JP2006152420A - Electrolytic copper foil and method for producing the same - Google Patents

Electrolytic copper foil and method for producing the same Download PDF

Info

Publication number
JP2006152420A
JP2006152420A JP2004348962A JP2004348962A JP2006152420A JP 2006152420 A JP2006152420 A JP 2006152420A JP 2004348962 A JP2004348962 A JP 2004348962A JP 2004348962 A JP2004348962 A JP 2004348962A JP 2006152420 A JP2006152420 A JP 2006152420A
Authority
JP
Japan
Prior art keywords
copper foil
electrolytic copper
tensile strength
heating
glue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004348962A
Other languages
Japanese (ja)
Other versions
JP4583149B2 (en
Inventor
Sakiko Tomonaga
咲子 朝長
Hisao Sakai
久雄 酒井
Makoto Dobashi
誠 土橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2004348962A priority Critical patent/JP4583149B2/en
Publication of JP2006152420A publication Critical patent/JP2006152420A/en
Application granted granted Critical
Publication of JP4583149B2 publication Critical patent/JP4583149B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide electrolytic copper foil whose rough surface has excellent smoothness and bending resistance, and to provide a suitable production method therefor. <P>SOLUTION: As the copper foil, e.g., electrolytic copper foil in which tensile strength after heating at 180°C for 1 hr is ≥50 kgf/mm<SP>2</SP>, elongation percentage after heating at 180°C for 1 hr is ≥3.0%, and surface roughness (Rz) in the rough surface is ≤2 μm is adopted. Further, for the purpose of obtaining the electrolytic copper foil, e.g., a method of producing electrolytic copper foil characterized in that the concentration of gelatine or glue in a copper sulfate based electrolytic solution is 0.67 to 16.7 ppm, the concentration of chlorine ions is 0.2 to 0.5 ppm, the weight ratio between the concentration of gelatine or glue and the concentration of chlorine ions is 1: 0.03 to 0.3, and also, the number average molecular weight of gelatine or glue is 1,000 to 40,000 is adopted. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電解銅箔及びその製造方法に関し、詳しくは加熱後の引張り強さが高く、しかも粗面の表面粗さが小さい電解銅箔及びその製造方法に関するものである。   The present invention relates to an electrolytic copper foil and a method for producing the same, and more particularly to an electrolytic copper foil having a high tensile strength after heating and a small surface roughness of the rough surface and a method for producing the same.

従来より、銅箔は、広く電気、電子産業の分野で用いられるプリント配線板を製造する際の基礎材料として用いられている。一般に、電解銅箔はガラス−エポキシ基材、フェノール基材、ポリイミド等の高分子絶縁基材と熱間プレス成形にて貼り合わされ銅張積層板とし、その後、目的とする回路を形成すべく、必要な回路を印刷した後、エッチング処理によって不要な部分が除去され、さらに素子がハンダ付けされ、エレクトロデバイス用の種々のプリント配線板が形成される。例えば、折り曲げ可能なフレキシブルプリント配線板がその代表的な例として挙げられる。   Conventionally, copper foil has been widely used as a basic material for producing printed wiring boards used in the fields of electric and electronic industries. Generally, an electrolytic copper foil is bonded to a polymer insulating substrate such as a glass-epoxy substrate, a phenol substrate, and a polyimide by hot press molding to form a copper-clad laminate, and then to form a desired circuit. After the necessary circuits are printed, unnecessary portions are removed by etching, and the elements are soldered to form various printed wiring boards for electro devices. For example, a foldable flexible printed wiring board is a typical example.

ここに用いられる銅箔は、圧延加工を施して箔状にした圧延銅箔と、硫酸銅を主成分とする溶液を電解して、チタン又はステンレス製の回転ドラム陰極の表面に銅を析出させ、これを連続して引き剥がして製造する電解銅箔とがある。この内、電解銅箔は、圧延銅箔と比べ、連続生産も容易であることから生産効率に優れ価格的に優れているため、種々のプリント配線板の用途に使用されてきている。   The copper foil used here is a rolled copper foil that has been rolled into a foil shape, and a solution containing copper sulfate as a main component is electrolyzed to deposit copper on the surface of a titanium or stainless steel rotating drum cathode. In addition, there is an electrolytic copper foil produced by continuously peeling this. Among these, electrolytic copper foils have been used for various printed wiring board applications because they are easy to produce continuously as compared with rolled copper foils, and are excellent in production efficiency and price.

この圧延銅箔と電解銅箔とは、その機械的強度、表面粗度に違いがあり、プリント配線板の種類に応じて使い分けられてきた。その違いを端的に表現すれば、電解銅箔と圧延銅箔とを比べると表面粗度及び耐折り曲げ性に差があると言われてきた。   The rolled copper foil and the electrolytic copper foil have different mechanical strength and surface roughness, and have been used properly according to the type of printed wiring board. If the difference is expressed simply, it has been said that there is a difference in surface roughness and bending resistance when compared with electrolytic copper foil and rolled copper foil.

銅箔の表面粗度に関して、電解銅箔は、結晶が厚み方向に成長しているため、粗面の凹凸が大きく、圧延銅箔に比較して銅箔の平滑性に劣るといわれてきた。そして、耐折り曲げ性に関しては、特にフレキシブルプリント配線板において、良好な耐折り曲げ性が要求されるが、電解銅箔は圧延銅箔に比較して、耐折り曲げ性が低いと言われてきた。   With regard to the surface roughness of the copper foil, it has been said that the electrolytic copper foil has large irregularities on the rough surface because crystals grow in the thickness direction, and the smoothness of the copper foil is inferior to that of the rolled copper foil. And regarding bending resistance, especially in a flexible printed wiring board, although favorable bending resistance is requested | required, it has been said that electrolytic copper foil is low in bending resistance compared with rolled copper foil.

電子機器の薄小化に伴い、よりファインパターン化したプリント配線板が求められており、形成可能な回路ピッチは主として銅箔の表面粗さに依存することが知られており、ファインパターンを得るためには、銅箔の平滑性が必須である。また、携帯電話のヒンジ部のように屈曲性を要求される用途や、高周波用途においても銅箔の平滑性は必要である。平滑な銅箔を得るためには、既存の銅箔の粗面を機械的にバフ研磨して平滑化する方法があるが、カール(銅箔が反り返る現象)やバフすじの発生、薄箔に対応できないといった問題が生じる。また、一方で、電解研磨により銅箔を平滑化する方法がある。この方法では溶解ロス、処理コスト増の問題が生じる。従って、銅箔の平滑性を得るためには、電解液中に加える添加剤を選択することがコスト的に最も有利である。   As electronic devices become thinner, printed circuit boards with a finer pattern have been demanded, and it is known that the circuit pitch that can be formed mainly depends on the surface roughness of the copper foil, thereby obtaining a fine pattern. For this purpose, the smoothness of the copper foil is essential. In addition, the smoothness of the copper foil is required even in applications requiring flexibility such as a hinge portion of a mobile phone and in high frequency applications. In order to obtain a smooth copper foil, there is a method of mechanically buffing and smoothing the rough surface of the existing copper foil, but curling (a phenomenon in which the copper foil warps) and buffing are generated, The problem of not being able to handle arises. On the other hand, there is a method of smoothing the copper foil by electrolytic polishing. This method causes problems such as dissolution loss and increased processing costs. Therefore, in order to obtain the smoothness of the copper foil, it is most advantageous in cost to select an additive to be added to the electrolytic solution.

一方、電解銅箔で、良好な耐折り曲げ性を得るためには、加工硬化による高強度化を狙って圧延工程を通すことも考えられるが、製造コストの大幅な上昇を招いてしまう。従って、電解銅箔に良好な耐折り曲げ性を付与するためには、やはり電解液中に加える添加剤により、高強度の電解銅箔を直接製造することが望まれる。   On the other hand, in order to obtain good bending resistance with the electrolytic copper foil, it may be possible to go through a rolling process aiming at high strength by work hardening, but this leads to a significant increase in manufacturing cost. Therefore, in order to give good bending resistance to the electrolytic copper foil, it is desired to directly produce a high-strength electrolytic copper foil with an additive added to the electrolytic solution.

従来、平滑な電解銅箔や良好な耐折り曲げ性を有する電解銅箔を得るために、電解液中の添加剤を選択することによって達成しようとする試みは種々なされている。最も代表的な試みは、電解液中にゼラチン又は膠や塩素イオンを添加する試みである。例えば特許文献1(特開2004−79523号公報)の実施例には、平滑化した電解銅箔が記載され、電解液中に塩素イオンと低分子量ゼラチンを添加することが記載されている。特許文献2(特開平8−296082号公報)には、一定の塩化物イオン含有し、膠を少量含有するかもしくは含有しない電解液を用い、耐折り曲げ性に優れた電解銅箔の製造方法が記載されている。特許文献3(特開2001−181886号公報)及び特許文献4(特許第3270637号公報)にもゼラチン及び/又は膠を電解液中に含有させた電解銅箔の製造方法が記載されている。   Conventionally, in order to obtain a smooth electrolytic copper foil or an electrolytic copper foil having good bending resistance, various attempts have been made to achieve it by selecting an additive in the electrolytic solution. The most representative attempt is an attempt to add gelatin or glue or chloride ions to the electrolyte. For example, in the Example of patent document 1 (Unexamined-Japanese-Patent No. 2004-79523), the smoothed electrolytic copper foil is described and it describes that chlorine ion and low molecular weight gelatin are added in electrolyte solution. Patent Document 2 (JP-A-8-296082) discloses a method for producing an electrolytic copper foil excellent in bending resistance using an electrolytic solution containing a certain amount of chloride ions and containing little or no glue. Are listed. Patent Document 3 (Japanese Patent Laid-Open No. 2001-181886) and Patent Document 4 (Patent No. 3270637) also describe a method for producing an electrolytic copper foil in which gelatin and / or glue is contained in an electrolytic solution.

また、特許文献5(特開2004−35918号公報)には、ゼラチンや膠に代えて、ジアリルジアルキルアンモニウム塩と二酸化硫黄との共重合体と3−メルカプト−1−スルホン酸とを電解液中に含有させることによって、粗面の表面粗さを小さくし、かつ伸び率に優れた電解銅箔の製造方法が記載されている。   Patent Document 5 (Japanese Patent Application Laid-Open No. 2004-35918) describes a copolymer of diallyldialkylammonium salt and sulfur dioxide and 3-mercapto-1-sulfonic acid in an electrolytic solution instead of gelatin or glue. It describes a method for producing an electrolytic copper foil having a rough surface with reduced surface roughness and excellent elongation.

特開2004−79523号公報JP 2004-79523 A 特開平8−296082号公報JP-A-8-296082 特開2001−181886号公報JP 2001-181886 A 特許第3270637号公報Japanese Patent No. 3,270,637 特開2004−35918号公報JP 2004-35918 A

しかしながら、これら上述した特許文献1〜特許文献5に記載の電解銅箔は、一定の平滑性や耐折り曲げ性は得られるが、回路パターンのファインピッチ化が進行するフレキシブルプリント配線板(特に、TAB製品)には、従来以上の表面の平滑性や、耐折り曲げ性を良好にするための引張り強さが要望されていた。   However, the electrolytic copper foils described in Patent Document 1 to Patent Document 5 described above can obtain a certain smoothness and bending resistance, but a flexible printed wiring board (in particular, TAB) in which fine pitches of circuit patterns progress. Products) have been required to have surface smoothness and tensile strength to improve bending resistance.

金属材の場合、引張り強さが向上すれば、材質が脆くなり、靱性が損なわれ伸び率も低下するのが一般的である。従って、特に、耐折り曲げ性を良好にするためには、引張り強さと伸び率とを適度なバランスで兼ね備える必要があることになる。   In the case of a metal material, if the tensile strength is improved, the material becomes brittle, the toughness is impaired, and the elongation rate is generally lowered. Therefore, in particular, in order to improve the bending resistance, it is necessary to combine the tensile strength and the elongation rate with an appropriate balance.

金属材である電解銅箔の高強度化を図る方法としては、結晶粒の微細化、合金元素の固溶強化、異種金属元素を用いての粒子分散強化、加工硬化のいずれかの方法を考えるのが一般的である。   As a method to increase the strength of the electrolytic copper foil, which is a metal material, consider one of the following methods: refinement of crystal grains, solid solution strengthening of alloy elements, particle dispersion strengthening using dissimilar metal elements, and work hardening It is common.

この中で、異種の合金元素を用いての固溶強化、粒子分散強化理論を用い、合金銅箔としての電解銅箔とすることが最も容易に実現可能なように思われる。ところが、プリント配線板に多用される電解銅箔は、電気抵抗の上昇が起こることは好ましくないのである。特に、高強度化可能な合金元素を含有させると電解銅箔の電気抵抗の上昇を引き起こしやすいのである。同様に考えると、電解銅箔の場合、電解液に多くの添加剤を加えると、その添加剤が析出銅中に含有され、電解銅箔の電気抵抗の上昇を引き起こすこともあり、出来る限り添加剤量を減らしたいというのが常であった。   Among these, it seems that the electrolytic copper foil as the alloy copper foil can be most easily realized by using the solid solution strengthening and particle dispersion strengthening theory using different alloy elements. However, it is not preferable that the electrolytic copper foil frequently used for printed wiring boards has an increase in electrical resistance. In particular, when an alloy element that can be strengthened is contained, the electrical resistance of the electrolytic copper foil is likely to increase. In the same way, in the case of electrolytic copper foil, if many additives are added to the electrolytic solution, the additive is contained in the deposited copper and may cause an increase in the electrical resistance of the electrolytic copper foil. I always wanted to reduce the dose.

この中で、加工硬化理論は、上述したように、電解銅箔を圧延工程に通すことは、工業的経済理論からして困難である。ところが、加工硬化理論は、金属の結晶組織内に転位を導入し、転位密度の上昇を起こさせ、転位の絡み合いにより変形抵抗が大きくなり、金属材の高強度化が図れるというものである。従って、電解銅箔の電析時の結晶組織を、一定レベルの転位を備える適度な歪み密度を持つものと出来ればよい。この理論であれば、新たな銅の電解条件に想到出来れば、実現可能な範囲と思われる。   In this, it is difficult from the industrial economic theory that the work hardening theory passes the electrolytic copper foil through the rolling process as described above. However, the work hardening theory is that dislocations are introduced into the crystal structure of the metal to increase the dislocation density, and the deformation resistance increases due to the entanglement of the dislocations, thereby increasing the strength of the metal material. Therefore, the crystal structure at the time of electrodeposition of an electrolytic copper foil should just be able to have a moderate strain density with a certain level of dislocations. This theory seems to be a feasible range if new copper electrolysis conditions can be conceived.

また、結晶粒の微細化は、金属組織内の結晶粒が微細化すると、結晶粒界密度が上昇し、金属材の変形が起こるスベリ面を遮断して、変形が起こりにくくなるというものである。従って、電解銅箔の場合、電析時の結晶組織の結晶粒径が可能な限り微細なものとなることが好ましいのである。この理論も、新たな銅の電解条件に想到出来れば、実現可能な範囲と思われる。   In addition, the refinement of crystal grains means that when the crystal grains in the metal structure are refined, the grain boundary density is increased, the smooth surface where the metal material is deformed is blocked, and the deformation is less likely to occur. . Therefore, in the case of an electrolytic copper foil, it is preferable that the crystal grain size of the crystal structure during electrodeposition is as fine as possible. This theory is also considered feasible if new copper electrolysis conditions can be conceived.

従って、本発明の目的では、添加剤量の少ない電解液を用いて新たな電解条件を見いだし、良好な電気抵抗、良好な耐折り曲げ性能、適度な伸び率、良好な表面粗度をバランス良く兼ね備え、リジッドタイプのプリント配線板だけではなく、フレキシブルプリント配線板への適用も可能な電解銅箔を提供することにある。   Therefore, for the purpose of the present invention, a new electrolysis condition is found using an electrolyte solution with a small amount of additive, and it has a good balance of good electrical resistance, good bending resistance, moderate elongation, and good surface roughness. An object of the present invention is to provide an electrolytic copper foil that can be applied not only to a rigid type printed wiring board but also to a flexible printed wiring board.

本発明者らは、鋭意検討の結果、電解銅箔の粗面の表面粗さを一定値以下とすると共に、高温熱後の引張り強さを特定値以上となる電解銅箔の製造に到った。そして、この電解銅箔は、後述する電解液中のゼラチン又は膠と塩素イオンの各濃度及び濃度比を制御し、且つ、ゼラチン又は膠の数平均分子量を一定範囲とすることが必要であることを見出し、本発明に到達した。以下、これらに関して説明する。   As a result of intensive studies, the present inventors have produced an electrolytic copper foil in which the surface roughness of the rough surface of the electrolytic copper foil is set to a predetermined value or less and the tensile strength after high-temperature heating is set to a specific value or more. It was. And this electrolytic copper foil needs to control each density | concentration and density | concentration ratio of gelatin or glue and a chloride ion in the electrolyte solution mentioned later, and to make the number average molecular weight of gelatin or glue into a fixed range. And reached the present invention. These will be described below.

(電解銅箔)
本発明に係る電解銅箔は、180℃×1時間加熱後の引張り強さが50kgf/mm以上、180℃×1時間加熱後の伸び率3.0%以上、粗面の表面粗さ(Rz)が2μm以下であることを特徴とするものである。中でも、加熱後の引張り強さが非常に高い点に特徴がある。
(Electrolytic copper foil)
The electrolytic copper foil according to the present invention has a tensile strength after heating at 180 ° C. × 1 hour of 50 kgf / mm 2 or more, an elongation of 3.0% or more after heating at 180 ° C. × 1 hour, and a rough surface roughness ( Rz) is 2 μm or less. Above all, it is characterized by a very high tensile strength after heating.

加熱後の引張り強さが要求されるのは、プリント配線板の製造プロセスは熱間プレス加工に始まり、必要に応じたプリント配線板の歪み取りベーキング、TAB製品に於いては錫メッキ後のフュージング加熱、半田リフロー時の加熱等種々の加熱プロセスがあり、特に製品を折り曲げて使用するフレキシブルプリント配線板の場合には、繰り返しの折り曲げ挙動に耐えうるか否かが非常に重要となる。また、電解銅箔の加熱後引張り強さは、デバイスホールを備えるTAB製品のインナーリードの折れ曲がりを防止し、インナーリードへのICチップ等の実装ボンディングでの延性変形を防止する観点からも重要となる。   Tensile strength after heating is required because the printed wiring board manufacturing process starts with hot pressing, and when necessary, the printed wiring board is distorted and baked. In TAB products, fusing after tin plating There are various heating processes such as heating and heating at the time of solder reflow. Especially in the case of a flexible printed wiring board that is used by bending a product, it is very important whether or not it can withstand repeated bending behavior. In addition, the tensile strength after heating of the electrolytic copper foil is important from the viewpoint of preventing the bending of the inner lead of the TAB product provided with the device hole and preventing the ductile deformation of the inner lead by mounting bonding of the IC chip or the like. Become.

電解銅箔の耐折り曲げ性は、一般的に短冊状(幅10mm×長さ15cm)の電解銅箔試料に加重を掛けつつ、振り子のように連続的に折り曲げを行うことの出来る試験装置を用いて破断に到るまでの折り曲げ回数を測定する。本件明細書では、MIT耐折試験器を用いて、加重0.5kgf、屈曲速度175回/分、屈曲半径0.8mmを採用した(以下、単に「折り曲げ試験」と称する。)。   The bending resistance of the electrolytic copper foil is generally determined by using a test device that can be bent continuously like a pendulum while applying a weight to a strip-shaped (10 mm wide x 15 cm long) electrolytic copper foil sample. Measure the number of folds to break. In this specification, a load of 0.5 kgf, a bending speed of 175 times / min, and a bending radius of 0.8 mm were employed using an MIT folding resistance tester (hereinafter simply referred to as “bending test”).

最初に、電解銅箔の耐折り曲げ性に与える要因を考えてみる。金属素材の場合、引張り強さが大きくなるほど、伸び率は減少し、脆化するのが一般的である。従って、耐折り曲げ性は、引張り強さと伸び率とのバランスである靱性により決定づけられると考えられる。
そして、電解銅箔の表面状態、特に表面の凹凸の状況により、耐折り曲げ性は影響を受けるものと考えられる。耐折り曲げ性試験の最中に試料である電解銅箔が破断するのは、折り曲げ時に最も伸縮する銅箔表面からのマイクロクラックの伝播によるものであると考えられる。そして、このマイクロクラックは、電解銅箔の表面に凹凸が有れば、その凹凸の切り欠き効果によりグリフィスの理論が適用でき、谷部での応力集中箇所となりマイクロクラックの発生が起こりやすくなる。
First, consider the factors that contribute to the bending resistance of electrolytic copper foil. In the case of a metal material, as the tensile strength increases, the elongation rate generally decreases and becomes brittle. Therefore, it is considered that the bending resistance is determined by toughness which is a balance between tensile strength and elongation.
And it is thought that a bending resistance is influenced by the surface state of electrolytic copper foil, especially the condition of the unevenness | corrugation of the surface. It is thought that the electrolytic copper foil as a sample breaks during the bending resistance test due to the propagation of microcracks from the surface of the copper foil that expands and contracts most during bending. If the surface of the electrolytic copper foil has irregularities, Griffith's theory can be applied due to the notch effect of the irregularities, and the microcracks become stress-concentrated portions at the valleys, and microcracks are likely to occur.

そこで、電解銅箔の耐折り曲げ性を向上させるためには、引張り強さと伸び率との適正なバランスを確保し、且つ、表面の粗らさを可能な限り滑らかにしてマイクロクラックの発生起点を減少させる必要があると考えられるのである。   Therefore, in order to improve the bending resistance of the electrolytic copper foil, an appropriate balance between tensile strength and elongation is ensured, and the surface roughness is made as smooth as possible to reduce the origin of microcracks. It is thought that it needs to be reduced.

以上のことから、本件発明者等は、引張り強さ、伸び率、表面粗らさの3つの要素の適正なバランスを考慮した電解銅箔を用いることしたのである。以下、各特性に関して説明する。   From the above, the present inventors have used an electrolytic copper foil in consideration of an appropriate balance of the three factors of tensile strength, elongation rate, and surface roughness. Hereinafter, each characteristic will be described.

引張り強さ: 一般的な電解銅箔の引張り強さは、常態引張り強さが35kgf/mm〜52kgf/mmであり、180℃×1時間加熱後の引張り強さは28kgf/mm〜48kgf/mmというレベルに軟化する。ところが、本発明に係る電解銅箔の場合には、180℃×1時間加熱後の引張り強さが、50kgf/mm以上となるのである。従来は、このように高い加熱後引張り強さを有する電解銅箔は存在しなかった。 Tensile strength: As for the tensile strength of general electrolytic copper foil, the normal tensile strength is 35 kgf / mm 2 to 52 kgf / mm 2 , and the tensile strength after heating at 180 ° C. × 1 hour is 28 kgf / mm 2 to Softens to a level of 48 kgf / mm 2 . However, in the case of the electrolytic copper foil according to the present invention, the tensile strength after heating at 180 ° C. for 1 hour is 50 kgf / mm 2 or more. Conventionally, there has been no electrolytic copper foil having such a high tensile strength after heating.

そして、この180℃×1時間加熱後の引張り強さが50kgf/mm〜55kgf/mmの範囲にあることが、より好ましいのである。180℃×1時間加熱後の引張り強さが50kgf/mm未満では、加熱後の軟化が顕著であることが明確であり、ハンドリング時のシワも入りやすく、フレキシブルプリント配線板に要求される高い耐折り曲げ性を得ることができない。一方、180℃×1時間加熱後の引張り強さが55kgf/mmを超えると脆化傾向が顕著になり、伸び率が3.0%未満となる傾向が高くなり、電解銅箔の靱性として良好なものとは言えなくなる。なお、加熱条件に180℃×1時間の条件を採用したのは、通常のリジッド基板のプレス成形温度に近い熱処理条件を採用したのである。 Then, it is more preferable that the tensile strength after heating this 180 ° C. × 1 hour in the range of 50kgf / mm 2 ~55kgf / mm 2 . When the tensile strength after heating at 180 ° C. for 1 hour is less than 50 kgf / mm 2 , it is clear that the softening after heating is remarkable, and wrinkles during handling are easily generated, which is required for a flexible printed wiring board. Bending resistance cannot be obtained. On the other hand, when the tensile strength after heating at 180 ° C. for 1 hour exceeds 55 kgf / mm 2 , the tendency to embrittle becomes prominent, and the tendency for the elongation to become less than 3.0% increases. As the toughness of the electrolytic copper foil, It cannot be said that it is good. The reason why the condition of 180 ° C. × 1 hour is adopted as the heating condition is that the heat treatment condition close to the press forming temperature of a normal rigid substrate is adopted.

更に、本件発明に係る電解銅箔の特徴の一つであるが、加熱を行う前の常態での引張り強さも非常に高く、通常は常態引張り強さが60kgf/mmを超えるのである。但し、本件発明者等の研究によれば、本件発明に係る電解銅箔の常態引張り強さは、実験的に58kgf/mm〜65kgf/mmの範囲となるようである。 Furthermore, as one of the characteristics of the electrolytic copper foil according to the present invention, the tensile strength in the normal state before heating is very high, and the normal tensile strength usually exceeds 60 kgf / mm 2 . However, according to the studies by the present inventors, the normal tensile strength of the electrolytic copper foil according to the present invention seems to be experimentally in the range of 58 kgf / mm 2 to 65 kgf / mm 2 .

伸び率: 伸び率は、180℃×1時間加熱後の伸び率3.0%以上である事が必要である。この伸び率は、上述のように良好な靱性を確保する上で、引張り強さとのバランスが重要である。伸び率が3.0%未満では、電解銅箔の180℃×1時間加熱後の引張り強さが50kgf/mmを超えていても、単に脆化したものであり、良好な靱性(=フレキシビリティ)を備えていると言えなくなり、耐折り曲げ性能は改善されないのである。一方、上限に関して明記していないが、4.5%程度である。180℃×1時間加熱後の伸び率4.5%を超えると、引張り強さが低下し、良好な靱性を維持することができなくなり、耐折り曲げ性が劣化するのである。また、常態での伸びは、3.5%〜5.0%であることが好ましい。後述する製造方法で得られる本件発明に係る電解銅箔の特徴として、加熱前後の伸び率が大きく変化しないが、常態の伸び率に比べ、加熱後の伸び率が僅かに低下する傾向にある。 Elongation rate: The elongation rate should be 3.0% or more after heating at 180 ° C. for 1 hour. In order to ensure good toughness as described above, a balance between the elongation and the tensile strength is important. When the elongation percentage is less than 3.0%, even if the tensile strength of the electrolytic copper foil after heating at 180 ° C. for 1 hour exceeds 50 kgf / mm 2 , it is simply embrittled and has good toughness (= flexi Therefore, the bending resistance is not improved. On the other hand, the upper limit is not specified, but it is about 4.5%. When the elongation percentage after heating at 180 ° C. for 1 hour exceeds 4.5%, the tensile strength is lowered, it becomes impossible to maintain good toughness, and the bending resistance deteriorates. Further, the normal elongation is preferably 3.5% to 5.0%. As a feature of the electrolytic copper foil according to the present invention obtained by the manufacturing method described later, the elongation before and after heating does not change greatly, but the elongation after heating tends to slightly decrease compared to the normal elongation.

表面粗さ: 電解銅箔は、ドラム形状をした回転陰極と、その回転陰極の形状に沿って対抗配置する鉛系陽極等との間に、硫酸銅系溶液を流し、電解反応を利用して銅を回転陰極のドラム表面に析出させ、この析出した銅が箔状態となり、回転陰極から連続して引き剥がして巻き取り製造される。 Surface roughness: The electrolytic copper foil is made by flowing a copper sulfate-based solution between a drum-shaped rotating cathode and a lead-based anode or the like arranged along the shape of the rotating cathode, and using an electrolytic reaction. Copper is deposited on the drum surface of the rotating cathode, and the deposited copper becomes a foil, which is continuously peeled off from the rotating cathode and wound up.

この電解銅箔の回転陰極と接触した状態から引き剥がされた面は、鏡面仕上げされた回転陰極表面の形状が転写したものとなり、光沢を持ち滑らかな面であるため光沢面と称する。これに対し、析出サイドであった方の電解銅箔の表面形状は、析出する銅の結晶成長速度が結晶面ごとに異なるため、山形の凹凸形状を示すものとなり、これを粗面と称する。   The surface of the electrolytic copper foil that has been peeled off from the state in contact with the rotating cathode is a transfer of the mirror-finished surface shape of the rotating cathode, and is called a glossy surface because it is glossy and smooth. On the other hand, the surface shape of the electrolytic copper foil that was the precipitation side shows a mountain-shaped uneven shape because the crystal growth rate of the deposited copper differs for each crystal plane, and this is called a rough surface.

上記説明から分かるように、光沢面の表面粗さは、回転陰極の表面をどの程度の鏡面仕上げとするかにより決定される。これに対し、粗面の表面粗さは、電解液、電流密度、溶液温度等の電解条件に大きく左右される。本件発明で言う粗面の表面粗さ(Rz)は、可能な限り光沢面の粗さに近づけ、2μm以下とするのである。粗面の表面粗さが2μmを超えると、上記引張り強さ及び伸び率が上述の適正範囲にあったとしても、耐折り曲げ性が向上せず、ファインピッチパターンの形成用銅箔としての適性に欠けるものとなるのである。そして、更に好ましくは、粗面の表面粗さ(Rz)を0.7μm〜1.5μmとするのである。粗面の表面粗さが、1.5μm以下になると安定して耐折り曲げ性能を向上させることが出来るのである。また、下限を0.7μmと明記しているのは、後述する製造方法で得られる製造限界値である。   As can be seen from the above description, the surface roughness of the glossy surface is determined by the degree of mirror finish on the surface of the rotating cathode. On the other hand, the surface roughness of the rough surface greatly depends on electrolysis conditions such as the electrolytic solution, current density, and solution temperature. The surface roughness (Rz) of the rough surface referred to in the present invention is as close as possible to the roughness of the glossy surface and is 2 μm or less. When the surface roughness of the rough surface exceeds 2 μm, even if the tensile strength and the elongation rate are within the above-mentioned appropriate ranges, the bending resistance is not improved and the copper foil for forming a fine pitch pattern is suitable. It will be lacking. More preferably, the surface roughness (Rz) of the rough surface is 0.7 μm to 1.5 μm. When the surface roughness of the rough surface is 1.5 μm or less, the bending resistance can be stably improved. The lower limit is specified as 0.7 μm, which is a production limit value obtained by the production method described later.

電解銅箔の厚さ: 上述の引張り強さ及び伸び率は、本来厚さに依存するものではない。しかしながら、粗面の表面粗さは、一般的に電解銅箔の厚さに依存し、厚いほど粗さは大きくなる。そこで、本件発明では、7μm〜20μmの電解銅箔を主な対象としていることを明確にしておく。 Thickness of electrolytic copper foil: The above-described tensile strength and elongation rate are not inherently dependent on the thickness. However, the surface roughness of the rough surface generally depends on the thickness of the electrolytic copper foil, and the roughness increases as the thickness increases. Therefore, in the present invention, it is clarified that the electrolytic copper foil of 7 μm to 20 μm is mainly targeted.

(電解銅箔の製造方法)
上記電解銅箔の製造は、「180℃×1時間加熱後の引張り強さが50kgf/mm以上の電解銅箔の製造方法であって、硫酸銅系電解液中のゼラチン又は膠濃度が0.67ppm〜16.7ppm、塩素イオン濃度が0.2ppm〜0.5ppm、ゼラチン又は膠濃度と塩素イオン濃度の重量比が1:0.03〜0.3であり、かつゼラチン又は膠の数平均分子量が1000〜40000であることを特徴とする電解銅箔の製造方法」を採用するのである。
(Method for producing electrolytic copper foil)
The production of the electrolytic copper foil is “a method of producing an electrolytic copper foil having a tensile strength after heating at 180 ° C. × 1 hour of 50 kgf / mm 2 or more, wherein the gelatin or glue concentration in the copper sulfate electrolyte is 0. .67 ppm to 16.7 ppm, chloride ion concentration is 0.2 ppm to 0.5 ppm, weight ratio of gelatin or glue concentration to chloride ion concentration is 1: 0.03 to 0.3, and number average of gelatin or glue The manufacturing method of the electrolytic copper foil characterized by having a molecular weight of 1000-40000 is adopted.

また、本発明に係る電解銅箔の製造においては、上記ゼラチン又は膠の濃度が1ppm〜15ppmである上記電解銅箔の製造方法を提供するものである。   Moreover, in manufacture of the electrolytic copper foil which concerns on this invention, the manufacturing method of the said electrolytic copper foil whose density | concentration of the said gelatin or glue is 1 ppm-15 ppm is provided.

また、本発明に係る電解銅箔の製造においては、上記塩素イオン濃度が0.3ppm〜0.5ppmである上記電解銅箔の製造方法を提供するものである。   Moreover, in manufacture of the electrolytic copper foil which concerns on this invention, the manufacturing method of the said electrolytic copper foil whose said chlorine ion concentration is 0.3 ppm-0.5 ppm is provided.

また、本発明に係る電解銅箔の製造においては、上記ゼラチン又は膠濃度と塩素イオン濃度の重量比が1:0.03〜0.2である上記電解銅箔の製造方法を提供するものである。   Moreover, in manufacture of the electrolytic copper foil which concerns on this invention, the weight ratio of the said gelatin or glue density | concentration and chloride ion concentration provides the manufacturing method of the said electrolytic copper foil which is 1: 0.03-0.2. is there.

また、本発明に係る電解銅箔の製造においては、上記上記ゼラチン又は膠の数平均分子量が1500〜20000である上記電解銅箔の製造方法を提供するものである。   Moreover, in manufacture of the electrolytic copper foil which concerns on this invention, the manufacturing method of the said electrolytic copper foil whose number average molecular weights of the said gelatin or glue are 1500-20000 is provided.

本発明に係る電解銅箔によれば、粗面の表面粗さが小さく、平滑性を有するため、ファインピッチパターンを形成することができ、また平滑性を有すると共に、高温加熱後の引張り強さが高い水準にあり、加熱後伸び率との適正なバランスを備えるため、フレキシブルプリント配線板に要求される耐折り曲げ性に極めて優れる。また、本発明の製造方法によって、上記電解銅箔が工業的規模で効率よく生産することが可能となる。   According to the electrolytic copper foil of the present invention, since the surface roughness of the rough surface is small and smooth, it is possible to form a fine pitch pattern, and it has smoothness and tensile strength after high-temperature heating. Is at a high level, and has an appropriate balance with the elongation after heating, and therefore is extremely excellent in the bending resistance required for the flexible printed wiring board. Moreover, the manufacturing method of the present invention enables the electrolytic copper foil to be efficiently produced on an industrial scale.

(本発明に係る電解銅箔の製造形態)
本発明に係る電解銅箔の製造方法は、硫酸銅系電解液中にゼラチン又は膠と塩素イオンとを一定濃度含有することによって、180℃×1時間加熱後(以下、高温加熱後ともいう)の引張り強さが50kgf/mm以上、180℃×1時間加熱後の伸び率3.0%以上、粗面の表面粗さ(Rz)が2μm以下の電解銅箔を得るものである。
(Production form of electrolytic copper foil according to the present invention)
The method for producing an electrolytic copper foil according to the present invention contains gelatin or glue and chloride ions in a certain concentration in a copper sulfate electrolyte, and after heating at 180 ° C. for 1 hour (hereinafter also referred to as high-temperature heating). An electrolytic copper foil having a tensile strength of 50 kgf / mm 2 or more, an elongation of 3.0% or more after heating at 180 ° C. for 1 hour, and a rough surface having a surface roughness (Rz) of 2 μm or less is obtained.

電解液は、硫酸酸性銅溶液が用いられ、一般には硫酸銅5水塩を200g/l〜600g/l、フリー硫酸20g/l〜200g/lからなる組成を基本浴組成として用いる。電解条件は、浴温20℃〜70℃、電流密度50A/dm〜150A/dm、電解時間10秒〜300秒である。 As the electrolytic solution, an acidic copper sulfate solution is used. In general, a composition composed of 200 g / l to 600 g / l of copper sulfate pentahydrate and 20 g / l to 200 g / l of free sulfuric acid is used as a basic bath composition. The electrolysis conditions are a bath temperature of 20 ° C. to 70 ° C., a current density of 50 A / dm 2 to 150 A / dm 2 , and an electrolysis time of 10 seconds to 300 seconds.

そして、上記電解液中には、ゼラチン又は膠が含有される。このゼラチン又は膠濃度は、0.67ppm〜16.7ppm、工業的規模での安定した生産性及び歩留まりを考慮すると、より好ましくは1ppm〜15ppmである。ゼラチン又は膠濃度が上記範囲を外れると、高温加熱後の高い引張り強さと伸び率との良好なバランスが得られなかったり、粗面の表面粗さ(Rz)が大きくなる。   The electrolytic solution contains gelatin or glue. The gelatin or glue concentration is preferably 0.67 ppm to 16.7 ppm, more preferably 1 ppm to 15 ppm in view of stable productivity and yield on an industrial scale. If the gelatin or glue concentration is out of the above range, a good balance between high tensile strength and elongation after high-temperature heating cannot be obtained, or the surface roughness (Rz) of the rough surface becomes large.

そして、このときに用いるゼラチン又は膠の数平均分子量は1000〜40000の範囲のものを用いることが好ましい。さらには数平均分子量が1500〜20000の範囲にあるものを用いることが、加熱後の引張り強さ、伸び率、粗面の表面粗さの3要素を適正に維持して、歩留まり良く生産する見地から好ましいのである。ゼラチン又は膠の数平均分子量が、上記範囲を外れると高温加熱後の高い引張り強さと伸び率との適正なバランスが得られなかったり、粗面の表面粗さ(Rz)が大きくなる。   The number average molecular weight of gelatin or glue used at this time is preferably in the range of 1000 to 40000. Furthermore, the use of those having a number average molecular weight in the range of 1500 to 20000 properly maintains the three elements of tensile strength after heating, elongation rate, and surface roughness of the rough surface, and produces high yield. Is preferable. When the number average molecular weight of gelatin or glue is out of the above range, an appropriate balance between high tensile strength and elongation after high-temperature heating cannot be obtained, or the surface roughness (Rz) of the rough surface increases.

ここで、上記ゼラチン又は膠の数平均分子量の測定方法について説明する。本件発明に言う数平均分子量は、上記有機物を水に溶解させた濃度3ppm〜5ppmの試料溶液をゲルパーミエーションクロマトグラフィ(GPC)法を用いて測定したものである。本件発明では、移動相としてアセトニトリル20容量%、濃度5mMの希硫酸80容量%の混合溶液を用い、この移動相を送液ポンプで送り出し、これに200μlの試料溶液を注入し、その後直列配置した3本のカラムを通過させた。第1カラムはアムシャムファルマシアバイオテク株式会社製のSephadex G−15(排除限界分子量1500)の粒径66μm以下の充填剤を収容した内径7.5mm、長さ250mmのPEEK製カラムである。第2及び第3カラムは、昭和電工株式会社製のAsahipak GS−320HQ(排除限界分子量40000)、内径7.6mm、長さ300mmのカラムである。第1カラム〜第3カラムを通過して吸光度検出器(UV210nm)を用いてゼラチン又は膠の分子量分布を測定し、数平均分子量を算出した。   Here, a method for measuring the number average molecular weight of the gelatin or glue will be described. The number average molecular weight referred to in the present invention is measured using a gel permeation chromatography (GPC) method of a sample solution having a concentration of 3 ppm to 5 ppm in which the above organic substance is dissolved in water. In the present invention, a mixed solution of 20% by volume of acetonitrile and 80% by volume of dilute sulfuric acid having a concentration of 5 mM is used as the mobile phase, this mobile phase is sent out by a liquid feed pump, 200 μl of the sample solution is injected into this, and then arranged in series. Three columns were passed. The first column is a PEEK column having an inner diameter of 7.5 mm and a length of 250 mm, containing a Sephadex G-15 (exclusion limit molecular weight 1500) particle size 66 μm or less filler made by Amsham Pharmacia Biotech. The second and third columns are Asahipak GS-320HQ (exclusion limit molecular weight 40000) manufactured by Showa Denko KK, an inner diameter of 7.6 mm, and a length of 300 mm. The molecular weight distribution of gelatin or glue was measured using an absorbance detector (UV210 nm) after passing through the first column to the third column, and the number average molecular weight was calculated.

なお、ゼラチン又は膠の数平均分子量の測定において、検量線の作成に用いた試薬は以下のとおりである。また、ゼラチン又は膠の濃度は、同種のゼラチン又は膠の濃度既知の水溶液を用いて検量線を作成することにより測定した。
(試薬)
・ALBUMIN,BOVINE SERUM(シグマアルドリッチジャパン株式会社製、分子量66000)
・CYTOCHROME C(シグマアルドリッチジャパン株式会社製、分子量12400)
・APROTININ(シグマアルドリッチジャパン株式会社製、分子量6500)
・INSULIN(シグマアルドリッチジャパン株式会社製、分子量5734)
・INSULIN CHAIN B,OXIDIZED(シグマアルドリッチジャパン株式会社製、分子量3496)
・NEUROTENSIN(シグマアルドリッチジャパン株式会社製、分子量1673)
・ANGIOTENSIN II(シグマアルドリッチジャパン株式会社製、分子量1046)
・VAL−GLU−GLU−ALA−GLU(シグマアルドリッチジャパン株式会社製、分子量576)
In the measurement of the number average molecular weight of gelatin or glue, the reagents used for preparing a calibration curve are as follows. The concentration of gelatin or glue was measured by preparing a calibration curve using an aqueous solution of known gelatin or glue concentration.
(reagent)
・ ALBUMIN, BOVINE SERUM (Sigma Aldrich Japan Co., Ltd., molecular weight 66000)
CYTOCHROME C (Sigma Aldrich Japan Co., Ltd., molecular weight 12400)
・ APROTININ (Sigma Aldrich Japan Co., Ltd., molecular weight 6500)
INSULIN (Sigma Aldrich Japan Co., Ltd., molecular weight 5734)
INSULIN CHAIN B, OXIDIZED (Sigma Aldrich Japan Co., Ltd., molecular weight 3496)
・ NEUROTENSIN (manufactured by Sigma Aldrich Japan Co., Ltd., molecular weight 1673)
・ ANGIOTENSIN II (Sigma Aldrich Japan Co., Ltd., molecular weight 1046)
VAL-GLU-GLU-ALA-GLU (Sigma Aldrich Japan, molecular weight 576)

上記電解液中には、塩素イオンが含有される。この塩素イオン濃度は0.2ppm〜0.5ppm、歩留まり良く生産する見地から、より好ましくは0.3ppm〜0.5ppmである。塩素イオン濃度が上記範囲を外れると、加熱後の引張り強さ、伸び率、粗面の表面粗さの3要素にバラツキが生じ易く、特に、粗面の表面粗さ(Rz)が大きくなる傾向にある。   The electrolytic solution contains chlorine ions. The chlorine ion concentration is preferably 0.2 ppm to 0.5 ppm, more preferably 0.3 ppm to 0.5 ppm from the viewpoint of producing with good yield. If the chlorine ion concentration is outside the above range, the three elements of tensile strength after heating, elongation rate, and surface roughness of the rough surface are likely to vary, and in particular, the surface roughness (Rz) of the rough surface tends to increase. It is in.

以上のことから理解出来るように、上記電解液中のゼラチン又は膠濃度と塩素イオン濃度との、配合割合は、の重量比([電解液中のゼラチン又は膠濃度]:[塩素イオン濃度])は1:0.03〜0.3であり、製造安定性に特に優れるという観点から、より好ましくは1:0.03〜0.2である。ゼラチン又は膠濃度と塩素イオン濃度の重量比が上記範囲を外れると、加熱後の引張り強さ、伸び率、粗面の表面粗さの3要素の適正なバランスが維持出来なくなる。   As can be understood from the above, the blending ratio of gelatin or glue concentration and chloride ion concentration in the above electrolyte is a weight ratio ([gelatin or glue concentration in electrolyte]: [chloride ion concentration]). Is from 1: 0.03 to 0.3, and from the viewpoint of being particularly excellent in production stability, it is more preferably from 1: 0.03 to 0.2. If the weight ratio between the gelatin or glue concentration and the chloride ion concentration is out of the above range, an appropriate balance among the three factors of tensile strength after heating, elongation rate, and surface roughness of the rough surface cannot be maintained.

上記のような電解液を用いて電解を行うことによって、ドラム型陰極に電析させ、連続生産する電解銅箔は、加熱後の引張り強さ、伸び率、粗面の表面粗さの3要素の適正なバランスを維持し、高温加熱後の耐折り曲げ性能を飛躍的に向上させるのである。以下、実施例に基づき本件発明を、より具体的に説明する。   By performing electrolysis using the above electrolytic solution, electrolytic copper foil electrodeposited on a drum-type cathode and continuously produced has three elements: tensile strength after heating, elongation rate, and surface roughness of the rough surface. Is maintained, and the bending resistance after high-temperature heating is dramatically improved. Hereinafter, the present invention will be described more specifically based on examples.

CuSO・5HO(Cu 80g/l)、HSO(140g/l)の硫酸酸性銅溶液に、数平均分子量1570の膠(2ppm)と塩素イオン(0.3ppm)を含有させ(膠と塩素の重量比1:0.15)、浴温50℃、電流密度60A/dmの電解条件でチタン製陰極に銅箔を電析し、剥離採取した。 A sulfuric acid copper solution of CuSO 4 · 5H 2 O (Cu 80 g / l) and H 2 SO 4 (140 g / l) contains glue (2 ppm) and chlorine ions (0.3 ppm) having a number average molecular weight of 1570 ( A copper foil was electrodeposited on a titanium cathode under the electrolytic conditions of glue / chlorine weight ratio 1: 0.15), bath temperature 50 ° C., and current density 60 A / dm 2 , and peeled and collected.

この電解銅箔の厚さは18μmであり、常態及び高温加熱後の引張り強さ、伸び率、耐折り曲げ性、粗面の表面粗さを測定した。なお、引張り強さ及び伸び(常態及び高温加熱後)は、IPC−TM−650に準拠して測定し、表面粗さ(Ra=算術平均粗さ、Rz=10点平均粗さ、Ry=最大粗さ)は、JIS B 0601(1994)に準拠して表面粗さ計(触針先端曲率半径0.2μm)にて測定した。その結果は、実施例1として他の実施例及び比較例と共に表1に示した。   The thickness of this electrolytic copper foil was 18 μm, and the tensile strength, elongation, bending resistance, and surface roughness of the rough surface after normal and high temperature heating were measured. The tensile strength and elongation (normal state and after high temperature heating) were measured according to IPC-TM-650, and surface roughness (Ra = arithmetic average roughness, Rz = 10-point average roughness, Ry = maximum) The roughness was measured with a surface roughness meter (stylus tip radius of curvature 0.2 μm) in accordance with JIS B 0601 (1994). The results are shown in Table 1 together with other examples and comparative examples as Example 1.

CuSO・5HO(Cu 80g/l)、HSO(140g/l)の硫酸酸性銅溶液に、数平均分子量20000の膠(10ppm)と塩素イオン(0.5ppm)を含有させ(膠と塩素の重量比1:0.05)、浴温50℃、電流密度60A/dmの電解条件でチタン製陰極に銅箔を電析し、剥離採取した。 CuSO 4 · 5H 2 O (Cu 80 g / l), H 2 SO 4 (140 g / l) in sulfuric acid copper solution containing glue (10 ppm) and chlorine ions (0.5 ppm) with a number average molecular weight of 20,000 ( The weight ratio of glue and chlorine was 1: 0.05), the copper foil was electrodeposited on the titanium cathode under the electrolytic conditions of bath temperature 50 ° C. and current density 60 A / dm 2 , and peeled and collected.

この電解銅箔の厚さは18μmであり、実施例1と同様に常態及び高温加熱後の引張り強さ、伸び率、耐折り曲げ性、粗面の表面粗さを測定した。その結果は、実施例2として他の実施例及び比較例と共に表1に示した。   The thickness of this electrolytic copper foil was 18 μm, and in the same manner as in Example 1, the tensile strength, elongation rate, bending resistance, and surface roughness of the rough surface after normal and high-temperature heating were measured. The results are shown in Table 1 together with other examples and comparative examples as Example 2.

比較例Comparative example

(比較例1)
この比較例では、市販されている電解銅箔の内、高い引張り強さ、粗面が低粗度化された電解銅箔を製造した。CuSO・5HO(Cu:80g/l)、HSO(140g/l)の硫酸酸性銅溶液に、数平均分子量5500の膠(1.8ppm)と塩素イオン(1.5ppm)を含有させ(膠と塩素の重量比1:0.83)、浴温50℃、電流密度60A/dmの電解条件でチタン製陰極に銅箔を電析し、剥離採取した。
(Comparative Example 1)
In this comparative example, among the commercially available electrolytic copper foils, an electrolytic copper foil having a high tensile strength and a roughened surface with a low roughness was produced. CuSO 4 · 5H 2 O (Cu: 80 g / l), H 2 SO 4 (140 g / l) in sulfuric acid copper solution, number average molecular weight 5500 glue (1.8 ppm) and chloride ion (1.5 ppm) Copper foil was electrodeposited on a titanium cathode under electrolytic conditions of a bath temperature of 50 ° C. and a current density of 60 A / dm 2 .

この電解銅箔の厚さは18μmであり、常態及び高温加熱後の引張り強さ、伸び率、耐折り曲げ性、粗面の表面粗さを測定した。その結果は、比較例1として他の実施例及び比較例と共に表1に示した。   The thickness of this electrolytic copper foil was 18 μm, and the tensile strength, elongation, bending resistance, and surface roughness of the rough surface after normal and high temperature heating were measured. The results are shown in Table 1 together with other examples and comparative examples as Comparative Example 1.

(比較例2)
この比較例では、加熱後伸び率が3%以上である市販されているレベルの電解銅箔を製造した。CuSO・5HO(Cu:80g/l)、HSO(140g/l)の硫酸酸性銅溶液に、数平均分子量20000の膠(1ppm)と塩素イオン(15ppm)を含有させ(膠と塩素の重量比1:15)、浴温50℃、電流密度60A/dmの電解条件でチタン製陰極に銅箔を電析し、剥離採取した。
(Comparative Example 2)
In this comparative example, a commercially available electrolytic copper foil having an elongation after heating of 3% or more was produced. CuSO 4 · 5H 2 O (Cu: 80 g / l), H 2 SO 4 (140 g / l) in an acidic copper sulfate solution containing glue (1 ppm) and chlorine ions (15 ppm) with a number average molecular weight of 20,000 (glue) And a weight ratio of chlorine of 1:15), a copper foil was electrodeposited on a titanium cathode under the electrolytic conditions of a bath temperature of 50 ° C. and a current density of 60 A / dm 2 , and stripped and collected.

この電解銅箔の厚さは18μmであり、常態及び高温加熱後の引張り強さ、伸び率、耐折り曲げ性、粗面の表面粗さを測定した。その結果は、比較例2として他の実施例及び比較例と共に表1に示した。   The thickness of this electrolytic copper foil was 18 μm, and the tensile strength, elongation, bending resistance, and surface roughness of the rough surface after normal and high temperature heating were measured. The results are shown in Table 1 together with other examples and comparative examples as Comparative Example 2.

(比較例3)
この比較例では、180℃付近の加熱により再結晶化が起こりアニール効果が得られ、加熱後の伸び率の高い電解銅箔を製造した。CuSO・5HO(Cu:80g/l)、HSO(140g/l)、塩素濃度15ppmの硫酸酸性銅溶液を活性炭濾過し、浴温50℃、電流密度60A/dmの電解条件でチタン製陰極に銅箔を電析し、剥離採取した。
(Comparative Example 3)
In this comparative example, recrystallization occurred by heating near 180 ° C., an annealing effect was obtained, and an electrolytic copper foil having a high elongation after heating was produced. CuSO 4 .5H 2 O (Cu: 80 g / l), H 2 SO 4 (140 g / l), 15 ppm chlorine concentration sulfuric acid copper solution is subjected to activated carbon filtration, electrolysis with a bath temperature of 50 ° C. and a current density of 60 A / dm 2 Under the conditions, a copper foil was electrodeposited on a titanium cathode and peeled and collected.

この電解銅箔の厚さは18μmであり、常態及び高温加熱後の引張り強さ、伸び率、耐折り曲げ性、粗面の表面粗さを測定した。その結果は、比較例3として他の実施例及び比較例と共に表1に示した。   The thickness of this electrolytic copper foil was 18 μm, and the tensile strength, elongation, bending resistance, and surface roughness of the rough surface after normal and high temperature heating were measured. The results are shown in Table 1 together with other examples and comparative examples as Comparative Example 3.

Figure 2006152420
Figure 2006152420

<実施例と比較例との対比>
表1を見るに、上記実施例1及び実施例2で得られた電解銅箔の常態及び加熱後双方の場合でも耐折り曲げ試験の結果が、各比較例のそれと比べ極めて高くなっていることが分かる。そして、その他の特性ごとに対比してみると、特に常態及び加熱後共に引張り強さが高くなっていることが分かる。これに対し、上記実施例1及び実施例2で得られた電解銅箔の常態及び加熱後双方の伸び率は、むしろ各比較例の伸び率よりも値的に見て劣っている。特に、比較例3の加熱後伸び率は高いが、加熱後引張り強さが低く、耐折り曲げ性能も良好とは言えない。従って、このような物性的観点から見るに、耐折り曲げ性を向上させるには、引張り強さと伸び率との適正なバランスが存在することが裏付けられる。
<Contrast between Example and Comparative Example>
As can be seen from Table 1, the results of the bending resistance test are much higher than those of the comparative examples, both in the normal state and after heating of the electrolytic copper foils obtained in Example 1 and Example 2 above. I understand. When comparing with other characteristics, it can be seen that the tensile strength is high especially in the normal state and after heating. On the other hand, both the normal state and the post-heating elongation rate of the electrolytic copper foil obtained in Example 1 and Example 2 are inferior in terms of value rather than the elongation rate of each comparative example. In particular, although the elongation percentage after heating of Comparative Example 3 is high, the tensile strength after heating is low, and it cannot be said that the folding resistance is good. Therefore, from the viewpoint of such physical properties, it is supported that there is an appropriate balance between tensile strength and elongation rate in order to improve the bending resistance.

また、粗面の粗さを見るに、上記実施例1及び実施例2で得られた電解銅箔は、各比較例のいずれの電解銅箔よりも低い値を示している。従って、本件発明での耐折り曲げ性能を向上させるため、折り曲げ時のマイクロクラックの発生起点となる凹凸による切り欠きを大幅に削減出来ていると考えられる。   Moreover, when the roughness of a rough surface is seen, the electrolytic copper foil obtained in the said Example 1 and Example 2 has shown the value lower than any electrolytic copper foil of each comparative example. Therefore, in order to improve the bending resistance performance in the present invention, it is considered that notches due to unevenness that become the starting point of occurrence of microcracks during bending can be greatly reduced.

本発明に係る電解銅箔は、高温加熱後に高い引張り強さを有し、この引張り強さと高温加熱後の引張り強さとが適正なバランスを備え、しかも粗面の表面粗さ(Rz)が小さいことから、極めて高い耐折り曲げ性能を示す。また、粗面の表面粗さが小さく、ファインピッチ回路の形成が容易であり、高密度配線プリント配線板、特に高い耐折り曲げ性が要求されるフレキシブル配線板及びTABテープキャリアの製造に好適に用いられる。また、本発明の製造方法によって、上記電解銅箔の工業的規模での効率の良い製造が可能となる。   The electrolytic copper foil according to the present invention has a high tensile strength after high-temperature heating, and has an appropriate balance between the tensile strength and the tensile strength after high-temperature heating, and the surface roughness (Rz) of the rough surface is small. Therefore, it shows extremely high bending resistance. Also, it is suitable for manufacturing high density printed wiring boards, especially flexible wiring boards and TAB tape carriers that require high bending resistance, since the surface roughness of the rough surface is small and fine pitch circuits can be easily formed. It is done. In addition, the production method of the present invention enables efficient production of the electrolytic copper foil on an industrial scale.

Claims (9)

180℃×1時間加熱後の引張り強さが50kgf/mm以上、180℃×1時間加熱後の伸び率3.0%以上、粗面の表面粗さ(Rz)が2μm以下、であることを特徴とする電解銅箔。 The tensile strength after heating at 180 ° C. for 1 hour is 50 kgf / mm 2 or more, the elongation is 3.0% or more after heating at 180 ° C. for 1 hour, and the surface roughness (Rz) of the rough surface is 2 μm or less. Electrolytic copper foil characterized by. 上記180℃×1時間加熱後の引張り強さが50kgf/mm〜55kgf/mmである請求項1に記載の電解銅箔。 Electrolytic copper foil according to claim 1 tensile strength after heating above 180 ° C. × 1 hour is 50kgf / mm 2 ~55kgf / mm 2 . 上記粗面の表面粗さ(Rz)が0.7μm〜1.5μmである請求項1又は請求項2記載の電解銅箔。 The electrolytic copper foil according to claim 1 or 2, wherein a surface roughness (Rz) of the rough surface is 0.7 µm to 1.5 µm. 常態での引張り強さが60kgf/mm以上である請求項1〜請求項3のいずれかに記載の電解銅箔。 The electrolytic copper foil according to any one of claims 1 to 3, wherein a tensile strength in a normal state is 60 kgf / mm 2 or more. 180℃×1時間加熱後の引張り強さが50kgf/mm以上の電解銅箔の製造方法であって、
硫酸銅系電解液中のゼラチン又は膠濃度が、0.67ppm〜16.7ppm、塩素イオン濃度が0.2ppm〜0.5ppm、ゼラチン又は膠濃度と塩素イオン濃度の重量比が1:0.03〜0.3であり、かつゼラチン又は膠の数平均分子量が1000〜40000であることを特徴とする電解銅箔の製造方法。
A method for producing an electrolytic copper foil having a tensile strength of 50 kgf / mm 2 or more after heating at 180 ° C. for 1 hour,
The gelatin or glue concentration in the copper sulfate electrolyte is 0.67 ppm to 16.7 ppm, the chloride ion concentration is 0.2 ppm to 0.5 ppm, and the weight ratio of the gelatin or glue concentration to the chloride ion concentration is 1: 0.03. A method for producing an electrolytic copper foil, wherein the number average molecular weight of gelatin or glue is 1000 to 40000.
上記ゼラチン又は膠の濃度が1ppm〜15ppmである請求項5に記載の電解銅箔の製造方法。 The method for producing an electrolytic copper foil according to claim 5, wherein the concentration of the gelatin or glue is 1 ppm to 15 ppm. 上記塩素イオン濃度が0.3ppm〜0.5ppmである請求項5又は請求項6に記載の電解銅箔の製造方法。 The said copper ion concentration is 0.3 ppm-0.5 ppm, The manufacturing method of the electrolytic copper foil of Claim 5 or Claim 6. 上記ゼラチン又は膠濃度と塩素イオン濃度の重量比が1:0.03〜0.2である請求項5〜請求項7のいずれかに記載の電解銅箔の製造方法。 The method for producing an electrolytic copper foil according to any one of claims 5 to 7, wherein a weight ratio of the gelatin or glue concentration to the chloride ion concentration is 1: 0.03 to 0.2. 上記ゼラチン又は膠濃度の数平均分子量が1500〜20000である請求項5〜請求項8のいずれかに記載の電解銅箔の製造方法。 The method for producing an electrolytic copper foil according to any one of claims 5 to 8, wherein the gelatin or glue concentration has a number average molecular weight of 1500 to 20000.
JP2004348962A 2004-12-01 2004-12-01 Electrolytic copper foil and method for producing the same Active JP4583149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004348962A JP4583149B2 (en) 2004-12-01 2004-12-01 Electrolytic copper foil and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004348962A JP4583149B2 (en) 2004-12-01 2004-12-01 Electrolytic copper foil and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006152420A true JP2006152420A (en) 2006-06-15
JP4583149B2 JP4583149B2 (en) 2010-11-17

Family

ID=36631052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004348962A Active JP4583149B2 (en) 2004-12-01 2004-12-01 Electrolytic copper foil and method for producing the same

Country Status (1)

Country Link
JP (1) JP4583149B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306504A (en) * 1996-05-08 1997-11-28 Sony Corp Nonaqueous electrolyte secondary battery
WO2007125994A1 (en) * 2006-04-28 2007-11-08 Mitsui Mining & Smelting Co., Ltd. Electrolytic copper foil, surface treated copper foil using the electrolytic copper foil, copper-clad laminated plate using the surface treated copper foil, and method for manufacturing the electrolytic copper foil
JP2008143101A (en) * 2006-12-12 2008-06-26 Nippon Steel Chem Co Ltd Manufacturing method of flexible copper-clad laminated sheet having high flexibility
JP2008285727A (en) * 2007-05-18 2008-11-27 Furukawa Circuit Foil Kk Electrolytic copper foil with high tensile-strength, and manufacturing method therefor
WO2011129633A2 (en) * 2010-04-14 2011-10-20 Iljin Materials Co., Ltd. Copper electrolysis solution for producing electrolytic copper foil, method of producing electrolytic copper foil, and electrolytic copper foil
WO2012091060A1 (en) * 2010-12-27 2012-07-05 古河電気工業株式会社 Lithium-ion secondary battery, electrode for secondary battery, and electrolytic copper foil for secondary battery electrode
CN102959135A (en) * 2010-07-01 2013-03-06 三井金属矿业株式会社 Electrodeposited copper foil and process for production thereof
CN102965699A (en) * 2012-11-20 2013-03-13 山东金盛源铜业有限公司 Method for producing 6-mu m ultra-thin electrolytic copper foil
KR101262721B1 (en) 2010-06-10 2013-05-09 일진머티리얼즈 주식회사 Electrolyte for manufacturing electrolytic copper foil of secondary battery and method for manufacturing electrolytic copper foil therewith
JP2014139347A (en) * 2008-03-31 2014-07-31 Ls Mtron Ltd Method of treating surface of copper foil for printed circuit, copper foil produced by the same and plating apparatus for the same
CN104651885A (en) * 2015-02-12 2015-05-27 安徽铜冠铜箔有限公司 Preparation method of electronic copper foil
CN104651884A (en) * 2014-04-28 2015-05-27 雷磊 Compound additive for electrolytic copper foil
CN105705329A (en) * 2013-11-08 2016-06-22 日进材料股份有限公司 Electrodeposited copper, and electrical component and battery comprising same
CN106939432A (en) * 2017-04-25 2017-07-11 东强(连州)铜箔有限公司 A kind of compound additive and its process for producing of think gauge Copper Foil
CN108505076A (en) * 2017-02-24 2018-09-07 南亚塑胶工业股份有限公司 Electrolytic solution, electrolytic copper foil and method for producing same
CN109750329A (en) * 2018-08-06 2019-05-14 新疆中亚新材料科技有限公司 A kind of production method of ventilative cellular electrolytic copper foil
KR20200010031A (en) * 2018-07-18 2020-01-30 스미토모 긴조쿠 고잔 가부시키가이샤 Copper clad laminate
CN110894616A (en) * 2019-12-30 2020-03-20 中国科学院青海盐湖研究所 High-density copper foil and preparation method thereof
JP2022056374A (en) * 2020-09-29 2022-04-08 エスケー ネクシリス カンパニー リミテッド High-strength electrolytic copper foil, electrode including the same, secondary battery including the same, and production method thereof
CN114318428A (en) * 2021-12-16 2022-04-12 九江德福科技股份有限公司 Preparation method of flexible electrolytic copper foil
LU501353B1 (en) 2022-01-28 2023-07-28 Circuit Foil Luxembourg Electrodeposited copper foil and method for producing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002279A1 (en) 2011-06-30 2013-01-03 古河電気工業株式会社 Electrolytic copper foil, method for producing electrolytic copper foil, and lithium ion secondary cell using electrolytic copper foil as collector
JP6426067B2 (en) 2015-08-06 2018-11-21 日本メクトロン株式会社 Multilayer flexible printed wiring board and method of manufacturing the same
JP6440656B2 (en) 2016-07-12 2018-12-19 古河電気工業株式会社 Electrolytic copper foil

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05502062A (en) * 1990-05-30 1993-04-15 ジーエイテック インコーポレイテッド Electrodeposited copper foil and method for producing same using electrolyte solution with low chloride ion concentration
WO1997043466A1 (en) * 1996-05-13 1997-11-20 Mitsui Mining & Smelting Co., Ltd. High-tensile electrolytic copper foil and process for producing the same
JPH11501268A (en) * 1996-08-23 1999-02-02 グールド エレクトロニクス インコーポレイテッド High performance flexible laminate
JP2001011684A (en) * 1999-06-29 2001-01-16 Nippon Denkai Kk Production of electrolytic copper foil
JP2002129373A (en) * 1993-10-22 2002-05-09 Ga Tek Inc Electrodeposited copper foil and manufacturing method therefor
JP2002298854A (en) * 2002-03-19 2002-10-11 Nippon Denkai Kk Secondary battery
JP2004162172A (en) * 2002-11-14 2004-06-10 Iljin Copper Foil Co Ltd Electrolyte for manufacturing electrolytic copper foil, and method for manufacturing electrolytic copper foil by using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05502062A (en) * 1990-05-30 1993-04-15 ジーエイテック インコーポレイテッド Electrodeposited copper foil and method for producing same using electrolyte solution with low chloride ion concentration
JP2002129373A (en) * 1993-10-22 2002-05-09 Ga Tek Inc Electrodeposited copper foil and manufacturing method therefor
WO1997043466A1 (en) * 1996-05-13 1997-11-20 Mitsui Mining & Smelting Co., Ltd. High-tensile electrolytic copper foil and process for producing the same
JPH11501268A (en) * 1996-08-23 1999-02-02 グールド エレクトロニクス インコーポレイテッド High performance flexible laminate
JP2001011684A (en) * 1999-06-29 2001-01-16 Nippon Denkai Kk Production of electrolytic copper foil
JP2002298854A (en) * 2002-03-19 2002-10-11 Nippon Denkai Kk Secondary battery
JP2004162172A (en) * 2002-11-14 2004-06-10 Iljin Copper Foil Co Ltd Electrolyte for manufacturing electrolytic copper foil, and method for manufacturing electrolytic copper foil by using the same

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3742144B2 (en) * 1996-05-08 2006-02-01 ソニー株式会社 Nonaqueous electrolyte secondary battery and planar current collector for nonaqueous electrolyte secondary battery
JPH09306504A (en) * 1996-05-08 1997-11-28 Sony Corp Nonaqueous electrolyte secondary battery
US9307639B2 (en) 2006-04-28 2016-04-05 Mitsui Mining & Smelting Co., Ltd. Electro-deposited copper foil, surface-treated copper foil using the electro-deposited copper foil and copper clad laminate using the surface-treated copper foil, and a method for manufacturing the electro-deposited copper foil
WO2007125994A1 (en) * 2006-04-28 2007-11-08 Mitsui Mining & Smelting Co., Ltd. Electrolytic copper foil, surface treated copper foil using the electrolytic copper foil, copper-clad laminated plate using the surface treated copper foil, and method for manufacturing the electrolytic copper foil
JP2008143101A (en) * 2006-12-12 2008-06-26 Nippon Steel Chem Co Ltd Manufacturing method of flexible copper-clad laminated sheet having high flexibility
JP2008285727A (en) * 2007-05-18 2008-11-27 Furukawa Circuit Foil Kk Electrolytic copper foil with high tensile-strength, and manufacturing method therefor
JP2014139347A (en) * 2008-03-31 2014-07-31 Ls Mtron Ltd Method of treating surface of copper foil for printed circuit, copper foil produced by the same and plating apparatus for the same
WO2011129633A3 (en) * 2010-04-14 2012-03-01 Iljin Materials Co., Ltd. Copper electrolysis solution for producing electrolytic copper foil, method of producing electrolytic copper foil, and electrolytic copper foil
WO2011129633A2 (en) * 2010-04-14 2011-10-20 Iljin Materials Co., Ltd. Copper electrolysis solution for producing electrolytic copper foil, method of producing electrolytic copper foil, and electrolytic copper foil
KR101386093B1 (en) 2010-04-14 2014-04-24 일진머티리얼즈 주식회사 Copper electrolysis solution for production of electrolytic copper foil, process for producing electrolytic copper foil and electrolytic copper foil
KR101262721B1 (en) 2010-06-10 2013-05-09 일진머티리얼즈 주식회사 Electrolyte for manufacturing electrolytic copper foil of secondary battery and method for manufacturing electrolytic copper foil therewith
CN105386088A (en) * 2010-07-01 2016-03-09 三井金属矿业株式会社 Electrodeposited copper foil and process for production thereof
CN102959135A (en) * 2010-07-01 2013-03-06 三井金属矿业株式会社 Electrodeposited copper foil and process for production thereof
CN105386088B (en) * 2010-07-01 2018-06-29 三井金属矿业株式会社 Electrolytic copper foil and its manufacturing method
JP5373970B2 (en) * 2010-07-01 2013-12-18 三井金属鉱業株式会社 Electrolytic copper foil and method for producing the same
JP2012151106A (en) * 2010-12-27 2012-08-09 Furukawa Electric Co Ltd:The Lithium ion secondary battery, negative electrode for the battery, and electrolytic copper foil for collector of the negative electrode for the battery
CN103314474A (en) * 2010-12-27 2013-09-18 古河电气工业株式会社 Lithium-ion secondary battery, electrode for secondary battery, and electrolytic copper foil for secondary battery electrode
US9603245B2 (en) 2010-12-27 2017-03-21 Furukawa Electric Co., Ltd. Lithium-ion secondary battery, electrode for the secondary battery, and electrolytic copper foil for electrode for the secondary battery
WO2012091060A1 (en) * 2010-12-27 2012-07-05 古河電気工業株式会社 Lithium-ion secondary battery, electrode for secondary battery, and electrolytic copper foil for secondary battery electrode
CN102965699A (en) * 2012-11-20 2013-03-13 山东金盛源铜业有限公司 Method for producing 6-mu m ultra-thin electrolytic copper foil
CN102965699B (en) * 2012-11-20 2015-06-24 山东金盛源铜业有限公司 Method for producing 6-mu m ultra-thin electrolytic copper foil
CN105705329A (en) * 2013-11-08 2016-06-22 日进材料股份有限公司 Electrodeposited copper, and electrical component and battery comprising same
JP2016537514A (en) * 2013-11-08 2016-12-01 イルジン マテリアルズ カンパニー リミテッドIljin Materials Co., Ltd. Electrolytic copper foil, and electric parts and batteries including the same
CN104651884A (en) * 2014-04-28 2015-05-27 雷磊 Compound additive for electrolytic copper foil
CN104651885A (en) * 2015-02-12 2015-05-27 安徽铜冠铜箔有限公司 Preparation method of electronic copper foil
CN108505076A (en) * 2017-02-24 2018-09-07 南亚塑胶工业股份有限公司 Electrolytic solution, electrolytic copper foil and method for producing same
JP2018141230A (en) * 2017-02-24 2018-09-13 南亞塑膠工業股▲分▼有限公司 Electrolyte, electrolytic copper foil and production method thereof
CN108505076B (en) * 2017-02-24 2020-04-28 南亚塑胶工业股份有限公司 Electrolytic solution, electrolytic copper foil and method for producing same
CN106939432A (en) * 2017-04-25 2017-07-11 东强(连州)铜箔有限公司 A kind of compound additive and its process for producing of think gauge Copper Foil
CN106939432B (en) * 2017-04-25 2018-05-08 东强(连州)铜箔有限公司 A kind of compound additive and its process for producing of think gauge copper foil
KR20200010031A (en) * 2018-07-18 2020-01-30 스미토모 긴조쿠 고잔 가부시키가이샤 Copper clad laminate
KR102525404B1 (en) * 2018-07-18 2023-04-24 스미토모 긴조쿠 고잔 가부시키가이샤 Copper clad laminate
CN109750329A (en) * 2018-08-06 2019-05-14 新疆中亚新材料科技有限公司 A kind of production method of ventilative cellular electrolytic copper foil
CN110894616A (en) * 2019-12-30 2020-03-20 中国科学院青海盐湖研究所 High-density copper foil and preparation method thereof
CN110894616B (en) * 2019-12-30 2021-04-20 中国科学院青海盐湖研究所 High-density copper foil and preparation method thereof
JP2022056374A (en) * 2020-09-29 2022-04-08 エスケー ネクシリス カンパニー リミテッド High-strength electrolytic copper foil, electrode including the same, secondary battery including the same, and production method thereof
JP7287423B2 (en) 2020-09-29 2023-06-06 エスケー ネクシリス カンパニー リミテッド High-strength electrolytic copper foil, electrode containing the same, secondary battery containing the same, and manufacturing method thereof
CN114318428A (en) * 2021-12-16 2022-04-12 九江德福科技股份有限公司 Preparation method of flexible electrolytic copper foil
CN114318428B (en) * 2021-12-16 2024-01-26 九江德福科技股份有限公司 Preparation method of flexible electrolytic copper foil
LU501353B1 (en) 2022-01-28 2023-07-28 Circuit Foil Luxembourg Electrodeposited copper foil and method for producing same
EP4220776A1 (en) 2022-01-28 2023-08-02 Circuit Foil Luxembourg Electrodeposited copper foil and method for producing same
KR20230116647A (en) 2022-01-28 2023-08-04 서키트 호일 룩셈부르크, 에스에이알엘 Electrodeposited copper foil and method for producing same

Also Published As

Publication number Publication date
JP4583149B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
JP4583149B2 (en) Electrolytic copper foil and method for producing the same
KR101154203B1 (en) Electrolytic copper foil, surface treated copper foil using the electrolytic copper foil, copper-clad laminated plate using the surface treated copper foil, and method for manufacturing the electrolytic copper foil
JP3058445B2 (en) Characterized electrodeposited foils for printed circuit boards and methods for producing the same and electrolytic cell solutions
JP3346774B2 (en) High tensile strength electrolytic copper foil and method for producing the same
JP5255229B2 (en) Electrolytic copper foil, surface-treated copper foil using the electrolytic copper foil, copper-clad laminate using the surface-treated copper foil, and method for producing the electrolytic copper foil
JP5684328B2 (en) Method for producing surface roughened copper plate and surface roughened copper plate
US7790269B2 (en) Ultra-thin copper foil with carrier and printed wiring board using ultra-thin copper foil with carrier
JP5588607B2 (en) Electrolytic copper foil and method for producing the electrolytic copper foil
EP1448036B1 (en) Copper foil for fine pattern printed circuits and method of production same
JP5391366B2 (en) Electrolytic copper foil, wiring board using the electrolytic copper foil, and flexible wiring board
JP2020012202A (en) Silver plating material and method for producing the same
JPH10330983A (en) Electrolytic copper foil and its production
JPH0754183A (en) Electrodeposited copper foil and production of electro- deposited copper foil by using electrolyte solution containing chloride ion and additive for controlling organic additive
KR20110014215A (en) Copper-foil roughening treatment and copper foil for printed circuit boards obtained using said treatment
JP2007294923A (en) Manufacturing method of copper strip or copper foil having excellent strength, electric conductivity, and bendability, and electronic component using the same
JP5301886B2 (en) Electrolytic copper foil and method for producing the electrolytic copper foil
JP2008294432A (en) Printed wiring board, method of manufacturing the same, and electrolytic copper foil for copper clad laminate used for manufacturing printed wiring board
JP5752301B2 (en) Electrolytic copper foil and method for producing the electrolytic copper foil
JP2008127618A (en) Method for treating surface of copper foil through feeding alternating current
JP2004263300A (en) Copper foil for fine pattern printed circuit and manufacturing method therefor
JP5075099B2 (en) Surface-treated copper foil, surface treatment method thereof, and laminated circuit board
JP2004263296A (en) Copper foil for fine pattern printed circuit and manufacturing method therefor
EP0250195A2 (en) Double matte finish copper foil
JP4447594B2 (en) Two-layer flexible printed wiring board and method for producing the two-layer flexible printed wiring board
JP2006274361A (en) Electrolytic copper foil and production method of the electrolytic copper foil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100831

R150 Certificate of patent or registration of utility model

Ref document number: 4583149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140910

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250