できる。これにより、活物質と集電体間の電子抵抗が低く、かつ充放電サイクルに対する抵抗上昇率の低い全固体二次電池を提供することができる。 According to the above configuration, it is possible to prevent the high battery resistance and the formation of the oxide film of the aluminum current collector, which are the problems of the all solid lithium ion secondary battery. Accordingly, it is possible to provide an all solid secondary battery having a low electron resistance between the active material and the current collector and a low rate of increase in resistance with respect to charge and discharge cycles.
 以下、本発明の全固体電池について、詳細を説明する。 Hereinafter, the details of the all-solid-state battery of the present invention will be described.
<全固体二次電池の構成>
 本発明の全固体二次電池は、正極、負極、およびリチウムイオン伝導性を有する固体電解質層を備え、既存のリチイムイオン二次電池と同じようなコイン型、円筒型、角型、ラミネート型等の電池構造を用いることができる。
<Configuration of all solid secondary battery>
The all solid secondary battery of the present invention comprises a positive electrode, a negative electrode, and a solid electrolyte layer having lithium ion conductivity, and has coin, cylindrical, square, laminate, etc. similar to existing lithium ion secondary batteries. A battery structure can be used.
<正極>
 正極は、アルミニウムの集電箔やアルミニウム多孔質集電体に正極合剤を塗布して形成される。正極合剤は、正極活物質、固体電解質、導電材、及びバインダ等から成る。図2は、本発明の実施形態による全固体二次電池の正極の一例を示す図である。正極活物質11、固体電解質12は、アルミニウム多孔質集電体13の空孔内に充填されている。
<Positive electrode>
The positive electrode is formed by applying a positive electrode mixture to a current collector foil of aluminum or a porous aluminum current collector. The positive electrode mixture includes a positive electrode active material, a solid electrolyte, a conductive material, a binder and the like. FIG. 2 is a view showing an example of the positive electrode of the all solid secondary battery according to the embodiment of the present invention. The positive electrode active material 11 and the solid electrolyte 12 are filled in the pores of the aluminum porous current collector 13.
 集電箔は、厚さ5μm以上25μm以下のアルミ箔や、後述する導電性を有する被膜で覆われた多孔質集電体を用いることができる。 As the current collector foil, an aluminum foil having a thickness of 5 μm or more and 25 μm or less, or a porous current collector covered with a film having conductivity described later can be used.
 正極活物質は、リチウムの吸蔵放出に寄与する材料であり、LiM24、LiMO2、LiMPO4(MはNi、Mn、Co、Fe等の遷移金属。ただし、Li、Al、Mg等の置換元素を加えてもよい。)等の公知の正極活物質を用いることができる。正極活物質は、平均一次粒子径が0.01~30μmの粉末であることが好ましい。 The positive electrode active material is a material that contributes to the storage and release of lithium, and is a transition metal such as LiM 2 O 4 , LiMO 2 , LiMPO 4 (M is Ni, Mn, Co, Fe, etc. However, Li, Al, Mg etc. A known positive electrode active material such as a substitute element may be added. The positive electrode active material is preferably a powder having an average primary particle size of 0.01 to 30 μm.
 固体電解質は、リチウムイオンを伝導する固体であれば、特に限定する必要はないが、安全性の観点から、不燃性の無機固体電解質が好ましい。例えば、LiCl、LiIなどのハロゲン化リチウム、Li2S-SiS2、Li3PO4-Li2S-SiS2などに代表される硫化物ガラス、Li1.4Al0.4Ti1.6(PO43、Li3.40.6Si0.44、Li226などで代表される酸化物ガラス、Li0.34La0.51TiO2.94などに代表されるペロブスカイト型酸化物などが使用できる。硫化物ガラスは、水や酸素に対する安定性が低いため、固体電解質には酸化物系の材料を使用するのが好ましい。 The solid electrolyte is not particularly limited as long as it is a solid that conducts lithium ions, but from the viewpoint of safety, a nonflammable inorganic solid electrolyte is preferable. For example, a sulfide glass represented by lithium halides such as LiCl and LiI, Li 2 S-SiS 2 , Li 3 PO 4 -Li 2 S-SiS 2 and the like, Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 , An oxide glass represented by Li 3.4 V 0.6 Si 0.4 O 4 , Li 2 P 2 O 6 or the like, a perovskite type oxide represented by Li 0.34 La 0.51 TiO 2.94 or the like can be used. It is preferable to use an oxide-based material for the solid electrolyte because sulfide glass has low stability to water and oxygen.
 導電材は、正極の導電性を高めるためのものであり、グラファイトやカーボンブラック等が用いられる。 The conductive material is for enhancing the conductivity of the positive electrode, and graphite, carbon black or the like is used.
 バインダは、集電体との密着性を確保するためのものであり、ポリフッ化ビニリデン(PVDF)等が用いられる。 The binder is for securing the adhesion to the current collector, and polyvinylidene fluoride (PVDF) or the like is used.
<負極>
 負極は、銅やアルミニウムからなる集電箔や、後述する導電性を有する被膜で覆われたアルミニウム多孔質集電体に、負極合剤を塗布して形成される。負極合剤は、負極活物質、固体電解質、導電材、及びバインダ等からなる。
<Negative electrode>
The negative electrode is formed by applying a negative electrode mixture to a current collector foil made of copper or aluminum or an aluminum porous current collector covered with a film having conductivity described later. The negative electrode mixture includes a negative electrode active material, a solid electrolyte, a conductive material, a binder, and the like.
 負極活物質には、金属リチウムや、炭素材料、リチウムイオンを挿入可能またはリチウムの化合物を形成可能な材料を用いることができ、炭素材料が特に好適である。炭素材料としては、天然黒鉛や人造黒鉛等の黒鉛類、石炭系コークス、石炭系ピッチの炭化物、石油系コークス、石油系ピッチの炭化物、またはピッチコークスの炭化物等の非晶質炭素を用いることができる。好ましくは、これら上記の炭素材料に種々の表面処理を施したものが望ましい。これらの炭素材料は1種類で用いるだけでなく、2種類以上を組み合わせて用いることもできる。 As the negative electrode active material, metal lithium, a carbon material, a material capable of inserting lithium ions or capable of forming a lithium compound can be used, and a carbon material is particularly preferable. As the carbon material, use graphite such as natural graphite and artificial graphite, coal-based coke, carbide of coal-based pitch, petroleum-based coke, carbide of petroleum-based pitch, or amorphous carbon such as carbide of pitch coke it can. Preferably, the above-mentioned carbon materials are subjected to various surface treatments. These carbon materials can be used not only in one kind but also in combination of two or more kinds.
 また、リチウムイオンを挿入可能またはリチウムの化合物を形成可能な材料としては、アルミニウム、スズ、ケイ素、インジウム、ガリウム、マグネシウム等の金属、これらの元素を含む合金、またはスズやケイ素等を含む金属酸化物が挙げられる。さらにまた、これらの金属や合金や金属酸化物と黒鉛系や非晶質炭素の炭素材料との複合材が挙げられる。 Further, as a material capable of inserting lithium ions or forming a lithium compound, metals such as aluminum, tin, silicon, indium, gallium, magnesium and the like, alloys containing these elements, or metal oxides containing tin, silicon and the like The thing is mentioned. Furthermore, composite materials of these metals, alloys and metal oxides with carbon materials of graphite and amorphous carbon can be mentioned.
<固体電解質層>
 固体電解質層は固体電解質、バインダ等からなる。固体電解質としては、リチウムイオンを伝導する固体であれば、特に限定する必要はないが、安全性の観点から、不燃性の無機固体電解質が好ましい。例えば、LiCl、LiIなどのハロゲン化リチウム、Li2S-SiS2、Li3PO4-Li2S-SiS2などに代表される硫化物ガラス、Li1.4Al0.4Ti1.6(PO43、Li3.40.6Si0.44、Li226などで代表される酸化物ガラス、Li0.34La0.51TiO2.94などに代表されるペロブスカイト型酸化物などが使用できる。硫化物ガラスは、水や酸素に対する安定性が低いため、固体電解質には酸化物系の材料を使用するのが好ましい。また、正極や負極に含まれる固体電解質と同じ種類を用いてもよいし、異なる種類を用いてもよい。
<Solid electrolyte layer>
The solid electrolyte layer comprises a solid electrolyte, a binder and the like. The solid electrolyte is not particularly limited as long as it is a solid that conducts lithium ions, but non-flammable inorganic solid electrolytes are preferable from the viewpoint of safety. For example, a sulfide glass represented by lithium halides such as LiCl and LiI, Li 2 S-SiS 2 , Li 3 PO 4 -Li 2 S-SiS 2 and the like, Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 , An oxide glass represented by Li 3.4 V 0.6 Si 0.4 O 4 , Li 2 P 2 O 6 or the like, a perovskite type oxide represented by Li 0.34 La 0.51 TiO 2.94 or the like can be used. It is preferable to use an oxide-based material for the solid electrolyte because sulfide glass has low stability to water and oxygen. In addition, the same type as the solid electrolyte contained in the positive electrode or the negative electrode may be used, or a different type may be used.
<アルミニウム多孔集電体>
 アルミニウム多孔集電体は公知の方法で製造することができ、空孔同士が連通している三次元網目構造を有することが好ましい。このような三次元網目構造の空孔を有するアルミニウム多孔質集電体では、空孔が連通することでイオンの拡散経路が確保でき、さらに正負極活物質と接触可能な表面積が大きいため、電池抵抗が小さくなる。また、アルミニウム多孔質集電体の空孔径は100~800μmであることが好ましい。空孔径は走査型電子顕微鏡(SEM)を用いて測定できる。
<Porous aluminum current collector>
The porous aluminum current collector can be manufactured by a known method, and preferably has a three-dimensional network structure in which the pores communicate with each other. In the aluminum porous current collector having the pores of such a three-dimensional network structure, the communication path of the pores can secure the diffusion path of the ions, and further, the surface area which can be in contact with the positive and negative electrode active materials is large. Resistance decreases. The pore diameter of the aluminum porous current collector is preferably 100 to 800 μm. The pore size can be measured using a scanning electron microscope (SEM).
 アルミニウム多孔質集電体の骨格は、アルミニウム粉末を非酸化性雰囲気で焼結させた強固なものであることが好ましい。集電体の骨格が強固であることによって、アルミニウム多孔質集電体の空孔に活物質を含有させたあと、圧延をすることにより、アルミニウム多孔質集電体と活物質、導電助剤、結合剤を密着させることができる。この場合、空隙率はアルミニウム粉末の粒子径によっても制御することが可能である。アルミニウム粉末の平均粒径は、10~50μmであることが好ましい。ここで、非酸化性雰囲気とは、不活性雰囲気と還元性雰囲気とを含む雰囲気である。 The framework of the porous aluminum current collector is preferably a strong one obtained by sintering aluminum powder in a non-oxidative atmosphere. By making the skeleton of the current collector strong, the active material is contained in the pores of the aluminum porous current collector, and then rolling is performed to obtain the aluminum porous current collector, the active material, the conductive aid, A binder can be adhered. In this case, the porosity can also be controlled by the particle size of the aluminum powder. The average particle size of the aluminum powder is preferably 10 to 50 μm. Here, the non-oxidizing atmosphere is an atmosphere including an inert atmosphere and a reducing atmosphere.
<被膜>
 導電性を有する被膜としては、導電性ガラス、導電性ポリマー、金属粒子等を用いることができる。特に、導電性ガラスが好ましい。
<Coating>
As the film having conductivity, conductive glass, conductive polymer, metal particles and the like can be used. In particular, conductive glass is preferred.
 導電性ガラスの主成分は、バナジウムであり、その他の成分として、リンを含むことが望ましい。特に、リンの酸化物であるP25の添加は、ガラス材料の層間を広げやすく、リチウムイオン伝導性を高める作用があるため、好ましい。また、導電性ガラスには、鉄、マンガン、モリブデン、バリウムなどを添加することが好ましい。 The main component of the conductive glass is vanadium, and it is desirable to contain phosphorus as another component. In particular, the addition of P 2 O 5 , which is an oxide of phosphorus, is preferable because it easily spreads the layers of the glass material and has the effect of enhancing the lithium ion conductivity. In addition, it is preferable to add iron, manganese, molybdenum, barium or the like to the conductive glass.
 導電性を有する被膜の割合は、アルミニウム多孔質集電体のアルミニウム部分に対して、質量換算で0.1質量%以上、10質量%以下であることが望ましい。質量比が0.1質量%未満では、アルミニウム多孔質集電体の表面の被覆率が低くなり、十分な効果が得られない。一方、質量比が10質量%以上では、被膜の厚さが厚くなりすぎて、活物質の充填率が低下し、電池の容量が低下してしまう。 The proportion of the film having conductivity is desirably 0.1% by mass or more and 10% by mass or less in mass conversion with respect to the aluminum portion of the aluminum porous current collector. When the mass ratio is less than 0.1% by mass, the coverage of the surface of the aluminum porous current collector is low, and a sufficient effect can not be obtained. On the other hand, if the mass ratio is 10% by mass or more, the thickness of the film becomes too thick, the filling ratio of the active material decreases, and the capacity of the battery decreases.
 なお、ここで述べる導電性ガラスについては、非晶質の通常のガラスを意味するもののほかに、非晶質のガラスマトリクス中に結晶が析出した結晶化ガラスも包含する。 Incidentally, the conductive glass described herein includes, in addition to the ordinary amorphous glass, a crystallized glass in which crystals are precipitated in an amorphous glass matrix.
<アルミニウム多孔質集電体への導電性被膜の被覆方法>
 アルミニウム多孔質集電体への導電性被膜の被覆方法は、公知の手法を用いることができる。中でも、初めに導電性被膜の粉末を合成し、アルミニウム多孔質集電体を製作するときに導電性被膜の粉末を混合する手法が簡便かつ低コストで好ましい。
<Method of Coating Conductive Film on Aluminum Porous Current Collector>
A known method can be used to coat the conductive film on the aluminum porous current collector. Among them, a method of first synthesizing a powder of the conductive film and mixing the powder of the conductive film when producing the aluminum porous current collector is preferable because of its simplicity and low cost.
 ここで、アルミニウム多孔質集電体が占有する体積に対し、空孔が占める体積を空隙率とした場合、空隙率は85~95%であることが好ましい。空隙率は、可溶性物質を用いて調整することができる。空隙率が85%未満では、電極作製時に空孔に充填される活物質の充填可能な量が減少し、電池のエネルギー密度が低下する。一方、空隙率が95%を越えると、電極作製時のプレス工程で、アルミニウム多孔質集電体の骨格が破断して電子伝導性が低下し、電池抵抗が増加する。より好ましくは空隙率が87~93%である。空隙率が87~93%であると、十分な電池のエネルギー密度が得られ、電極作製時のプレス工程で、集電体の骨格が破断する恐れがない。 Here, the porosity is preferably 85 to 95% when the volume occupied by the pores is a porosity relative to the volume occupied by the aluminum porous current collector. The porosity can be adjusted with soluble substances. When the porosity is less than 85%, the chargeable amount of the active material filled in the pores at the time of electrode production decreases, and the energy density of the battery decreases. On the other hand, when the porosity exceeds 95%, the skeleton of the aluminum porous current collector is broken in the pressing step at the time of electrode production, the electron conductivity is lowered, and the battery resistance is increased. More preferably, the porosity is 87 to 93%. When the porosity is 87 to 93%, sufficient energy density of the battery can be obtained, and there is no risk that the skeleton of the current collector is broken in the pressing step at the time of electrode production.
 また、アルミニウム多孔質集電体の厚さは、0.2~2.0mmであることが好ましい。厚さが0.2mm未満では、アルミニウム多孔質集電体による正負極活物質と接触可能な表面積増加による効果が小さく、電池抵抗の低下が十分に期待できない。一方、厚さが2.0mmを越えると、リチウムの拡散距離が長くなって、十分なレート特性が得られないといった課題がある。より好ましくは、アルミニウム多孔質集電体の厚さが、0.5~1.5mmである。アルミニウム多孔質集電体の厚さが0.5mm~1.5mmであると、活物質との接触可能な表面積の増加による電池抵抗の低下が期待でき、十分なレート特性が得られる。 The thickness of the aluminum porous current collector is preferably 0.2 to 2.0 mm. If the thickness is less than 0.2 mm, the effect due to the increase in the surface area that can be in contact with the positive and negative electrode active materials by the aluminum porous current collector is small, and a decrease in battery resistance can not be expected sufficiently. On the other hand, when the thickness exceeds 2.0 mm, the diffusion distance of lithium becomes long, and there is a problem that sufficient rate characteristics can not be obtained. More preferably, the thickness of the porous aluminum current collector is 0.5 to 1.5 mm. When the thickness of the aluminum porous current collector is 0.5 mm to 1.5 mm, a decrease in battery resistance can be expected due to an increase in the surface area that can be in contact with the active material, and sufficient rate characteristics can be obtained.
 以下、さらに詳細に実施例を説明するが、本発明は本明細書に記載した実施例に限定されるものではない。例えば、下記の実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Hereinafter, the examples will be described in more detail, but the present invention is not limited to the examples described herein. For example, the following embodiments are described in detail to illustrate the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. In addition, with respect to a part of the configuration of each embodiment, it is possible to add, delete, and replace other configurations.
<アルミニウム多孔質集電体の製作>
 まず初めに導電性ガラスを作製した。原料として、五酸化バナジウム(V25)と五酸化リン(P25)、酸化コバルト(Co23)を質量比で16:2:1となるよう秤量・混合し、得られた混合粉を白金るつぼに入れて、電気炉を用いて1100℃、2時間保持した。なお、昇温速度は10℃/分とした。また、加熱中は、白金るつぼ内の混合粉が均一に混ざるよう攪拌した。その後、電気炉から取り出し、予め300℃に加熱したステンレス板上に流し、自然冷却することでガラス材料を得た。作製したガラス材料は、ボールミルを用いて、平均粒径1μm程度になるよう粉砕した。
<Production of Aluminum Porous Current Collector>
First, conductive glass was produced. Obtained by weighing and mixing vanadium pentoxide (V 2 O 5 ), phosphorus pentoxide (P 2 O 5 ), and cobalt oxide (Co 2 O 3 ) in a mass ratio of 16: 2: 1 as raw materials. The mixed powder was placed in a platinum crucible and held at 1100 ° C. for 2 hours using an electric furnace. The temperature rising rate was 10 ° C./min. In addition, during heating, the mixed powder in the platinum crucible was stirred so as to be uniformly mixed. Then, it took out from an electric furnace, it flowed on the stainless steel plate previously heated at 300 degreeC, and obtained the glass material by cooling naturally. The produced glass material was crushed using a ball mill so as to have an average particle diameter of about 1 μm.
 次に、三次元網目構造の空孔を有するアルミニウム多孔質集電体を作製した。アルミニウム粉末と、パラフィン粒子、作製したガラス粉末を質量比で28:70:2となるよう秤量・混合し、バインダとしてポリビニルアルコール水溶液を混合した。得られた混合液をドクターブレードで厚さ2mmに延ばし、大気中70℃で乾燥させた。その後、直径14mmの円盤状に切り出し、有機溶剤を用いてパラフィン粒子を除去して成形体を得た。得られた成形体をアルゴン気流下500℃で1時間保持した後、600℃で5時間熱処理した。得られたアルミニウム多孔質集電体の構造はSEMを用いて評価した。得られたアルミニウム多孔質集電体は三次元の網目構造を有しており、骨格にはガラス粉末が溶解・拡散した被膜が形成されていた。また、アルミニウムの真密度2.7g/cm3を用いると、空隙率は88%だった。 Next, an aluminum porous current collector having pores of a three-dimensional network structure was produced. The aluminum powder, paraffin particles, and the produced glass powder were weighed and mixed so as to have a mass ratio of 28: 70: 2, and a polyvinyl alcohol aqueous solution was mixed as a binder. The resulting mixture was stretched to a thickness of 2 mm with a doctor blade and dried at 70 ° C. in air. Thereafter, the resultant was cut into a disc having a diameter of 14 mm, and paraffin particles were removed using an organic solvent to obtain a compact. The obtained molded product was held at 500 ° C. for 1 hour under argon flow, and then heat-treated at 600 ° C. for 5 hours. The structure of the obtained aluminum porous current collector was evaluated using SEM. The obtained aluminum porous current collector had a three-dimensional network structure, and a coating in which glass powder was dissolved and diffused was formed on the skeleton. In addition, when the true density of aluminum was 2.7 g / cm 3 , the porosity was 88%.
<試験電池用の正極の作製>
 得られたアルミニウム多孔質集電体を用いて、試験電池の正極を作製した。正極活物質にはLiMn1.5Ni0.54を、導電材にはケッチェンブラック(R)を、固体電解質にはLi1.5Al0.5Ti1.5(PO43を、バインダには予め溶媒のN-メチル-2-ピロジノン(NMP)に溶解させたPVDFを用い、質量パーセントで表してそれぞれ75:5:15:5の割合で混合してスラリを作製した。作製したスラリは三次元網目構造の空孔を有するアルミニウム多孔質集電体に含浸させ、加熱成形および乾燥処理を施して、厚さ0.8mmの試験電池用正極を作製した。
<Production of Positive Electrode for Test Battery>
The positive electrode of the test battery was produced using the obtained aluminum porous current collector. LiMn 1.5 Ni 0.5 O 4 for the positive electrode active material, ketjen black (R) for the conductive material, Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 for the solid electrolyte, and N- for the binder A slurry was prepared using PVDF dissolved in methyl -2- pyridinone (NMP) and mixed in the ratio of 75: 5: 15: 5, expressed as a percentage by mass, respectively. The prepared slurry was impregnated into an aluminum porous current collector having pores of a three-dimensional network structure, and subjected to heat forming and drying treatment to produce a 0.8 mm thick positive electrode for a test battery.
<試験電池用の負極の作製>
 負極活物質には黒鉛を、固体電解質にはLi1.5Al0.5Ti1.5(PO43を、バインダには予め溶媒のNMPに溶解させたPVDFを用い、質量パーセントで表してそれぞれ80:15:5の割合で混合してスラリを作製した。作製したスラリは厚さ10μmの銅箔に塗布、加熱成形および乾燥処理を施して、厚さ0.4mmの負極シートを得た。これを直径14mmの円盤状に打抜き、試験電池用負極を作製した。
<Fabrication of Negative Electrode for Test Battery>
Graphite is used as a negative electrode active material, Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 is used as a solid electrolyte, and PVDF is previously dissolved in NMP as a binder. The slurry was prepared by mixing at a ratio of five. The prepared slurry was applied to a copper foil with a thickness of 10 μm, subjected to heating and drying, and a negative electrode sheet with a thickness of 0.4 mm was obtained. The resultant was punched into a disk shape having a diameter of 14 mm to prepare a negative electrode for a test battery.
<固体電解質層の作製>
 固体電解質には、Li1.5Al0.5Ti1.5(PO43を、バインダには予め溶媒のNMPに溶解させたPVDFを用い、質量パーセントで表してそれぞれ97:3の割合で混合してスラリを作製した。作製したスラリはポリイミドシートに塗布、加熱成形および乾燥処理を施して、直径15mmの円盤状に打抜き、ポリイミドシートから分離して試験電池用固体電解質層を作製した。
<Production of solid electrolyte layer>
Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 is used as the solid electrolyte, PVDF is previously dissolved in NMP as the binder, and the slurry is mixed at a ratio of 97: 3 by mass percent, respectively. Made. The prepared slurry was applied to a polyimide sheet, subjected to heat molding and drying treatment, punched into a disk shape of 15 mm in diameter, and separated from the polyimide sheet to prepare a solid electrolyte layer for a test battery.
<試験電池の作製>
 作製した試験電池用の正極、負極、固体電解質層を積層し、各々の界面を十分密着させた状態で、圧縮成型して発電素子を完成させた。得られた発電素子の側面をマスキングし、これをCR2025型のコイン電池に組み込み全固体リチウムイオン二次電池を完成させた。
<Preparation of test battery>
The positive electrode, the negative electrode, and the solid electrolyte layer for the test battery produced were laminated, and compression molding was performed in a state where the respective interfaces were in close contact with each other, to complete a power generating element. The side face of the obtained power generation element was masked, and this was incorporated into a CR2025 coin cell to complete an all solid lithium ion secondary battery.
 導電性ガラスの原料として、五酸化バナジウム(V25)と五酸化リン(P25)、酸化第二鉄(Fe23)を質量比で8:1:1となるよう秤量・混合した以外は、実施例1と同様に試験電池を作製した。 Weighing vanadium pentoxide (V 2 O 5 ), phosphorus pentoxide (P 2 O 5 ), and ferric oxide (Fe 2 O 3 ) at a mass ratio of 8: 1: 1 as a raw material of conductive glass -A test battery was produced in the same manner as in Example 1 except that it was mixed.
 導電性ガラスの原料として、五酸化バナジウム(V25)と五酸化リン(P25)、酸化第二鉄(Fe23)、二酸化マンガン(MnO2)を質量比で7:1:1:1となるよう秤量・混合した以外は、実施例1と同様に試験電池を作製した。 As raw materials of conductive glass, vanadium pentoxide (V 2 O 5 ) and phosphorus pentoxide (P 2 O 5 ), ferric oxide (Fe 2 O 3 ), manganese dioxide (MnO 2 ) in a mass ratio of 7: A test battery was fabricated in the same manner as Example 1, except that it was weighed and mixed so as to be 1: 1: 1.
 導電性ガラスの原料として、五酸化バナジウム(V25)と五酸化リン(P25)、酸化第二鉄(Fe23)、三酸化モリブデン(MoO3)を質量比で7:1:1:1となるよう秤量・混合した以外は、実施例1と同様に試験電池を作製した。 As raw materials of conductive glass, vanadium pentoxide (V 2 O 5 ) and phosphorus pentoxide (P 2 O 5 ), ferric oxide (Fe 2 O 3 ), molybdenum trioxide (MoO 3 ) in a mass ratio of 7 Test batteries were produced in the same manner as in Example 1 except that they were weighed and mixed so as to be 1: 1: 1.
 導電性ガラスの原料として、五酸化バナジウム(V25)と五酸化リン(P25)、酸化第二鉄(Fe23)、酸化バリウム(BaO)を質量比で7:1:1:1となるよう秤量・混合した以外は、実施例1と同様に試験電池を作製した。 As a raw material of conductive glass, vanadium pentoxide (V 2 O 5 ) and phosphorus pentoxide (P 2 O 5 ), ferric oxide (Fe 2 O 3 ), and barium oxide (BaO) in a mass ratio of 7: 1 Test batteries were produced in the same manner as in Example 1 except that they were weighed and mixed so as to be 1: 1.
 負極活物質にはLi4Ti512を、導電材にはケッチェンブラック(R)を、固体電解質にはLi1.5Al0.5Ti1.5(PO43を、バインダには予め溶媒のNMPに溶解させたPVDFを用い、質量パーセントで表してそれぞれ75:5:15:5の割合で混合してスラリを作製した。作製したスラリは、実施例1で作製した、導電性ガラスを被覆させた三次元網目構造の空孔を有するアルミニウム多孔質集電体に、含浸させ、加熱成形および乾燥処理を施して、厚さ0.8mmの試験電池用負極を作製した。その他は実施例1と同様に試験電池を作製した。 Li 4 Ti 5 O 12 for the negative electrode active material, ketjen black (R) for the conductive material, Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 for the solid electrolyte, NMP as a solvent in advance for the binder A slurry was prepared using the dissolved PVDF and mixing at a ratio of 75: 5: 15: 5, expressed as weight percent, respectively. The prepared slurry was impregnated into the porous aluminum current collector having pores of a three-dimensional network structure coated with a conductive glass prepared in Example 1, subjected to heat forming and drying treatment, and the thickness was determined. A 0.8 mm negative electrode for a test battery was produced. A test battery was produced in the same manner as in Example 1 except for the above.
(比較例)
 比較例1は、アルミニウム多孔質集電体が導電性被膜で覆われていない場合を、実施例1~6と比較したものである。
(Comparative example)
Comparative Example 1 is compared with Examples 1 to 6 in the case where the aluminum porous current collector is not covered with the conductive film.
 比較例1では、導電性ガラスを作製せず、三次元網目構造の空孔を有するアルミニウム多孔質集電体の原料としてアルミニウム粉末と、パラフィン粒子を質量比で3:7となるよう秤量・混合し、アルミニウム多孔質集電体を作製した以外は、実施例1と同様に試験電池を作製した。 In Comparative Example 1, without preparing a conductive glass, the aluminum powder and paraffin particles are weighed and mixed so as to have a mass ratio of 3: 7 as a raw material of an aluminum porous collector having pores of a three-dimensional network structure. Then, a test battery was produced in the same manner as in Example 1 except that an aluminum porous current collector was produced.
<特性評価>
 実施例1~6および比較例で作製した試験電池について、充放電試験を実施した。抵抗評価について説明する。
<Characteristics evaluation>
Charge and discharge tests were conducted on the test batteries produced in Examples 1 to 6 and the Comparative Example. The resistance evaluation will be described.
 充電レートを0.1C(10時間で100%の充電が完了する速さ)として5.2Vまで定電流/定電圧で充電した後、3.0Vまで0.1Cの放電レート(10時間で100%の放電が完了する速さ)で定電流放電した。これを3サイクル繰り返し、電池を初期化した。次に、充電レートを0.1Cとして5.2Vまで定電流/定電圧で充電した後、充電深度50%まで放電した状態で電池の抵抗を求めた。電池の抵抗は0.1C、1C、10Cの各電流値(I)で放電したときの10秒間の電圧低下幅(ΔV)を求めて、各電流値に対する電圧低下幅の傾き(ΔV/I)から算出した。その後、充電レートを1C(1時間で100%の充電が完了する速さ)として5.2Vまで定電流/定電圧で充電した後、3.0Vまで1Cの放電レート(1時間で100%の放電が完了する速さ)で定電流放電し、これを100サイクル繰り返した後、再び電池の抵抗を算出した。なお、電池の抵抗上昇率は、下記の式1より算出した。

抵抗上昇率=(100サイクル目の電池の抵抗/初期化後の電池の抵抗)×100- 式1
After charging at a constant current / constant voltage to 5.2 V with a charge rate of 0.1 C (speed for completing 100% charge in 10 hours), a discharge rate of 0.1 C to 3.0 V (100 in 10 hours) Constant current discharge at the rate at which the discharge is completed). This was repeated 3 cycles to initialize the battery. Next, the battery was charged at a constant current / constant voltage to 5.2 V at a charge rate of 0.1 C, and then the battery resistance was determined in a state of discharging to a charge depth of 50%. The battery's resistance is the slope of the voltage drop width (ΔV / I) for each current value by obtaining the voltage drop width (ΔV) for 10 seconds when discharged at each current value (I) of 0.1 C, 1 C, 10 C Calculated from Then, after charging with a constant current / constant voltage to 5.2 V with a charge rate of 1 C (the speed at which 100% charge is completed in 1 hour), a discharge rate of 1 C to 3.0 V (100% in 1 hour) The constant current discharge was performed at the speed at which the discharge was completed, and after repeating this for 100 cycles, the battery resistance was calculated again. The rate of increase in resistance of the battery was calculated according to the following equation 1.

Resistance increase rate = (resistance of battery at 100th cycle / resistance of battery after initialization) × 100-Formula 1
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 結果を表1に示す。実施例1~6では、いずれも106~117%の低い抵抗上昇率を示した。一方、比較例では、130%の高い抵抗上昇率を示した。比較例では、アルミニウム多孔質集電体に導電性を有する被膜が無かったため、充放電サイクルの経過と共に集電体表面に抵抗成分となる被膜が形成され、抵抗が上昇したと考えられる。 The results are shown in Table 1. In Examples 1 to 6, all showed a low resistance increase rate of 106 to 117%. On the other hand, the comparative example showed a high resistance increase rate of 130%. In the comparative example, since there was no film having conductivity in the aluminum porous current collector, it is considered that a film serving as a resistance component was formed on the surface of the current collector with the progress of the charge and discharge cycle, and the resistance increased.
 以上のように、本実施例の全固体リチウムイオン二次電池の方が比較例に比べ、充放電サイクルにおける抵抗上昇率が低いことが確認された。 As described above, it was confirmed that the all-solid-state lithium ion secondary battery of this example had a lower rate of increase in resistance during charge and discharge cycles as compared with the comparative example.
1 正極
2 負極
3 固体電解質層
4 発電素子
10 正極
11 正極活物質
12 固体電解質
13 アルミニウム多孔質集電体
14 被膜
DESCRIPTION OF SYMBOLS 1 positive electrode 2 negative electrode 3 solid electrolyte layer 4 power generation element 10 positive electrode 11 positive electrode active material 12 solid electrolyte 13 aluminum porous collector 14 film

Claims (16)

  1.  正極と、負極と、リチウムイオン伝導性を有する固体電解質とを備えた全固体リチウムイオン二次電池であって、
     前記固体電解質は、前記正極と前記負極との間に配置され、
     前記正極は、集電体と正極活物質とを有し、
     前記集電体はアルミニウムよりなり、三次元網目構造の空孔を有し、
     前記空孔の表面が導電性を有する被膜で覆われており、
     前記空孔内に、前記正極活物質が充填されていることを特徴とする全固体リチウムイオン二次電池。
    An all solid lithium ion secondary battery comprising a positive electrode, a negative electrode, and a solid electrolyte having lithium ion conductivity,
    The solid electrolyte is disposed between the positive electrode and the negative electrode,
    The positive electrode includes a current collector and a positive electrode active material,
    The current collector is made of aluminum, and has holes of a three-dimensional network structure,
    The surface of the holes is covered with a conductive film,
    An all solid lithium ion secondary battery characterized in that the positive electrode active material is filled in the pores.
  2.  正極と、負極と、リチウムイオン伝導性を有する固体電解質とを備えた全固体リチウムイオン二次電池であって、
     前記固体電解質は、前記正極と前記負極との間に配置され、
     前記負極は、集電体と負極活物質とを有し、
     前記集電体はアルミニウムよりなり、三次元網目構造の空孔を有し、
     前記空孔の表面が導電性を有する被膜で覆われており、
     前記空孔内に、前記負極活物質が充填されていることを特徴とする全固体リチウムイオン二次電池。
    An all solid lithium ion secondary battery comprising a positive electrode, a negative electrode, and a solid electrolyte having lithium ion conductivity,
    The solid electrolyte is disposed between the positive electrode and the negative electrode,
    The negative electrode has a current collector and a negative electrode active material,
    The current collector is made of aluminum, and has holes of a three-dimensional network structure,
    The surface of the holes is covered with a conductive film,
    An all solid lithium ion secondary battery characterized in that the pores are filled with the negative electrode active material.
  3.  前記被膜の成分は、導電性ガラスであることを特徴とする請求項1または2に記載の全固体リチウムイオン二次電池。 The component of the said film is electroconductive glass, The all-solid-state lithium ion secondary battery of Claim 1 or 2 characterized by the above-mentioned.
  4.  前記導電性ガラスは、バナジウムとリンとを含むことを特徴とする請求項3に記載の全固体リチウムイオン二次電池。 The all-solid-state lithium ion secondary battery according to claim 3, wherein the conductive glass contains vanadium and phosphorus.
  5.  前記導電性ガラスは、鉄、マンガン、モリブデン、バリウムの少なくともいずれかを含むことを特徴とする請求項4に記載の全固体リチウムイオン二次電池。 5. The all solid lithium ion secondary battery according to claim 4, wherein the conductive glass contains at least one of iron, manganese, molybdenum and barium.
  6.  前記空孔が占める体積は、前記集電体が占める体積に対し、85体積%以上95体積%以下であることを特徴とする請求項1または2に記載の全固体リチウムイオン二次電池。 3. The all solid lithium ion secondary battery according to claim 1, wherein the volume occupied by the pores is 85% by volume or more and 95% by volume or less with respect to the volume occupied by the current collector.
  7.  前記集電体の積層方向の厚さは0.2mm以上2.0mm以下であることを特徴とする請求項1または2に記載の全固体リチウムイオン二次電池。 The thickness of the lamination direction of the said collector is 0.2 mm or more and 2.0 mm or less, The all-solid-state lithium ion secondary battery of Claim 1 or 2 characterized by the above-mentioned.
  8.  前記集電体のアルミニウム部分に対する前記被膜の割合は、0.1質量%以上10質量%以下であることを特徴とする請求項1または2に記載の全固体リチウムイオン二次電池。 The ratio of the said film with respect to the aluminum part of the said collector is 0.1 mass% or more and 10 mass% or less, The all-solid-state lithium ion secondary battery of Claim 1 or 2 characterized by the above-mentioned.
  9.  アルミニウムよりなる全固体リチウムイオン二次電池用集電体であって、
     三次元網目構造の空孔を有し、
     前記空孔の表面が、導電性を有する被膜で覆われていることを特徴とする全固体リチウムイオン二次電池用集電体。
    A collector for an all solid lithium ion secondary battery made of aluminum, comprising:
    Have holes in a three-dimensional network structure,
    A collector for an all solid lithium ion secondary battery, wherein the surface of the pores is covered with a film having conductivity.
  10.  前記被膜の成分は、導電性ガラスであることを特徴とする請求項9に記載の全固体リチウムイオン二次電池用集電体。 10. The collector for an all solid lithium ion secondary battery according to claim 9, wherein a component of the film is a conductive glass.
  11.  前記導電性ガラスは、バナジウムとリンとを含むことを特徴とする請求項10に記載の全固体リチウムイオン二次電池用集電体。 The current collector for an all solid lithium ion secondary battery according to claim 10, wherein the conductive glass contains vanadium and phosphorus.
  12.  前記導電性ガラスは、鉄、マンガン、モリブデン、バリウムの少なくともいずれかを含むことを特徴とする請求項11に記載の全固体リチウムイオン二次電池用集電体。 The current collector for an all solid lithium ion secondary battery according to claim 11, wherein the conductive glass contains at least one of iron, manganese, molybdenum, and barium.
  13.  前記空孔が占める体積は、前記集電体が占める体積に対し、85体積%以上95体積%以下であることを特徴とする請求項9に記載の全固体リチウムイオン二次電池用集電体。 10. The current collector for an all-solid-state lithium ion secondary battery according to claim 9, wherein the volume occupied by the pores is 85% by volume or more and 95% by volume or less with respect to the volume occupied by the current collector. .
  14.  前記集電体の厚さは0.2mm以上2.0mm以下であることを特徴とする請求項9に記載の全固体リチウムイオン二次電池用集電体。 The thickness of the said current collector is 0.2 mm or more and 2.0 mm or less, The current collector for all the solid lithium ion secondary batteries of Claim 9 characterized by the above-mentioned.
  15.  前記集電体のアルミニウム部分に対する前記被膜の割合は、0.1質量%以上10質量%以下であることを特徴とする請求項9に記載の全固体リチウムイオン二次電池用集電体。 The ratio of the said film with respect to the aluminum part of the said collector is 0.1 mass% or more and 10 mass% or less, The collector for all the solid lithium ion secondary batteries of Claim 9 characterized by the above-mentioned.
  16.  請求項9ないし15のいずれかに記載の全固体リチウムイオン二次電池用の集電体と、活物質とを備え、前記空孔内に前記活物質が充填されていることを特徴とする全固体リチウムイオン二次電池用電極。 A current collector for an all solid lithium ion secondary battery according to any one of claims 9 to 15, and an active material, wherein the pores are filled with the active material. Electrode for solid lithium ion secondary battery.
PCT/JP2012/078564 2012-11-05 2012-11-05 All-solid lithium ion secondary battery WO2014068777A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/078564 WO2014068777A1 (en) 2012-11-05 2012-11-05 All-solid lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/078564 WO2014068777A1 (en) 2012-11-05 2012-11-05 All-solid lithium ion secondary battery

Publications (1)

Publication Number Publication Date
WO2014068777A1 true WO2014068777A1 (en) 2014-05-08

Family

ID=50626740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078564 WO2014068777A1 (en) 2012-11-05 2012-11-05 All-solid lithium ion secondary battery

Country Status (1)

Country Link
WO (1) WO2014068777A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105609782A (en) * 2015-12-17 2016-05-25 中国电子科技集团公司第十八研究所 All-solid-state battery, and current collector and preparation method therefor
CN107180992A (en) * 2017-06-09 2017-09-19 中国科学院宁波材料技术与工程研究所 A kind of solid lithium battery combination electrode material and preparation method thereof and a kind of solid lithium battery
CN109952669A (en) * 2017-04-06 2019-06-28 株式会社Lg化学 The manufacturing method of lithium secondary battery
CN110534705A (en) * 2018-05-25 2019-12-03 大众汽车有限公司 Lithium anode and its manufacturing method
CN113594410A (en) * 2021-07-29 2021-11-02 溧阳紫宸新材料科技有限公司 Cathode structure, preparation method thereof and solid-state battery
JP2022104375A (en) * 2020-12-28 2022-07-08 本田技研工業株式会社 Electrode for lithium ion secondary battery

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274568A (en) * 1986-05-22 1987-11-28 Matsushita Electric Ind Co Ltd Rechargeable electro chemical device
JPH05251082A (en) * 1992-03-06 1993-09-28 Shin Kobe Electric Mach Co Ltd Thin battery
JPH0922700A (en) * 1995-07-06 1997-01-21 Toshiba Battery Co Ltd Polymer electrolyte secondary battery
JPH10241695A (en) * 1997-02-21 1998-09-11 Samsung Display Devices Co Ltd Lithium ion battery current collector and manufacture thereof
JPH117962A (en) * 1997-04-24 1999-01-12 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2000340234A (en) * 1999-04-07 2000-12-08 Hydro Quebec LiPO3 BASE SUBSTANCE COATING FILM FOR COLLECTOR
JP2008501213A (en) * 2004-03-16 2008-01-17 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ インコーポレイテッド Corrosion prevention using a protective current collector
JP2011091019A (en) * 2009-01-30 2011-05-06 Equos Research Co Ltd Collector for positive electrode of secondary battery, collector for negative electrode of secondary battery, positive electrode of secondary battery, negative electrode of secondary battery, and secondary battery
JP2011222252A (en) * 2010-04-08 2011-11-04 Toyota Motor Corp Collector for all-solid-state secondary battery, electrode body for all-solid-state secondary battery and all-solid-state secondary battery
JP2012007233A (en) * 2010-04-22 2012-01-12 Sumitomo Electric Ind Ltd Method for manufacturing aluminum structure and the aluminum structure
JP2012129104A (en) * 2010-12-16 2012-07-05 Daikin Ind Ltd Paste for forming conductive protection layer of current collecting laminate such as nonaqueous secondary battery
JP2012186144A (en) * 2011-02-18 2012-09-27 Sumitomo Electric Ind Ltd Electrode for electrochemical element

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274568A (en) * 1986-05-22 1987-11-28 Matsushita Electric Ind Co Ltd Rechargeable electro chemical device
JPH05251082A (en) * 1992-03-06 1993-09-28 Shin Kobe Electric Mach Co Ltd Thin battery
JPH0922700A (en) * 1995-07-06 1997-01-21 Toshiba Battery Co Ltd Polymer electrolyte secondary battery
JPH10241695A (en) * 1997-02-21 1998-09-11 Samsung Display Devices Co Ltd Lithium ion battery current collector and manufacture thereof
JPH117962A (en) * 1997-04-24 1999-01-12 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2000340234A (en) * 1999-04-07 2000-12-08 Hydro Quebec LiPO3 BASE SUBSTANCE COATING FILM FOR COLLECTOR
JP2008501213A (en) * 2004-03-16 2008-01-17 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ インコーポレイテッド Corrosion prevention using a protective current collector
JP2011091019A (en) * 2009-01-30 2011-05-06 Equos Research Co Ltd Collector for positive electrode of secondary battery, collector for negative electrode of secondary battery, positive electrode of secondary battery, negative electrode of secondary battery, and secondary battery
JP2011222252A (en) * 2010-04-08 2011-11-04 Toyota Motor Corp Collector for all-solid-state secondary battery, electrode body for all-solid-state secondary battery and all-solid-state secondary battery
JP2012007233A (en) * 2010-04-22 2012-01-12 Sumitomo Electric Ind Ltd Method for manufacturing aluminum structure and the aluminum structure
JP2012129104A (en) * 2010-12-16 2012-07-05 Daikin Ind Ltd Paste for forming conductive protection layer of current collecting laminate such as nonaqueous secondary battery
JP2012186144A (en) * 2011-02-18 2012-09-27 Sumitomo Electric Ind Ltd Electrode for electrochemical element

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105609782A (en) * 2015-12-17 2016-05-25 中国电子科技集团公司第十八研究所 All-solid-state battery, and current collector and preparation method therefor
CN109952669A (en) * 2017-04-06 2019-06-28 株式会社Lg化学 The manufacturing method of lithium secondary battery
JP2019533289A (en) * 2017-04-06 2019-11-14 エルジー・ケム・リミテッド Method for manufacturing lithium secondary battery
EP3525268A4 (en) * 2017-04-06 2020-01-22 LG Chem, Ltd. Method for manufacturing lithium secondary battery
JP7039778B2 (en) 2017-04-06 2022-03-23 エルジー エナジー ソリューション リミテッド Manufacturing method of lithium secondary battery
CN107180992A (en) * 2017-06-09 2017-09-19 中国科学院宁波材料技术与工程研究所 A kind of solid lithium battery combination electrode material and preparation method thereof and a kind of solid lithium battery
CN110534705A (en) * 2018-05-25 2019-12-03 大众汽车有限公司 Lithium anode and its manufacturing method
CN110534705B (en) * 2018-05-25 2023-08-08 大众汽车有限公司 Lithium anode and method for manufacturing same
JP2022104375A (en) * 2020-12-28 2022-07-08 本田技研工業株式会社 Electrode for lithium ion secondary battery
JP7239551B2 (en) 2020-12-28 2023-03-14 本田技研工業株式会社 Electrodes for lithium-ion secondary batteries
CN113594410A (en) * 2021-07-29 2021-11-02 溧阳紫宸新材料科技有限公司 Cathode structure, preparation method thereof and solid-state battery
CN113594410B (en) * 2021-07-29 2023-03-24 溧阳紫宸新材料科技有限公司 Cathode structure, preparation method thereof and solid-state battery

Similar Documents

Publication Publication Date Title
KR101774683B1 (en) Electorde active material slurry, preparation method thereof, and all solid secondary battery comprising the same
KR102165543B1 (en) Ion-conducting batteries with solid state electrolyte materials
JP5594379B2 (en) Secondary battery positive electrode, secondary battery positive electrode manufacturing method, and all-solid secondary battery
WO2017141735A1 (en) Solid electrolytic composition, electrode sheet for full-solid secondary batteries, full-solid secondary battery, and method for manufacturing electrode sheet for full-solid secondary batteries and full-solid secondary battery
JP6172083B2 (en) Lithium solid state secondary battery and manufacturing method thereof
EP3043406B1 (en) Solid-state batteries and methods for fabrication
KR102277905B1 (en) Lithium battery, and preparation method of cathode active material for the lithium battery
WO2017046915A1 (en) Composite electrolyte for secondary batteries, secondary battery and battery pack
JP2016012495A (en) Lithium solid type secondary battery, and method for manufacturing the same
CN108923061B (en) Solid electrolyte material and all-solid-state lithium battery
US11888149B2 (en) Solid state battery system usable at high temperatures and methods of use and manufacture thereof
WO2014068777A1 (en) All-solid lithium ion secondary battery
JP2015173100A (en) Solid electrolyte composition, method of manufacturing the same, electrode sheet for battery using the same, and solid secondary battery
WO2014141962A1 (en) All-solid-state battery
JP7128290B2 (en) Negative electrode active material for lithium secondary battery and lithium secondary battery including the same
CN111971758B (en) Solid electrolyte sheet, negative electrode sheet for all-solid secondary battery, and method for manufacturing all-solid secondary battery
JP5796687B2 (en) Positive electrode material, secondary battery and manufacturing method thereof
CN111954911B (en) Solid electrolyte sheet, negative electrode sheet for all-solid secondary battery, and method for manufacturing all-solid secondary battery
JP2020126771A (en) Negative electrode layer and all-solid battery
KR102530678B1 (en) Anode Active Material for Lithium Secondary Battery, Anode Comprising the same, and Lithium Secondary Battery Comprising the Same
JP2020107594A (en) Solid electrolyte sheet, negative electrode sheet for all-solid type secondary battery and all-solid type secondary battery, and manufacturing methods thereof
JP6578743B2 (en) Electrode manufacturing method
CN111602272A (en) Solid electrolyte composition and method for producing the same, solid electrolyte-containing sheet, electrode sheet for all-solid secondary battery, and method for producing the battery
JP2010056027A (en) Aqueous lithium secondary battery, and electrode for aqueous lithium secondary battery
CN102479932B (en) Using method of lithium ion battery modifying agent, lithium ion battery diaphragm, and battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12887815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP