JP2012146512A - Method for manufacturing battery - Google Patents

Method for manufacturing battery Download PDF

Info

Publication number
JP2012146512A
JP2012146512A JP2011003992A JP2011003992A JP2012146512A JP 2012146512 A JP2012146512 A JP 2012146512A JP 2011003992 A JP2011003992 A JP 2011003992A JP 2011003992 A JP2011003992 A JP 2011003992A JP 2012146512 A JP2012146512 A JP 2012146512A
Authority
JP
Japan
Prior art keywords
electrode layer
solid electrolyte
negative electrode
battery
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011003992A
Other languages
Japanese (ja)
Inventor
Yuji Yamashita
勇司 山下
Masatake Fujishima
正剛 藤嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011003992A priority Critical patent/JP2012146512A/en
Publication of JP2012146512A publication Critical patent/JP2012146512A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a battery, which is capable of easily manufacturing a battery having a structure in which bipolar electrodes are provided and a plurality of unit cells are laminated.SOLUTION: The method for manufacturing a battery comprises: a lamination step of producing a laminate including a structure in which a plurality of collector substrates and a plurality of power generating elements each comprising a cathode layer, an anode layer, and a solid electrolyte layer disposed between the cathode layer and the anode layer are alternately laminated; and a pressurization step of pressurizing the laminate in a laminating direction.

Description

本発明は、電池の製造方法に関する。   The present invention relates to a battery manufacturing method.

リチウムイオン二次電池は、他の二次電池よりもエネルギー密度が高く、高電圧での動作が可能という特徴を有している。そのため、小型軽量化を図りやすい二次電池として携帯電話等の情報機器に使用されており、近年、電気自動車やハイブリッド自動車用等、大型の動力用としての需要も高まっている。   A lithium ion secondary battery has the characteristics that it has a higher energy density than other secondary batteries and can operate at a high voltage. For this reason, it is used as a secondary battery that can be easily reduced in size and weight in information equipment such as a mobile phone, and in recent years, there is an increasing demand for large motive power such as for electric vehicles and hybrid vehicles.

リチウムイオン二次電池には、正極層及び負極層と、これらの間に配置される電解質層とが備えられ、電解質層に備えられる電解質としては、例えば非水系の液体や固体が用いられる。電解質に液体(以下において、「電解液」という。)が用いられる場合には、電解液が正極層や負極層の内部へと浸透しやすい。そのため、正極層や負極層に含有されている活物質と電解液との界面が形成されやすく、性能を向上させやすい。ところが、広く用いられている電解液は可燃性であるため、安全性を確保するためのシステムを搭載する必要がある。一方、固体の電解質(以下において、「固体電解質」という。)は不燃性であるため、上記システムを簡素化できる。それゆえ、不燃性である固体電解質を含有する層(以下において、「固体電解質層」という。)が備えられる形態のリチウムイオン二次電池(以下において、「固体電池」という。)が提案されている。   A lithium ion secondary battery includes a positive electrode layer and a negative electrode layer, and an electrolyte layer disposed therebetween. As the electrolyte provided in the electrolyte layer, for example, a non-aqueous liquid or solid is used. When a liquid (hereinafter referred to as “electrolytic solution”) is used as the electrolyte, the electrolytic solution easily penetrates into the positive electrode layer and the negative electrode layer. Therefore, an interface between the active material contained in the positive electrode layer or the negative electrode layer and the electrolytic solution is easily formed, and the performance is easily improved. However, since the widely used electrolyte is flammable, it is necessary to mount a system for ensuring safety. On the other hand, since the solid electrolyte (hereinafter referred to as “solid electrolyte”) is nonflammable, the above system can be simplified. Therefore, a lithium ion secondary battery (hereinafter referred to as “solid battery”) in a form provided with a layer containing a solid electrolyte that is nonflammable (hereinafter referred to as “solid electrolyte layer”) has been proposed. Yes.

このような電池に関する技術として、例えば特許文献1には、2層以上に積層された構造を有する固体電解質層を備えた固体電池が開示されている。また、特許文献1には、負極に金属リチウムを用い、固体電解質層に酸化物を用いることが開示されている。   As a technique related to such a battery, for example, Patent Document 1 discloses a solid battery including a solid electrolyte layer having a structure in which two or more layers are stacked. Patent Document 1 discloses that metallic lithium is used for the negative electrode and oxide is used for the solid electrolyte layer.

特開2007−066703号公報JP 2007-066693 A

特許文献1等に開示されているような固体電池を用いて高いエネルギー密度の電池とするには、いわゆるバイポーラ電極を備え、単電池が複数積層された構造を備える電池にすることが好ましい。なお、バイポーラ電極とは、シート状の集電基板の一方の面側に正極層が形成されるとともに他方の面側に負極層が形成された積層体である。しかしながら、従来は、単電池を複数積層した電池を作製する際に、当該単電池を構成する層を順次形成することによって作製していたため、電池の作製にかかる工数が多くなるという問題があった。   In order to obtain a battery having a high energy density by using a solid battery as disclosed in Patent Document 1 or the like, a battery having a structure in which a so-called bipolar electrode is provided and a plurality of unit cells are stacked is preferable. The bipolar electrode is a laminate in which a positive electrode layer is formed on one surface side of a sheet-like current collecting substrate and a negative electrode layer is formed on the other surface side. However, conventionally, when a battery in which a plurality of unit cells are stacked is manufactured, the layers constituting the unit cell are sequentially formed, so that there is a problem that man-hours required for manufacturing the battery increase. .

そこで、本発明は、バイポーラ電極を備え、単電池が複数積層された構造を備える電池を簡単に製造することができる、電池の方法を提供することを課題とする。   Therefore, an object of the present invention is to provide a battery method that can easily manufacture a battery including a bipolar electrode and having a structure in which a plurality of single cells are stacked.

上記課題を解決するために、本発明は以下の構成をとる。すなわち、
本発明は、集電基板、並びに、正極層と負極層と該正極層及び該負極層の間に配設される固体電解質層とを備える発電要素、を交互に複数積層した構造を備える積層体を作製する積層工程と、該積層体を積層方向に加圧する加圧工程と、を有する電池の製造方法である。
In order to solve the above problems, the present invention has the following configuration. That is,
The present invention relates to a current collector substrate and a laminate having a structure in which a plurality of power generation elements each including a positive electrode layer, a negative electrode layer, and a positive electrode layer and a solid electrolyte layer disposed between the negative electrode layer are alternately stacked. Is a method for producing a battery having a laminating step for producing a laminate and a pressurizing step for pressurizing the laminate in the laminating direction.

また、上記本発明の電池の製造方法において、積層工程が、エアロゾルデポジション法又は化学気相蒸着法によって、集電基板上に正極層を形成する工程を含むことが好ましい。   In the battery manufacturing method of the present invention, it is preferable that the stacking step includes a step of forming a positive electrode layer on the current collector substrate by an aerosol deposition method or a chemical vapor deposition method.

また、上記本発明の電池の製造方法において、固体電解質層に酸化物系固体電解質を用いるとともに、負極層に金属リチウム箔を用いることが好ましい。   In the battery manufacturing method of the present invention, it is preferable to use an oxide-based solid electrolyte for the solid electrolyte layer and a metal lithium foil for the negative electrode layer.

本発明の電池の製造方法によれば、集電基板、並びに、正極層と負極層と該正極層及び該負極層の間に配設される固体電解質層とを備える発電要素、を交互に複数積層した構造を備える積層体を作製した後、該積層体を積層方向に加圧することによって、バイポーラ電極を備え、単電池が複数積層された構造を備える電池を簡単に製造することができる。   According to the method for producing a battery of the present invention, a plurality of power generation elements including a current collecting substrate and a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer are alternately provided. After producing a laminated body having a laminated structure, a battery having a structure in which a plurality of unit cells are provided with bipolar electrodes can be easily manufactured by pressurizing the laminated body in the lamination direction.

また、本発明の電池の製造方法において、エアロゾルデポジション法又は化学気相蒸着法によって正極層を形成することにより、数十μmオーダーの厚さの正極層を形成することが容易になり、電池のエネルギー密度を向上させることが容易になる。   Further, in the battery manufacturing method of the present invention, by forming the positive electrode layer by the aerosol deposition method or the chemical vapor deposition method, it becomes easy to form a positive electrode layer having a thickness of several tens of μm. It becomes easy to improve the energy density.

また、本発明の電池の製造方法において、固体電解質層に酸化物系固体電解質を用いるとともに、負極層に金属リチウム箔を用いることによって、固体電解質層の表面に微細な凹凸が形成されたとしても、負極層を当該凹凸に密着させ、負極層と固体電解質層との間の界面抵抗を低減することができる。   Further, in the battery manufacturing method of the present invention, even if an oxide-based solid electrolyte is used for the solid electrolyte layer and a metal lithium foil is used for the negative electrode layer, fine irregularities are formed on the surface of the solid electrolyte layer. The negative electrode layer can be brought into close contact with the unevenness, and the interface resistance between the negative electrode layer and the solid electrolyte layer can be reduced.

本発明の電池の製造方法に含まれる工程を示すフローチャートである。It is a flowchart which shows the process included in the manufacturing method of the battery of this invention. 本発明の電池の製造方法の一例について、その過程を概略的に示す断面図である。It is sectional drawing which shows the process roughly about an example of the manufacturing method of the battery of this invention. 従来の電池の製造方法の一例について、その過程を概略的に示す断面図である。It is sectional drawing which shows the process roughly about an example of the manufacturing method of the conventional battery.

従来の電池の製造方法について説明した後、本発明の電池の製造方法について説明する。図3は、従来の電池の製造方法の一例について、その過程を概略的に示す断面図である。   After describing the conventional battery manufacturing method, the battery manufacturing method of the present invention will be described. FIG. 3 is a cross-sectional view schematically showing the process of an example of a conventional battery manufacturing method.

図3(d)に示すような、単電池27が複数積層された電池28を製造する場合、従来は各層を順次形成していくことによって、単電池27を複数積層していた。なお、図3に示した電池28は、集電基板21の一方の面側に正極層22が形成されるとともに、該集電基板21の他方の面側に負極層24が形成されたバイポーラ電極を備えており、隣接する単電池27、27は当該単電池27、27の間に備えられた集電基板21を共有している。このような電池28の従来の製造方法の具体例は、以下の通りである。   When manufacturing a battery 28 in which a plurality of unit cells 27 are stacked as shown in FIG. 3D, conventionally, a plurality of unit cells 27 are stacked by sequentially forming each layer. 3 is a bipolar electrode in which the positive electrode layer 22 is formed on one surface side of the current collecting substrate 21 and the negative electrode layer 24 is formed on the other surface side of the current collecting substrate 21. The battery 28 shown in FIG. The adjacent unit cells 27, 27 share the current collecting substrate 21 provided between the unit cells 27, 27. A specific example of a conventional method for manufacturing such a battery 28 is as follows.

例えば、従来の電池の製造方法では、図3(a)に示したように、まず、集電基板21上に正極層22を形成し、さらに該正極層22上に固体電解質層23を形成して、積層体25を作製していた。次に、集電基板21上に負極層24を形成した積層体26を用意して、図3(b)に示すように、固体電解質層23と負極層24とが面するように、積層体25及び積層体26を積層していた。ここで、各層を密着させる、各層に含まれる空隙を減らす等の目的で、得られた積層体を積層方向に加圧することによって、単電池27を製造していた。その後、図3(c)及び図3(d)に示したように、これまでと同様の作業を繰り返すことによって、複数の単電池27が積層された電池28を製造していた。   For example, in the conventional battery manufacturing method, as shown in FIG. 3A, first, the positive electrode layer 22 is formed on the current collecting substrate 21, and the solid electrolyte layer 23 is further formed on the positive electrode layer 22. Thus, the laminate 25 was produced. Next, a laminate 26 in which the negative electrode layer 24 is formed on the current collector substrate 21 is prepared, and the laminate is arranged so that the solid electrolyte layer 23 and the negative electrode layer 24 face each other as shown in FIG. 25 and the laminated body 26 were laminated. Here, the unit cell 27 was manufactured by pressurizing the obtained laminated body in the laminating direction for the purpose of bringing the layers into close contact with each other or reducing the voids contained in each layer. Thereafter, as shown in FIGS. 3C and 3D, the battery 28 in which the plurality of single cells 27 are stacked is manufactured by repeating the same operation as before.

上述したような従来の電池の製造方法では、単電池を複数積層した電池を作製する際に、当該単電池を構成する層を順次形成することによって作製していたため、電池の作製にかかる工数が多くなるという問題があった。本発明はかかる問題に鑑みて完成されたものである。以下、図面を参照しつつ、本発明について説明する。   In the conventional battery manufacturing method as described above, when a battery in which a plurality of unit cells are stacked is manufactured, the layers constituting the unit cell are sequentially formed. There was a problem of increasing. The present invention has been completed in view of such problems. The present invention will be described below with reference to the drawings.

図1は、本発明の電池の製造方法に含まれる工程を示すフローチャートである。図2は、本発明の電池の製造方法の一例について、その過程を概略的に示す断面図である。   FIG. 1 is a flowchart showing steps included in the battery manufacturing method of the present invention. FIG. 2 is a cross-sectional view schematically showing the process of an example of the battery manufacturing method of the present invention.

図1に示すように、本発明の電池の製造方法は、積層工程(以下、「S11」と表記する場合がある。)と、加圧工程(以下、「S12」と表記する場合がある。)とを有している。以下、これらの工程について説明する。   As shown in FIG. 1, the battery manufacturing method of the present invention may be described as a lamination process (hereinafter sometimes referred to as “S11”) and a pressurizing process (hereinafter referred to as “S12”). ). Hereinafter, these steps will be described.

<積層工程(S11)>
S11は、集電基板、並びに、正極層と負極層と該正極層及び該負極層の間に配設される固体電解質層とを備える発電要素、を交互に複数積層した構造を備える積層体を作製する工程である。本発明に用いることができる正極層、負極層、電解質層、及び集電基板は特に限定されず、公知のものを適宜用いることができる。また、これらの積層方法も特に限定されない。
<Lamination process (S11)>
S11 is a laminate including a current collecting substrate and a structure in which a plurality of power generation elements each including a positive electrode layer, a negative electrode layer, and a positive electrode layer and a solid electrolyte layer disposed between the negative electrode layer are alternately stacked. It is a manufacturing process. The positive electrode layer, the negative electrode layer, the electrolyte layer, and the current collecting substrate that can be used in the present invention are not particularly limited, and known materials can be appropriately used. Moreover, these lamination methods are not particularly limited.

S11は、例えば、図2(a)に示したように集電基板1上に正極層2を形成した積層体5を複数用意し、図2(b)に示したように、積層体5と積層体5との間に負極層4が配設されるようにして積層することによって、正極層2と、負極層4と、正極層2及び負極層4の間に配設される固体電解質層3とを備える発電要素10、並びに集電基板1を交互に複数積層した構造を備える積層体15を作製する工程とすることができる。なお、積層体15の積層方向の最外面には、図2(b)に示したように、どちらの面にも集電基板1を配設するようにする。   In S11, for example, as shown in FIG. 2A, a plurality of laminated bodies 5 in which the positive electrode layer 2 is formed on the current collecting substrate 1 are prepared, and as shown in FIG. The positive electrode layer 2, the negative electrode layer 4, and the solid electrolyte layer disposed between the positive electrode layer 2 and the negative electrode layer 4 are laminated so that the negative electrode layer 4 is disposed between the laminate 5. 3 and the laminated body 15 having a structure in which a plurality of current collecting substrates 1 are alternately laminated. In addition, as shown in FIG.2 (b), the current collection board | substrate 1 is arrange | positioned in the outermost surface of the lamination direction of the laminated body 15 as shown in FIG.2 (b).

(集電基板1)
集電基板1を構成する材料は、導電性を有するものであれば特に限定されるものではなく、正極活物質および負極活物質の材料の電位を考慮して、適宜選択することが好ましい。具体的にはアルミニウム、アルミニウム合金、銅、ニッケル、銀、ステンレス鋼(SUS)等を挙げることができる。また、集電基板1の厚さについては、一般的な固体電池における集電基板の厚さと同様である。
(Collector board 1)
The material constituting the current collecting substrate 1 is not particularly limited as long as it has conductivity, and is preferably selected appropriately in consideration of the potentials of the positive electrode active material and the negative electrode active material. Specifically, aluminum, aluminum alloy, copper, nickel, silver, stainless steel (SUS), etc. can be mentioned. Moreover, about the thickness of the current collection board | substrate 1, it is the same as that of the current collection board | substrate in a general solid battery.

(負極層4)
負極層4は少なくとも負極活物質を含む層であり、必要に応じて、固体電解質、導電化材および結着材の少なくとも一つを含有していても良い。負極層4に用いることができる負極活物質としては、例えば、金属活物質やカーボン活物質を挙げることができる。負極層4に用いることができる金属活物質としては、例えば、Li、In、Al、SiおよびSnやこれらの合金等を挙げることができる。一方、負極層4に用いることができるカーボン活物質としては、例えば、メソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)、ハードカーボン、ソフトカーボン等を挙げることができる。また、負極活物質として、酸化物活物質を用いても良い。当該酸化物活物質としては、LiTi12、Li(PO等を挙げることができる。
(Negative electrode layer 4)
The negative electrode layer 4 is a layer containing at least a negative electrode active material, and may contain at least one of a solid electrolyte, a conductive material, and a binder as necessary. Examples of the negative electrode active material that can be used for the negative electrode layer 4 include a metal active material and a carbon active material. Examples of the metal active material that can be used for the negative electrode layer 4 include Li, In, Al, Si, Sn, and alloys thereof. On the other hand, examples of the carbon active material that can be used for the negative electrode layer 4 include mesocarbon microbeads (MCMB), highly oriented graphite (HOPG), hard carbon, and soft carbon. An oxide active material may be used as the negative electrode active material. Examples of the oxide active material include Li 4 Ti 5 O 12 and Li 3 V 2 (PO 4 ) 3 .

上述したように、負極層4には固体電解質を含ませることができる。負極層4に固体電解質を添加することにより、負極層4のイオン伝導性を向上させることができる。当該固体電解質としては、後述する固体電解質層3に用いられる固体電解質と同様の材料を挙げることができる。また、上述したように、負極層4には導電化材を含ませることができる。負極層4に導電化材を添加することにより、負極層4の導電性を向上させることができる。当該導電化材としては、例えば、アセチレンブラック、ケッチェンブラック、カーボンファイバー等を挙げることができる。また、上述したように、負極層4には結着材を含ませることができる。当該結着材の種類としては、例えば、ポリテトラフルオロエチレン(PTFE)等のフッ素含有結着材等を挙げることができる。   As described above, the negative electrode layer 4 can contain a solid electrolyte. By adding a solid electrolyte to the negative electrode layer 4, the ion conductivity of the negative electrode layer 4 can be improved. As the said solid electrolyte, the material similar to the solid electrolyte used for the solid electrolyte layer 3 mentioned later can be mentioned. Further, as described above, the negative electrode layer 4 can contain a conductive material. By adding a conductive material to the negative electrode layer 4, the conductivity of the negative electrode layer 4 can be improved. Examples of the conductive material include acetylene black, ketjen black, and carbon fiber. Further, as described above, the negative electrode layer 4 can contain a binder. Examples of the binder include fluorine-containing binders such as polytetrafluoroethylene (PTFE).

また、負極層4は、金属系活物質の金属膜であっても良く、金属系活物質またはカーボン系活物質を含む粉体を圧縮成形したものであっても良い。金属系活物質の金属膜としては、具体的には、上記金属系活物質の金属箔、めっき箔、蒸着箔等を挙げることができ、中でも金属系活物質の金属箔が好ましい。   Moreover, the negative electrode layer 4 may be a metal film of a metal-based active material, or may be a compression-molded powder containing a metal-based active material or a carbon-based active material. Specific examples of the metal film of the metal-based active material include metal foils, plating foils, vapor-deposited foils, and the like of the above-described metal-based active materials. Among these, metal foils of the metal-based active material are preferable.

負極層4の厚さは特に限定されるものではないが、例えば0.1μm以上1000μm以下の範囲内であることが好ましい。   Although the thickness of the negative electrode layer 4 is not specifically limited, For example, it is preferable that it exists in the range of 0.1 micrometer or more and 1000 micrometers or less.

負極層4としては、上述したような従来の電池に使用可能な公知の負極層を用いることができる。ただし、後に説明するように、固体電解質層3と負極層4と間の界面抵抗を低減する観点からは、負極層4の剛性率を0.1GPa以上10GPa以下とすることが好ましい。このような剛性率を有していて負極層4に使えるものとしては、金属リチウム箔、金属リチウム合金箔、固体電解質とカーボン活物質との粉体を圧縮成形した層等を挙げることができる。   As the negative electrode layer 4, a known negative electrode layer that can be used in the conventional battery as described above can be used. However, as will be described later, from the viewpoint of reducing the interfacial resistance between the solid electrolyte layer 3 and the negative electrode layer 4, the rigidity of the negative electrode layer 4 is preferably 0.1 GPa or more and 10 GPa or less. Examples of the material having such a rigidity and usable for the negative electrode layer 4 include a metal lithium foil, a metal lithium alloy foil, a layer formed by compression molding a powder of a solid electrolyte and a carbon active material, and the like.

(固体電解質層3)
固体電解質層3は、正極層2および負極層4の間に形成される、固体電解質を含む層である。固体電解質層3に用いることができる固体電解質としては、例えば、LiPO等の酸化物系固体電解質のほか、LiPSや、LiS:P=50:50〜100:0となるようにLiS及びPを混合して作製した硫化物系固体電解質(例えば、質量比で、LiS:P=70:30となるようにLiS及びPを混合して作製した硫化物固体電解質)等、公知の固体電解質を適宜用いることができる。固体電解質層3の厚さは、例えば0.1μm以上1000μm以下の範囲内とすることができ、中でも0.1μm以上300μm以下の範囲内であることが好ましい。
(Solid electrolyte layer 3)
The solid electrolyte layer 3 is a layer including a solid electrolyte formed between the positive electrode layer 2 and the negative electrode layer 4. Examples of the solid electrolyte that can be used for the solid electrolyte layer 3 include Li 3 PS 4 and Li 2 S: P 2 S 5 = 50: 50 to 100 in addition to an oxide solid electrolyte such as Li 3 PO 4. : 0. the way Li 2 S and P 2 S sulfide 5 were mixed was produced solid electrolyte (e.g., by mass ratio, Li 2 S: P 2 S 5 = 70: 30 to become as Li 2 A known solid electrolyte such as a sulfide solid electrolyte prepared by mixing S and P 2 S 5 can be appropriately used. The thickness of the solid electrolyte layer 3 can be, for example, in the range of 0.1 μm or more and 1000 μm or less, and preferably in the range of 0.1 μm or more and 300 μm or less.

(正極層2)
正極層2は少なくとも正極活物質を含む層であり、必要に応じて、固体電解質、導電化材および結着材の少なくとも一つを含有していても良い。正極層2に用いることができる正極活物質の具体例としては、LiCoMn、LiNiCo、LiNiMn、LiNiCoMn、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、鉄オリビン(LiFePO)、コバルトオリビン(LiCoPO)、マンガンオリビン(LiMnPO)、チタン酸リチウム(LiTi12)等のリチウム遷移金属酸化物;銅シュブレル(CuMo)、硫化鉄(FeS)、硫化コバルト(CoS)、硫化ニッケル(NiS)等のカルコゲン化物等を挙げることができる。正極層2に用いることができる固体電解質、導電化材および結着材としては、上記負極層4と同様であるため、説明を省略する。
(Positive electrode layer 2)
The positive electrode layer 2 is a layer containing at least a positive electrode active material, and may contain at least one of a solid electrolyte, a conductive material, and a binder as necessary. Specific examples of the positive electrode active material can be used for the positive electrode layer 2, LiCo x Mn y O 2 , LiNi x Co y O 2, LiNi x Mn y O 2, LiNi x Co y Mn z O 2, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), iron olivine (LiFePO 4 ), cobalt olivine (LiCoPO 4 ), manganese olivine (LiMnPO 4 ), lithium titanate (Li 4 Ti 5 Examples thereof include lithium transition metal oxides such as O 12 ); chalcogenides such as copper subrel (Cu 2 Mo 6 S 8 ), iron sulfide (FeS), cobalt sulfide (CoS), and nickel sulfide (NiS). Since the solid electrolyte, the conductive material, and the binder that can be used for the positive electrode layer 2 are the same as those of the negative electrode layer 4, the description thereof is omitted.

正極層2の厚さは特に限定されないが、エネルギー密度の高い固体電池を実現する観点からは、数十μmオーダーの厚さで形成することが好ましい。また、図2(a)に示したように集電基板1上に正極層2を形成する場合、正極層2を形成する方法は特に限定されないが、数十μmオーダーの厚さで形成する場合は、従来のようにスパッタ法等の物理気相成長(CVD)法で形成することは現実的ではない。一方、成膜レートの高い別の工法(例えば、エアゾルデポジション(AD法)、化学気相蒸着(CVD法)等。)で正極層2を形成すると、正極層2の表面に、スパッタ法等のPVD法で正極層2を形成する場合に比べて大きな凹凸が形成される場合があった。なお、図2では、正極層2の表面の凹凸を誇張して示している。   Although the thickness of the positive electrode layer 2 is not particularly limited, it is preferably formed with a thickness of the order of several tens of μm from the viewpoint of realizing a solid battery having a high energy density. In addition, when the positive electrode layer 2 is formed on the current collecting substrate 1 as shown in FIG. 2A, the method of forming the positive electrode layer 2 is not particularly limited. However, when the positive electrode layer 2 is formed with a thickness of the order of several tens of μm. However, it is not practical to form the film by physical vapor deposition (CVD) such as sputtering as in the prior art. On the other hand, when the positive electrode layer 2 is formed by another method with a high film formation rate (for example, aerosol deposition (AD method), chemical vapor deposition (CVD method), etc.), a sputtering method or the like is formed on the surface of the positive electrode layer 2. As compared with the case where the positive electrode layer 2 is formed by the PVD method, large irregularities may be formed. In FIG. 2, the unevenness on the surface of the positive electrode layer 2 is exaggerated.

正極層2の表面に凹凸が形成された場合、当該正極層2上に固体電解質層3を形成すると、固体電解質層3の表面にも正極層2の表面の凹凸が反映される場合がある。このとき、硫化物系固体電解質等の比較的柔らかい物質を固体電解質層3に用いた場合は、S12において積層方向に加圧することで、固体電解質層3の表面をある程度の平坦化させることができる。しかしながら、酸化物系固体電解質等の比較的硬い物質を固体電解質層3に用いた場合は、S12において積層方向に加圧したとしても、固体電解質層3の表面の凹凸を平坦化することが困難であった。このようにして表面に凹凸が残った固体電解質層3上に負極層4を積層すると、固体電解質層3と負極層4との密着性が低くなり、固体電解質層3と負極層4との間で界面抵抗が高くなる場合があった。   When unevenness is formed on the surface of the positive electrode layer 2, if the solid electrolyte layer 3 is formed on the positive electrode layer 2, the unevenness on the surface of the positive electrode layer 2 may be reflected on the surface of the solid electrolyte layer 3. At this time, when a relatively soft substance such as a sulfide-based solid electrolyte is used for the solid electrolyte layer 3, the surface of the solid electrolyte layer 3 can be flattened to some extent by applying pressure in the stacking direction in S12. . However, when a relatively hard substance such as an oxide-based solid electrolyte is used for the solid electrolyte layer 3, it is difficult to flatten the unevenness on the surface of the solid electrolyte layer 3 even if the solid electrolyte layer 3 is pressurized in S12. Met. When the negative electrode layer 4 is laminated on the solid electrolyte layer 3 with the irregularities remaining on the surface in this way, the adhesion between the solid electrolyte layer 3 and the negative electrode layer 4 is lowered, and the solid electrolyte layer 3 and the negative electrode layer 4 are not bonded. In some cases, the interface resistance was high.

一方、高いエネルギー密度を得るためには、本発明によって得られる電池のように、単電池を複数積層させた構造の電池とすることが好ましい。このように単電池を複数積層させる場合、1つの電池に含まれる固体電解質層と負極層との界面の数が増えるため、固体電解質層と負極層との間の界面抵抗を低減することがより重要となる。   On the other hand, in order to obtain a high energy density, it is preferable to use a battery having a structure in which a plurality of unit cells are stacked as in the battery obtained by the present invention. When a plurality of unit cells are stacked in this way, the number of interfaces between the solid electrolyte layer and the negative electrode layer included in one battery increases, so that it is possible to reduce the interface resistance between the solid electrolyte layer and the negative electrode layer. It becomes important.

上記のように固体電解質層3の表面に凹凸が残る場合、負極層4の剛性率を0.1GPa以上10GPa以下とすることが好ましい。負極層4の剛性率を0.1GPa以上10GPa以下とすることによって、当該負極層4を固体電解質層3上に積層し、S12において積層方向に加圧したときに、図2(c)に示したように、負極層4の固体電解質層3側の面が固体電解質層3の表面の凹凸に応じて凹むことにより、固体電解質層3と負極層4とが密着し、固体電解質層3と負極層4との間の界面抵抗を低減することができる。また、このとき、図2(c)に示したように、負極層4の集電基板1に接する面は平坦であるため、負極層4と集電基板1との間で界面抵抗が高くなることを防止できる。   When irregularities remain on the surface of the solid electrolyte layer 3 as described above, the rigidity of the negative electrode layer 4 is preferably 0.1 GPa or more and 10 GPa or less. When the negative electrode layer 4 has a rigidity of 0.1 GPa or more and 10 GPa or less, the negative electrode layer 4 is stacked on the solid electrolyte layer 3 and pressed in the stacking direction in S12, as shown in FIG. As described above, the surface on the solid electrolyte layer 3 side of the negative electrode layer 4 is recessed according to the unevenness of the surface of the solid electrolyte layer 3, so that the solid electrolyte layer 3 and the negative electrode layer 4 are in close contact with each other. Interfacial resistance with the layer 4 can be reduced. At this time, as shown in FIG. 2C, the surface of the negative electrode layer 4 in contact with the current collector substrate 1 is flat, so that the interface resistance between the negative electrode layer 4 and the current collector substrate 1 is increased. Can be prevented.

実際に、以下に説明するようにして3つのサンプル(サンプルA〜C)を作製して交流インピーダンス評価を行い、その結果を表1に示した。なお、表1に示した界面抵抗比は、サンプルAを基準にしている。   Actually, three samples (samples A to C) were prepared as described below, and AC impedance evaluation was performed. The results are shown in Table 1. The interface resistance ratio shown in Table 1 is based on Sample A.

サンプルAの作製手順としては、まず、表面が平坦なアルミニウム箔からなる集電基板上にLiCoOを含む正極層をエアロゾルデポジションによって、厚さ50μmに成膜した。次に、酸化物系固体電解質(Li1.5Al0.5Ti1.5(PO)を用いて固体電解質層をエアロゾルデポジションによって、厚さ10μmに成膜した。このとき、固体電解質層の表面粗度は、Ra(JIS B0601-2001に定義される算術平均粗さ)=5μmであった。次に、厚さ50μmの金属リチウム箔からなる負極層を固体電解質層上に配置し、さらにその上に、上記集電基板と同様のアルミニウム箔からなる集電基板を配置した後、これらからなる積層体を積層方向に0.5MPaで加圧して単電池を作製した。この単電池について、交流インピーダンス評価を行った。 As a preparation procedure of Sample A, first, a positive electrode layer containing LiCoO 2 was formed to a thickness of 50 μm by aerosol deposition on a current collecting substrate made of an aluminum foil having a flat surface. Next, a solid electrolyte layer was formed into a thickness of 10 μm by aerosol deposition using an oxide-based solid electrolyte (Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 ). At this time, the surface roughness of the solid electrolyte layer was Ra (arithmetic mean roughness defined in JIS B0601-2001) = 5 μm. Next, a negative electrode layer made of a metal lithium foil having a thickness of 50 μm is disposed on the solid electrolyte layer, and a current collecting substrate made of an aluminum foil similar to the above current collecting substrate is further disposed thereon, and then, these are formed. The laminated body was pressurized in the lamination direction at 0.5 MPa to produce a single cell. This unit cell was subjected to AC impedance evaluation.

サンプルBは、固体電解質層の成膜まではサンプルAと同様とした。このとき、固体電解質層の表面粗度は、Ra=5μmであった。負極層は以下のようにして作製した。すなわち、カーボン50質量部と高分子型固体電解質50質量部とを溶媒を用いて混合分散した後、PTFEシート上に塗工して乾燥させ、乾燥後の厚さが50μmの負極層を作製した。次に、固体電解質層上に負極層を配置して積層方向に加圧した後、PTFEシートを剥離した。次に、負極層上にサンプルAと同様のアルミニウム箔からなる集電基板を配置した後、サンプルAと同様に積層方向に加圧して単電池を作製した。この単電池について、交流インピーダンス評価を行った。   Sample B was the same as Sample A until the solid electrolyte layer was formed. At this time, the surface roughness of the solid electrolyte layer was Ra = 5 μm. The negative electrode layer was produced as follows. That is, 50 parts by mass of carbon and 50 parts by mass of a polymer solid electrolyte were mixed and dispersed using a solvent, and then coated on a PTFE sheet and dried to prepare a negative electrode layer having a thickness of 50 μm after drying. . Next, after arranging a negative electrode layer on the solid electrolyte layer and pressurizing in the laminating direction, the PTFE sheet was peeled off. Next, a current collector substrate made of the same aluminum foil as sample A was placed on the negative electrode layer, and then pressed in the stacking direction in the same manner as sample A to produce a single cell. This unit cell was subjected to AC impedance evaluation.

サンプルCは、固体電解質層の成膜まではサンプルAと同様とした。このとき、固体電解質層の表面粗度は、Ra=5μmであった。次に、サンプルAと同様のアルミニウム箔からなる集電基板上にLiTiO12を含む負極層をエアロゾルデポジションによって、厚さ50μmに成膜した。次に、固体電解質層と負極層とが面するように積層した後、サンプルAと同様に積層方向に加圧して単電池を作製した。この単電池について、交流インピーダンス評価を行った。 Sample C was the same as Sample A until the solid electrolyte layer was formed. At this time, the surface roughness of the solid electrolyte layer was Ra = 5 μm. Next, a negative electrode layer containing Li 4 TiO 12 was formed to a thickness of 50 μm by aerosol deposition on a current collector substrate made of the same aluminum foil as Sample A. Next, after laminating | stacking so that a solid electrolyte layer and a negative electrode layer might face, it pressurized in the lamination direction similarly to the sample A, and the single battery was produced. This unit cell was subjected to AC impedance evaluation.

Figure 2012146512
Figure 2012146512

サンプルAの負極層の剛性率は4GPaであり、サンプルBの負極層の剛性率は8GPaであった。一方、サンプルCは、負極層の剛性率が86GPaであり、サンプルCの界面抵抗はサンプルA及びサンプルBに比べて1000倍以上と極端に高かった。   The rigidity of the negative electrode layer of sample A was 4 GPa, and the rigidity of the negative electrode layer of sample B was 8 GPa. On the other hand, in Sample C, the rigidity of the negative electrode layer was 86 GPa, and the interface resistance of Sample C was extremely high, 1000 times or more compared to Sample A and Sample B.

<加圧工程(S12)>
S12は、S11で作製した積層体を積層方向に加圧する工程である。
<Pressurizing step (S12)>
S12 is a process of pressurizing the laminated body produced in S11 in the laminating direction.

S12は、例えば、図2(b)に示した矢印P1、P1のように、S11で作製した積層体15を積層方向に加圧する工程とすることができる。S11で作製した積層体15を積層方向に加圧することによって、図2(c)に示したように、単電池16を複数積層した電池17を製造することができる。電池17は、集電基板1の一方の面側に正極層2が形成されるとともに、該集電基板1の他方の面側に負極層4が形成されたバイポーラ電極を備えており、隣接する単電池16、16は当該単電池16、16の間に備えられた集電基板1を共有している。   S12 can be a step of pressing the laminate 15 produced in S11 in the laminating direction as indicated by arrows P1 and P1 shown in FIG. 2B, for example. By pressing the laminated body 15 produced in S11 in the laminating direction, a battery 17 in which a plurality of unit cells 16 are laminated as shown in FIG. 2C can be manufactured. The battery 17 includes a bipolar electrode in which the positive electrode layer 2 is formed on one surface side of the current collecting substrate 1 and the negative electrode layer 4 is formed on the other surface side of the current collecting substrate 1, and is adjacent thereto. The unit cells 16 and 16 share the current collector board 1 provided between the unit cells 16 and 16.

バイポーラ電極を備え、単電池が複数積層された構造を備える電池を製造する場合、上述したように、従来の製造方法では、当該単電池を構成する層を順次形成することによって作製していたため、電池の作製にかかる工数が多くなっていた。一方、本発明の電池の製造方法によれば、これまでに説明したように、単電池を構成する要素を複数重ねた後に一気に加圧するだけで簡単に電池を製造することができる。このように、本発明によれば、バイポーラ電極を複数備え、単電池が複数積層されたエネルギー密度の高い電池を簡単に製造することができる。   In the case of manufacturing a battery including a bipolar electrode and having a structure in which a plurality of unit cells are stacked, as described above, in the conventional manufacturing method, the layers are formed by sequentially forming the layers constituting the unit cell. The number of man-hours required for manufacturing the battery has increased. On the other hand, according to the battery manufacturing method of the present invention, as described above, a battery can be easily manufactured by simply applying pressure at once after a plurality of elements constituting a single battery are stacked. As described above, according to the present invention, a battery having a high energy density in which a plurality of bipolar electrodes are provided and a plurality of unit cells are stacked can be easily manufactured.

以上、現時点において最も実践的で好ましいと思われる実施形態に関連して本発明を説明した。しかしながら、本発明は本願明細書中に開示された実施形態に限定されるものではなく、特許請求の範囲、及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う電池の製造方法もまた本発明の技術的範囲に包含されるものとして理解されなければならない。   The present invention has been described with reference to the most practical and preferred embodiments at the present time. However, the present invention is not limited to the embodiments disclosed in the present specification, and can be appropriately changed within the scope of the claims and the gist or idea of the invention that can be read from the entire specification. It should be understood that a method for manufacturing a battery with such a change is also included in the technical scope of the present invention.

本発明の電池の製造方法は、携帯機器、電気自動車、ハイブリッド車等の電源として用いられる電池の製造に適用することができる。   The method for producing a battery of the present invention can be applied to the production of a battery used as a power source for portable devices, electric vehicles, hybrid vehicles, and the like.

1 集電基板
2 正極層
3 固体電解質層
4 負極層
5 積層体
10 発電要素
15 積層体
16 単電池
17 電池
DESCRIPTION OF SYMBOLS 1 Current collection board | substrate 2 Positive electrode layer 3 Solid electrolyte layer 4 Negative electrode layer 5 Laminated body 10 Electric power generation element 15 Laminated body 16 Cell 17 Battery

Claims (3)

集電基板、並びに、正極層と負極層と該正極層及び該負極層の間に配設される固体電解質層とを備える発電要素、を交互に複数積層した構造を備える積層体を作製する、積層工程と、
前記積層体を積層方向に加圧する加圧工程と、
を有する電池の製造方法。
Producing a current collector substrate, and a laminate having a structure in which a plurality of power generation elements including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer are alternately stacked; Lamination process;
A pressurizing step of pressurizing the laminate in the laminating direction;
The manufacturing method of the battery which has this.
前記積層工程が、エアロゾルデポジション法又は化学気相蒸着法によって、前記集電基板上に前記正極層を形成する工程を含む、請求項1に記載の電池の製造方法。   The battery manufacturing method according to claim 1, wherein the stacking step includes a step of forming the positive electrode layer on the current collector substrate by an aerosol deposition method or a chemical vapor deposition method. 前記固体電解質層に酸化物系固体電解質を用いるとともに、前記負極層に金属リチウム箔を用いる、請求項1又は2に記載の電池の製造方法。   The method for producing a battery according to claim 1, wherein an oxide-based solid electrolyte is used for the solid electrolyte layer and a metal lithium foil is used for the negative electrode layer.
JP2011003992A 2011-01-12 2011-01-12 Method for manufacturing battery Pending JP2012146512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011003992A JP2012146512A (en) 2011-01-12 2011-01-12 Method for manufacturing battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011003992A JP2012146512A (en) 2011-01-12 2011-01-12 Method for manufacturing battery

Publications (1)

Publication Number Publication Date
JP2012146512A true JP2012146512A (en) 2012-08-02

Family

ID=46789905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011003992A Pending JP2012146512A (en) 2011-01-12 2011-01-12 Method for manufacturing battery

Country Status (1)

Country Link
JP (1) JP2012146512A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141962A1 (en) * 2013-03-11 2014-09-18 株式会社村田製作所 All-solid-state battery
CN105322226A (en) * 2014-08-04 2016-02-10 丰田自动车株式会社 Solid lithium secondary battery and method of manufacturing same
JP2017054792A (en) * 2015-09-11 2017-03-16 日本碍子株式会社 Lithium battery
JP2019506699A (en) * 2015-12-04 2019-03-07 クアンタムスケイプ コーポレイション Lithium, phosphorus, sulfur and iodine containing electrolytes and catholyte compositions, electrolyte membranes for electrochemical devices, and annealing methods for producing these electrolytes and catholyte
US11139479B2 (en) 2013-05-15 2021-10-05 Quantumscape Battery, Inc. Solid state catholyte or electrolyte for battery using LiaMPbSc (M=Si, Ge, and/or Sn)
US11145898B2 (en) 2015-06-24 2021-10-12 Quantumscape Battery, Inc. Composite electrolytes
US11342630B2 (en) 2016-08-29 2022-05-24 Quantumscape Battery, Inc. Catholytes for solid state rechargeable batteries, battery architectures suitable for use with these catholytes, and methods of making and using the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141962A1 (en) * 2013-03-11 2014-09-18 株式会社村田製作所 All-solid-state battery
US11211611B2 (en) 2013-05-15 2021-12-28 Quantumscape Battery, Inc. Solid state catholyte or electrolyte for battery using LiaMPbSc (M=Si, Ge, and/or Sn)
US11139479B2 (en) 2013-05-15 2021-10-05 Quantumscape Battery, Inc. Solid state catholyte or electrolyte for battery using LiaMPbSc (M=Si, Ge, and/or Sn)
CN105322226A (en) * 2014-08-04 2016-02-10 丰田自动车株式会社 Solid lithium secondary battery and method of manufacturing same
KR20160016620A (en) * 2014-08-04 2016-02-15 도요타 지도샤(주) Solid lithium secondary battery and method of manufacturing same
KR101714882B1 (en) * 2014-08-04 2017-03-09 도요타 지도샤(주) Solid lithium secondary battery and method of manufacturing same
US9954248B2 (en) 2014-08-04 2018-04-24 Toyota Jidosha Kabushiki Kaisha Solid lithium secondary battery and method of manufacturing same
US11955603B2 (en) 2015-06-24 2024-04-09 Quantumscape Battery, Inc. Composite electrolytes
US11145898B2 (en) 2015-06-24 2021-10-12 Quantumscape Battery, Inc. Composite electrolytes
JP2017054792A (en) * 2015-09-11 2017-03-16 日本碍子株式会社 Lithium battery
JP7071264B2 (en) 2015-12-04 2022-05-18 クアンタムスケイプ バテリー, インク. Lithium, Phosphorus, Sulfur, and Iodine-Containing Electrolytes and Casolite Compositions, Electrolyte Membranes for Electrochemical Devices, and Annealing Methods for Producing These Electrolytes and Casolite
US11476496B2 (en) 2015-12-04 2022-10-18 Quantumscape Battery, Inc. Lithium, phosphorus, sulfur, and iodine including electrolyte and catholyte compositions, electrolyte membranes for electrochemical devices, and annealing methods of making these electrolytes and catholytes
JP2019506699A (en) * 2015-12-04 2019-03-07 クアンタムスケイプ コーポレイション Lithium, phosphorus, sulfur and iodine containing electrolytes and catholyte compositions, electrolyte membranes for electrochemical devices, and annealing methods for producing these electrolytes and catholyte
US11984551B2 (en) 2015-12-04 2024-05-14 Quantumscape Battery, Inc. Lithium, phosphorus, sulfur, and iodine containing electrolyte and catholyte compositions, electrolyte membranes for electrochemical devices, and annealing methods of making these electrolytes and catholytes
US11342630B2 (en) 2016-08-29 2022-05-24 Quantumscape Battery, Inc. Catholytes for solid state rechargeable batteries, battery architectures suitable for use with these catholytes, and methods of making and using the same
US12057600B2 (en) 2016-08-29 2024-08-06 Quantumscape Battery, Inc. Catholytes for solid state rechargeable batteries, battery architectures suitable for use with these catholytes, and methods of making and using the same

Similar Documents

Publication Publication Date Title
JP5413355B2 (en) All solid battery
CN103548196B (en) bipolar all-solid-state battery
JP5765349B2 (en) All-solid battery and method for manufacturing the same
JP2018181451A (en) Laminate type all-solid battery and manufacturing method thereof
JP6394057B2 (en) Solid electrolyte structure and all solid state battery
US10651456B2 (en) All-solid-state battery and method for producing all-solid-state battery
JP2016510941A (en) Multi-layer battery electrode design to enable thicker electrode manufacturing
JP2012146512A (en) Method for manufacturing battery
KR102350322B1 (en) All-solid-state secondary battery
JP2017059325A (en) Method for manufacturing all-solid-state battery
JP2014127272A (en) Method for manufacturing electrode for all solid state battery
CN110165300B (en) Method for manufacturing all-solid-state battery
JP7160753B2 (en) Solid-state battery manufacturing method and solid-state battery
JP2017208250A (en) All-solid type lithium secondary battery and method for manufacturing the same
CN111987365A (en) All-solid-state battery having high energy density and method for manufacturing same
JP5806335B2 (en) Electrode body and manufacturing method thereof
CN112825354A (en) Lithium negative electrode, preparation method thereof and lithium secondary battery
KR20160023072A (en) Method for manufacturing electrode assembly and electrode assembly manufactured using the same
CN111384429A (en) All-solid-state battery
JP2015005421A (en) Electrode body and all-solid-state battery
CN111313079B (en) All-solid battery
JP2017195076A (en) Bipolar type battery
JP5494572B2 (en) All solid state battery and manufacturing method thereof
JP2018147621A (en) Manufacturing method of all-solid battery
KR20200127671A (en) High energy density all-solid state battery and process for preparing thereof