JP2017195076A - Bipolar type battery - Google Patents

Bipolar type battery Download PDF

Info

Publication number
JP2017195076A
JP2017195076A JP2016084184A JP2016084184A JP2017195076A JP 2017195076 A JP2017195076 A JP 2017195076A JP 2016084184 A JP2016084184 A JP 2016084184A JP 2016084184 A JP2016084184 A JP 2016084184A JP 2017195076 A JP2017195076 A JP 2017195076A
Authority
JP
Japan
Prior art keywords
positive electrode
bipolar
negative electrode
solid electrolyte
electrolyte layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016084184A
Other languages
Japanese (ja)
Inventor
阿部 誠
Makoto Abe
阿部  誠
伸治 今井
Shinji Imai
伸治 今井
安藤 慎輔
Shinsuke Ando
慎輔 安藤
智晃 高橋
Tomoaki Takahashi
智晃 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2016084184A priority Critical patent/JP2017195076A/en
Publication of JP2017195076A publication Critical patent/JP2017195076A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a short circuit in a bipolar type battery.SOLUTION: A bipolar type battery comprises: a bipolar electrode having a piece of bipolar current collector foil, a positive electrode mixture layer and a negative electrode mixture layer; and a unit cell having a positive electrode having a piece of positive electrode current collector foil and a positive electrode mixture layer, and a negative electrode having a piece of negative electrode current collector foil and a negative electrode mixture layer. The positive electrode has a positive electrode lamination part and a positive electrode terminal part. The negative electrode has a negative electrode lamination part and a negative electrode terminal part. In a laminating direction of the bipolar type battery, a first solid electrolyte layer is disposed between the bipolar electrode and the positive electrode. In the laminating direction of the bipolar type battery, a second solid electrolyte layer is disposed between the bipolar electrode and the negative electrode. In an in-plane direction of the bipolar type battery, the first solid electrolyte layer and the second solid electrolyte layer are larger than the positive electrode and the negative electrode.SELECTED DRAWING: Figure 4

Description

本発明は、バイポーラ型電池に関するものである。   The present invention relates to a bipolar battery.

近年、大型電気機器(例えば、HEV(ハイブリッド自動車)やEV(電気自動車)などの自動車用動力電源や、電力貯蔵用電源)、携帯電話やスマートフォン、携帯ゲーム機等向けに二次電池の用途が拡大傾向になる。二次電池は、ニッケル水素電池、ニッケルカドミウム電池、鉛電池、リチウムイオン電池、ナトリウムイオン電池等があり、それらの起電力は使用する材料の電位に応じて、約1.5Vから3V以上となる。これら二次電池においては、多くの場合、電解液が使用されているが、近年では常温で固体状態であり、かつイオン伝導性を有する固体電解質の開発が加速傾向にある。固体電解質はそれ自身が、正負極間の絶縁性を確保しつつイオン伝導性を有することが可能であることから、従来の非水系二次電池で用いられるセパレータと非水系電解質の機能を1つの部材で両立することが可能である。   In recent years, secondary batteries have been used for large electric devices (for example, power sources for vehicles such as HEVs (hybrid vehicles) and EVs (electric vehicles) and power storage power sources), mobile phones, smartphones, portable game machines, and the like. It tends to expand. Secondary batteries include nickel metal hydride batteries, nickel cadmium batteries, lead batteries, lithium ion batteries, sodium ion batteries, etc., and their electromotive force is about 1.5 V to 3 V or more depending on the potential of the material used. . In many of these secondary batteries, an electrolytic solution is used. However, in recent years, development of solid electrolytes that are in a solid state at room temperature and have ionic conductivity has been accelerating. Since the solid electrolyte itself can have ionic conductivity while ensuring the insulation between the positive and negative electrodes, the functions of the separator and the non-aqueous electrolyte used in the conventional non-aqueous secondary battery are combined into one. It is possible to achieve compatibility with members.

固体電解質を用いた二次電池は、有機溶媒等を含む非水系電解液を用いたそれに比べて安全性に優れる、という利点を有する。また、固体電解質は電極間に配置した隣接する固体電解質間を分離することが可能とあるため、電池内で直列構造(バイポーラ構造)をとることが可能となり、材料の起電力の直列数倍の起電力を1つのセルで得られる。   A secondary battery using a solid electrolyte has an advantage that it is excellent in safety as compared with that using a nonaqueous electrolytic solution containing an organic solvent or the like. Moreover, since the solid electrolyte can separate adjacent solid electrolytes arranged between the electrodes, it is possible to take a series structure (bipolar structure) in the battery, which is several times the series electromotive force of the material. The electromotive force can be obtained in one cell.

上記に関連して、例えば、特許文献1には、固体電解質の一方の面に正極電極層が形成され他方の面に負極正極電極層が形成されてなるリチウム電池の単位セルと、単位セルと交互に積層される内部電極層とを含むバイポーラ型の積層電池を複数個有し、複数の積層電池は、正極集電箔および負極集電箔を介して積み重ねられ、かつ並列に電気接続され、さらに、モールド樹脂によって封止されたことを特徴とする全固体電池が開示されている。   In relation to the above, for example, Patent Document 1 discloses a unit cell of a lithium battery in which a positive electrode layer is formed on one surface of a solid electrolyte and a negative electrode layer is formed on the other surface; A plurality of bipolar type laminated batteries including internal electrode layers alternately laminated, the plurality of laminated batteries are stacked via a positive current collector foil and a negative current collector foil, and are electrically connected in parallel, Furthermore, an all-solid battery characterized by being sealed with a mold resin is disclosed.

特開2014-116156号公報JP 2014-116156

特許文献1に記載の構造においては、バイポーラ形全固体リチウム電池の面内方向において、積層体の大きさが同じ部分が存在するため、バイポーラ積層焼結体、正極集電箔および負極集電箔等を樹脂モールドで樹脂封止する際や全固体電池を搭載した移動体が移動する際の振動により、積層体の構成要素同士が接触し、短絡を起こす可能性がある。   In the structure described in Patent Document 1, since there are portions having the same size of the laminate in the in-plane direction of the bipolar all solid lithium battery, the bipolar laminated sintered body, the positive electrode current collector foil, and the negative electrode current collector foil The components of the laminate may come into contact with each other and cause a short circuit due to vibration when the resin is sealed with a resin mold or when a moving body equipped with an all-solid battery is moved.

本発明の目的は、バイポーラ型電池の短絡を防止することである。   An object of the present invention is to prevent a short circuit of a bipolar battery.

上記課題を解決するための本発明の特徴は、例えば以下の通りである。   The features of the present invention for solving the above problems are as follows, for example.

バイポーラ集電箔、正極合材層、負極合材層を有するバイポーラ電極と、正極集電箔および正極合材層を有する正極、負極集電箔および負極合材層を有する負極、を有する単位セルと、を有するバイポーラ型電池であって、正極は、正極積層部および正極端子部を有し、負極は、負極積層部および負極端子部を有し、バイポーラ型電池の積層方向において、バイポーラ電極および正極の間に第1の固体電解質層が配置され、バイポーラ型電池の積層方向において、バイポーラ電極および負極の間に第2の固体電解質層が配置され、バイポーラ型電池の面内方向において、第1の固体電解質層および第2の固体電解質層は、正極および負極より大きいバイポーラ型電池。   Bipolar electrode having bipolar current collector foil, positive electrode composite material layer, negative electrode composite material layer, positive electrode having positive electrode current collector foil and positive electrode composite material layer, unit cell having negative electrode having negative electrode current collector foil and negative electrode composite material layer A positive electrode has a positive electrode stacking portion and a positive electrode terminal portion, a negative electrode has a negative electrode stacking portion and a negative electrode terminal portion, and in the stacking direction of the bipolar battery, the bipolar electrode and The first solid electrolyte layer is disposed between the positive electrodes, and the second solid electrolyte layer is disposed between the bipolar electrode and the negative electrode in the stacking direction of the bipolar battery, and the first solid electrolyte layer is disposed in the in-plane direction of the bipolar battery. The solid electrolyte layer and the second solid electrolyte layer are bipolar batteries larger than the positive electrode and the negative electrode.

本発明により、バイポーラ型電池の短絡を防止できる。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。   According to the present invention, a short circuit of a bipolar battery can be prevented. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明の一実施形態に係るリチウムイオン二次電池の一例を示す平面模式図である。It is a plane schematic diagram which shows an example of the lithium ion secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係るリチウムイオン二次電池の一例を示す平面模式図である。It is a plane schematic diagram which shows an example of the lithium ion secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係るリチウムイオン二次電池の一例を示す平面模式図である。It is a plane schematic diagram which shows an example of the lithium ion secondary battery which concerns on one Embodiment of this invention. 図1のA−A’面の断面構造図である。FIG. 2 is a cross-sectional structural view of the A-A ′ plane of FIG.

以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible. In all the drawings for explaining the present invention, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.

本発明では、主にリチウムイオン二次電池の構造について実施形態を説明するが、リチウムイオン二次電池に限らず、ニッケル水素電池、ニッケルカドミウム電池、鉛電池、リチウムイオン電池、ナトリウムイオン電池等の二次電池や一次電池においても固体電解質を用いた電池であれば適用可能である。   In the present invention, embodiments of the structure of a lithium ion secondary battery will be mainly described. However, the present invention is not limited to a lithium ion secondary battery, but a nickel hydrogen battery, a nickel cadmium battery, a lead battery, a lithium ion battery, a sodium ion battery, or the like. Any secondary battery or primary battery can be used as long as it uses a solid electrolyte.

図1、図2、図3は、本発明の一実施形態に係るバイポーラ型電池の一例を示す平面模式図である。図2は、図1より負極201および第2の固体電解質層302を取り除いた図である。図3は、図1より正極101および第1の固体電解質層301を取り除いた図である。   1, 2, and 3 are schematic plan views illustrating an example of a bipolar battery according to an embodiment of the present invention. FIG. 2 is a view in which the negative electrode 201 and the second solid electrolyte layer 302 are removed from FIG. FIG. 3 is a view in which the positive electrode 101 and the first solid electrolyte layer 301 are removed from FIG.

バイポーラ型電池10は、正極101、負極201、第1の固体電解質層301、第2の固体電解質層302、第3の固体電解質層303、およびバイポーラ電極401を有する。図2において、正極101は、正極積層部102および正極端子部103を有する。図3において、負極201は、負極積層部202および負極端子部203を有する。第1の固体電解質層301、第2の固体電解質層302はほぼ同じ大きさであり、バイポーラ型電池10の積層方向において、鏡像反転させて配置されている。   The bipolar battery 10 includes a positive electrode 101, a negative electrode 201, a first solid electrolyte layer 301, a second solid electrolyte layer 302, a third solid electrolyte layer 303, and a bipolar electrode 401. In FIG. 2, the positive electrode 101 has a positive electrode laminate portion 102 and a positive electrode terminal portion 103. In FIG. 3, the negative electrode 201 has a negative electrode laminate portion 202 and a negative electrode terminal portion 203. The first solid electrolyte layer 301 and the second solid electrolyte layer 302 have substantially the same size, and are arranged with mirror images reversed in the stacking direction of the bipolar battery 10.

図1では、バイポーラ型電池10の面内方向において、負極積層部202を正極積層部102に対して大きくしているが、同じにしても、小さくしてもよい。負極積層部202を正極積層部102に対して大きくすることにより、正極101中の正極活物質に含まれるリチウムからのリチウム析出の抑制できる。また、図1では、バイポーラ型電池10の面内方向において、第1の固体電解質層301、第2の固体電解質層302の位置をずらして記載しているが、これは説明のためであり、製造設計上は第1の固体電解質層301および第2の固体電解質層302の位置をずらさずに重ねてもよい。   In FIG. 1, in the in-plane direction of the bipolar battery 10, the negative electrode stacking portion 202 is made larger than the positive electrode stacking portion 102, but may be the same or smaller. By enlarging the negative electrode laminate 202 relative to the positive electrode laminate 102, lithium deposition from lithium contained in the positive electrode active material in the positive electrode 101 can be suppressed. In FIG. 1, the positions of the first solid electrolyte layer 301 and the second solid electrolyte layer 302 are shifted in the in-plane direction of the bipolar battery 10, but this is for explanation, In terms of manufacturing design, the positions of the first solid electrolyte layer 301 and the second solid electrolyte layer 302 may be overlapped without shifting.

図4は、図1のA−A’面の断面構造図であり、本発明の一実施形態に係るバイポーラ型電池の一例を示す平面模式図である。バイポーラ型電池10の積層方向および面内方向を図4のように定義する。説明のために、正極101、負極201、第1の固体電解質層301、第2の固体電解質層302、第3の固体電解質層303、バイポーラ電極401を空間的に離して図示しているが、実際の電池では各々の間には空間はほぼなく、面内で接触している。本発明の一実施形態に係るバイポーラ型電池10は、正極101、負極201、バイポーラ電極401、第1の固体電解質層301、第2の固体電解質層302、第3の固体電解質層303、補助線600、を有する。図4では、バイポーラ型電池10の積層方向において、負極201、第3の固体電解質層303、正極101、第3の固体電解質層303、負極201、第3の固体電解質層303、正極101、第1の固体電解質層301、バイポーラ電極401、第2の固体電解質層302、負極201、第3の固体電解質層303、正極101、第3の固体電解質層303、負極201、第3の固体電解質層303、正極101、の順に積層されている。   FIG. 4 is a cross-sectional structure diagram of the A-A ′ plane of FIG. 1, and is a schematic plan view illustrating an example of a bipolar battery according to an embodiment of the present invention. The stacking direction and in-plane direction of the bipolar battery 10 are defined as shown in FIG. For illustration, the positive electrode 101, the negative electrode 201, the first solid electrolyte layer 301, the second solid electrolyte layer 302, the third solid electrolyte layer 303, and the bipolar electrode 401 are illustrated as being spatially separated. In an actual battery, there is almost no space between them, and they are in contact in a plane. A bipolar battery 10 according to an embodiment of the present invention includes a positive electrode 101, a negative electrode 201, a bipolar electrode 401, a first solid electrolyte layer 301, a second solid electrolyte layer 302, a third solid electrolyte layer 303, and an auxiliary wire. 600. In FIG. 4, in the stacking direction of the bipolar battery 10, the negative electrode 201, the third solid electrolyte layer 303, the positive electrode 101, the third solid electrolyte layer 303, the negative electrode 201, the third solid electrolyte layer 303, the positive electrode 101, the first 1 solid electrolyte layer 301, bipolar electrode 401, second solid electrolyte layer 302, negative electrode 201, third solid electrolyte layer 303, positive electrode 101, third solid electrolyte layer 303, negative electrode 201, third solid electrolyte layer 303 and the positive electrode 101 are stacked in this order.

正極101、負極201、第3の固体電解質層303で単位セル20が構成されている。正極101は、正極集電箔104および正極合材層105を有する。正極集電箔104の両面に正極合材層105が形成されている。負極201は、負極集電箔204および負極合材層205を有する。負極集電箔204の両面に負極合材層205が形成されている。図4では、最下部の負極201は、負極集電箔204の片面(第3の固体電解質層303が配置されている方の面)にのみ負極合材層205が形成されている。また、最上部の正極101は、正極集電箔104の片面(第3の固体電解質層303が配置されている方の面)にのみ正極合材層105が形成されている。   The unit cell 20 is composed of the positive electrode 101, the negative electrode 201, and the third solid electrolyte layer 303. The positive electrode 101 includes a positive electrode current collector foil 104 and a positive electrode mixture layer 105. A positive electrode mixture layer 105 is formed on both surfaces of the positive electrode current collector foil 104. The negative electrode 201 includes a negative electrode current collector foil 204 and a negative electrode mixture layer 205. A negative electrode mixture layer 205 is formed on both surfaces of the negative electrode current collector foil 204. In FIG. 4, the lowermost negative electrode 201 has the negative electrode mixture layer 205 formed only on one surface of the negative electrode current collector foil 204 (the surface on which the third solid electrolyte layer 303 is disposed). In the uppermost positive electrode 101, the positive electrode mixture layer 105 is formed only on one surface of the positive electrode current collector foil 104 (the surface on which the third solid electrolyte layer 303 is disposed).

バイポーラ電極401は、バイポーラ集電箔404、正極合材層105および負極合材層205を有する。バイポーラ集電箔404の一方の面に正極合材層105が形成され、バイポーラ集電箔404の他方の面に負極合材層205が形成されている。   The bipolar electrode 401 includes a bipolar current collector foil 404, a positive electrode mixture layer 105, and a negative electrode mixture layer 205. The positive electrode mixture layer 105 is formed on one surface of the bipolar current collector foil 404, and the negative electrode mixture layer 205 is formed on the other surface of the bipolar current collector foil 404.

複数の単位セル20はバイポーラ電極401により接続されている。具体的には、ある単位セル20内の正極101、当該単位セル20に隣接して積層されている別の単位セル20の負極201がバイポーラ電極401により接続されている。バイポーラ型電池10の積層方向において、単位セル20とバイポーラ電極401との間には、第1の固体電解質層301、第2の固体電解質層302が配置されている。   The plurality of unit cells 20 are connected by bipolar electrodes 401. Specifically, a positive electrode 101 in one unit cell 20 and a negative electrode 201 of another unit cell 20 stacked adjacent to the unit cell 20 are connected by a bipolar electrode 401. In the stacking direction of the bipolar battery 10, a first solid electrolyte layer 301 and a second solid electrolyte layer 302 are disposed between the unit cell 20 and the bipolar electrode 401.

<正極集電箔104>
正極集電箔104には、アルミニウム箔や孔径0.1〜10mmのアルミニウム製穿孔箔、エキスパンドメタル、発泡アルミニウム板などが用いられる。材質は、アルミニウムの他に、ステンレス、チタンなども適用できる。正極集電箔104の厚さは、好ましくは10nm〜1mmである。二次電池のエネルギー密度と電極の機械強度両立の観点から1〜100μm程度が望ましい。
<Positive electrode current collector foil 104>
As the positive electrode current collector foil 104, an aluminum foil, an aluminum perforated foil having a pore diameter of 0.1 to 10 mm, an expanded metal, a foamed aluminum plate, or the like is used. As the material, stainless steel, titanium, or the like can be applied in addition to aluminum. The thickness of the positive electrode current collector foil 104 is preferably 10 nm to 1 mm. About 1-100 micrometers is desirable from a viewpoint of the energy density of a secondary battery and the mechanical strength of an electrode.

<正極合材層105>
正極合材層105には、少なくともLiの吸蔵・放出が可能な正極活物質が含まれている。正極活物質としては、LiCo系酸化物、LiNi系複合酸化物、LiMn系複合酸化物な、Li−Co−Ni−Mn複合酸化物、LiFeP系酸化物などが上げられる。正極合材層105中に、正極合材層105内の電子伝導性を担う導電材や、正極合材層105内の材料間の密着性を確保するバインダ、さらには正極合材層105内のイオン伝導性を確保するための固体電解質を含めてもよい。
<Positive electrode mixture layer 105>
The positive electrode mixture layer 105 contains at least a positive electrode active material capable of inserting and extracting Li. Examples of the positive electrode active material include LiCo-based oxides, LiNi-based composite oxides, LiMn-based composite oxides, Li-Co-Ni-Mn composite oxides, LiFeP-based oxides, and the like. In the positive electrode mixture layer 105, a conductive material responsible for electronic conductivity in the positive electrode mixture layer 105, a binder that secures adhesion between the materials in the positive electrode mixture layer 105, and further in the positive electrode mixture layer 105 A solid electrolyte for ensuring ionic conductivity may be included.

正極合材層105を作製する方法として、正極合材層105に含まれる材料を溶媒に溶かしてスラリー化し、それを正極集電箔104上に塗工する。塗工方法に特段の限定はなく、例えば、ドクターブレード法、ディッピング法、スプレー法などの従前の方法を利用できる。また、塗布から乾燥までを複数回行うことにより、複数の正極合材層105を正極集電箔104に積層してもよい。その後、溶媒を除去するための乾燥、正極合材層105内の電子伝導性、イオン伝導性を確保するためのプレス工程を経て、正極合材層105が形成する。   As a method for producing the positive electrode mixture layer 105, a material contained in the positive electrode mixture layer 105 is dissolved in a solvent to form a slurry, which is applied onto the positive electrode current collector foil 104. The coating method is not particularly limited, and for example, a conventional method such as a doctor blade method, a dipping method, or a spray method can be used. Further, a plurality of positive electrode mixture layers 105 may be laminated on the positive electrode current collector foil 104 by performing a plurality of times from application to drying. Thereafter, the positive electrode mixture layer 105 is formed through a drying process for removing the solvent and a pressing step for ensuring electron conductivity and ion conductivity in the positive electrode mixture layer 105.

正極合材層105の厚さは全固体電池のエネルギー密度、レート特性、入出力特性に応じて設計するが、一般的には数μm〜数百μmのサイズとなる。正極合材層105に含まれる正極活物質等の材料の粒径は、正極合材層105の厚さ以下になるように規定される。正極活物質粉末中に正極合材層105の厚さ以上の粒径を有する粗粒がある場合、ふるい分級、風流分級などにより粗粒を予め除去し、正極合材層105の厚さ以下の粒子を用意する。   The thickness of the positive electrode mixture layer 105 is designed according to the energy density, rate characteristics, and input / output characteristics of the all-solid-state battery, but generally has a size of several μm to several hundred μm. The particle size of a material such as a positive electrode active material included in the positive electrode mixture layer 105 is defined to be equal to or less than the thickness of the positive electrode mixture layer 105. When the positive electrode active material powder includes coarse particles having a particle size equal to or larger than the thickness of the positive electrode mixture layer 105, the coarse particles are previously removed by sieving classification, wind classification, etc. Prepare the particles.

<負極集電箔204>
負極集電箔204には、銅箔や孔径0.1〜10mmの銅製穿孔箔、エキスパンドメタル、発泡銅板などが用いられ、材質は、銅の他に、ステンレス、チタン、ニッケルなども適用できる。負極集電箔204の厚さは、好ましくは10nm〜1mmである。全固体電池のエネルギー密度と電極の機械強度両立の観点から1〜100μm程度が望ましい。
<Negative electrode current collector foil 204>
For the negative electrode current collector foil 204, a copper foil, a copper perforated foil having a pore diameter of 0.1 to 10 mm, an expanded metal, a foamed copper plate, or the like is used. The thickness of the negative electrode current collector foil 204 is preferably 10 nm to 1 mm. About 1-100 micrometers is desirable from a viewpoint of the energy density of an all-solid-state battery and the mechanical strength of an electrode.

<負極合材層205>
負極合材層205には、少なくともLiの吸蔵・放出が可能な正極活物質が含まれている。負極活物質としては、天然黒鉛、ソフトカーボン、非晶質炭素などの炭素系材料、Si金属やSi合金、チタン酸リチウム、リチウム金属などが上げられる。負極合材層205中に、負極合材層205内の電子伝導性を担う導電材や、負極合材層205内の材料間の密着性を確保するバインダ、さらには負極合材層205内のイオン伝導性を確保するための固体電解質を含めてもよい。
<Negative electrode mixture layer 205>
The negative electrode mixture layer 205 contains at least a positive electrode active material capable of inserting and extracting Li. Examples of the negative electrode active material include carbon-based materials such as natural graphite, soft carbon, and amorphous carbon, Si metal, Si alloy, lithium titanate, and lithium metal. In the negative electrode mixture layer 205, a conductive material responsible for electronic conductivity in the negative electrode mixture layer 205, a binder that ensures adhesion between the materials in the negative electrode mixture layer 205, and further in the negative electrode mixture layer 205 A solid electrolyte for ensuring ionic conductivity may be included.

負極合材層205の厚さは全固体電池のエネルギー密度、レート特性、入出力特性に応じて設計するが、一般的には数μm〜数百μmのサイズとなる。負極合材層205に含まれる正極活物質等の材料の粒径は、負極合材層205の厚さ以下になるように規定される。正極活物質粉末中に負極合材層205の厚さ以上の粒径を有する粗粒がある場合、ふるい分級、風流分級などにより粗粒を予め除去し、負極合材層205の厚さ以下の粒子を用意する。   The thickness of the negative electrode mixture layer 205 is designed in accordance with the energy density, rate characteristics, and input / output characteristics of the all-solid-state battery, but generally has a size of several μm to several hundred μm. The particle size of the material such as the positive electrode active material included in the negative electrode mixture layer 205 is defined to be equal to or less than the thickness of the negative electrode mixture layer 205. When the positive electrode active material powder has coarse particles having a particle size equal to or larger than the thickness of the negative electrode mixture layer 205, the coarse particles are previously removed by sieving classification, wind classification, etc. Prepare the particles.

<バイポーラ集電箔404>
バイポーラ集電箔404には、前述の正極集電箔104や負極集電箔204に加えて、正極集電箔と負極集電箔を積層したバイポーラ集電箔などが用いられる。バイポーラ集電箔404の厚さは、好ましくは10nm〜1mmである。二次電池のエネルギー密度と電極の機械強度両立の観点から1〜100μm程度が望ましい。
<Bipolar current collector foil 404>
For the bipolar current collector foil 404, in addition to the positive electrode current collector foil 104 and the negative electrode current collector foil 204 described above, a bipolar current collector foil in which a positive electrode current collector foil and a negative electrode current collector foil are laminated is used. The thickness of the bipolar current collector foil 404 is preferably 10 nm to 1 mm. About 1-100 micrometers is desirable from a viewpoint of the energy density of a secondary battery and the mechanical strength of an electrode.

<固体電解質層>
第1の固体電解質層301、第2の固体電解質層302、第3の固体電解質層303には固体電解質が含まれる。固体電解質として、Li10GePS12、LiS−Pなどの硫化物系、Li−La−Zr−Oなどの酸化物系、イオン液体や常温溶融塩などを有機高分子や無機粒子などに担持させたポリマー型、半固体電解質等、二次電池の動作温度範囲内で流動性を示さない材料が挙げられる。固体電解質層は、粉体の圧縮、結着材との混合、スラリー化した固体電解質層の離型材への塗布や担持体への含浸などにより形成する。固体電解質層の厚さは二次電池のエネルギー密度、電子絶縁性の確保等の観点から数nm〜数mmのサイズとなる。
<Solid electrolyte layer>
The first solid electrolyte layer 301, the second solid electrolyte layer 302, and the third solid electrolyte layer 303 contain a solid electrolyte. Examples of solid electrolytes include organic compounds such as sulfide systems such as Li 10 Ge 2 PS 12 and Li 2 S—P 2 S 5 , oxide systems such as Li—La—Zr—O, ionic liquids and room temperature molten salts. Examples thereof include materials that do not exhibit fluidity within the operating temperature range of a secondary battery, such as polymer types supported on inorganic particles, semi-solid electrolytes, and the like. The solid electrolyte layer is formed by compressing powder, mixing with a binder, applying the slurryed solid electrolyte layer to a release material, or impregnating a carrier. The thickness of the solid electrolyte layer is a size of several nm to several mm from the viewpoint of ensuring the energy density of the secondary battery, ensuring electronic insulation, and the like.

<補助線600>
単位セル20内に含まれる正極101、負極201はそれぞれ電気的接続を示す補助線600に示すように電気的に接続されている。具体的には、図2における正極端子部103が図4の正極集電箔104、図3における負極端子部203が図4の負極集電箔204となっており、正極集電箔104、負極集電箔204がそれぞれ端子部を用いて電気的に接続されている。これにより、単位セル20内で並列に電気接続されている。また、複数の単位セル20はバイポーラ電極401により接続されているため、複数の単位セル20は直列に電気接続されている。
<Auxiliary line 600>
The positive electrode 101 and the negative electrode 201 included in the unit cell 20 are electrically connected as indicated by an auxiliary line 600 indicating electrical connection. Specifically, the positive electrode terminal portion 103 in FIG. 2 is the positive electrode current collector foil 104 in FIG. 4, and the negative electrode terminal portion 203 in FIG. 3 is the negative electrode current collector foil 204 in FIG. The current collector foils 204 are electrically connected using terminal portions. Accordingly, the unit cells 20 are electrically connected in parallel. Further, since the plurality of unit cells 20 are connected by the bipolar electrode 401, the plurality of unit cells 20 are electrically connected in series.

なお、正極集電箔104、正極合材層105、負極集電箔204、負極合材層205、第1の固体電解質層301、第2の固体電解質層302、第3の固体電解質層303は、積層方向の各材料の位置関係を示す補助線800に倣うようにサイズが規定されている。   The positive electrode current collector foil 104, the positive electrode material mixture layer 105, the negative electrode current collector foil 204, the negative electrode material mixture layer 205, the first solid electrolyte layer 301, the second solid electrolyte layer 302, and the third solid electrolyte layer 303 are The size is defined so as to follow the auxiliary line 800 indicating the positional relationship of each material in the stacking direction.

図4のように、バイポーラ型電池10の面内方向において、第3の固体電解質層303は正極合材層105および負極合材層205より大きく、第3の固体電解質層303の領域内に正極合材層105および負極合材層205が配置されている。図2のように、バイポーラ型電池10の面内方向において、第3の固体電解質層303は正極積層部102より大きく、第3の固体電解質層303の領域内に正極積層部102が配置されている。図3のように、バイポーラ型電池10の面内方向において、第3の固体電解質層303は負極積層部202より大きく、第3の固体電解質層303の領域内に負極積層部202が配置されている。図4のように、第3の固体電解質層303は、補助線600に物理的に接触していない。これにより、単位セル20内で正極101および負極201を電気的に絶縁でき、振動によるバイポーラ型電池の短絡を防止できる。また、モールド樹脂を用いることなく、バイポーラ型電池の短絡を防止できるため、バイポーラ型電池の生産性を向上できる。   As shown in FIG. 4, the third solid electrolyte layer 303 is larger than the positive electrode mixture layer 105 and the negative electrode mixture layer 205 in the in-plane direction of the bipolar battery 10, and the positive electrode is in the region of the third solid electrolyte layer 303. A composite material layer 105 and a negative electrode composite material layer 205 are disposed. As shown in FIG. 2, the third solid electrolyte layer 303 is larger than the positive electrode stack portion 102 in the in-plane direction of the bipolar battery 10, and the positive electrode stack portion 102 is disposed in the region of the third solid electrolyte layer 303. Yes. As shown in FIG. 3, the third solid electrolyte layer 303 is larger than the negative electrode stack portion 202 in the in-plane direction of the bipolar battery 10, and the negative electrode stack portion 202 is disposed in the region of the third solid electrolyte layer 303. Yes. As shown in FIG. 4, the third solid electrolyte layer 303 is not in physical contact with the auxiliary line 600. Thereby, the positive electrode 101 and the negative electrode 201 can be electrically insulated in the unit cell 20, and the short circuit of the bipolar battery by vibration can be prevented. Moreover, since the short circuit of the bipolar battery can be prevented without using the mold resin, the productivity of the bipolar battery can be improved.

図2のように、バイポーラ型電池10の面内方向において、第1の固体電解質層301は、正極101より大きく、第1の固体電解質層301の領域内に正極101が配置されている。図3のように、バイポーラ型電池10の面内方向において、第2の固体電解質層302は、負極201より大きく、第2の固体電解質層302の領域内に負極201が配置されている。これにより、正極101または負極201とバイポーラ電極401とを電気的に絶縁でき、振動によるバイポーラ型電池の短絡を防止できる。また、モールド樹脂を用いることなく、バイポーラ型電池の短絡を防止できるため、バイポーラ型電池の生産性を向上できる。   As shown in FIG. 2, the first solid electrolyte layer 301 is larger than the positive electrode 101 in the in-plane direction of the bipolar battery 10, and the positive electrode 101 is disposed in the region of the first solid electrolyte layer 301. As shown in FIG. 3, the second solid electrolyte layer 302 is larger than the negative electrode 201 in the in-plane direction of the bipolar battery 10, and the negative electrode 201 is disposed in the region of the second solid electrolyte layer 302. Thereby, the positive electrode 101 or the negative electrode 201 and the bipolar electrode 401 can be electrically insulated, and a short circuit of the bipolar battery due to vibration can be prevented. Moreover, since the short circuit of the bipolar battery can be prevented without using the mold resin, the productivity of the bipolar battery can be improved.

図1〜図4のように、バイポーラ型電池10の面内方向において、バイポーラ電極401は、第1の固体電解質層301、第2の固体電解質層302および第3の固体電解質層303より大きく、バイポーラ電極401の領域内に第1の固体電解質層301、第2の固体電解質層302および第3の固体電解質層303が配置されている。これにより、ある単位セル20の正極101とある単位セル20に隣接する別の単位セル20の負極201との接続、第1の固体電解質層301と第2の固体電解質層302とを電気的に絶縁でき、振動によるバイポーラ型電池の短絡を防止できる。また、モールド樹脂を用いることなく、バイポーラ型電池の短絡を防止できるため、バイポーラ型電池の生産性を向上できる。   As shown in FIGS. 1 to 4, the bipolar electrode 401 is larger than the first solid electrolyte layer 301, the second solid electrolyte layer 302, and the third solid electrolyte layer 303 in the in-plane direction of the bipolar battery 10, In the region of the bipolar electrode 401, a first solid electrolyte layer 301, a second solid electrolyte layer 302, and a third solid electrolyte layer 303 are arranged. Thereby, the connection between the positive electrode 101 of a certain unit cell 20 and the negative electrode 201 of another unit cell 20 adjacent to the certain unit cell 20, and the first solid electrolyte layer 301 and the second solid electrolyte layer 302 are electrically connected. Insulation is possible, and short-circuiting of the bipolar battery due to vibration can be prevented. Moreover, since the short circuit of the bipolar battery can be prevented without using the mold resin, the productivity of the bipolar battery can be improved.

上記において、各構成部材の大きさに差をつける度合いは、電子・イオンの絶縁性、バイポーラ型電池10のエネルギー密度、製造時の製造公差、各構成部材を積層する際の寸法公差等に基づき、正極積層部102と負極積層部202の大きさに鑑みて定められる。具体的には、数十μm〜数cmのサイズで大きくするとよく、数mm大きくすることがより好ましい。   In the above, the degree of difference in the size of each constituent member is based on the electron / ion insulation, the energy density of the bipolar battery 10, the manufacturing tolerance at the time of manufacturing, the dimensional tolerance at the time of stacking the constituent members, etc. It is determined in view of the size of the positive electrode stacking portion 102 and the negative electrode stacking portion 202. Specifically, the size is preferably several tens of μm to several cm, more preferably several mm.

10…バイポーラ型電池
20…単位セル
101…正極
102…正極積層部
103…正極端子部
104…正極集電箔
105…正極合材層
201…負極
202…負極積層部
203…負極端子部
204…負極集電箔
205…負極合材層
301…第1の固体電解質層
302…第2の固体電解質層
303…第3の固体電解質層
401…バイポーラ電極
404…バイポーラ集電箔
600…電気的接続を示す補助線
800…積層方向の各材料の位置関係を示す補助線
DESCRIPTION OF SYMBOLS 10 ... Bipolar type battery 20 ... Unit cell 101 ... Positive electrode 102 ... Positive electrode laminated part 103 ... Positive electrode terminal part 104 ... Positive electrode collector foil 105 ... Positive electrode compound material layer 201 ... Negative electrode 202 ... Negative electrode laminated part 203 ... Negative electrode terminal part 204 ... Negative electrode Current collecting foil 205 ... Negative electrode composite material layer 301 ... First solid electrolyte layer 302 ... Second solid electrolyte layer 303 ... Third solid electrolyte layer 401 ... Bipolar electrode 404 ... Bipolar current collecting foil 600 ... Electric connection Auxiliary line 800 ... Auxiliary line indicating the positional relationship of each material in the stacking direction

Claims (5)

バイポーラ集電箔、正極合材層、負極合材層を有するバイポーラ電極と、
正極集電箔および正極合材層を有する正極、負極集電箔および負極合材層を有する負極、を有する単位セルと、を有するバイポーラ型電池であって、
前記正極は、正極積層部および正極端子部を有し、
前記負極は、負極積層部および負極端子部を有し、
バイポーラ型電池の積層方向において、前記バイポーラ電極および前記正極の間に第1の固体電解質層が配置され、
バイポーラ型電池の積層方向において、前記バイポーラ電極および前記負極の間に第2の固体電解質層が配置され、
バイポーラ型電池の面内方向において、前記第1の固体電解質層および第2の固体電解質層は、前記正極および前記負極より大きいバイポーラ型電池。
A bipolar current collector foil, a positive electrode mixture layer, a bipolar electrode having a negative electrode mixture layer, and
A unit cell having a positive electrode having a positive electrode current collector foil and a positive electrode mixture layer, a negative electrode having a negative electrode current collector foil and a negative electrode mixture layer, and a bipolar battery comprising:
The positive electrode has a positive electrode laminate portion and a positive electrode terminal portion,
The negative electrode has a negative electrode laminate portion and a negative electrode terminal portion,
In the stacking direction of the bipolar battery, a first solid electrolyte layer is disposed between the bipolar electrode and the positive electrode,
In the stacking direction of the bipolar battery, a second solid electrolyte layer is disposed between the bipolar electrode and the negative electrode,
In the in-plane direction of the bipolar battery, the first solid electrolyte layer and the second solid electrolyte layer are bipolar batteries larger than the positive electrode and the negative electrode.
請求項1のバイポーラ型電池であって、
バイポーラ型電池の面内方向において、前記バイポーラ集電箔は、前記第1の固体電解質層および前記第2の固体電解質層より大きいバイポーラ型電池。
The bipolar battery according to claim 1, wherein
In the in-plane direction of the bipolar battery, the bipolar current collector foil is a bipolar battery larger than the first solid electrolyte layer and the second solid electrolyte layer.
請求項1のバイポーラ型電池であって、
前記単位セルは、バイポーラ型電池を積層方向において前記単位セル内で前記正極および前記負極の間に配置された第3の固体電解質層を有し、
バイポーラ型電池を面内方向において、前記第3の固体電解質層は、前記第正極積層部および前記負極積層部より大きいバイポーラ型電池。
The bipolar battery according to claim 1, wherein
The unit cell has a third solid electrolyte layer disposed between the positive electrode and the negative electrode in the unit cell in the stacking direction of the bipolar battery,
In the in-plane direction of the bipolar battery, the third solid electrolyte layer is a bipolar battery that is larger than the positive electrode laminate and the negative electrode laminate.
請求項1のバイポーラ型電池であって、
前記バイポーラ型電池は、前記単位セルを複数有し、
前記複数の単位セルは、前記バイポーラ電極によって直列に接続されているバイポーラ型電池。
The bipolar battery according to claim 1, wherein
The bipolar battery has a plurality of the unit cells,
The plurality of unit cells are bipolar batteries connected in series by the bipolar electrode.
請求項1のバイポーラ型電池であって、
前記単位セルは、前記正極および前記負極を複数有し、
前記単位セル内において、前記複数の前記正極および前記複数の負極のぞれぞれが電気的に接続されているバイポーラ型電池。
The bipolar battery according to claim 1, wherein
The unit cell has a plurality of the positive electrode and the negative electrode,
A bipolar battery in which the plurality of positive electrodes and the plurality of negative electrodes are electrically connected in the unit cell.
JP2016084184A 2016-04-20 2016-04-20 Bipolar type battery Pending JP2017195076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016084184A JP2017195076A (en) 2016-04-20 2016-04-20 Bipolar type battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016084184A JP2017195076A (en) 2016-04-20 2016-04-20 Bipolar type battery

Publications (1)

Publication Number Publication Date
JP2017195076A true JP2017195076A (en) 2017-10-26

Family

ID=60156458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016084184A Pending JP2017195076A (en) 2016-04-20 2016-04-20 Bipolar type battery

Country Status (1)

Country Link
JP (1) JP2017195076A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163200A1 (en) * 2018-02-26 2019-08-29 日立化成株式会社 Electrode with electrolyte sheet, secondary battery and method for producing same
EP3859854A1 (en) 2020-01-31 2021-08-04 Toyota Jidosha Kabushiki Kaisha All solid state battery
DE102022130516B3 (en) 2022-09-02 2024-02-15 GM Global Technology Operations LLC BIPOLAR SOLID BATTERY

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163200A1 (en) * 2018-02-26 2019-08-29 日立化成株式会社 Electrode with electrolyte sheet, secondary battery and method for producing same
JPWO2019163200A1 (en) * 2018-02-26 2020-12-03 昭和電工マテリアルズ株式会社 Electrodes with electrolyte sheet, secondary batteries and their manufacturing methods
EP3859854A1 (en) 2020-01-31 2021-08-04 Toyota Jidosha Kabushiki Kaisha All solid state battery
KR20210098347A (en) 2020-01-31 2021-08-10 도요타지도샤가부시키가이샤 All solid state battery
RU2753235C1 (en) * 2020-01-31 2021-08-12 Тойота Дзидося Кабусики Кайся Fully solid-state accumulator
US11710878B2 (en) 2020-01-31 2023-07-25 Toyota Jidosha Kabushiki Kaisha All solid state battery
DE102022130516B3 (en) 2022-09-02 2024-02-15 GM Global Technology Operations LLC BIPOLAR SOLID BATTERY

Similar Documents

Publication Publication Date Title
JP5720779B2 (en) Bipolar all-solid battery
JP6394057B2 (en) Solid electrolyte structure and all solid state battery
CN108511787B (en) Lithium ion secondary battery and method for manufacturing same
JP5413129B2 (en) Solid battery manufacturing method
KR102158246B1 (en) All solid battery
KR20200027999A (en) Coin-type battery and its manufacturing method
JP2012238583A (en) Energy storage apparatus and method for manufacturing the same
CN106469826B (en) Battery with a battery cell
JP2017208250A (en) All-solid type lithium secondary battery and method for manufacturing the same
JP2011204511A (en) All-solid state lithium ion secondary battery
KR20190026090A (en) All-solid battery and method for manufacturing the same
JP2013093216A (en) Battery
US6371997B1 (en) Method for manufacturing lithium polymer secondary battery and lithium polymer secondary battery made by the method
CN112424975A (en) Positive electrode for solid-state battery, method for producing positive electrode for solid-state battery, and solid-state battery
CN110416630B (en) All-solid-state battery
JP2012146512A (en) Method for manufacturing battery
JP2017195076A (en) Bipolar type battery
JP2018037247A (en) Laminated all-solid secondary battery
JP2018018729A (en) Lamination type secondary battery pack
WO2018042942A1 (en) Electrode for stacked cells, and stacked cell
CN112514106A (en) Positive electrode for solid-state battery, method for producing positive electrode for solid-state battery, and solid-state battery
JP5421151B2 (en) All solid-state lithium ion secondary battery
JP7430791B2 (en) Segmented membranes, battery combinations, and electrical devices
JP2018060699A (en) Manufacturing method for laminated secondary battery
JP2014086213A (en) Method of manufacturing all-solid-state battery