JPH07296802A - Manufacture of lithium secondary battery electrode, and lithium secondary battery - Google Patents

Manufacture of lithium secondary battery electrode, and lithium secondary battery

Info

Publication number
JPH07296802A
JPH07296802A JP6088294A JP8829494A JPH07296802A JP H07296802 A JPH07296802 A JP H07296802A JP 6088294 A JP6088294 A JP 6088294A JP 8829494 A JP8829494 A JP 8829494A JP H07296802 A JPH07296802 A JP H07296802A
Authority
JP
Japan
Prior art keywords
secondary battery
sheet
lithium secondary
electrode
silane coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6088294A
Other languages
Japanese (ja)
Inventor
Yasuto Furukawa
靖人 古川
Tatsuo Tateno
辰男 舘野
Toshihisa Deguchi
敏久 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP6088294A priority Critical patent/JPH07296802A/en
Priority to US08/313,832 priority patent/US5571638A/en
Priority to DE69430941T priority patent/DE69430941T2/en
Priority to KR1019940024677A priority patent/KR100330633B1/en
Priority to EP94115410A priority patent/EP0652602B1/en
Priority to CN94117876A priority patent/CN1074170C/en
Priority to CA002133277A priority patent/CA2133277A1/en
Publication of JPH07296802A publication Critical patent/JPH07296802A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve the binding property of a collector to an electrode layer which is capable of storing and releasing lithium and to enhance the cycle characteristic of a battery by forming the electrode layer after the application and drying of a silane coupling agent. CONSTITUTION:A sheet of conductor that is electrochemically stable against cathode and anode active materials and nonaqueous solutions is used as a collector, and the conductor material used is e.g. nickel, titanium, stainless steel, copper, or aluminum. A solution obtained when a silane coupling agent is partially or entirely hydrolyzed by reaction with water is applied to the collector surface and dried. In this case, the concentration of the silane coupling agent solution is about 0.01 to 5wt%. Prior to the application of the silane coupling agent, the collector surface is roughened in advance. The anode or cathode then becomes excellent in the binding property of its collector to its electrode layer which is capable of storing and releasing lithium, and the cycle characteristic of the battery can be enhanced without reduction in battery capacity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池用シ
ート状電極の製造方法及び該方法により得られた電極を
用いたリチウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sheet electrode for a lithium secondary battery and a lithium secondary battery using the electrode obtained by the method.

【0002】[0002]

【従来の技術】リチウムを吸蔵放出可能なリチウム二次
電池用電極は、例えば、正極にコバルト酸リチウムを含
む電極と負極に炭素材料を含む電極を用いた電池構成の
場合には、充電時に正極中のリチウムが電解液を介して
負極中に吸蔵され、放電時には負極中のリチウムが放出
され電解液を介して正極中に吸蔵されるという電気化学
的な可逆反応を利用したものである。この電極に要求さ
れる特性としては、電極へのリチウムの吸蔵能力(容
量)及び放出能力(容量)が大きいこと、吸蔵放出サイ
クルでの容量劣化が少ないことなどである。
2. Description of the Related Art An electrode for a lithium secondary battery capable of inserting and extracting lithium is, for example, a positive electrode during charging in the case of a battery structure using an electrode containing lithium cobalt oxide in the positive electrode and an electrode containing a carbon material in the negative electrode. This utilizes an electrochemical reversible reaction in which lithium in the negative electrode is occluded in the negative electrode via the electrolytic solution, and during discharge, lithium in the negative electrode is released and occluded in the positive electrode via the electrolytic solution. The characteristics required for this electrode are that the capacity (capacity) and capacity (capacity) of lithium to be stored in the electrode are large, and that capacity deterioration during the storage / release cycle is small.

【0003】リチウムを吸蔵放出可能な炭素材料を用い
た電極または電池は、このような観点において、従来よ
り種々の提案がなされている。具体的には負極材料とし
て、充放電可能なリチウムを結晶中に混入した黒鉛負極
を用いた電池(特開昭57−208079号公報)、易
黒鉛化性の球状粒子からなる黒鉛質材料を負極に用いた
電池(特開平4−115457号公報)、有機高分子化
合物等を炭素化した擬黒鉛構造を有する炭素材料を負極
に用いた電池(特開昭62−122066号公報)、特
定構造の炭素材料を負極に用いた電池(特開昭62−9
0863号公報)、乱層構造を有する炭素材料を負極に
用いた電池(特開平2−66856号公報)など黒鉛材
料から乱層構造炭素材料まで広範囲な炭素材料を負極に
用いた電池が提案されている。また正極材料としては、
金属カルコゲン化合物や有機高分子化合物等を炭素化し
た特定構造の炭素材料を用いた電池(特開昭62−12
2066号公報)、アルカリ金属と遷移金属にさらにA
l、In、Snなどが混入された複合酸化物を用いた電
池(特開昭62−90863号公報)などが提案されて
いる。
From this point of view, various proposals have been made for electrodes or batteries using a carbon material capable of inserting and extracting lithium. Specifically, as a negative electrode material, a battery using a graphite negative electrode in which lithium capable of charging and discharging is mixed in a crystal (Japanese Patent Laid-Open No. 57-208079) and a graphite material composed of easily graphitizable spherical particles are used as the negative electrode. (Japanese Patent Application Laid-Open No. 4-115457), a battery using a carbon material having a pseudo-graphite structure obtained by carbonizing an organic polymer compound or the like as a negative electrode (Japanese Patent Application Laid-Open No. 62-122066), and a specific structure. A battery using a carbon material for the negative electrode (Japanese Patent Laid-Open No. 62-9
No. 0863), a battery using a carbon material having a turbostratic structure as a negative electrode (Japanese Patent Laid-Open No. 2-66856) such as a battery using a wide range of carbon materials from a graphite material to a turbostratic carbon material as a negative electrode. ing. As the positive electrode material,
A battery using a carbon material having a specific structure obtained by carbonizing a metal chalcogen compound or an organic polymer compound (Japanese Patent Laid-Open No. 62-12).
2066), in addition to alkali metals and transition metals
A battery (Japanese Patent Laid-Open No. 62-90863) using a composite oxide in which 1, In, Sn, etc. are mixed has been proposed.

【0004】[0004]

【発明が解決しようとする課題】本発明者らは広範囲な
炭素粉末を電極に用いた実験検討の結果、シート状電極
形状に作製する際、集電体と炭素材料、バインダを含む
電極層との結着性が不十分なため剥がれが生じるなど、
シート化が困難であり、そのままでは電池として構成す
るのが困難であることを見出した。また、結着性が不十
分なシート電極を用いた電池では、サイクル性が不十分
であることが判明した。
As a result of experiments and studies using a wide range of carbon powders for electrodes, the present inventors have found that when forming a sheet-like electrode shape, an electrode layer containing a current collector, a carbon material, and a binder was used. Insufficient binding property causes peeling.
It has been found that it is difficult to form a sheet and it is difficult to form a battery as it is. It was also found that the battery using the sheet electrode having insufficient binding property has insufficient cycleability.

【0005】また、結着性が不十分なシート状電極を用
いた電池では、充放電により、混合電極層が膨張収縮を
くり返して、ついには集電体上より剥がれて欠落し、充
放電に関与しなくなる、すなわち、充放電可能なリチウ
ムの量が低下することにより容量低下が起こり、サイク
ル劣化が生じるという問題点を見出した。
Further, in a battery using a sheet-shaped electrode having insufficient binding property, the mixed electrode layer repeatedly expands and contracts due to charge and discharge, and finally peels off from the current collector and is lost, resulting in charge and discharge. They have found a problem that they are not involved, that is, the amount of lithium that can be charged and discharged is reduced, resulting in a decrease in capacity and cycle deterioration.

【0006】本発明の目的は、集電体とリチウムの吸蔵
放出可能な電極層との結着性に優れたリチウム二次電池
用シート状負極及び正極の製造方法、並びにこの方法に
より得られた電極を用いたサイクル特性に優れたリチウ
ム二次電池を提供することにある。
The object of the present invention is to obtain a sheet-shaped negative electrode and a positive electrode for a lithium secondary battery, which are excellent in binding property between a current collector and an electrode layer capable of inserting and extracting lithium, and a method for obtaining the same. An object of the present invention is to provide a lithium secondary battery that uses electrodes and has excellent cycle characteristics.

【0007】[0007]

【課題を解決するための手段】本発明者らは、鋭意検討
を行った結果、シランカップリング剤の塗布、乾燥を行
った後、電極層を形成することにより、集電体と混合電
極層との結着性を大幅に向上できることを見出し、本発
明を完成するに至った。
Means for Solving the Problems As a result of intensive investigations, the present inventors have found that an electrode layer is formed after applying a silane coupling agent and drying, and thereby forming a current collector and a mixed electrode layer. It was found that the binding property with can be greatly improved, and the present invention has been completed.

【0008】即ち、本発明は、次に記す発明からなる。 (1)リチウムを吸蔵放出可能な炭素粉末とバインダー
とを含む電極層を集電体上に形成するリチウム二次電池
用シート状負極の製造方法において、電極層を形成する
前に、集電体表面にシランカップリング剤を塗布し、乾
燥する工程を含むことを特徴とするリチウム二次電池用
シート状負極の製造方法。 (2)リチウムを吸蔵放出可能な炭素粉末とバインダー
とを含む電極層を集電体上に形成するリチウム二次電池
用シート状負極の製造方法において、電極層を形成する
前に、集電体表面を粗化し、次に該表面にシランカップ
リング剤を塗布し、乾燥する工程を含むことを特徴とす
るリチウム二次電池用シート状負極の製造方法。
That is, the present invention comprises the following inventions. (1) In a method for producing a sheet-shaped negative electrode for a lithium secondary battery, in which an electrode layer containing a carbon powder capable of inserting and extracting lithium and a binder is formed on the current collector, before forming the electrode layer, the current collector A method for producing a sheet-shaped negative electrode for a lithium secondary battery, which comprises a step of applying a silane coupling agent on the surface and drying. (2) In a method for producing a sheet-shaped negative electrode for a lithium secondary battery, in which an electrode layer containing a carbon powder capable of inserting and extracting lithium and a binder is formed on the current collector, the current collector is formed before the electrode layer is formed. A method for producing a sheet negative electrode for a lithium secondary battery, comprising the steps of roughening the surface, then applying a silane coupling agent to the surface, and drying.

【0009】(3)リチウムを吸蔵放出可能な化合物と
導電材及びバインダーとを含む電極層を集電体上に形成
するリチウム二次電池用シート状正極の製造方法におい
て、電極層を形成する前に、集電体表面にシランカップ
リング剤を塗布し、乾燥する工程を含むことを特徴とす
るリチウム二次電池用シート状正極の製造方法。 (4)リチウムを吸蔵放出可能な化合物と導電材及びバ
インダーとを含む電極層を集電体上に形成するリチウム
二次電池用シート状正極の製造方法において、電極層を
形成する前に、集電体表面を粗化し、次に該表面にシラ
ンカップリング剤を塗布し、乾燥する工程を含むことを
特徴とするリチウム二次電池用シート状正極の製造方
法。 (5)リチウムを吸蔵放出可能な正極と負極及び非水電
解液とを具備してなるリチウム二次電池において、少な
くとも該電極の一つが(1)もしくは(2)記載の製造
方法により得られたシート状負極又は(3)もしくは
(4)記載の製造方法により得られたシート状正極であ
ることを特徴とするリチウム二次電池。
(3) In a method for producing a sheet-shaped positive electrode for a lithium secondary battery, in which an electrode layer containing a compound capable of inserting and extracting lithium, a conductive material and a binder is formed on a current collector, before forming the electrode layer And a step of applying a silane coupling agent to the surface of the current collector and drying the same, the method for producing a sheet-shaped positive electrode for a lithium secondary battery. (4) In a method for producing a sheet-shaped positive electrode for a lithium secondary battery, which comprises forming an electrode layer containing a compound capable of inserting and extracting lithium, a conductive material and a binder on a current collector, before forming the electrode layer, A method for producing a sheet-shaped positive electrode for a lithium secondary battery, comprising the steps of roughening the surface of an electric body, then applying a silane coupling agent to the surface, and drying the surface. (5) In a lithium secondary battery comprising a positive electrode capable of inserting and extracting lithium, a negative electrode and a non-aqueous electrolyte solution, at least one of the electrodes was obtained by the production method described in (1) or (2). A lithium secondary battery, which is a sheet-shaped negative electrode or a sheet-shaped positive electrode obtained by the manufacturing method according to (3) or (4).

【0010】以下、本発明を詳細に説明する。本発明に
おいて用いる集電体として、正極・負極活物質、及び非
水電解液に対して電気化学的に安定性のあるシート状の
導体を使用することができる。該シート状の導体とし
て、例えば、ニッケル、チタン、ステンレス鋼、銅、ア
ルミニウムなどが挙げられる。形状としてはシート状た
とえば箔状のものであればよく、通常膜厚が5μm〜5
0μm程度のものが好ましい。
The present invention will be described in detail below. As the current collector used in the present invention, a positive electrode / negative electrode active material and a sheet-shaped conductor that is electrochemically stable with respect to the non-aqueous electrolyte can be used. Examples of the sheet-shaped conductor include nickel, titanium, stainless steel, copper, aluminum and the like. The shape may be a sheet shape, for example, a foil shape, and usually the film thickness is 5 μm to 5 μm.
It is preferably about 0 μm.

【0011】本発明のリチウム二次電池用シート状負極
の製造方法(以下、第一発明ということがある。)にお
いて用いる炭素粉末は、充放電によりリチウムを吸蔵・
放出できるものであればよく、天然黒鉛、人造黒鉛、コ
ークス、カーボンブラック、気相成長炭素、炭素繊維、
有機高分子系化合物を炭素化した材料、またはこれらを
熱処理、混合した材料などが挙げられる。特に負極用炭
素粉末としては、リチウム電位に近いものが好ましく、
黒鉛を単一成分または主成分とする炭素粉末が好まし
い。さらに、第一発明において用いる黒鉛は、X線回折
における格子面間隔d002 が3.4オングストローム以
下で、真比重が2.2以上の黒鉛が好ましい。ここで、
格子面間隔d002 とは、X線としてCuKα線を用い、
高純度シリコンを標準物質とするX線回折法〔大谷杉
郎、炭素繊維、P733−742(1986)近代編集
社〕によって測定された値のことを意味する。第一発明
において用いる炭素粉末の粒度は特に制限されないが、
通常数平均粒径が10nm〜50μm程度のものが好ま
しい。第一発明において用いるバインダーは、粉末同士
を結着する結着効果があり、使用する非水電解液や正極
や負極での電位に対する耐性を有するものであればよ
く、例えばフッ素樹脂粉末やポリエチレン粉末などが挙
げられる。該バインダーの量は、使用する粉末の合計量
100重量部に対して0.1重量部から20重量部程度
とすることが好ましい。
The carbon powder used in the method for producing a sheet-shaped negative electrode for a lithium secondary battery of the present invention (hereinafter, sometimes referred to as the first invention) absorbs lithium by charging and discharging.
Any material that can be released, such as natural graphite, artificial graphite, coke, carbon black, vapor grown carbon, carbon fiber,
Examples thereof include a material obtained by carbonizing an organic polymer compound, or a material obtained by heat-treating or mixing these. Particularly, as the carbon powder for the negative electrode, those close to the lithium potential are preferable,
A carbon powder containing graphite as a single component or a main component is preferable. Further, the graphite used in the first invention is preferably graphite having a lattice spacing d 002 in X-ray diffraction of 3.4 angstroms or less and a true specific gravity of 2.2 or more. here,
The lattice spacing d 002 uses CuKα rays as X-rays,
It means a value measured by an X-ray diffraction method [Shiro Otani, carbon fiber, P733-742 (1986) Modern Editing Company] using high-purity silicon as a standard substance. The particle size of the carbon powder used in the first invention is not particularly limited,
Usually, those having a number average particle size of about 10 nm to 50 μm are preferable. The binder used in the first invention has a binding effect of binding the powders to each other, and may be one having resistance to the potential of the non-aqueous electrolyte used or the positive electrode or the negative electrode, for example, fluororesin powder or polyethylene powder. And so on. The amount of the binder is preferably about 0.1 to 20 parts by weight with respect to 100 parts by weight of the total amount of powder used.

【0012】本発明のリチウム二次電池用シート状正極
の製造方法(以下、第二発明ということがある。)にお
いて用いるリチウムを吸蔵放出可能な化合物としては、
遷移金属酸化物、リチウムと遷移金属との複合酸化物、
遷移金属硫化物が挙げられる。ここで遷移金属として
は、Co、Ni、Mn、Feなどが挙げられる。具体的
には、MnO2 、MoO3 、V2 5 、TiO2 などの
遷移金属酸化物粉末、ニッケル酸リチウム、コバルト酸
リチウムなどのリチウムと遷移金属との複合酸化物粉
末、TiS2 、FeSなどの遷移金属硫化物粉末が挙げ
られる。第二発明において用いる導電材は、リチウムを
吸蔵放出可能な化合物粉末に適量混合して導電性を付与
できるものであれば特に制限はないが、アセチレンブラ
ック、カーボンブラック、黒鉛などの炭素粉末や、使用
する電極電位で安定な金属粉末などが挙げられる。第二
発明において用いるバインダーは、第一発明で用いるそ
れと同様のものでよい。
The compound capable of inserting and extracting lithium used in the method for producing a sheet-like positive electrode for a lithium secondary battery of the present invention (hereinafter sometimes referred to as the second invention) is:
Transition metal oxides, composite oxides of lithium and transition metals,
Examples include transition metal sulfides. Here, examples of the transition metal include Co, Ni, Mn, and Fe. Specifically, transition metal oxide powders such as MnO 2 , MoO 3 , V 2 O 5 , and TiO 2 , composite oxide powders of lithium and transition metals such as lithium nickel oxide and lithium cobalt oxide, TiS 2 , FeS. And transition metal sulfide powders. The conductive material used in the second invention is not particularly limited as long as it can impart conductivity by mixing an appropriate amount with a compound powder capable of inserting and extracting lithium, acetylene black, carbon black, carbon powder such as graphite, and the like, Examples thereof include metal powders that are stable at the electrode potential used. The binder used in the second invention may be the same as that used in the first invention.

【0013】第一発明及び第二発明において用いるシラ
ンカップリング剤は、YRSiX3の化学構造を有する
ものが好ましい。ここで、Xとしては、−OR、−OC
OR(ただし、Rは低級アルキル基)、塩素原子などが
挙げられ、またYとしてはエポキシ基、アミノ基、ビニ
ル基、メルカプト基、塩素原子などが挙げられる。
The silane coupling agent used in the first and second inventions preferably has a chemical structure of YRSiX 3 . Here, X is -OR or -OC.
OR (however, R is a lower alkyl group), a chlorine atom etc. are mentioned, and Y is an epoxy group, an amino group, a vinyl group, a mercapto group, a chlorine atom etc. are mentioned.

【0014】Xとして具体的には、−OCH3 、−OC
2 5 、−OCOCH3 、−OC24 OCH3 、−N
(CH3 2 、−Clなどの基が挙げられる。また、Y
として具体的には、CH2 =CH−、CH2 =C(CH
3 )COOC 3 6 −、NH2 3 6 −、NH2 2
4 NHC3 6 −、NH2 COCHC3 6 −、CH
3 COOC2 4 NHC2 4 NHC3 6 −、NH2
2 4 NHC2 4 NHC3 6 −、SHC3
6 −、ClC3 6 −、CH3 −、C2 5 −、C2
5 OCONHC3 6 −、OCNC3 6 −、C6 5
−、C6 5 CH2 NHC3 6 −、C6 5 NHC3
6 −などの基が挙げられる。
Specifically as X, -OCH3, -OC
2HFive, -OCOCH3, -OC2HFourOCH3, -N
(CH3)2, -Cl and the like. Also, Y
Specifically, CH2= CH-, CH2= C (CH
3) COOC 3H6-, NH2C3H6-, NH2C2
HFourNHC3H6-, NH2COCHC3H6-, CH
3COOC2HFourNHC2HFourNHC3H6-, NH2
C2H FourNHC2HFourNHC3H6-, SHC3H
6-, ClC3H6-, CH3-, C2HFive-, C2H
FiveOCONHC3H6-, OCNC3H6-, C6HFive
-, C6HFiveCH2NHC3H6-, C6HFiveNHC3
H6Groups such as-.

【0015】さらに、本発明のおいて用いるシランカッ
プリング剤として、具体的には、ビニルトリエトキシシ
ラン、ビニルトリメトキシシラン、ビニルトリクロルシ
ラン、ビニルトリス(2- メトキシエトキシ)シラン、
γ- メタアクリロキシプロピルトリメトキシシラン、γ
- メタアクリロキシプロピルトリエトキシシラン、γ-
アミノプロピルトリエトキシシラン、γ- アミノプロピ
ルトリメトキシシラン、N-β- (アミノエチル)- γ-
アミノプロピルトリメトキシシラン、N-β- (アミノエ
チル)- γ- アミノプロピルトリエトキシシラン、γ-
ウレイドプロピルトリエトキシシラン、γ- ウレイドプ
ロピルトリメトキシシラン、β- (3、4エポキシシク
ロヘキシル)エチルトリメトキシシラン、β- (3、4
エポキシシクロヘキシル)エチルトリエトキシシラン、
γ- グリシドキシプロピルトリメトキシシラン、γ- グ
リシドキシプロピルトリエトキシシラン、γ- メルカプ
トプロピルトリメトキシシラン、γ- メルカプトプロピ
ルトリエトキシシラン、γ- クロルプロピルトリメトキ
シシラン、γ- クロルプロピルトリエトキシシラン、メ
チルトリエトキシシラン、メチルトリメトキシシラン、
フェニルトリエトキシシラン、フェニルトリメトキシシ
ランなどが挙げられる。
Further, as the silane coupling agent used in the present invention, specifically, vinyltriethoxysilane, vinyltrimethoxysilane, vinyltrichlorosilane, vinyltris (2-methoxyethoxy) silane,
γ-methacryloxypropyltrimethoxysilane, γ
-Methacryloxypropyltriethoxysilane, γ-
Aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-
Aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropyltriethoxysilane, γ-
Ureidopropyltriethoxysilane, γ-ureidopropyltrimethoxysilane, β- (3,4epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4
Epoxycyclohexyl) ethyltriethoxysilane,
γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-chloropropyltrimethoxysilane, γ-chloropropyltriethoxy Silane, methyltriethoxysilane, methyltrimethoxysilane,
Examples thereof include phenyltriethoxysilane and phenyltrimethoxysilane.

【0016】好ましくは、ビニルトリエトキシシラン、
ビニルトリメトキシシラン、ビニルトリス(2- メトキ
シエトキシ)シラン、γ- メタアクリロキシプロピルト
リメトキシシラン、γ- メタアクリロキシプロピルトリ
エトキシシラン、γ- アミノプロピルトリエトキシシラ
ン、γ- アミノプロピルトリメトキシシラン、N-β-
(アミノエチル)- γ- アミノプロピルトリメトキシシ
ラン、N-β- (アミノエチル)- γ- アミノプロピルト
リエトキシシラン、γ- ウレイドプロピルトリエトキシ
シラン、γ- ウレイドプロピルトリメトキシシラン、β
- (3、4エポキシシクロヘキシル)エチルトリメトキ
シシラン、β- (3、4エポキシシクロヘキシル)エチ
ルトリエトキシシラン、γ- グリシドキシプロピルトリ
メトキシシラン、γ- グリシドキシプロピルトリエトキ
シシランが挙げられる。
Preferably, vinyltriethoxysilane,
Vinyltrimethoxysilane, vinyltris (2-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, N-β-
(Aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropyltriethoxysilane, γ-ureidopropyltriethoxysilane, γ-ureidopropyltrimethoxysilane, β
-(3,4 epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4epoxycyclohexyl) ethyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane.

【0017】さらに好ましくは、ビニルトリエトキシシ
ラン、ビニルトリメトキシシラン、ビニルトリス(2-
メトキシエトキシ)シラン、γ- メタアクリロキシプロ
ピルトリメトキシシラン、γ- アミノプロピルトリエト
キシシラン、N-β- (アミノエチル)- γ- アミノプロ
ピルトリメトキシシラン、γ- ウレイドプロピルトリエ
トキシシラン、β- (3、4エポキシシクロヘキシル)
エチルトリメトキシシラン、γ- グリシドキシプロピル
トリメトキシシランが挙げられる。
More preferably, vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris (2-
(Methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, γ-ureidopropyltriethoxysilane, β- (3,4 epoxy cyclohexyl)
Examples thereof include ethyltrimethoxysilane and γ-glycidoxypropyltrimethoxysilane.

【0018】次に、本発明のリチウム二次電池用電極の
製造方法について詳細に説明する。集電体表面に、シラ
ンカップリング剤を塗布する方法については特に制限さ
れないが、一例を示せば、シランカップリング剤を水と
反応させてその一部または全量を加水分解させた溶液を
集電体表面に塗布後、乾燥させる方法が挙げられる。こ
こで用いるシランカップリング剤溶液の濃度は0.01
重量%〜5重量%程度が好ましく、さらに好ましくは
0.1重量%〜3重量%程度である。また、シランカッ
プリング剤を添付する前に、集電体表面には、予め粗化
処理を行うと、さらに結着効果が高くなるので好まし
い。粗化処理としては、機械的研磨法、電解研磨法又は
化学研磨法が挙げられる。機械的研磨法としては、研磨
材粒子を固着した研磨布紙、砥石、エメリバフ、鋼線な
どを備えたワイヤーブラシなどで集電体表面を研磨する
方法が挙げられる。一般に、バフ研磨機、ポータブルグ
ラインダー、サンダーなどの研磨機を用いることが好ま
しい。研磨材としては、エメリ、溶融アルミナ、炭化珪
素、炭化硼素などが用いられる。電解研磨法としては、
集電体を陽極として電解液中で電解する方法が挙げら
れ、電解液としては、燐酸、硫酸、蓚酸、クエン酸、無
水酢酸またはこれらの混合液などが挙げられる。化学研
磨法としては、集電体を研磨液中に浸漬する方法であ
り、研磨液としては、電解研磨法で用いる電解液が挙げ
られる。
Next, the method for producing the lithium secondary battery electrode of the present invention will be described in detail. The method of applying the silane coupling agent to the surface of the current collector is not particularly limited, but, as an example, a solution obtained by reacting the silane coupling agent with water to hydrolyze a part or the whole amount of the current is collected. A method of drying after applying to the body surface can be mentioned. The concentration of the silane coupling agent solution used here is 0.01
The amount is preferably about 5% to 5% by weight, more preferably about 0.1% to 3% by weight. Further, it is preferable to roughen the surface of the current collector in advance before attaching the silane coupling agent, because the binding effect is further enhanced. Examples of the roughening treatment include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method. Examples of the mechanical polishing method include a method of polishing the surface of the current collector with a polishing cloth paper to which abrasive particles are fixed, a grindstone, an emery buff, a wire brush equipped with a steel wire, or the like. Generally, it is preferable to use a polishing machine such as a buff polishing machine, a portable grinder or a sander. As the abrasive, emery, fused alumina, silicon carbide, boron carbide or the like is used. As the electrolytic polishing method,
Examples of the method include electrolysis in an electrolytic solution using a current collector as an anode. Examples of the electrolytic solution include phosphoric acid, sulfuric acid, oxalic acid, citric acid, acetic anhydride, and mixed solutions thereof. The chemical polishing method is a method in which a current collector is immersed in a polishing solution, and the polishing solution includes an electrolytic solution used in an electrolytic polishing method.

【0019】次に、リチウムを吸蔵放出可能な電極材粉
末と、粉末同士を結着するためのバインダーと有機溶媒
等を用いて公知の方法でペースト化したものを、本発明
のシランカップリング材処理された集電体上に塗布し、
乾燥し、その後プレスすることでシート状電極を製造す
ることができる。
Next, an electrode material powder capable of occluding and releasing lithium and a paste formed by a known method using a binder for binding the powders and an organic solvent are used as the silane coupling material of the present invention. Apply on the treated current collector,
A sheet electrode can be manufactured by drying and then pressing.

【0020】本発明のリチウム二次電池は、リチウムを
吸蔵放出可能な電極と、リチウムを含有しリチウムを吸
蔵放出可能な電極とを組み合わせてリチウム二次電池を
構成する。ここで高電位の電極が正極で低電位の電極が
負極となるが、本発明のリチウム二次電池は少なくとも
一つの電極に本発明の方法により得られた電極を使用す
る。
The lithium secondary battery of the present invention constitutes a lithium secondary battery by combining an electrode capable of storing and releasing lithium and an electrode containing lithium and capable of storing and releasing lithium. Here, the high potential electrode is the positive electrode and the low potential electrode is the negative electrode, but the lithium secondary battery of the present invention uses the electrode obtained by the method of the present invention as at least one electrode.

【0021】本発明のリチウム二次電池に用いられる非
水電解液としては、リチウム塩を高誘電率の有機溶媒に
溶解させた溶液が好ましい。リチウム塩の種類には、特
に制限はなく、例えば、LiClO4 、LiPF6 、L
iBF4 、LiCF3 SO3などを使用することができ
る。リチウム塩の濃度は、通常0.5mol/lないし
1.5mol/l程度に選ばれる。また、有機溶媒は、
リチウム塩を溶解して電気伝導性を与え、かつ構成する
負極・正極材に対して電気化学的に安定性のあるもので
あればよい。例えば、エチレンカ−ボネ−ト、プロピレ
ンカ−ボネ−ト、ジメチルカーボネート、ジエチルカー
ボネート、1,2−ジメトキシエタン、テトラヒドロフ
ラン、アセトニトリル、スルホラン又はγ−ブチロラク
トン等が挙げられる。これらは単独で又は二種以上を混
合して非水電解液として用いられるが、2種以上を混合
して混合溶媒として用いることが好ましい。
The non-aqueous electrolyte used in the lithium secondary battery of the present invention is preferably a solution prepared by dissolving a lithium salt in an organic solvent having a high dielectric constant. The type of lithium salt is not particularly limited, and examples include LiClO 4 , LiPF 6 , and L
iBF 4 , LiCF 3 SO 3 or the like can be used. The concentration of the lithium salt is usually selected to be about 0.5 mol / l to 1.5 mol / l. In addition, the organic solvent is
Any material may be used as long as it dissolves a lithium salt to give electric conductivity and is electrochemically stable with respect to the constituent negative electrode and positive electrode materials. Examples thereof include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, acetonitrile, sulfolane, and γ-butyrolactone. These may be used alone or in combination of two or more as a non-aqueous electrolyte, but it is preferable to mix two or more to use as a mixed solvent.

【0022】本発明のリチウム二次電池においては、正
極と負極と非水電解液のほかに、両極の接触を防止し、
かつ非水電解液を保持し、リチウムイオンを通過できる
機能を有するセパレータを組み合わせて用いることが好
ましい。該セパレ−タとしては、例えばポリエチレン、
ポリプロピレンもしくはポリテトラフルオロエチレン等
の多孔質フィルム、不織布又は織布などが挙げられる。
該セパレ−タの厚さは、10〜200μm程度が好まし
い。
In the lithium secondary battery of the present invention, in addition to the positive electrode, the negative electrode and the non-aqueous electrolyte, contact between both electrodes is prevented,
In addition, it is preferable to combine and use a separator that holds a non-aqueous electrolyte and has a function of passing lithium ions. Examples of the separator include polyethylene,
Examples thereof include porous films such as polypropylene or polytetrafluoroethylene, non-woven fabrics and woven fabrics.
The thickness of the separator is preferably about 10 to 200 μm.

【0023】また、本発明のリチウム二次電池は、公知
の方法により、円筒型、箱型、ペーパー形、カード形な
ど、種々の形状とすることができる。
The lithium secondary battery of the present invention can be formed into various shapes such as a cylindrical shape, a box shape, a paper shape and a card shape by a known method.

【0024】[0024]

【実施例】以下、本発明について実施例及び比較例を示
して、その効果を具体的に説明するが、本発明は下記の
実施例に制限されるものではない。本発明の効果を得る
ためAA型電池形状での円筒型電池を製作し、充放電を
行った際のサイクル性について試験を行った。ここでA
A型電池とは、米国ANSI呼称によるAA型電池のこ
とであり、JIS C8500におけるR6に相当す
る。また、結着性の評価についてはテープ剥離試験によ
り行った。
EXAMPLES Hereinafter, the effects of the present invention will be specifically described by showing Examples and Comparative Examples, but the present invention is not limited to the following Examples. In order to obtain the effect of the present invention, a cylindrical battery having an AA type battery shape was manufactured, and a cycle property when charging and discharging was tested. Where A
The A-type battery is an AA-type battery according to the American ANSI designation and corresponds to R6 in JIS C8500. The tape peeling test was performed to evaluate the binding property.

【0025】結着性の評価方法(テープ剥離試験):シ
ート電極を適当な大きさに切り出し、1mm間隔で水平
方向および垂直方向にそれぞれカッターナイフを使い活
物質層が切断されるように11本の切り目を入れ、1m
m角のマス目を100個作る。その後セロテープを10
0個のマス目に圧着した後、テープを剥離する。テープ
剥離は連続して5回行う。剥離毎に試料側に残った活物
質層を数えて、結着性を評価する。
Evaluation method of binding property (tape peeling test): 11 sheet electrodes were cut into an appropriate size and the active material layer was cut at 1 mm intervals using a cutter knife in the horizontal and vertical directions, respectively. Make a score for 1m
Make 100 squares. Then 10 pieces of Sellotape
The tape is peeled off after pressure bonding to the 0th cell. The tape peeling is continuously performed 5 times. The active material layer remaining on the sample side is counted every peeling, and the binding property is evaluated.

【0026】実施例1 負極集電体には、10μm厚の圧延銅箔を用い、#12
00耐水ペーパにて箔両表面を研磨により粗化した後、
エタノール洗浄を行った。エタノール乾燥後、、シラン
カップリング剤〔日本ユニカー社製、製品名A110
0、H2 NCH2 CH2 CH2 Si(OC
2 5 3 )〕を、予めシランカップリング剤:純水:
エタノール=1:1:98(重量部)で混合した溶液を
銅箔上に片面塗布し、50℃温風乾燥して、シランカッ
プリング剤で表面を処理し、ついで同様に残る片面に処
理を行い両面にシランカップリング材を処理した集電箔
材料を得た。
Example 1 A rolled copper foil having a thickness of 10 μm was used as the negative electrode current collector, and # 12 was used.
After roughening both surfaces of the foil with 00 water resistant paper,
It was washed with ethanol. After drying with ethanol, a silane coupling agent [manufactured by Nippon Unicar Co., product name A110
0, H 2 NCH 2 CH 2 CH 2 Si (OC
2 H 5 ) 3 )] in advance with a silane coupling agent: pure water:
A solution mixed with ethanol = 1: 1: 98 (parts by weight) is applied on one side of a copper foil, dried with warm air at 50 ° C., the surface is treated with a silane coupling agent, and then the remaining one side is treated in the same manner. Then, a current collector foil material having both surfaces treated with a silane coupling material was obtained.

【0027】負極材には、窒素吸着法による比表面積が
9m2 /g、数平均粒径が10μm、真比重が2.2
6、X線回折における格子面間隔d002 が3.36の天
然黒鉛(マダガスカル産)粉末95重量部と2800℃
で黒鉛化処理した窒素吸着法による比表面積が30m2
/g、真比重が2.04、数平均一次粒子径が66nm
の擬黒鉛質カーボンブラック粉末〔東海カーボン(株)
製、商品名TB3800〕5重量部との混合炭素材を用
いた。次に該混合炭素材90重量部に、バインダーとし
てN−メチルピロリドンを溶媒としたポリフッ化ビニリ
デンを10重量部相当分加えて充分にボールミル混合
し、ペースト状混合体(負極ペースト)を得た。
The negative electrode material has a specific surface area of 9 m 2 / g by a nitrogen adsorption method, a number average particle diameter of 10 μm, and a true specific gravity of 2.2.
6. 95 parts by weight of natural graphite (made in Madagascar) powder having a lattice spacing d 002 of 3.36 in X-ray diffraction and 2800 ° C.
Specific surface area of 30m 2
/ G, true specific gravity is 2.04, number average primary particle size is 66 nm
Pseudo-graphitic carbon black powder [Tokai Carbon Co., Ltd.
Manufactured by trade name TB3800] 5 parts by weight mixed carbon material was used. Next, 10 parts by weight of polyvinylidene fluoride using N-methylpyrrolidone as a binder as a solvent was added to 90 parts by weight of the mixed carbon material and sufficiently mixed by a ball mill to obtain a paste mixture (negative electrode paste).

【0028】シラン処理を行った銅箔上に、ドクターブ
レードにより負極ペーストを片面塗布後、50℃真空乾
燥し、乾燥後同様に裏面についても塗布処理を行い、両
面に電極材が塗布されたシートを得た。次に、ロールプ
レスによりプレス圧力700kgf/cm2 にてプレス
を行い、膜厚150μm、密度1.75g/ccのシー
ト状負極(1)を得た。このシートでの、結着性試験結
果を表1に示す。
A sheet coated with a negative electrode paste on a silane-treated copper foil with a doctor blade on one side and then dried at 50 ° C. under vacuum, and also on the back side after drying, with the electrode material coated on both sides. Got Next, a sheet pressure negative electrode (1) having a film thickness of 150 μm and a density of 1.75 g / cc was obtained by pressing with a roll press at a pressing pressure of 700 kgf / cm 2 . Table 1 shows the binding test results for this sheet.

【0029】正極シート電極は、コバルト酸リチウム粉
末、導電材として鱗片状黒鉛(社製、商品名KS1
5)、バインダーとしてポリフッ化ビニリデンを用いて
負極と同様の方法により、膜厚150μm、密度3.5
g/ccのシート状正極(2)を得た。
The positive electrode sheet electrode was made of lithium cobalt oxide powder, and scaly graphite (trade name: KS1 manufactured by the company) as a conductive material.
5), using polyvinylidene fluoride as a binder, in the same manner as for the negative electrode, film thickness 150 μm, density 3.5.
A sheet-like positive electrode (2) having g / cc was obtained.

【0030】次に、ここで得られたシート状負極(1)
とシート状正極(2)を用い、厚さ25μm のポリプロ
ピレン製セパレ−タに積層後、スパイラル状に巻き取
り、電解液として6フッ化リン酸リチウム(LiP
6 )をエチレンカ−ボネ−ト(以下、ECということ
がある)とジエチルカーボネート(以下、DECという
ことがある。)との等容量混合物に溶解した溶液(濃度
1mol/l)を、含浸させてAA型円筒型電池を作製
した。得られた電池について初期放電容量とサイクル性
を測定した。ここで初期放電容量は、正極重量当たりの
放電容量で計算した。サイクル性は初期放電容量を1と
したときの40サイクルでの容量保持率(%)で評価し
た。得られた結果を表2に示す。サイクル試験結果を図
1に示す。
Next, the sheet-shaped negative electrode (1) obtained here
Using a sheet-shaped positive electrode (2) and a sheet-shaped positive electrode (2), the sheets were laminated on a polypropylene separator having a thickness of 25 μm, and then spirally wound, and lithium hexafluorophosphate (LiP) was used as an electrolytic solution.
F 6 ) was impregnated with a solution (concentration 1 mol / l) obtained by dissolving F 6 ) in an equal volume mixture of ethylene carbonate (hereinafter sometimes referred to as EC) and diethyl carbonate (hereinafter sometimes referred to as DEC). To produce an AA type cylindrical battery. The initial discharge capacity and cycleability of the obtained battery were measured. Here, the initial discharge capacity was calculated by the discharge capacity per positive electrode weight. The cycleability was evaluated by the capacity retention rate (%) at 40 cycles when the initial discharge capacity was 1. The obtained results are shown in Table 2. The cycle test results are shown in FIG.

【0031】実施例2 実施例1において、粗化処理及びシランカップリング剤
処理をした集電体の代わりに、シランカップリング剤処
理のみの集電体を用いた以外は、実施例1と同様にして
シート状負極を作製後、結着性比較のためテープ剥離試
験を行った。結果を表1に示す。
Example 2 The same as Example 1 except that the current collector which was treated with the silane coupling agent was used instead of the current collector which was roughened and treated with the silane coupling agent. After the sheet-shaped negative electrode was prepared as described above, a tape peeling test was performed for comparison with the binding property. The results are shown in Table 1.

【0032】実施例3 負極電極層形成材料として天然黒鉛と擬黒鉛質カーボン
ブラック粉末との混合炭素材の代わりに、平均粒径6μ
mのメソフェーズピッチ球体状黒鉛を用いた以外は、実
施例1と同様にシート状負極を作製後、結着性比較のた
めテープ剥離試験を行った。結果を表1に示す。
Example 3 Instead of the mixed carbon material of natural graphite and pseudo-graphitic carbon black powder as the material for forming the negative electrode layer, the average particle diameter was 6 μm.
A sheet-like negative electrode was prepared in the same manner as in Example 1 except that the mesophase pitch spherical graphite of m was used, and then a tape peeling test was performed for comparison with the binding property. The results are shown in Table 1.

【0033】実施例4 負極電極層形成材料として天然黒鉛と擬黒鉛質カーボン
ブラック粉末との混合炭素材の代わりに、平均粒径15
μmのコークスを用いた以外は、実施例1と同様にシー
ト状負極を作製後、結着性比較のためテープ剥離試験を
行った。結果を表1に示す。
Example 4 Instead of the mixed carbon material of natural graphite and pseudo-graphitic carbon black powder as the material for forming the negative electrode layer, the average particle size was 15
A sheet-like negative electrode was prepared in the same manner as in Example 1 except that coke having a thickness of μm was used, and then a tape peeling test was performed for comparison with the binding property. The results are shown in Table 1.

【0034】比較例1 粗化処理及びシランカップリング剤処理をした集電体の
代わりに、粗化処理及びシランカップリング剤処理をし
ない集電体を用いた以外は、実施例と同様にしてシート
状負極を作製後、結着性比較のためテープ剥離試験を行
った。結果を表1に示す。また、実施例1に準じて作製
したAA型円筒型電池について初期放電容量とサイクル
性を測定した。得られた結果を表2に示す。サイクル試
験結果を図1に示す。
Comparative Example 1 In the same manner as in Example 1 except that a current collector not subjected to roughening treatment or silane coupling agent treatment was used in place of the current collector subjected to roughening treatment or silane coupling agent treatment. After the sheet-shaped negative electrode was prepared, a tape peeling test was performed for comparison with binding properties. The results are shown in Table 1. Further, the initial discharge capacity and the cycle property of the AA type cylindrical battery manufactured according to Example 1 were measured. The obtained results are shown in Table 2. The cycle test results are shown in FIG.

【0035】比較例2 粗化処理及びシランカップリング剤処理をした集電体の
代わりに、粗化処理のみの集電体を用いた以外は、実施
例と同様にしてシート状負極を作製後、結着性比較のた
めテープ剥離試験を行った。結果を表1に示す。
Comparative Example 2 A sheet-shaped negative electrode was prepared in the same manner as in Example 1 except that a roughening-treated current collector was used in place of the roughening-treated and silane coupling agent-treated current collector. A tape peeling test was performed to compare the binding properties. The results are shown in Table 1.

【0036】比較例3 粗化処理及びシランカップリング剤処理をした集電体の
代わりに、粗化処理及びシランカップリング剤処理をし
ない集電体を用いた以外は、実施例3と同様にしてシー
ト状負極を作製後、結着性比較のためテープ剥離試験を
行った。結果を表1に示す。
Comparative Example 3 The procedure of Example 3 was repeated, except that a current collector which was not roughened and treated with a silane coupling agent was used in place of the current collector which was roughened and treated with a silane coupling agent. After the sheet-shaped negative electrode was produced by the above, a tape peeling test was performed for the purpose of comparing binding properties. The results are shown in Table 1.

【0037】比較例4 粗化処理及びシランカップリング剤処理をした集電体の
代わりに、粗化処理及びシランカップリング剤処理をし
ない集電体を用いた以外は、実施例4と同様にしてシー
ト状負極を作製後、結着性比較のためテープ剥離試験を
行った。結果を表1に示す。
Comparative Example 4 The same as Example 4 except that a current collector which was not roughened and treated with a silane coupling agent was used in place of the current collector which was roughened and treated with a silane coupling agent. After the sheet-shaped negative electrode was produced by the above, a tape peeling test was performed for the purpose of comparing binding properties. The results are shown in Table 1.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【発明の効果】本発明のリチウム2次電池用シート状負
極又は正極の製造方法により得られた負極又は正極は、
集電体とリチウムの吸蔵放出可能な電極層との結着性に
優れており、本発明の製造方法により得られたリチウム
二次電池は、電池容量を損なうことなく、サイクル性に
優れており、工業的価値が大きい。
The negative electrode or positive electrode obtained by the method for producing a sheet negative electrode or positive electrode for a lithium secondary battery of the present invention is
It has excellent binding properties between the current collector and the electrode layer capable of inserting and extracting lithium, and the lithium secondary battery obtained by the production method of the present invention has excellent cycleability without impairing the battery capacity. , Has great industrial value.

【0041】[0041]

【図面の簡単な説明】[Brief description of drawings]

【図1】サイクル性を示す図。FIG. 1 is a diagram showing cycleability.

【符号の説明】[Explanation of symbols]

1.実施例1で得られたリチウム二次電池のサイクル性
を示す曲線。 2.比較例1で得られたリチウム二次電池のサイクル性
を示す曲線。
1. The curve which shows the cycleability of the lithium secondary battery obtained in Example 1. 2. The curve which shows the cycleability of the lithium secondary battery obtained in Comparative Example 1.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】リチウムを吸蔵放出可能な炭素粉末とバイ
ンダーとを含む電極層を集電体上に形成するリチウム二
次電池用シート状負極の製造方法において、電極層を形
成する前に、集電体表面にシランカップリング剤を塗布
し、乾燥する工程を含むことを特徴とするリチウム二次
電池用シート状負極の製造方法。
1. A method for producing a sheet-shaped negative electrode for a lithium secondary battery, comprising forming an electrode layer containing a carbon powder capable of inserting and extracting lithium and a binder on a current collector, before forming the electrode layer. A method for producing a sheet-shaped negative electrode for a lithium secondary battery, which comprises a step of applying a silane coupling agent to the surface of an electric body and drying.
【請求項2】リチウムを吸蔵放出可能な炭素粉末とバイ
ンダーとを含む電極層を集電体上に形成するリチウム二
次電池用シート状負極の製造方法において、電極層を形
成する前に、集電体表面を粗化し、次に該表面にシラン
カップリング剤を塗布し、乾燥する工程を含むことを特
徴とするリチウム二次電池用シート状負極の製造方法。
2. A method for producing a sheet-shaped negative electrode for a lithium secondary battery, comprising forming an electrode layer containing a carbon powder capable of inserting and extracting lithium and a binder on a current collector, before forming the electrode layer. A method for producing a sheet-shaped negative electrode for a lithium secondary battery, comprising the steps of roughening an electric body surface, then applying a silane coupling agent to the surface, and drying the surface.
【請求項3】リチウムを吸蔵放出可能な化合物と導電材
及びバインダーとを含む電極層を集電体上に形成するリ
チウム二次電池用シート状正極の製造方法において、電
極層を形成する前に、集電体表面にシランカップリング
剤を塗布し、乾燥する工程を含むことを特徴とするリチ
ウム二次電池用シート状正極の製造方法。
3. A method for producing a sheet-shaped positive electrode for a lithium secondary battery, comprising forming an electrode layer containing a compound capable of inserting and extracting lithium, a conductive material and a binder on a current collector, before forming the electrode layer. A method for producing a sheet-shaped positive electrode for a lithium secondary battery, comprising the steps of applying a silane coupling agent to the surface of a current collector and drying.
【請求項4】リチウムを吸蔵放出可能な化合物と導電材
及びバインダーとを含む電極層を集電体上に形成するリ
チウム二次電池用シート状正極の製造方法において、電
極層を形成する前に、集電体表面を粗化し、次に該表面
にシランカップリング剤を塗布し、乾燥する工程を含む
ことを特徴とするリチウム二次電池用シート状正極の製
造方法。
4. A method for producing a sheet-shaped positive electrode for a lithium secondary battery, comprising forming an electrode layer containing a compound capable of inserting and extracting lithium, a conductive material and a binder on a current collector, before forming the electrode layer. A method for producing a sheet-shaped positive electrode for a lithium secondary battery, comprising the steps of roughening the surface of the current collector, then applying a silane coupling agent to the surface and drying.
【請求項5】リチウムを吸蔵放出可能な正極と負極及び
非水電解液とを具備してなるリチウム二次電池におい
て、少なくとも該電極の一つが請求項1もしくは2記載
の製造方法により得られたシート状負極又は請求項3も
しくは4記載の製造方法により得られたシート状正極で
あることを特徴とするリチウム二次電池。
5. A lithium secondary battery comprising a positive electrode capable of inserting and extracting lithium, a negative electrode and a non-aqueous electrolyte, at least one of the electrodes being obtained by the method according to claim 1 or 2. A lithium secondary battery, which is a sheet-shaped negative electrode or a sheet-shaped positive electrode obtained by the method according to claim 3 or 4.
JP6088294A 1993-09-30 1994-04-26 Manufacture of lithium secondary battery electrode, and lithium secondary battery Pending JPH07296802A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP6088294A JPH07296802A (en) 1994-04-26 1994-04-26 Manufacture of lithium secondary battery electrode, and lithium secondary battery
US08/313,832 US5571638A (en) 1993-09-30 1994-09-28 Lithium secondary battery
DE69430941T DE69430941T2 (en) 1993-09-30 1994-09-29 Lithium secondary battery
KR1019940024677A KR100330633B1 (en) 1993-09-30 1994-09-29 Lithium secondary battery
EP94115410A EP0652602B1 (en) 1993-09-30 1994-09-29 Lithium secondary battery
CN94117876A CN1074170C (en) 1993-09-30 1994-09-29 Li secondary battery
CA002133277A CA2133277A1 (en) 1993-09-30 1994-09-29 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6088294A JPH07296802A (en) 1994-04-26 1994-04-26 Manufacture of lithium secondary battery electrode, and lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH07296802A true JPH07296802A (en) 1995-11-10

Family

ID=13938908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6088294A Pending JPH07296802A (en) 1993-09-30 1994-04-26 Manufacture of lithium secondary battery electrode, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH07296802A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306504A (en) * 1996-05-08 1997-11-28 Sony Corp Nonaqueous electrolyte secondary battery
JP2000030694A (en) * 1998-07-13 2000-01-28 Dainippon Printing Co Ltd Electrode for nonaqueous electrolyte secondary battery and its manufacture
KR100364965B1 (en) * 2000-06-28 2002-12-16 새한에너테크 주식회사 Method for manufacturing electrode of lithium polymer battery and lithium polymer battery using the electrode made by the method
EP1746674A1 (en) * 2005-07-22 2007-01-24 Samsung SDI Co., Ltd. Electrode including si-containing material layer and porous film, and lithium battery employing the same
JP2011009207A (en) * 2009-05-29 2011-01-13 Jx Nippon Mining & Metals Corp Rolled copper foil for lithium battery collector
JP2011023303A (en) * 2009-07-17 2011-02-03 Jx Nippon Mining & Metals Corp Copper foil for lithium ion battery current collector
KR101428710B1 (en) * 2008-01-08 2014-08-08 삼성에스디아이 주식회사 Electrode Assembly and Secondary Battery having the Same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306504A (en) * 1996-05-08 1997-11-28 Sony Corp Nonaqueous electrolyte secondary battery
JP3742144B2 (en) * 1996-05-08 2006-02-01 ソニー株式会社 Nonaqueous electrolyte secondary battery and planar current collector for nonaqueous electrolyte secondary battery
JP2000030694A (en) * 1998-07-13 2000-01-28 Dainippon Printing Co Ltd Electrode for nonaqueous electrolyte secondary battery and its manufacture
KR100364965B1 (en) * 2000-06-28 2002-12-16 새한에너테크 주식회사 Method for manufacturing electrode of lithium polymer battery and lithium polymer battery using the electrode made by the method
EP1746674A1 (en) * 2005-07-22 2007-01-24 Samsung SDI Co., Ltd. Electrode including si-containing material layer and porous film, and lithium battery employing the same
US8741488B2 (en) 2005-07-22 2014-06-03 Samsung Sdi Co., Ltd. Electrode including Si-containing material layer and porous film, and lithium battery employing the same
KR101428710B1 (en) * 2008-01-08 2014-08-08 삼성에스디아이 주식회사 Electrode Assembly and Secondary Battery having the Same
JP2011009207A (en) * 2009-05-29 2011-01-13 Jx Nippon Mining & Metals Corp Rolled copper foil for lithium battery collector
JP2011023303A (en) * 2009-07-17 2011-02-03 Jx Nippon Mining & Metals Corp Copper foil for lithium ion battery current collector

Similar Documents

Publication Publication Date Title
KR100330633B1 (en) Lithium secondary battery
JP5260887B2 (en) Nonaqueous electrolyte secondary battery
TW201246677A (en) Aluminum substrate for current collector, current collector, cathode, anode, and secondary battery
JP5036121B2 (en) Nonaqueous electrolyte secondary battery
JP3430691B2 (en) Lithium secondary battery
KR20170030518A (en) Cathode for lithium batteries
JPH07307165A (en) Lithium secondary battery
JP2002117851A (en) Carbon material, negative electrode for secondary lithium ion battery, and secondary lithium ion battery
JPH11167919A (en) Positive electrode material for highly stable lithium ion secondary battery, its manufacture and its usage
JP3593776B2 (en) Method of manufacturing positive electrode for lithium secondary battery and lithium secondary battery
EP2333881B1 (en) Positive electrode active material for lithium battery and lithium battery using the same
JPH0922699A (en) Polymer electrolyte secondary battery
JP2003514355A (en) Secondary lithium battery
JP4013327B2 (en) Non-aqueous secondary battery
JPH07296802A (en) Manufacture of lithium secondary battery electrode, and lithium secondary battery
JPH11204145A (en) Lithium secondary battery
JPH06310126A (en) Nonaquous electrolytic secondary battery
JP4187282B2 (en) Lithium ion secondary battery
JP2020191224A (en) Non-aqueous electrolyte power storage element
EP3974390A1 (en) Positive electrode for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
EP4270548A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
KR101439630B1 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery including the same
JP7462176B2 (en) Secondary battery
JP4436464B2 (en) Lithium ion battery
JP2017183256A (en) Nonaqueous electrolyte secondary battery