JP3742144B2 - Nonaqueous electrolyte secondary battery and planar current collector for nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery and planar current collector for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP3742144B2
JP3742144B2 JP11371096A JP11371096A JP3742144B2 JP 3742144 B2 JP3742144 B2 JP 3742144B2 JP 11371096 A JP11371096 A JP 11371096A JP 11371096 A JP11371096 A JP 11371096A JP 3742144 B2 JP3742144 B2 JP 3742144B2
Authority
JP
Japan
Prior art keywords
secondary battery
copper foil
current collector
electrolyte secondary
electrolytic copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11371096A
Other languages
Japanese (ja)
Other versions
JPH09306504A (en
Inventor
博 辨野
武志 小池
清一 生山
昭利 鈴木
英雄 大塚
忠雄 中岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14619204&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3742144(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP11371096A priority Critical patent/JP3742144B2/en
Publication of JPH09306504A publication Critical patent/JPH09306504A/en
Application granted granted Critical
Publication of JP3742144B2 publication Critical patent/JP3742144B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、平面状集電体の表面に電極構成物質層が形成されてなる電極を備える非水電解液二次電池に関し、特に平面状集電体の改良に関するものである。
【0002】
【従来の技術】
近年の電子技術のめざましい進歩により、電子機器の小型化、軽量化、高性能化が進み、これら電子機器には、エネルギー密度の高い二次電池が要求されている。従来、これら電子機器に使用される二次電池としてニッケル・カドミウム電池や鉛電池などが挙げられるが、これら電池では、エネルギー密度が高い電池を得るという点で不十分であった。
【0003】
このような状況下で、正極としてリチウムコバルト複合酸化物などのリチウム複合酸化物を使用し、負極として炭素材料などのようなリチウムイオンをドープ及び脱ドープ可能な物質を使用した非水電解液二次電池、いわゆるリチウムイオン二次電池の研究・開発が行われている。このリチウムイオン二次電池は、高エネルギー密度を有し、自己放電も少なく、サイクル特性に優れ、かつ軽量という優れた特性を有する。
【0004】
ところで、上記リチウムイオン二次電池の集電体としては、一般に金属箔が使用されている。特に、銅からなる金属箔は、リチウム金属と合金を形成しない、電気伝導性が良い、低コストといった特徴を有するため、負極集電体として多用されている。この銅箔には、一般に、銅板を機械的にローラ圧延した、いわゆる厚み10〜30μmの圧延銅箔が使用されている。しかしながら、圧延銅箔は、圧延装置のサイズの規制から、幅の広いものを得るのが難しい。
【0005】
一方、銅の電解析出によって形成される、いわゆる電解銅箔は、圧延銅箔に比べ比較的幅の広いものも容易に得られる。また、この電解銅箔をリチウムイオン二次電池の負極集電体に使用した場合には、生産性が飛躍的に向上し、電池生産のコストを大幅に下げることができる。
【0006】
【発明が解決しようとする課題】
しかしながら、市販の電解銅箔を負極集電体に使用したリチウムイオン二次電池においては、電池特性、特に充放電でのサイクル特性が悪く、使用することができなかった。
【0007】
そこで、本発明者らが鋭意検討を重ねた結果、上述した問題は、電解金属箔の一方の主面に大きな凹凸が形成されて、電解金属箔の両主面の表面粗さの差が大きすぎるために生じていることがわかった。
【0008】
これまで電解金属箔は、一般にその用途が主にプリント基板、フレキシブル基板であり、プラスチックとの密着性を良くするために(アンカー効果をねらうために)、その主面に大きな凹凸を形成していた。そのため、この電解金属箔を非水電解液二次電池の集電体に用いた場合には、活物質表面に沿った変形が十分に起こらないため、活物質と集電体の接触が悪く、容量の劣化やサイクル特性の低下が生じていた。
【0009】
本発明は、上述のような問題点を解決するために提案されたものであり、活物質表面に沿って集電体が十分に変形し、活物質と集電体の接触性を良好に保って、充放電サイクルに優れた安価な非水電解液二次電池及び非水電解液二次電池用の平面状集電体を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明に係る非水電解液二次電池は、平面状集電体の表面に電極構成物質層が形成されてなる正極及び負極を備える非水電解液二次電池において、負極の平面状集電体が、銅を電解析出して形成される電解銅箔からなり、上記電解銅箔が、マット面の表面粗さが10点平均粗さにして3.0μmより小さく、このマット面反対側の光沢面との表面粗さとの差が10点平均粗さにして2.5μmより小さいことを特徴とする。
【0011】
また、本発明は、非水電解液二次電池の負極を構成する平面状集電体であって、当該平面状集電体が、銅を電解析出して形成される電解銅箔からなり、上記電解銅箔が、マット面の表面粗さが10点平均粗さにして3.0μmより小さく、このマット面と反対側の光沢面との表面粗さとの差が10点平均粗さにして2.5μmより小さいことを特徴とする
【0012】
本発明に係る非水電解液二次電池においては、上記平面状集電体の負極に、銅の電解析出から形成される電解銅箔を用いたことから、製造上の大きさの制約がなく、電池生産のコストを下げることができる。
また、本発明に係る非水電解液二次電池においては、集電体である電解銅箔のマット面の表面粗さが10点平均粗さにして3.0μmより小さく、このマット面と反対側の光沢面との表面粗さとの差が10点平均粗さにして2.5μmより小さいことから、集電体と活物質との接触性が良く、電気伝導度が大きくなって、充放電サイクルに優れたものとなる。
【0013】
一般に、平面状集電体の表面に電極構成物質層が形成されてなる電極は、活物質とバインダーとを含有する電極構成物質層が集電体の表面に塗布され、その後ロール圧延等でプレスされて作製される。このプレス工程は、電極を所定の密度に圧縮する作用と、適切な導電性を有するように活物質粒子間を接近させる作用とを有する。プレス工程を経た電極は、活物質粒子間、及び活物質と集電体との接触性が良くなり、電気伝導度が大きくなる。
【0014】
さらに、十分な電池特性を得るには、活物質粒子間、及び活物質と集電体の距離を小さくすると共に、集電体の形状が活物質表面の形状に沿って変形することが重要である。活物質表面に沿って集電体が変形した場合には、活物質と集電体との接触性がさらに良くなり、電気伝導度がさらに大きくなり、望ましい電池特性が得られる。
【0015】
しかし、活物質表面に沿って集電体が変形しない場合には、活物質と集電体の接触部分が少なくなり、電気伝導度が小さい。また、集電体表面の凹凸が大きい場合には、活物質と集電体の接触点も少ない。このような接触抵抗が大きい電極は、充放電を繰り返すと、活物質の充放電に伴う膨張収縮によるストレスや、接着剤であるバインダーの電解液への溶解などによって、集電体と活物質との距離が段々と大きくなり、一部の活物質が充放電に利用できない電気伝導度になって容量の劣化が起きる。
【0016】
したがって、この電解銅箔のマット面の表面粗さが10点平均粗さにして3.0μmより大きい場合、或いは光沢面との表面粗さとの差が10点平均粗さにして2.5μmより大きい場合には、活物質が負極集電体に塗布されてプレスされる際に、集電体が活物質の表面に沿った変形が十分起こらず、また、表面の凹凸が大きいために活物質との接触点が少なく、充放電に伴って容量の劣化が起きて十分な電池特性が得られない。
【0017】
【発明の実施の形態】
本発明に係る非水電解液二次電池は、平面状集電体の表面に電極構成物質層が形成されてなる電極を備えて構成され、上記平面状集電体の少なくとも負極の電解析出から形成される電解銅箔からなる。そして、この電解銅箔は、一方の主面であるマット面の表面粗さが10点平均粗さにして3.0μmより小さく、このマット面とは反対側の他方の主面である光沢面との表面粗さとの差が10点平均粗さにして2.5μmより小さく形成される。
【0018】
なお、一般に、電解銅箔は、銅を主成分とする溶液を電解液とし、回転ドラムを電極として、ドラム表面に形成される。この時、形成された電解銅箔は、ドラム側の主面を光沢面と称し、電解液側のもう一方の主面をマット面と称す。
【0019】
上記電解銅箔は、表面の凹凸が小さく、マット面と光沢面との表面粗さの差が小さいため、プレス工程時に活物質表面に沿った変形が十分に起こり、活物質との接触性が良好に保たれる。
【0020】
なお、上述する表面粗さは、JIS規格B0601において、10点平均線粗さ(RZ)についての定義がなされている。10点平均粗さ(RZ)は、図1に示すように、断面曲線から基準長さLだけだけ抜き取った部分の平均線から縦倍率の方向に測定した、最も高い山頂から5番目までの山頂の標高(Yp)の絶対値の平均値(|Yp1+Yp2+Yp3+Yp4+Yp5|/5)と、最も低い谷底から5番目までの谷底の標高(Yv)の絶対値の平均値(|Yv1+Yv2+Yv3+Yv4+Yv5|/5)との和を求めたものである。
【0021】
本発明は、電池を構成する物質について特に限定するものではないが、正極が少なくともリチウムを含む金属酸化物からなり、負極がリチウムをドープ及び脱ドープ可能な負極とからなるようないわゆるリチウムイオン二次電池において好適である。
【0022】
また、本発明に係るリチウムイオン二次電池に用いられる負極集電体には、電解銅箔が用いられる。電解銅箔は、リチウム金属と合金を形成することがなく、電気伝導性が良く、低コストで生産できるなどの種々の利点を有している。
【0023】
上記電解銅箔の少なくとも一方の面には、銅箔の酸化を抑制するために、防錆被膜が被覆されていてもよい。また、上記電解銅箔の少なくとも一方の面には、銅箔表面と活物質との吸着性を向上させるために、シランカップリング剤からなる膜が被覆されていてもよい。
【0024】
なお、上記リチウムイオン二次電池において、正極活物質としては、LixMO2(但し、Mは、1種類以上の遷移金属を表す。xは、リチウムの組成比である。)を含んだ活物質が使用可能である。かかる活物質としては、LixCoO2、LixNiO2、LixMn24、LixMnO3、LixNiyCo(1ーy)2などの複合酸化物が挙げられる。
【0025】
上記複合酸化物は、例えば、リチウム、コバルト、ニッケルの炭酸塩を出発原料とし、これら炭酸塩を組成に応じて混合し、酸素存在雰囲気下600℃〜1000℃の温度範囲で焼成することにより得られる。また、出発原料は、炭酸塩に限定されず、水酸化物、酸化物からも同様に合成可能である。
【0026】
一方、負極活物質としては、リチウムをドープ及び脱ドープ可能なものであれば良く、熱分解炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークスなど)、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体(フェノール樹脂、フラン樹脂などを適当な温度で焼成し炭素化したもの)、炭素繊維、活性炭などの炭素質材料、あるいは、金属リチウム、リチウム合金(例えば、リチウム−アルミ合金)の他、ポリアセチレン、ポリピロールなどのポリマーも使用可能である。
【0027】
電解液には、リチウム塩を電解質とし、これを有機溶媒に溶解させた電解液が用いられる。ここで有機溶媒としては、特に限定されるものではないが、例えば、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、スルホラン、アセトニトリル、ジエチルカーボネート、ジプロピルカーボネートなどの単独もしくは2種類以上の混合溶媒の使用が可能である。
【0028】
電解質には、LiClO4、LiAsF6、LiPF6、LiBF4、LiB(C654、LiCl、LiBr、CH3SO3Li、CF3SO3Liなどの使用が可能である。
【0029】
【実施例】
以下、本発明を適用した非水電解液二次電池について、好適な実施例を図面を参照しながら説明する。なお、本発明は、本実施例に限定されるものではないことは言うまでもない。
【0030】
実施例1
本実施例で作製したリチウムイオン二次電池は、図2に示すように、正極集電体1に正極活物質2を塗布してなる正極3と、負極集電体4に負極活物質5を塗布してなる負極6とから構成される。そして、この非水電解液二次電池は、正極3、セパレータ7、負極6、セパレータ7をこの順に積層して積層電極体とし、この積層電極体を多数回巻回されてなる渦巻式電極体の上下に絶縁体8、9を配置した状態で電池缶10に収納してなるものである。
【0031】
先ず始めに、電解銅箔からなる負極集電体4は、次のようにして作製した。組成1で示される硫酸銅溶液を電解液として、貴金属酸化物被覆チタンを陽極に、チタン製回転ドラムを陰極として、電流密度50A/dm2、液温50℃の条件で電解することによって、厚み12μmの電解銅箔を得た。この電解銅箔の表面粗さについては、後述する測定法により測定し、表1に示した。
【0032】
(組成1)
硫酸銅(CuSO4・5H2O) 350g/l
硫酸(H2SO4) 110g/l
チオ尿素 0.4ppm
アラビアゴム 0.8ppm
低分子量膠(分子量5000) 0.4ppm
Cl- 30ppm
次いで、この電解銅箔をCrO3;1g/l水溶液に5秒間浸漬して、クロメート処理を施し、水洗後乾燥させた。なお、ここでは、クロメート処理を行ったが、ベンゾトリアゾール系処理、或いはシランカップリング剤処理、又はクロメート処理後にシランカップリング剤処理を行ってもよいことは勿論である。
【0033】
そして、負極6は次のようにして作製した。負極活物質5としては、出発原料として石油ピッチを用い、これを焼成して粗粒状のピッチコークスを得た。この粗粒状ピッチコークスを粉砕して平均粒径20μmの粉末とし、この粉末を不活性ガス中、1000℃にて焼成して不純物を除去し、コークス材料粉末を得た。
【0034】
このようにして得られたコークス材料粉末を90重量部、結着材としてポリフッ化ビニリデンを10重量部の割合で混合して負極合剤を調整した。次いで、この負極合剤を溶剤であるN−メチルピロリドンに分散させてスラリーにした。そして、このスラリーを上述した厚さ12μmの帯状の電解銅箔である負極集電体4の両面に塗布し、乾燥後ローラプレス機で圧縮形成して、帯状負極6を得た。この帯状負極6は、成形後の負極合剤の膜厚が両面共に90μmで同一であり、その幅が55.6mm、長さが551.5mmに形成される。
【0035】
次に、正極3は、次にようにして作製した。正極活物質(LiCoO2)2は、炭酸リチウム0.5モルと炭酸コバルト1モルと混合し、空気中で900℃、5時間焼成してLiCoO2を得た。
【0036】
このようにして得られた正極活物質(LiCoO2)2を91重量%、導電剤としてグラファイトを6重量%、結着剤としてポリフッ化ビニリデンを3重量%の割合で混合して正極合材を作製し、これをN−メチル−2ピロリドンに分散してスラリー状とした。次に、このスラリーを厚み20μmの帯状のアルミニウムからなる正極集電体の両面に均一に塗布し、乾燥後ローラープレス機で圧縮成形して厚み160μmの帯状正極3を得た。この帯状正極3は、成形後の正極合剤の膜厚が表面共に70μmであり、その幅が53.6mm、長さが523.5mmに形成される。
【0037】
このようにして作製された帯状正極3と、帯状負極6と、厚さが25μm、幅が58.1mmの微多孔性ポリプロピレンフィルムよりなるセパレータ7とを、上述したように積層し、これを積層電極体とした。この積層電極体は、その長さ方向に沿って負極6を内側にして渦巻型に多数回巻回され、最外周セパレータの最終端部をテープで固定されて、渦巻式電極体となる。この渦巻式電極体の中空部分は、その内径が、3.5mm、外形が17mmに形成される。
【0038】
上述のように作製された渦巻式電極体を、その上下両面に絶縁板8、9が設置された状態で、ニッケルメッキが施された鉄製の電池缶10に収納した。そして、正極3及び負極6の集電を行うために、アルミニウム製の正極リード13を正極集電体1から導出して電池蓋11に接続し、ニッケル製の負極リード14を負極集電体4から導出して電池缶10に接続した。
【0039】
そして、この渦巻式電極体が収納された電池缶10に、プロピレンカーボネイトとジエチルカーボネイトとの等容量混合溶媒中にLiPF6を1モル/lの割合で溶解した非水電解液5.0gを注入した。次いで、アスファルトで表面を塗布された絶縁封口ガスケット12を介して電池缶10をかしめることにより、電池蓋11を固定し、電池缶10内の気密性を保持させた。
【0040】
以上のようにして、直径18mm、高さ65mmの円筒形非水電解液二次電池(実施例1)を作製した。
【0041】
実施例2
先ず始めに、電解銅箔からなる負極集電体4は次のようにして作製した。組成2で示される硫酸銅溶液を電解液として、貴金属酸化物被覆チタンを陽極に、チタン製回転ドラムを陰極として、電流密度50A/dm2、液温50℃の条件で電解することによって、厚み12μmの電解銅箔を作成し、この電解箔にクロメート処理を行った。なお、この電解銅箔の表面粗さについては、後述する測定方法により測定し、表1に示した。
【0042】
(組成2)
硫酸銅(CuSO4・5H2O) 350g/l
硫酸(H2SO4) 110g/l
1−メルカプト3−プロパンスルホン酸ナトリウム 1ppm
ヒドロキシエチルセルロース 4ppm
低分子量膠(分子量3000) 4ppm
Cl- 30ppm
上述した電解金属箔を使用した以外は、実施例1と同様にして円筒形非水電解液二次電池(実施例2)を作製した。
【0043】
実施例3
先ず始めに、電解銅箔からなる負極集電体4は次のようにして作製した。組成3で示される硫酸銅溶液を電解液として、貴金属酸化物被覆チタンを陽極に、チタン製回転ドラムを陰極として、電流密度50A/dm2、液温58℃の条件で電解することによって、厚み9μmの電解銅箔を得た。
【0044】
(組成3)
硫酸銅(CuSO4・5H2O) 350g/l
硫酸(H2SO4) 110g/l
膠(分子量60000) 2ppm
Cl− 30ppm
この電解銅箔の表面粗さは、後述する測定方法により測定した結果、光沢面がRZ=2.00μm、マット面がRZ=3.52μmであった。
【0045】
次いで、この電解銅箔に、組成4で示される電解液からなる銅電解浴を用いて、電流密度6A/dm2、液温58℃でマット面に光沢銅メッキを施し、この電解銅箔の表面粗さを後述する測定方法により測定し、表1に示した。なお、本発明では、マット面に光沢銅メッキを施した面もマット面と表現する。そして、この銅メッキが施された電解銅箔に同様にクロメート処理を施した。
【0046】
(組成4)
硫酸銅(CuSO4・5H2O) 240g/l
硫酸(H2SO4) 60g/l
膠 2ppm
日本シェーリング(株)製カバシラド210
メイキャップ剤 10cc/l
光沢剤(A) 0.5cc/l
光沢剤(B) 補充にのみ使用
Cl- 30ppm
光沢剤の補充は、電流量1000Ahに対して光沢剤(A)及び光沢剤(B)を各々300cc添加した。
【0047】
上述した電解銅箔を使用した以外は、実施例1と同様にして円筒形非水電解液二次電池(実施例3)を作製した。
【0048】
比較例1
先ず始めに、電解銅箔からなる負極集電体4は次のようにして作製した。組成5で示される硫酸銅溶液を電解液として、貴金属酸化物被覆チタンを陽極に、チタン製回転ドラムを陰極として、電流密度50A/dm2、液温58℃の条件で電解することによって、厚み12μmの電解銅箔を作成し、この電解銅箔の表面粗さを後述する測定方法により測定し、表1に示した。そして、この電解銅箔にクロメート処理を行った。
【0049】
(組成5)
硫酸銅(CuSO4・5H2O) 350g/l
硫酸(H2SO4) 110g/l
膠 2ppm
Cl- 30ppm
上述した電解銅箔を使用した以外は、実施例1と同様にして円筒形非水電解液二次電池(比較例1)を作製した。
【0050】
そして、実施例1〜実施例3及び比較例1で得られた電解銅箔において、その表面粗さ(10点平均粗さRZ)を表面粗さ計(株式会社小坂研究所製SE−3C型)で調べた。この結果を表1に示す。なお、光沢面の表面粗さを測定する際には、基準長さLを0.8mmとし、マット面の表面粗さを測定する際には、基準長さLを2.5mmとした。
【0051】
【表1】

Figure 0003742144
【0052】
また、それぞれの電解銅箔を負極集電体に用いた実施例1〜実施例3及び比較例1の円筒形非水電解液二次電池について、100サイクル後の容量維持率を調べた。その結果を図3、図4及び表2に示す。
【0053】
さらに、それぞれの電解銅箔を負極集電体に用いた実施例1〜実施例3及び比較例1の円筒形非水電解液二次電池について、100サイクル前後のインピーダンスの変化を調べた。その結果を図5、図6及び表2に示す。
【0054】
【表2】
Figure 0003742144
【0055】
図3、図5及び表2に示すように、マット面の表面粗さが3μm以上になると容量維持率が大幅に低下し、インピーダンスの変化が大きくなるため、マット面の表面粗さは、3μm未満が好ましい。また、図4及び図6に示すように、マット面と光沢面との表面粗さの差が大きくなるほど容量維持率が低くなり、インピーダンスが大きくなっている。このことから、マット面と光沢面との表面粗さの差は、2.5μm未満であることが好ましい。
【0056】
また、電解銅箔のマット面の粗さは、実施例1及び実施例2のように、最初の電解条件によって規制してもよいし、実施例3のように、銅メッキを後から施して規制してもよい。
【0057】
以上のことから、上述した非水電解液二次電池においては、圧延銅箔に比べ製造上大きさの制約がなく、生産性が高い電解銅箔を負極集電体に用いていることから、生産性が向上し、電池生産コストを大幅に下げることができる。
【0058】
さらに、上述した非水電解液二次電池においては、集電体である電解銅箔の一方の面であるマット面の表面粗さが3.0μmより小さく、光沢面とマット面との表面粗さとの差が2.5μmより小さいことから、集電体と活物質との接触性が良く、電気伝導度が大きくなって、充放電サイクルに優れたものとなる。
【0059】
【発明の効果】
以上の説明からも明らかなように、本発明に係る非水電解液二次電池は、集電体に銅を電解析出して形成される電解銅箔を用いてなることから、電池の生産性を向上させ、電池生産のコストを下げることができる。
【0060】
また、この電解銅箔は、一方の面であるマット面の表面粗さが10点平均粗さにして3.0μmより小さく、このマット面と反対側の光沢面との表面粗さとの差が10点平均粗さにして2.5μmより小さく形成される。このことから、本発明に係る非水電解液二次電池においては、集電体と活物質との接触性が良く、電気伝導度が大きくなって、充放電サイクルに優れたものとなる。
【図面の簡単な説明】
【図1】10点平均粗さ(RZ)の定義を説明するための断面図である。
【図2】本発明を適用した円筒形非水電解液二次電池の概略断面図である。
【図3】上記円筒形非水電解液二次電池において、電解銅箔のマット面の表面粗さと容量維持率との関係を示す特性図である。
【図4】上記円筒形非水電解液二次電池において、電解銅箔のマット面と光沢面との表面粗さの差と、容量維持率との関係を示す特性図である。
【図5】上記円筒形非水電解液二次電池において、電解銅箔のマット面の表面粗さと100サイクル後のインピーダンスとの関係を示す特性図である。
【図6】上記円筒形非水電解液二次電池において、電解銅箔のマット面と光沢面との表面粗さの差と、100サイクル後のインピーダンスとの関係を示す特性図である。
【符号の説明】
1 正極集電体、2 正極活物質、3 正極、4 負極集電体、5 負極活物質、6 負極、7 セパレータ、8 絶縁体、9 絶縁体、10 電池缶、11 電池蓋、12 絶縁封口ガスケット、13 正極リード、14 負極リード、[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery including an electrode in which an electrode constituent material layer is formed on the surface of a planar current collector, and particularly to improvement of the planar current collector.
[0002]
[Prior art]
Due to remarkable progress in electronic technology in recent years, electronic devices have been reduced in size, weight, and performance, and secondary batteries with high energy density are required for these electronic devices. Conventionally, secondary batteries used in these electronic devices include nickel-cadmium batteries and lead batteries, but these batteries are insufficient in that they provide batteries with high energy density.
[0003]
Under such circumstances, a non-aqueous electrolyte solution using a lithium composite oxide such as lithium cobalt composite oxide as a positive electrode and a material capable of doping and dedoping lithium ions such as a carbon material as a negative electrode is used. Secondary batteries, so-called lithium ion secondary batteries are being researched and developed. This lithium ion secondary battery has high energy density, low self-discharge, excellent cycle characteristics, and light weight.
[0004]
Incidentally, a metal foil is generally used as a current collector of the lithium ion secondary battery. In particular, a metal foil made of copper is frequently used as a negative electrode current collector because it does not form an alloy with lithium metal, has good electrical conductivity, and is low in cost. In general, a rolled copper foil having a thickness of 10 to 30 μm obtained by mechanically rolling a copper plate is used as the copper foil. However, it is difficult to obtain a wide rolled copper foil due to the restriction of the size of the rolling apparatus.
[0005]
On the other hand, a so-called electrolytic copper foil formed by electrolytic deposition of copper can be easily obtained having a relatively wide width compared to a rolled copper foil. Moreover, when this electrolytic copper foil is used for the negative electrode current collector of a lithium ion secondary battery, productivity can be dramatically improved and the cost of battery production can be greatly reduced.
[0006]
[Problems to be solved by the invention]
However, in a lithium ion secondary battery using a commercially available electrolytic copper foil as a negative electrode current collector, the battery characteristics, particularly the cycle characteristics in charge / discharge, were poor and could not be used.
[0007]
Therefore, as a result of repeated studies by the present inventors, the above-described problem is that a large unevenness is formed on one main surface of the electrolytic metal foil, and the difference in surface roughness between both main surfaces of the electrolytic metal foil is large. It was found that it was caused by too much.
[0008]
Until now, electrolytic metal foils have been mainly used for printed circuit boards and flexible substrates, and in order to improve adhesion to plastics (to achieve the anchor effect), large irregularities have been formed on the main surface. It was. Therefore, when this electrolytic metal foil is used as a current collector of a non-aqueous electrolyte secondary battery, deformation along the active material surface does not occur sufficiently, so the contact between the active material and the current collector is poor, The capacity was deteriorated and the cycle characteristics were lowered.
[0009]
The present invention has been proposed to solve the above-described problems, and the current collector is sufficiently deformed along the surface of the active material, so that the contact between the active material and the current collector is kept good. An object of the present invention is to provide an inexpensive non-aqueous electrolyte secondary battery excellent in charge / discharge cycle and a planar current collector for a non-aqueous electrolyte secondary battery .
[0010]
[Means for Solving the Problems]
A non-aqueous electrolyte secondary battery according to the present invention is a non-aqueous electrolyte secondary battery including a positive electrode and a negative electrode in which an electrode constituent material layer is formed on the surface of a planar current collector. body, copper of an electrolytic copper foil formed by electrolytic deposition, the electrolytic copper foil is less than 3.0μm surface roughness of the matte surface with an average roughness of 10, opposite to the matte surface The difference between the surface roughness and the glossy surface on the side is an average roughness of 10 points and is smaller than 2.5 μm.
[0011]
Further, the present invention is a planar current collector constituting a negative electrode of a nonaqueous electrolyte secondary battery, the planar current collector is made of an electrolytic copper foil formed by electrolytic deposition of copper, The electrolytic copper foil has a mat surface roughness of 10 points average roughness less than 3.0 μm, and the difference between the mat surface and the glossy surface on the opposite side is 10 points average roughness. It is characterized by being smaller than 2.5 μm .
[0012]
In the non-aqueous electrolyte secondary battery according to the present invention, since the electrolytic copper foil formed from the electrolytic deposition of copper is used for the negative electrode of the planar current collector, there is a manufacturing size restriction. In addition, the cost of battery production can be reduced.
Further, in the non-aqueous electrolyte secondary battery according to the present invention, the surface roughness of the mat surface of the electrolytic copper foil as the current collector is less than 3.0 μm in terms of the 10-point average roughness, which is opposite to the mat surface. The difference between the surface roughness and the glossy surface on the side is less than 2.5 μm with an average roughness of 10 points, so that the contact between the current collector and the active material is good, the electrical conductivity is increased, and charging / discharging The cycle will be excellent.
[0013]
In general, an electrode in which an electrode constituent material layer is formed on the surface of a planar current collector is applied with an electrode constituent material layer containing an active material and a binder on the surface of the current collector, and then pressed by roll rolling or the like. To be made. This pressing step has an action of compressing the electrodes to a predetermined density and an action of bringing the active material particles close to each other so as to have appropriate conductivity. The electrode that has undergone the pressing process has improved contact between the active material particles and between the active material and the current collector, resulting in increased electrical conductivity.
[0014]
Furthermore, in order to obtain sufficient battery characteristics, it is important to reduce the distance between the active material particles and the distance between the active material and the current collector, and to deform the shape of the current collector along the shape of the active material surface. is there. When the current collector is deformed along the surface of the active material, the contact between the active material and the current collector is further improved, the electric conductivity is further increased, and desirable battery characteristics can be obtained.
[0015]
However, when the current collector does not deform along the surface of the active material, the contact portion between the active material and the current collector is reduced, and the electrical conductivity is low. Moreover, when the unevenness | corrugation of the collector surface is large, there are few contact points of an active material and a collector. Such an electrode having a large contact resistance, when repeated charging and discharging, due to stress due to expansion and contraction accompanying charging and discharging of the active material, dissolution of the binder as an adhesive in the electrolytic solution, and the like, As the distance increases gradually, some of the active materials have electrical conductivity that cannot be used for charging and discharging, resulting in capacity degradation.
[0016]
Therefore, when the surface roughness of the matte surface of this electrolytic copper foil is larger than 3.0 μm by 10 point average roughness, or the difference from the surface roughness of the glossy surface is 10 μm average roughness by 2.5 μm. When the active material is large, when the active material is applied to the negative electrode current collector and pressed, the current collector is not sufficiently deformed along the surface of the active material, and the active material has a large surface unevenness. There are few contact points, and capacity | capacitance deterioration occurs with charging / discharging, and sufficient battery characteristics are not acquired.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
A non-aqueous electrolyte secondary battery according to the present invention includes an electrode in which an electrode constituent material layer is formed on a surface of a planar current collector, and at least the negative electrode of the planar current collector is a copper current . It consists of electrolytic copper foil formed from analysis. And this electrolytic copper foil has a 10-point average surface roughness of the mat surface, which is one main surface, of less than 3.0 μm, and a gloss surface which is the other main surface opposite to the mat surface. The difference between the surface roughness and the surface roughness is 10-point average roughness, which is smaller than 2.5 μm.
[0018]
In general, the electrolytic copper foil is formed on the drum surface using a solution containing copper as a main component as an electrolytic solution and a rotating drum as an electrode. At this time, in the formed electrolytic copper foil , the main surface on the drum side is referred to as a glossy surface, and the other main surface on the electrolyte side is referred to as a mat surface.
[0019]
The electrolytic copper foil has small surface irregularities and a small difference in surface roughness between the matte surface and the glossy surface, so that sufficient deformation occurs along the active material surface during the pressing process, and the contact with the active material is low. Keeps good.
[0020]
In addition, the surface roughness mentioned above is defined about JIS standard B0601 about 10-point average line roughness ( RZ ). As shown in FIG. 1, the 10-point average roughness (R Z ) is measured from the average line of the portion extracted by the reference length L from the cross-sectional curve in the direction of the vertical magnification up to the fifth highest peak. The absolute value of the absolute value of the absolute value (| Y p1 + Y p2 + Y p3 + Y p4 + Y p5 | / 5) of the altitude (Y p ) of the summit and the lowest altitude (Y v ) from the lowest valley bottom to the fifth This is the sum of the average value (| Y v1 + Y v2 + Y v3 + Y v4 + Y v5 | / 5).
[0021]
The present invention is not particularly limited with respect to the material constituting the battery, but a so-called lithium ion secondary battery in which the positive electrode is composed of a metal oxide containing at least lithium and the negative electrode is composed of a negative electrode capable of doping and dedoping lithium. It is suitable for a secondary battery.
[0022]
Moreover, electrolytic copper foil is used for the negative electrode collector used for the lithium ion secondary battery according to the present invention. Electrolytic copper foil does not form an alloy with lithium metal, and has various advantages such as good electrical conductivity and low cost production.
[0023]
The at least one surface of the electrolytic copper foil, in order to inhibit oxidation of the copper foil, antirust coating may be coated. Moreover, in order to improve the adsorptivity between the copper foil surface and the active material, at least one surface of the electrolytic copper foil may be coated with a film made of a silane coupling agent.
[0024]
In the lithium ion secondary battery, the active material containing Li x MO 2 (wherein M represents one or more transition metals, x is a composition ratio of lithium) is used as the positive electrode active material. The substance can be used. Examples of the active material include composite oxides such as Li x CoO 2 , Li x NiO 2 , Li x Mn 2 O 4 , Li x MnO 3 , and Li x Ni y Co (1-y) O 2 .
[0025]
The composite oxide can be obtained, for example, by using carbonates of lithium, cobalt, and nickel as starting materials, mixing these carbonates according to the composition, and firing in a temperature range of 600 ° C. to 1000 ° C. in an oxygen-existing atmosphere. It is done. The starting material is not limited to carbonates, and can be synthesized in the same manner from hydroxides and oxides.
[0026]
On the other hand, the negative electrode active material may be any material that can be doped and dedoped with lithium, such as pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, glassy carbons, organics. Polymer compound fired body (phenol resin, furan resin, etc., fired at a suitable temperature and carbonized), carbon fiber, carbonaceous material such as activated carbon, metallic lithium, lithium alloy (for example, lithium-aluminum alloy) In addition, polymers such as polyacetylene and polypyrrole can also be used.
[0027]
As the electrolytic solution, an electrolytic solution in which a lithium salt is used as an electrolyte and dissolved in an organic solvent is used. Here, the organic solvent is not particularly limited. For example, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, sulfolane, A single or a mixture of two or more of acetonitrile, diethyl carbonate, dipropyl carbonate, or the like can be used.
[0028]
For the electrolyte, LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li, or the like can be used.
[0029]
【Example】
Hereinafter, a preferred embodiment of a non-aqueous electrolyte secondary battery to which the present invention is applied will be described with reference to the drawings. Needless to say, the present invention is not limited to this embodiment.
[0030]
Example 1
As shown in FIG. 2 , the lithium ion secondary battery manufactured in this example includes a positive electrode 3 formed by applying a positive electrode active material 2 to a positive electrode current collector 1, and a negative electrode active material 5 on a negative electrode current collector 4. It is comprised from the negative electrode 6 formed by application | coating. The non-aqueous electrolyte secondary battery has a positive electrode 3, a separator 7, a negative electrode 6, and a separator 7 that are laminated in this order to form a laminated electrode body, and a spiral electrode body formed by winding this laminated electrode body many times. The battery can 10 is housed in a state where the insulators 8 and 9 are arranged above and below.
[0031]
First, the negative electrode current collector 4 made of an electrolytic copper foil was produced as follows. A thickness of 12 μm is obtained by electrolysis under the conditions of a current density of 50 A / dm 2 and a liquid temperature of 50 ° C. using a copper sulfate solution of composition 1 as an electrolyte, a noble metal oxide-coated titanium as an anode, and a titanium rotating drum as a cathode. An electrolytic copper foil was obtained. About the surface roughness of this electrolytic copper foil, it measured by the measuring method mentioned later and was shown in Table 1.
[0032]
(Composition 1)
Copper sulfate (CuSO 4 .5H 2 O) 350 g / l
Sulfuric acid (H 2 SO 4 ) 110 g / l
Thiourea 0.4ppm
Arabic gum 0.8ppm
Low molecular weight glue (molecular weight 5000) 0.4ppm
Cl - 30ppm
Next, this electrolytic copper foil was immersed in a CrO 3 ; 1 g / l aqueous solution for 5 seconds, subjected to chromate treatment, washed with water and dried. Although the chromate treatment is performed here, it goes without saying that the silane coupling agent treatment may be performed after the benzotriazole-based treatment, the silane coupling agent treatment, or the chromate treatment.
[0033]
And the negative electrode 6 was produced as follows. As the negative electrode active material 5, petroleum pitch was used as a starting material, which was fired to obtain coarse granular pitch coke. The coarse granular pitch coke was pulverized into a powder having an average particle diameter of 20 μm, and the powder was baked in an inert gas at 1000 ° C. to remove impurities, thereby obtaining a coke material powder.
[0034]
A negative electrode mixture was prepared by mixing 90 parts by weight of the coke material powder thus obtained and 10 parts by weight of polyvinylidene fluoride as a binder. Subsequently, this negative electrode mixture was dispersed in N-methylpyrrolidone as a solvent to form a slurry. And this slurry was apply | coated on both surfaces of the negative electrode electrical power collector 4 which is a 12- micrometer-thick strip | belt-shaped electrolytic copper foil mentioned above, it dried and formed by compression with the roller press, and the strip | belt-shaped negative electrode 6 was obtained. The strip-shaped negative electrode 6 is formed so that the thickness of the negative electrode mixture after molding is the same at both sides of 90 μm, the width is 55.6 mm, and the length is 551.5 mm.
[0035]
Next, the positive electrode 3 was produced as follows. The positive electrode active material (LiCoO 2 ) 2 was mixed with 0.5 mol of lithium carbonate and 1 mol of cobalt carbonate, and calcined in air at 900 ° C. for 5 hours to obtain LiCoO 2 .
[0036]
The positive electrode active material (LiCoO 2 ) 2 thus obtained was mixed at a ratio of 91 wt%, graphite as a conductive agent at 6 wt%, and polyvinylidene fluoride as a binder at a ratio of 3 wt% to obtain a positive electrode mixture. This was prepared and dispersed in N-methyl-2pyrrolidone to form a slurry. Next, this slurry was uniformly applied to both surfaces of a positive electrode current collector made of a strip-shaped aluminum having a thickness of 20 μm, dried, and then compression-molded with a roller press to obtain a strip-shaped positive electrode 3 having a thickness of 160 μm. The belt-like positive electrode 3 is formed such that the thickness of the positive electrode mixture after molding is 70 μm on the surface, the width is 53.6 mm, and the length is 523.5 mm.
[0037]
The strip-shaped positive electrode 3, the strip-shaped negative electrode 6, and the separator 7 made of a microporous polypropylene film having a thickness of 25 μm and a width of 58.1 mm are stacked as described above, and the stacked layers are stacked. An electrode body was obtained. This laminated electrode body is wound many times in a spiral shape along the length direction with the negative electrode 6 inside, and the final end of the outermost separator is fixed with tape to form a spiral electrode body. The hollow part of the spiral electrode body has an inner diameter of 3.5 mm and an outer shape of 17 mm.
[0038]
The spiral electrode body produced as described above was housed in an iron battery can 10 plated with nickel with the insulating plates 8 and 9 being installed on both upper and lower surfaces. In order to collect the positive electrode 3 and the negative electrode 6, the aluminum positive electrode lead 13 is led out from the positive electrode current collector 1 and connected to the battery lid 11, and the nickel negative electrode lead 14 is connected to the negative electrode current collector 4. And connected to the battery can 10.
[0039]
Then, 5.0 g of a nonaqueous electrolyte solution in which LiPF 6 was dissolved at a rate of 1 mol / l in an equal volume mixed solvent of propylene carbonate and diethyl carbonate was injected into the battery can 10 containing the spiral electrode body. did. Next, the battery lid 10 was fixed by caulking the battery can 10 through the insulating sealing gasket 12 whose surface was coated with asphalt, and the airtightness in the battery can 10 was maintained.
[0040]
As described above, a cylindrical nonaqueous electrolyte secondary battery (Example 1) having a diameter of 18 mm and a height of 65 mm was produced.
[0041]
Example 2
First, the negative electrode current collector 4 made of an electrolytic copper foil was produced as follows. A thickness of 12 μm is obtained by electrolysis under the conditions of a current density of 50 A / dm 2 and a liquid temperature of 50 ° C. using a copper sulfate solution represented by composition 2 as an electrolyte, a noble metal oxide-coated titanium as an anode, and a titanium rotating drum as a cathode. An electrolytic copper foil was prepared, and chromate treatment was performed on this electrolytic foil. In addition, about the surface roughness of this electrolytic copper foil, it measured by the measuring method mentioned later and showed in Table 1.
[0042]
(Composition 2)
Copper sulfate (CuSO 4 .5H 2 O) 350 g / l
Sulfuric acid (H 2 SO 4 ) 110 g / l
1-mercapto-3-propanesulfonic acid sodium salt 1ppm
Hydroxyethyl cellulose 4ppm
Low molecular weight glue (molecular weight 3000) 4ppm
Cl - 30ppm
A cylindrical non-aqueous electrolyte secondary battery (Example 2) was produced in the same manner as in Example 1 except that the above-described electrolytic metal foil was used.
[0043]
Example 3
First, the negative electrode current collector 4 made of an electrolytic copper foil was produced as follows. The thickness is obtained by electrolysis under the conditions of a current density of 50 A / dm 2 and a liquid temperature of 58 ° C. using a copper sulfate solution of composition 3 as an electrolyte, a noble metal oxide-coated titanium as an anode, and a titanium rotating drum as a cathode. A 9 μm electrolytic copper foil was obtained.
[0044]
(Composition 3)
Copper sulfate (CuSO4 · 5H2O) 350g / l
Sulfuric acid (H2SO4) 110g / l
Glue (molecular weight 60000) 2ppm
Cl-30 ppm
As a result of measuring the surface roughness of this electrolytic copper foil by the measurement method described later, the glossy surface was RZ = 2.00 μm and the matte surface was RZ = 3.52 μm.
[0045]
Next, the electrolytic copper foil is subjected to bright copper plating on the mat surface at a current density of 6 A / dm 2 and a liquid temperature of 58 ° C. using a copper electrolytic bath made of an electrolytic solution represented by composition 4, and the surface of the electrolytic copper foil The roughness was measured by the measurement method described later and shown in Table 1. In the present invention, a surface obtained by performing bright copper plating on the mat surface is also expressed as a mat surface. And the chromate process was similarly performed to the electrolytic copper foil to which this copper plating was given.
[0046]
(Composition 4)
Copper sulfate (CuSO 4 .5H 2 O) 240 g / l
Sulfuric acid (H 2 SO 4 ) 60 g / l
Glue 2ppm
Nihon Schering Co., Ltd. Kabashirado 210
Makeup agent 10cc / l
Brightener (A) 0.5cc / l
Brightener (B) Used for replenishment only Cl - 30ppm
The replenishment of the brightener was performed by adding 300 cc of brightener (A) and brightener (B) to a current amount of 1000 Ah.
[0047]
A cylindrical non-aqueous electrolyte secondary battery (Example 3) was produced in the same manner as in Example 1 except that the above-described electrolytic copper foil was used.
[0048]
Comparative Example 1
First, the negative electrode current collector 4 made of an electrolytic copper foil was produced as follows. A thickness of 12 μm is obtained by electrolysis under the conditions of a current density of 50 A / dm 2 and a liquid temperature of 58 ° C. using a copper sulfate solution of composition 5 as an electrolyte, a noble metal oxide-coated titanium as an anode, and a titanium rotating drum as a cathode. An electrolytic copper foil was prepared, and the surface roughness of the electrolytic copper foil was measured by a measuring method described later, and shown in Table 1. And the chromate process was performed to this electrolytic copper foil.
[0049]
(Composition 5)
Copper sulfate (CuSO 4 .5H 2 O) 350 g / l
Sulfuric acid (H 2 SO 4 ) 110 g / l
Glue 2ppm
Cl - 30ppm
A cylindrical nonaqueous electrolyte secondary battery (Comparative Example 1) was produced in the same manner as in Example 1 except that the above-described electrolytic copper foil was used.
[0050]
And in the electrolytic copper foil obtained in Examples 1 to 3 and Comparative Example 1, the surface roughness (10-point average roughness R Z ) was measured by a surface roughness meter (SE-3C manufactured by Kosaka Laboratory Ltd.). Type). The results are shown in Table 1. Note that when measuring the surface roughness of the glossy surface, the reference length L was 0.8 mm, and when measuring the surface roughness of the matte surface, the reference length L was 2.5 mm.
[0051]
[Table 1]
Figure 0003742144
[0052]
Moreover, about the cylindrical non-aqueous-electrolyte secondary battery of Example 1-3 which used each electrolytic copper foil for the negative electrode collector, and the comparative example 1, the capacity retention rate after 100 cycles was investigated. The results are shown in FIGS. 3 and 4 and Table 2.
[0053]
Furthermore, the change in impedance around 100 cycles was examined for the cylindrical nonaqueous electrolyte secondary batteries of Examples 1 to 3 and Comparative Example 1 in which each electrolytic copper foil was used as a negative electrode current collector. The results are shown in FIGS.
[0054]
[Table 2]
Figure 0003742144
[0055]
As shown in FIG. 3, FIG. 5 and Table 2, when the surface roughness of the mat surface is 3 μm or more, the capacity retention ratio is significantly reduced and the impedance changes greatly. Therefore, the surface roughness of the mat surface is 3 μm. Less than is preferable. Further, as shown in FIGS. 4 and 6, the capacity retention ratio is lowered and the impedance is increased as the difference in surface roughness between the matte surface and the glossy surface is increased. Therefore, the difference in surface roughness between the matte surface and the glossy surface is preferably less than 2.5 μm.
[0056]
Further, the roughness of the matte surface of the electrolytic copper foil may be regulated by the initial electrolysis conditions as in Example 1 and Example 2, or copper plating may be applied later as in Example 3. It may be regulated.
[0057]
From the above, in the non-aqueous electrolyte secondary battery described above, there is no manufacturing size restriction compared to the rolled copper foil, and the electrolytic copper foil with high productivity is used for the negative electrode current collector. Productivity is improved and battery production costs can be significantly reduced.
[0058]
Further, in the non-aqueous electrolyte secondary battery described above, the surface roughness of the matte surface, which is one surface of the electrolytic copper foil as the current collector, is less than 3.0 μm, and the surface roughness between the glossy surface and the matte surface is Is smaller than 2.5 μm, the contact between the current collector and the active material is good, the electrical conductivity is increased, and the charge / discharge cycle is excellent.
[0059]
【The invention's effect】
As is clear from the above description, the non-aqueous electrolyte secondary battery according to the present invention uses an electrolytic copper foil formed by electrolytically depositing copper on a current collector. Can be reduced, and the cost of battery production can be reduced.
[0060]
Moreover, this electrolytic copper foil has a surface roughness of the matte surface, which is one surface, of 10 point average roughness of less than 3.0 μm, and there is a difference between the surface roughness of the matte surface and the glossy surface on the opposite side. The average roughness of 10 points is smaller than 2.5 μm. Therefore, in the nonaqueous electrolyte secondary battery according to the present invention, the contact property between the current collector and the active material is good, the electric conductivity is increased, and the charge / discharge cycle is excellent.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view for explaining the definition of 10-point average roughness (R Z ).
FIG. 2 is a schematic cross-sectional view of a cylindrical nonaqueous electrolyte secondary battery to which the present invention is applied.
FIG. 3 is a characteristic diagram showing the relationship between the surface roughness of the matte surface of the electrolytic copper foil and the capacity retention ratio in the cylindrical non-aqueous electrolyte secondary battery.
FIG. 4 is a characteristic diagram showing the relationship between the difference in surface roughness between the matte surface and the glossy surface of the electrolytic copper foil and the capacity retention rate in the cylindrical non-aqueous electrolyte secondary battery.
FIG. 5 is a characteristic diagram showing the relationship between the surface roughness of the matte surface of the electrolytic copper foil and the impedance after 100 cycles in the cylindrical non-aqueous electrolyte secondary battery.
FIG. 6 is a characteristic diagram showing the relationship between the difference in surface roughness between the matte surface and the glossy surface of the electrolytic copper foil and the impedance after 100 cycles in the cylindrical nonaqueous electrolyte secondary battery.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Positive electrode collector 2 Positive electrode active material 3 Positive electrode 4 Negative electrode current collector 5 Negative electrode active material 6 Negative electrode 7 Separator 8 Insulator 9 Insulator 10 Battery can 11 Battery lid 12 Insulation seal Gasket, 13 positive lead, 14 negative lead,

Claims (4)

平面状集電体の表面に電極構成物質層が形成されてなる正極及び負極を備える非水電解液二次電池において、
負極の平面状集電体は、銅を電解析出して形成される電解銅箔からなり、
上記電解銅箔は、マット面の表面粗さが10点平均粗さにして3.0μmより小さく、このマット面反対側の光沢面との表面粗さとの差が10点平均粗さにして2.5μmより小さいことを特徴とする非水電解液二次電池。
In a non-aqueous electrolyte secondary battery comprising a positive electrode and a negative electrode in which an electrode constituent material layer is formed on the surface of a planar current collector,
Planar current collector of the negative electrode, an electrolytic copper foil formed of copper by electrolytic deposition,
The electrolytic copper foil has a mat surface roughness of 10 points average roughness less than 3.0 μm, and the difference between the mat surface and the glossy surface on the opposite side is 10 points average roughness. A non-aqueous electrolyte secondary battery characterized by being smaller than 2.5 μm.
非水電解液二次電池の負極を構成する平面状集電体であって、A planar current collector constituting a negative electrode of a nonaqueous electrolyte secondary battery,
当該平面状集電体は、銅を電解析出して形成される電解銅箔からなり、The planar current collector is made of an electrolytic copper foil formed by electrolytic deposition of copper,
上記電解銅箔は、マット面の表面粗さが10点平均粗さにして3.0μmより小さく、このマット面と反対側の光沢面との表面粗さとの差が10点平均粗さにして2.5μmより小さいことを特徴とする平面状集電体。The electrolytic copper foil has a mat surface roughness of 10 points average roughness less than 3.0 μm, and the difference between the mat surface and the glossy surface on the opposite side is 10 points average roughness. A planar current collector characterized by being smaller than 2.5 μm.
上記電解銅箔の少なくとも一方の面が、防錆被膜によって被覆されていることを特徴とする請求項1記載の非水電解液二次電池。The nonaqueous electrolyte secondary battery according to claim 1, wherein at least one surface of the electrolytic copper foil is covered with a rust preventive film. 上記電解銅箔の少なくとも一方の面が、シランカップリング剤によって被覆されていることを特徴とする請求項1記載の非水電解液二次電池。The non-aqueous electrolyte secondary battery according to claim 1, wherein at least one surface of the electrolytic copper foil is coated with a silane coupling agent.
JP11371096A 1996-05-08 1996-05-08 Nonaqueous electrolyte secondary battery and planar current collector for nonaqueous electrolyte secondary battery Expired - Lifetime JP3742144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11371096A JP3742144B2 (en) 1996-05-08 1996-05-08 Nonaqueous electrolyte secondary battery and planar current collector for nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11371096A JP3742144B2 (en) 1996-05-08 1996-05-08 Nonaqueous electrolyte secondary battery and planar current collector for nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH09306504A JPH09306504A (en) 1997-11-28
JP3742144B2 true JP3742144B2 (en) 2006-02-01

Family

ID=14619204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11371096A Expired - Lifetime JP3742144B2 (en) 1996-05-08 1996-05-08 Nonaqueous electrolyte secondary battery and planar current collector for nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3742144B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011090044A1 (en) 2010-01-25 2011-07-28 Jx日鉱日石金属株式会社 Copper foil for secondary battery negative electrode power collector
WO2012002380A1 (en) 2010-06-28 2012-01-05 古河電気工業株式会社 Electrolytic copper foil, electrolytic copper foil for lithium ion secondary battery, electrode for lithium ion secondary battery using the electrolytic copper foil, and lithium ion secondary battery using the electrode
WO2012091060A1 (en) 2010-12-27 2012-07-05 古河電気工業株式会社 Lithium-ion secondary battery, electrode for secondary battery, and electrolytic copper foil for secondary battery electrode
KR20150034743A (en) 2012-06-27 2015-04-03 후루카와 덴키 고교 가부시키가이샤 Electrolytic copper foil, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US9457541B2 (en) 2010-07-15 2016-10-04 Ls Mtron Ltd. Copper foil for current collector of lithium secondary battery with improved wrinkle characteristics
WO2016208863A1 (en) 2015-06-24 2016-12-29 엘에스엠트론 주식회사 Electrolytic copper foil, current collector including same electrolytic copper foil, electrode including same current collector, secondary battery including same electrode, and method for manufacturing same
KR20170005764A (en) 2015-07-06 2017-01-16 후루카와 덴키 고교 가부시키가이샤 Electrolytic copper foil, the negative electrode for a lithium ion secondary battery and a lithium ion secondary battery, printed circuit board and an electromagnetic shielding material
TWI584522B (en) * 2011-11-29 2017-05-21 Furukawa Electric Co Ltd Electrode collector, nonaqueous electrolyte secondary battery negative electrode, nonaqueous electrolyte secondary battery

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3581784B2 (en) * 1998-03-19 2004-10-27 古河電気工業株式会社 Copper foil for negative electrode current collector of non-aqueous solvent secondary battery
EP1038994A1 (en) * 1998-09-14 2000-09-27 Mitsui Mining & Smelting Co., Ltd. Porous copper foil, use thereof and method for preparation thereof
JP4049506B2 (en) * 2000-02-29 2008-02-20 三洋電機株式会社 Lithium secondary battery
JP2001357855A (en) * 2000-06-14 2001-12-26 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2003051340A (en) * 2001-08-07 2003-02-21 Shin Kobe Electric Mach Co Ltd Lithium secondary battery
JP4752154B2 (en) * 2001-08-22 2011-08-17 新神戸電機株式会社 Method for manufacturing lithium secondary battery
JP4136496B2 (en) * 2002-07-02 2008-08-20 三井金属鉱業株式会社 Method for producing electrolytic copper foil
JP4413552B2 (en) * 2002-08-01 2010-02-10 古河電気工業株式会社 Electrolytic copper foil and electrolytic copper foil for secondary battery current collector
JP2005135826A (en) * 2003-10-31 2005-05-26 Toshiba Corp Nonaqueous electrolyte secondary battery
WO2005057693A1 (en) * 2003-12-12 2005-06-23 Mitsui Mining & Smelting Co., Ltd. Negative electrode collector for nonaqueous electrolyte secondary battery
JP3644542B1 (en) * 2003-12-12 2005-04-27 三井金属鉱業株式会社 Anode current collector for non-aqueous electrolyte secondary battery
US7417266B1 (en) 2004-06-10 2008-08-26 Qspeed Semiconductor Inc. MOSFET having a JFET embedded as a body diode
JP4630072B2 (en) * 2005-01-21 2011-02-09 古河電気工業株式会社 Copper foil for lithium secondary battery electrode, method for producing the copper foil, electrode for lithium secondary battery using the copper foil, and lithium secondary battery
US8026568B2 (en) 2005-11-15 2011-09-27 Velox Semiconductor Corporation Second Schottky contact metal layer to improve GaN Schottky diode performance
JP2007273182A (en) 2006-03-30 2007-10-18 Sony Corp Current collector, negative electrode and battery
JP4470917B2 (en) 2006-06-29 2010-06-02 ソニー株式会社 Electrode current collector, battery electrode and secondary battery
JP2008091054A (en) * 2006-09-29 2008-04-17 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP5090028B2 (en) * 2007-03-16 2012-12-05 福田金属箔粉工業株式会社 Copper foil for negative electrode current collector of lithium secondary battery and method for producing the same
US7939853B2 (en) 2007-03-20 2011-05-10 Power Integrations, Inc. Termination and contact structures for a high voltage GaN-based heterojunction transistor
JP5351012B2 (en) * 2007-04-20 2013-11-27 Jx日鉱日石金属株式会社 Electrolytic copper foil for lithium secondary battery and method for producing the copper foil
JP5306620B2 (en) * 2007-09-11 2013-10-02 古河電気工業株式会社 Copper foil for ultrasonic welding and surface treatment method thereof
JP4662967B2 (en) * 2007-09-13 2011-03-30 パンパシフィック・カッパー株式会社 Method for analyzing concentration of glue contained in electrolyte
US20120258281A1 (en) * 2009-12-25 2012-10-11 Furukawa Electric Co., Ltd. Copper foil and method for producing copper foil
JP5019654B2 (en) * 2010-03-31 2012-09-05 古河電気工業株式会社 Copper (alloy) foil for negative electrode current collector of lithium ion secondary battery, manufacturing method thereof, negative electrode of lithium ion secondary battery, manufacturing method thereof
TWI417424B (en) 2010-11-08 2013-12-01 Chang Chun Petrochemical Co Method for producing a porous copper foil
KR101606251B1 (en) * 2011-06-28 2016-03-24 후루카와 덴키 고교 가부시키가이샤 Lithium ion secondary cell, current collector constituting negative electrode of secondary cell, and electrolytic copper foil constituting negative-electrode current collector
US8633094B2 (en) 2011-12-01 2014-01-21 Power Integrations, Inc. GaN high voltage HFET with passivation plus gate dielectric multilayer structure
US8940620B2 (en) 2011-12-15 2015-01-27 Power Integrations, Inc. Composite wafer for fabrication of semiconductor devices
JP6067256B2 (en) * 2012-06-27 2017-01-25 古河電気工業株式会社 Electrolytic copper foil, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US8928037B2 (en) 2013-02-28 2015-01-06 Power Integrations, Inc. Heterostructure power transistor with AlSiN passivation layer
JP2016110948A (en) * 2014-12-10 2016-06-20 株式会社豊田自動織機 Lithium ion secondary battery
KR101897474B1 (en) * 2015-06-26 2018-09-12 케이씨에프테크놀로지스 주식회사 Electrolytic copper foil for lithium secondary battery and Lithium secondary battery comprising the same
JP6931293B2 (en) 2017-03-28 2021-09-01 三洋電機株式会社 How to manufacture a secondary battery
TWI660541B (en) 2018-10-01 2019-05-21 長春石油化學股份有限公司 Copper foil for current collector of lithium secondary battery and negative electrode including the same
TWI731330B (en) * 2019-04-30 2021-06-21 南亞塑膠工業股份有限公司 Electrolytic copper foil, method for producing the same, and lithium ion secondary battery
US11469333B1 (en) 2020-02-19 2022-10-11 Semiq Incorporated Counter-doped silicon carbide Schottky barrier diode

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH056766A (en) * 1990-11-27 1993-01-14 Sony Corp Battery
JPH0574479A (en) * 1991-09-09 1993-03-26 Asahi Chem Ind Co Ltd Spiral nonaqueous battery
JPH05279896A (en) * 1992-04-01 1993-10-26 Mitsui Mining & Smelting Co Ltd Surface treatment of copper foil
JPH06260168A (en) * 1993-03-05 1994-09-16 Japan Storage Battery Co Ltd Lithium secondary battery
JPH07105952A (en) * 1993-10-06 1995-04-21 Mitsubishi Cable Ind Ltd Lithium secondary battery and its current collecting body
JPH07201332A (en) * 1993-12-31 1995-08-04 Nippon Foil Mfg Co Ltd Copper foil with good wettability to water
JPH07231152A (en) * 1993-12-24 1995-08-29 Mitsui Mining & Smelting Co Ltd Copper foil for printed circuit inner layer and its manufacture
JPH07258870A (en) * 1994-03-24 1995-10-09 Mitsui Mining & Smelting Co Ltd Organic rust preventive treated copper foil and its production
JPH07268678A (en) * 1994-03-31 1995-10-17 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil for printed circuit board and its production
JPH07296802A (en) * 1994-04-26 1995-11-10 Sumitomo Chem Co Ltd Manufacture of lithium secondary battery electrode, and lithium secondary battery
JPH0896801A (en) * 1994-09-22 1996-04-12 Fuji Elelctrochem Co Ltd Manufacture of sheet electrode
JPH08111243A (en) * 1994-02-07 1996-04-30 Sumitomo Chem Co Ltd Lithium secondary battery
JPH08306390A (en) * 1995-04-28 1996-11-22 Sony Corp Nonaqueous electrolyte secondary battery
JPH0963564A (en) * 1995-08-28 1997-03-07 Furukawa Electric Co Ltd:The Electrode for li battery, and li battery using same
JPH09143785A (en) * 1995-09-22 1997-06-03 Furukawa Circuit Foil Kk Electrolytic copper foil for fine pattern and its production
JPH09157883A (en) * 1995-12-06 1997-06-17 Mitsui Mining & Smelting Co Ltd Copper foil for printed wiring board, production thereof and electrolyzing device
JP2000196207A (en) * 1998-12-25 2000-07-14 Nikko Materials Co Ltd Printed board and copper foil therefor
JP2004269950A (en) * 2003-03-07 2004-09-30 Mitsui Mining & Smelting Co Ltd Method of producing electrolytic copper foil
JP2005175443A (en) * 1995-09-22 2005-06-30 Furukawa Circuit Foil Kk Electrolytic copper foil
JP2006152420A (en) * 2004-12-01 2006-06-15 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil and method for producing the same

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH056766A (en) * 1990-11-27 1993-01-14 Sony Corp Battery
JPH0574479A (en) * 1991-09-09 1993-03-26 Asahi Chem Ind Co Ltd Spiral nonaqueous battery
JPH05279896A (en) * 1992-04-01 1993-10-26 Mitsui Mining & Smelting Co Ltd Surface treatment of copper foil
JPH06260168A (en) * 1993-03-05 1994-09-16 Japan Storage Battery Co Ltd Lithium secondary battery
JPH07105952A (en) * 1993-10-06 1995-04-21 Mitsubishi Cable Ind Ltd Lithium secondary battery and its current collecting body
JPH07231152A (en) * 1993-12-24 1995-08-29 Mitsui Mining & Smelting Co Ltd Copper foil for printed circuit inner layer and its manufacture
JPH07201332A (en) * 1993-12-31 1995-08-04 Nippon Foil Mfg Co Ltd Copper foil with good wettability to water
JPH08111243A (en) * 1994-02-07 1996-04-30 Sumitomo Chem Co Ltd Lithium secondary battery
JPH07258870A (en) * 1994-03-24 1995-10-09 Mitsui Mining & Smelting Co Ltd Organic rust preventive treated copper foil and its production
JPH07268678A (en) * 1994-03-31 1995-10-17 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil for printed circuit board and its production
JPH07296802A (en) * 1994-04-26 1995-11-10 Sumitomo Chem Co Ltd Manufacture of lithium secondary battery electrode, and lithium secondary battery
JPH0896801A (en) * 1994-09-22 1996-04-12 Fuji Elelctrochem Co Ltd Manufacture of sheet electrode
JPH08306390A (en) * 1995-04-28 1996-11-22 Sony Corp Nonaqueous electrolyte secondary battery
JPH0963564A (en) * 1995-08-28 1997-03-07 Furukawa Electric Co Ltd:The Electrode for li battery, and li battery using same
JPH09143785A (en) * 1995-09-22 1997-06-03 Furukawa Circuit Foil Kk Electrolytic copper foil for fine pattern and its production
JP2005175443A (en) * 1995-09-22 2005-06-30 Furukawa Circuit Foil Kk Electrolytic copper foil
JPH09157883A (en) * 1995-12-06 1997-06-17 Mitsui Mining & Smelting Co Ltd Copper foil for printed wiring board, production thereof and electrolyzing device
JP2000196207A (en) * 1998-12-25 2000-07-14 Nikko Materials Co Ltd Printed board and copper foil therefor
JP2004269950A (en) * 2003-03-07 2004-09-30 Mitsui Mining & Smelting Co Ltd Method of producing electrolytic copper foil
JP2006152420A (en) * 2004-12-01 2006-06-15 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil and method for producing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011090044A1 (en) 2010-01-25 2011-07-28 Jx日鉱日石金属株式会社 Copper foil for secondary battery negative electrode power collector
WO2012002380A1 (en) 2010-06-28 2012-01-05 古河電気工業株式会社 Electrolytic copper foil, electrolytic copper foil for lithium ion secondary battery, electrode for lithium ion secondary battery using the electrolytic copper foil, and lithium ion secondary battery using the electrode
KR20160119269A (en) 2010-06-28 2016-10-12 후루카와 덴키 고교 가부시키가이샤 Electrolytic copper foil, electrolytic copper foil for lithium ion secondary battery, electrode for lithium ion secondary battery using the electrolytic copper foil, and lithium ion secondary battery using the electrode
US9457541B2 (en) 2010-07-15 2016-10-04 Ls Mtron Ltd. Copper foil for current collector of lithium secondary battery with improved wrinkle characteristics
US10283778B2 (en) 2010-07-15 2019-05-07 Kcf Technologies Co., Ltd. Copper foil for current collector of lithium secondary battery with improved wrinkle characteristics
WO2012091060A1 (en) 2010-12-27 2012-07-05 古河電気工業株式会社 Lithium-ion secondary battery, electrode for secondary battery, and electrolytic copper foil for secondary battery electrode
US9603245B2 (en) 2010-12-27 2017-03-21 Furukawa Electric Co., Ltd. Lithium-ion secondary battery, electrode for the secondary battery, and electrolytic copper foil for electrode for the secondary battery
TWI584522B (en) * 2011-11-29 2017-05-21 Furukawa Electric Co Ltd Electrode collector, nonaqueous electrolyte secondary battery negative electrode, nonaqueous electrolyte secondary battery
KR20150034743A (en) 2012-06-27 2015-04-03 후루카와 덴키 고교 가부시키가이샤 Electrolytic copper foil, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US10050277B2 (en) 2012-06-27 2018-08-14 Furukawa Electric Co., Ltd. Electrolytic copper foil, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2016208863A1 (en) 2015-06-24 2016-12-29 엘에스엠트론 주식회사 Electrolytic copper foil, current collector including same electrolytic copper foil, electrode including same current collector, secondary battery including same electrode, and method for manufacturing same
KR20170005764A (en) 2015-07-06 2017-01-16 후루카와 덴키 고교 가부시키가이샤 Electrolytic copper foil, the negative electrode for a lithium ion secondary battery and a lithium ion secondary battery, printed circuit board and an electromagnetic shielding material

Also Published As

Publication number Publication date
JPH09306504A (en) 1997-11-28

Similar Documents

Publication Publication Date Title
JP3742144B2 (en) Nonaqueous electrolyte secondary battery and planar current collector for nonaqueous electrolyte secondary battery
US9705159B2 (en) Method for fabricating a nonaqueous electrolyte secondary battery
JP5379928B2 (en) Electrolytic copper foil, method for producing the electrolytic copper foil, and lithium ion secondary battery using the electrolytic copper foil as a current collector
KR102158241B1 (en) Electrolytic Copper Foil, Current Collector Comprising The Same, Electrode Comprising The Same, Secondary Battery Comprising The Same, and Method for Manufacturing The Same
TWI466367B (en) A lithium ion secondary battery, an electrode for the secondary battery, an electrode for an electrolytic copper foil
JP5070680B2 (en) Nonaqueous electrolyte secondary battery electrode plate, method for producing the same, and nonaqueous electrolyte secondary battery
JP5119277B2 (en) ELECTRODE FOR LITHIUM SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME
JP4616592B2 (en) Non-aqueous electrolyte secondary battery, manufacturing method thereof, and electrode material for electrolyte secondary battery
KR102244477B1 (en) Electrolytic copper foil and electrode and lithium-ion cell comprising the same
JP5372881B2 (en) Lithium secondary battery having a stress relaxation layer
JPWO2014002996A1 (en) Electrolytic copper foil for lithium ion secondary battery, negative electrode of lithium ion secondary battery, and lithium ion secondary battery
JP2013181236A (en) Electrolytic copper foil and negative electrode collector for secondary battery
JPH11307102A (en) Lithium secondary battery and manufacture thereof
JP5325227B2 (en) Non-aqueous electrolyte secondary battery electrode plate, method for producing the same, and non-aqueous electrolyte secondary battery
TWI490374B (en) Electrolytic copper foil, and a secondary battery collector and a secondary battery using the same
KR20030091741A (en) Non-aqueous electrolyte battery and method of manufacturing the same
JP2011216193A (en) Negative electrode for lithium battery, and lithium secondary battery using this
KR20170085425A (en) Copper Foil, Method for Manufacturing The Same, Electrode Comprising The Same, and Secondary Battery Comprising The Same
JP5200329B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5546957B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2006107853A (en) Non-aqueous electrolyte secondary battery and production method thereof
US20110200869A1 (en) Lithium secondary battery and method for fabricating the same
JP2004185865A (en) Lithium ion battery, its manufacturing method, and negative electrode structure
JP3444302B2 (en) Non-aqueous electrolyte secondary battery
JP3309449B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051110

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term