JP2011009207A - Rolled copper foil for lithium battery collector - Google Patents

Rolled copper foil for lithium battery collector Download PDF

Info

Publication number
JP2011009207A
JP2011009207A JP2010122769A JP2010122769A JP2011009207A JP 2011009207 A JP2011009207 A JP 2011009207A JP 2010122769 A JP2010122769 A JP 2010122769A JP 2010122769 A JP2010122769 A JP 2010122769A JP 2011009207 A JP2011009207 A JP 2011009207A
Authority
JP
Japan
Prior art keywords
copper foil
active material
rolled copper
rsm
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010122769A
Other languages
Japanese (ja)
Other versions
JP5416037B2 (en
Inventor
Ikuya Kurosaki
黒▲崎▼郁也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2010122769A priority Critical patent/JP5416037B2/en
Publication of JP2011009207A publication Critical patent/JP2011009207A/en
Application granted granted Critical
Publication of JP5416037B2 publication Critical patent/JP5416037B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper foil suitable for a collector of a lithium battery that attains high adhesiveness, with respect to an active material layer.SOLUTION: A rolled copper foil for a lithium battery collector satisfies the relations: 0.01 μm≤Ra≤0.10 μm and RSm≤20 μm regarding surface roughness, in a direction parallel to the rolling direction of the upper and the lower surfaces.

Description

本発明はリチウム電池集電体用圧延銅箔に関し、とりわけリチウムイオン二次電池用負極集電体に関する。   The present invention relates to a rolled copper foil for a lithium battery current collector, and more particularly to a negative electrode current collector for a lithium ion secondary battery.

銅箔はプリント配線板、電磁波シールド及びリチウム二次電池といった電子産業分野で主に利用されているが、この際、樹脂や他の材質との良好な接着性を有することが銅箔の特性として要求される場合がある。   Copper foil is mainly used in the electronic industry such as printed wiring boards, electromagnetic wave shields, and lithium secondary batteries. At this time, the copper foil has good adhesiveness with resin and other materials. May be required.

例えば、リチウム二次電池用の負極においては集電体としての銅箔と負極活物質の密着性が要求される。そこで、一般的には、リチウム二次電池の負極用の集電体銅箔と活物質層との密着性を改善するために、予め粗化処理と呼ばれる銅箔表面に凹凸を形成する表面処理を施すことが行われている。粗化処理の方法としては、ブラスト処理、粗面ロールによる圧延、機械研磨、電解研磨、化学研磨及び電着粒のめっき等の方法が知られており、これらの中でも特に電着粒のめっきは多用されている。この技術は、硫酸銅酸性めっき浴を用いて、銅箔表面に樹枝状又は小球状に銅を多数電着せしめて微細な凹凸を形成し、投錨効果による密着性の改善を狙ったり、体積変化の大きな活物質の膨張時に活物質層の凹部に応力を集中させて亀裂を形成せしめ、集電体界面に応力が集中することによる剥離を防ぐことを狙ったりして行われている(例えば、特許第3733067号公報)。   For example, in a negative electrode for a lithium secondary battery, adhesion between a copper foil as a current collector and a negative electrode active material is required. Therefore, in general, in order to improve the adhesion between the current collector copper foil for the negative electrode of the lithium secondary battery and the active material layer, a surface treatment that forms an unevenness on the surface of the copper foil, called a roughening treatment in advance. It has been done. As the method of roughening treatment, methods such as blasting, rolling with a rough surface roll, mechanical polishing, electrolytic polishing, chemical polishing, and plating of electrodeposited grains are known, and among these, electrodeposited grain plating is particularly preferred. It is used a lot. This technology uses a copper sulfate acidic plating bath to deposit a large number of copper in a dendritic or small spherical shape on the surface of the copper foil to form fine irregularities, aiming to improve the adhesion by the anchoring effect, or to change the volume It is carried out with the aim of preventing peeling due to stress concentration at the current collector interface by concentrating stress on the concave portion of the active material layer during expansion of the large active material to form a crack (for example, Japanese Patent No. 3733067).

特許第3733065号公報には、好ましい表面性状が粗さのパラメータで具体的に特定されており、表面粗さRaの値が大きな銅箔を集電体として用いることにより、集電体と活物質との密着性が向上することが記載されている(段落0209)。集電体の表面粗さRaは、0.01μm以上であることが好ましく、さらに好ましくは0.01〜1μmであり、さらに好ましくは0.05〜0.5μmであるとされる(段落0021等)。集電体の表面粗さRaと局部山頂の平均間隔Sは、100Ra≧Sの関係を有することが好ましいとされる(段落0022等)。集電体表面の凹凸の凸部の形状は錐体状であることが好ましいとされる(段落0023等)。
そして、このような表面形態は、電解銅箔(段落0044)、圧延銅箔の表面に電解法により銅を析出させて表面を粗面化すること(段落0045)、及びエメリー紙で研磨処理すること(段落0205)で得られることが記載されている。
In Japanese Patent No. 3733065, a preferable surface property is specifically specified by a roughness parameter, and a current collector and an active material are obtained by using a copper foil having a large surface roughness Ra as a current collector. It is described that the adhesiveness to the surface is improved (paragraph 0209). The surface roughness Ra of the current collector is preferably 0.01 μm or more, more preferably 0.01 to 1 μm, and further preferably 0.05 to 0.5 μm (paragraph 0021 and the like). ). The surface roughness Ra of the current collector and the average interval S between the local peaks are preferably 100Ra ≧ S (paragraph 0022 and the like). The shape of the convex and concave portions on the surface of the current collector is preferably a cone (paragraph 0023 and the like).
Such surface morphology is obtained by electrolytic copper foil (paragraph 0044), roughening the surface by electrolytically depositing copper on the surface of the rolled copper foil (paragraph 0045), and polishing with emery paper. (Paragraph 0205).

特許第3733067号公報Japanese Patent No. 3733067 特許第3733065号公報Japanese Patent No. 3733065

このように、従来の知見では銅箔と活物質層との密着性を改善する上では、表面粗さRaが大きな粗化銅箔が好ましいとされ、とりわけ電解銅箔が主として採用されてきた。しかしながら、銅箔の表面性状については未だ最適化されているとは言い難く、銅箔と活物質層の密着性は改善の余地があると考えられる。   Thus, according to the conventional knowledge, in order to improve the adhesion between the copper foil and the active material layer, a roughened copper foil having a large surface roughness Ra is preferred, and in particular, an electrolytic copper foil has been mainly employed. However, it is difficult to say that the surface properties of the copper foil have been optimized, and it is considered that there is room for improvement in the adhesion between the copper foil and the active material layer.

そこで、本発明は活物質層との高い密着性を実現できるリチウム電池の集電体として好適な銅箔を提供することを課題とする。また、本発明は本発明に係る銅箔を集電体として用いたリチウム電池を提供することを別の課題とする。   Then, this invention makes it a subject to provide suitable copper foil as a collector of a lithium battery which can implement | achieve high adhesiveness with an active material layer. Another object of the present invention is to provide a lithium battery using the copper foil according to the present invention as a current collector.

本発明者は上記課題を解決するために、銅箔の表面性状について研究を重ねたところ、これまで好ましいとされてきた電解銅箔よりも、一般的に表面性状が平滑な圧延銅箔に課題解決の可能性を求めた。そして、圧延銅箔を製造する際には、従来のように粗化処理するのではなく圧延条件を適切に制御し、より微細な凹凸を表面に形成することで活物質との密着性が有意に高まることを見出した。この微細な凹凸の状態はRa及びRSmで規定することができる。そのため、Ra及びRSmを最適化することにより、負極活物質との密着性が顕著に向上した圧延銅箔が得られることが分かった。   In order to solve the above-mentioned problems, the present inventor conducted research on the surface properties of copper foil, and in general, rolled copper foil having a smoother surface property than the electrolytic copper foil that has been considered preferable so far. The possibility of a solution was sought. And when manufacturing rolled copper foil, rather than roughening as in the past, the rolling conditions are appropriately controlled, and by forming finer irregularities on the surface, the adhesion with the active material is significant. It was found to increase. The state of this fine unevenness can be defined by Ra and RSm. Therefore, it was found that by optimizing Ra and RSm, a rolled copper foil having significantly improved adhesion to the negative electrode active material can be obtained.

以上の知見を基礎として完成した本発明は一側面において、上下面の圧延平行方向における表面粗さについて、0.01μm≦Ra≦0.10μmを満たし、且つ、RSm≦20μmを満たすリチウム電池集電体用圧延銅箔である。   The present invention completed on the basis of the above knowledge, in one aspect, the lithium battery current collector satisfying 0.01 μm ≦ Ra ≦ 0.10 μm and RSm ≦ 20 μm with respect to the surface roughness in the rolling parallel direction of the upper and lower surfaces It is a rolled copper foil for body.

本発明に係るリチウム電池集電体用圧延銅箔の一実施形態においては、RSk≦−0.3である。   In one embodiment of the rolled copper foil for a lithium battery current collector according to the present invention, RSk ≦ −0.3.

本発明に係るリチウム電池集電体用圧延銅箔の別の一実施形態においては、RSm/Ra≦200である。   In another embodiment of the rolled copper foil for a lithium battery current collector according to the present invention, RSm / Ra ≦ 200.

本発明に係るリチウム電池集電体用圧延銅箔の更に別の一実施形態においては、上下面のうち少なくとも一方の面がシランカップリング処理されている。   In still another embodiment of the rolled copper foil for a lithium battery current collector according to the present invention, at least one of the upper and lower surfaces is subjected to silane coupling treatment.

本発明に係るリチウム電池集電体用圧延銅箔の更に別の一実施形態においては、リチウムイオン二次電池負極集電体用である。   In still another embodiment of the rolled copper foil for a lithium battery current collector according to the present invention, it is for a negative electrode current collector of a lithium ion secondary battery.

本発明は別の一側面において、上記圧延銅箔を集電体として用いたリチウム電池である。   In another aspect, the present invention is a lithium battery using the rolled copper foil as a current collector.

本発明に係る銅箔は活物質との密着性が高い。そのため、リチウム電池の集電体として好適に使用することができる。   The copper foil which concerns on this invention has high adhesiveness with an active material. Therefore, it can be suitably used as a current collector for a lithium battery.

本発明において、「銅箔」には銅合金箔も含まれるものとする。銅箔の材料としては、特に制限はなく、用途や要求特性に応じて適宜選択すればよい。例えば、限定的ではないが、高純度の銅(無酸素銅やタフピッチ銅等)の他、Sn入り銅、Ag入り銅、Ni、Si等を添加したCu−Ni−Si系銅合金、Cr、Zr等を添加したCu−Cr−Zr系銅合金のような銅合金が挙げられる。   In the present invention, “copper foil” includes copper alloy foil. There is no restriction | limiting in particular as a material of copper foil, What is necessary is just to select suitably according to a use or a required characteristic. For example, but not limited to, Cu-Ni-Si based copper alloy with addition of high purity copper (oxygen-free copper, tough pitch copper, etc.), Sn-containing copper, Ag-containing copper, Ni, Si, etc., Cr, Examples thereof include a copper alloy such as a Cu—Cr—Zr copper alloy to which Zr or the like is added.

電解銅箔と比べた圧延銅箔の利点について説明する。リチウム二次電池の集電体として使用する場合、銅箔を薄肉化した方がより高容量の電池を得ることができるが、薄肉化すると強度低下による破断の危険性が生じる。この点、電解銅箔よりも強度の高い圧延銅箔を使用するのが有利となる。圧延銅箔は耐屈曲性が高い点でも優れている。   The advantage of the rolled copper foil compared with the electrolytic copper foil will be described. When used as a current collector for a lithium secondary battery, it is possible to obtain a battery having a higher capacity by reducing the thickness of the copper foil. However, if the thickness is reduced, there is a risk of breakage due to a decrease in strength. In this respect, it is advantageous to use a rolled copper foil having higher strength than the electrolytic copper foil. The rolled copper foil is also excellent in that it has high bending resistance.

また、電解銅箔では製造工程の都合上、陰極に接していた側の平滑で光沢があるS面と、これとは反対側の粗く無光沢であるM面が生じてしまう。両者は表面性状が異なり、活物質との接着性も異なるが、リチウム二次電池では正極及び負極を多数積層したスタック構造を取ることが一般的であり、この場合は銅箔の両面が共に活物質との高い接着性を有することが求められる。そのため、銅箔は上下面が共に同様の表面性状を有していることが望ましい。この点、圧延銅箔では上下面を実質的に同一の表面性状とすることができるので有利である。   Moreover, in the electrolytic copper foil, a smooth and glossy S surface on the side in contact with the cathode and a rough and matte M surface on the opposite side are produced due to the manufacturing process. Although both have different surface properties and different adhesion to the active material, a lithium secondary battery generally has a stack structure in which a large number of positive and negative electrodes are laminated. In this case, both sides of the copper foil are active. It is required to have high adhesion with a substance. Therefore, it is desirable that the upper and lower surfaces of the copper foil have the same surface properties. In this respect, the rolled copper foil is advantageous because the upper and lower surfaces can have substantially the same surface properties.

銅箔の厚みは特に制限はなく、要求特性に応じて適宜選択すればよい。一般的には1〜100μmであるが、リチウム二次電池負極の集電体として使用する場合、銅箔を薄肉化した方がより高容量の電池を得ることができる。そのような観点から、典型的には2〜50μm、より典型的には5〜20μm程度である。   There is no restriction | limiting in particular in the thickness of copper foil, What is necessary is just to select suitably according to a required characteristic. Generally, the thickness is 1 to 100 μm, but when used as a current collector for a negative electrode of a lithium secondary battery, a battery having a higher capacity can be obtained by thinning the copper foil. From such a viewpoint, it is typically 2 to 50 μm, more typically about 5 to 20 μm.

本発明において、リチウム電池には負極に金属リチウムを使用するリチウム一次電池及びリチウム二次電池のほか、金属リチウムを電池内に含まないが電解質中のリチウムイオンが電気伝導を担うリチウムイオン一次電池用及びリチウムイオン二次電池が含まれる。リチウム電池の負極活物質としては、限定的ではないが、炭素、珪素、スズ、ゲルマニウム、鉛、アンチモン、アルミニウム、インジウム、リチウム、酸化スズ、チタン酸リチウム、窒化リチウム、インジウムを固溶した酸化錫、インジウム−錫合金、リチウム−アルミニウム合金、リチウム−インジウム合金等が挙げられる。   In the present invention, lithium batteries include lithium primary batteries and lithium secondary batteries that use metallic lithium as a negative electrode, as well as lithium ion primary batteries that do not contain metallic lithium in the battery but lithium ions in the electrolyte are responsible for electrical conduction. And lithium ion secondary batteries. The negative electrode active material of the lithium battery is not limited, but is tin oxide in which carbon, silicon, tin, germanium, lead, antimony, aluminum, indium, lithium, tin oxide, lithium titanate, lithium nitride, and indium are dissolved. , Indium-tin alloy, lithium-aluminum alloy, lithium-indium alloy, and the like.

本発明に係る銅箔は、上下面の圧延平行方向における表面粗さについて、0.01μm≦Ra≦0.10μmを満たし、且つ、5μm≦RSm≦20μmを満たす。Raは粗さ曲線を中心線から折り返し、その粗さ曲線と中心線によって得られた面積を長さLで割った値であり、RSmは粗さ曲線が平均線と交差する交点から求めた山谷−周期の間隔の平均値である。何れもJIS B0601:2001に準拠して測定される。0.01μm≦Ra≦0.10μmというのは電解銅箔のM面では通常得られない特性である。電解銅箔のM面はRaが0.10μmを超えるのが一般的だからである。また、5μm≦RSm≦20μmは電解銅箔ではM面はもちろんS面でも通常得られない特性である。電解銅箔ではRSmが20μmを超えるのが一般的だからである。   The copper foil according to the present invention satisfies 0.01 μm ≦ Ra ≦ 0.10 μm and 5 μm ≦ RSm ≦ 20 μm with respect to the surface roughness in the rolling parallel direction of the upper and lower surfaces. Ra is a value obtained by folding the roughness curve from the center line and dividing the area obtained by the roughness curve and the center line by the length L, and RSm is a mountain valley obtained from the intersection where the roughness curve intersects the average line -Average period interval. Both are measured according to JIS B0601: 2001. 0.01 μm ≦ Ra ≦ 0.10 μm is a characteristic that is not normally obtained on the M-plane of the electrolytic copper foil. This is because the M surface of the electrolytic copper foil generally has Ra of more than 0.10 μm. Further, 5 μm ≦ RSm ≦ 20 μm is a characteristic that is not normally obtained from the M surface as well as the S surface in the electrolytic copper foil. This is because the electrolytic copper foil generally has an RSm of more than 20 μm.

また、圧延銅箔であっても、特許文献2に記載のように、表面に電解法により銅を析出させて表面を粗面化したり、エメリー紙で研磨処理したりして積極的に表面を粗くしてしまうと、銅箔の表面性状が電解銅箔のM面に匹敵する程に粗くなる。そのため、この場合にもやはりRaは0.10μmを超え、RSmは20μmを超えてしまう。   Moreover, even if it is a rolled copper foil, as described in Patent Document 2, copper is deposited on the surface by an electrolytic method to roughen the surface, or the surface is actively polished by emery paper. If roughened, the surface properties of the copper foil become rough enough to be comparable to the M-plane of the electrolytic copper foil. Therefore, also in this case, Ra exceeds 0.10 μm and RSm exceeds 20 μm.

すなわち、電解銅箔で通常接着面として採用されるM面や、粗化処理した圧延銅箔に比べて、本発明に係る圧延銅箔の表面の凹凸は微細ということができる。本発明に係る圧延銅箔の負極活物質との密着性は、電解銅箔や粗化処理した圧延銅箔よりも優れている。理論によって本発明が限定されることを意図しないが、これは以下の理由が考えられる。一般的な表面の粗化処理と比較して、オイルピットによる表面の凹凸は、より一層微細であり、これにより材料の表面積が大きくなる、すなわち結着剤と材料表面の接触面積が大きくなる効果がある。さらに、単位面積当たりの凹凸数が多くなることでの投錨効果の増大が生じ、密着性が増大すると考えられる。   That is, it can be said that the unevenness | corrugation of the surface of the rolled copper foil which concerns on this invention is fine compared with the M surface normally employ | adopted as an adhesive surface with electrolytic copper foil, and the roughened rolled copper foil. The adhesiveness of the rolled copper foil according to the present invention with the negative electrode active material is superior to that of the electrolytic copper foil or the roughened rolled copper foil. Although the present invention is not intended to be limited by theory, the following reasons can be considered. Compared with general surface roughening treatment, the surface irregularities due to oil pits are much finer, which increases the surface area of the material, that is, the effect of increasing the contact area between the binder and the material surface There is. Further, it is considered that the anchoring effect is increased by increasing the number of irregularities per unit area, and the adhesion is increased.

0.01μm≦Ra≦0.10μmを条件としたのは、Raが0.01μm未満だと表面が平滑で、また、0.10μmを超えると微細な凹凸が少ないため、負極活物質との密着性が劣化する傾向にあるからである。Raは好ましくは0.03≦Ra≦0.08であり、より好ましくは0.04≦Ra≦0.06である。   The condition of 0.01 μm ≦ Ra ≦ 0.10 μm is that when Ra is less than 0.01 μm, the surface is smooth, and when it exceeds 0.10 μm, there are few fine irregularities, so that it adheres to the negative electrode active material. This is because the property tends to deteriorate. Ra is preferably 0.03 ≦ Ra ≦ 0.08, more preferably 0.04 ≦ Ra ≦ 0.06.

RSm≦20μmを条件としたのは、RSmが20μmを超えると負極活物質との密着性が劣化する傾向にあるからである。好ましくはRSm≦16μmである。下限は特に制限はないが、5μm未満のRSmを安定して工業的に製造することは技術的に難しいことからRSmは典型的には5μm≦RSmであり、より典型的には8μm≦RSmである。   The reason for RSm ≦ 20 μm is that when RSm exceeds 20 μm, the adhesion with the negative electrode active material tends to deteriorate. Preferably, RSm ≦ 16 μm. The lower limit is not particularly limited, but RSm is typically 5 μm ≦ RSm, more typically 8 μm ≦ RSm because it is technically difficult to stably produce RSm of less than 5 μm industrially. is there.

本発明に係る圧延銅箔の好ましい実施形態では、スキューネスを表すRSkがRSk≦−0.3を満たす。RSkもJIS B0601:2001に準拠して測定される。定性的に言えば、凹凸の凸部の形状が鋭利ではなく釣鐘状に丸みを帯びているということである。錐体状が好ましいとされている特許文献2の思想とは異なる。RSk≦−0.3が好ましい理由は、理論によって本発明が限定されることを意図しないが、これは以下の理由が考えられる。
RSkは凹凸の形状により値が決まるパラメータであり、大きいほど凸部先端が鋭利に、かつ凹部末端が広幅となる。一方、値が小さいほど凸部先端が広幅に、かつ凹部末端が鋭利となる。このような形状の特徴は、RSkの値が小さいほど材料の凹部末端に到達した活物質を剥がし難くなることを示しており、すなわち、RSkが小さくなると活物質の密着性が良好になる。顕著にこの傾向が現れる閾値がRSk≦−0.3である。
好ましくはRSk≦−0.5であり、より好ましくはRSk≦−0.6であり、更により好ましくはRSk≦−0.7である。
In a preferred embodiment of the rolled copper foil according to the present invention, RSk representing skewness satisfies RSk ≦ −0.3. RSk is also measured according to JIS B0601: 2001. Qualitatively speaking, the shape of the convex and concave portions is not sharp but rounded like a bell. This is different from the idea of Patent Document 2 in which a cone shape is preferable. The reason why RSk ≦ −0.3 is preferable is not intended to limit the present invention by theory, but the following reasons are conceivable.
RSk is a parameter whose value is determined by the shape of the unevenness, and the larger the value, the sharper the tip of the convex portion and the wider the end of the concave portion. On the other hand, the smaller the value, the wider the front end of the convex part and the sharper the end of the concave part. The feature of such a shape indicates that the smaller the value of RSk is, the more difficult it is to peel off the active material that has reached the concave end of the material, that is, the smaller the RSk, the better the adhesion of the active material. The threshold at which this tendency appears remarkably is RSk ≦ −0.3.
Preferably, RSk ≦ −0.5, more preferably RSk ≦ −0.6, and even more preferably RSk ≦ −0.7.

本発明に係る圧延銅箔の別の好ましい実施形態では、RSm/Ra≦200である。RSm/Raの増加は、銅箔表面の凹凸が緩やかになることを意味し、負極活物質との密着性にあまり良い影響を与えない。したがって、RSm/Ra≦200が好ましく、より好ましくはRSm/Ra≦100である。   In another preferred embodiment of the rolled copper foil according to the present invention, RSm / Ra ≦ 200. The increase in RSm / Ra means that the unevenness on the surface of the copper foil becomes gentle and does not have a very good influence on the adhesion with the negative electrode active material. Therefore, RSm / Ra ≦ 200 is preferable, and RSm / Ra ≦ 100 is more preferable.

本発明に係る圧延銅箔の製造方法について説明する。本発明に係る圧延銅箔の表面性状は、研磨処理や電着粒のめっきといった粗化処理を行わずに、オイルピットに起因する表面の凹凸状態を制御することにより構築することが可能である。オイルピットとは、ロールバイト内で圧延用ロールと被圧延材により封じ込められた圧延油が、被圧延材の表面に部分的に発生する微細な窪みである。粗化処理を行ってしまうと、オイルピットの微細凹凸が失われてしまうため好ましくない。粗化処理工程が省略されるので、経済性・生産性が向上するメリットもある。   The manufacturing method of the rolled copper foil which concerns on this invention is demonstrated. The surface property of the rolled copper foil according to the present invention can be constructed by controlling the surface irregularity caused by the oil pits without performing a roughening treatment such as polishing treatment or electrodeposition grain plating. . The oil pit is a fine recess in which rolling oil confined by a rolling roll and a material to be rolled within a roll bite is partially generated on the surface of the material to be rolled. If the roughening treatment is performed, fine unevenness of the oil pit is lost, which is not preferable. Since the roughening process is omitted, there is also an advantage that economic efficiency and productivity are improved.

圧延銅箔のオイルピットの形状、すなわち表面性状は、圧延ロールの表面粗さ、圧延速度、圧延油の粘度、1パス当たりの圧下率(とりわけ最終パスの圧下率)などを調節する事で制御可能である。例えば、Raの大きな圧延ロールを使用すれば得られる圧延銅箔のRaも大きくなり、逆に、Raの小さな圧延ロールを使用すれば得られる圧延銅箔のRaも小さくなりやすい。また、圧延速度を速く、圧延油の粘度を高く、又は1パス当たりの圧下率を小さくすることでオイルピットの発生量が増加し、RSmが小さくなりやすい。逆に、圧延速度を遅く、圧延油の粘度を低く、又は1パス当たりの圧下率を大きくすることでオイルピットの発生量が減少し、RSmが大きくなりやすい。RSkは、圧延によるオイルピットに特有の値を示すものであり、オイルピットが発生する圧延条件であれば、一般に上述した条件を満たす。   The shape of the oil pit of the rolled copper foil, that is, the surface properties, is controlled by adjusting the surface roughness of the rolling roll, the rolling speed, the viscosity of the rolling oil, the rolling reduction per pass (especially the rolling reduction of the final pass), etc. Is possible. For example, if a rolling roll having a large Ra is used, Ra of the rolled copper foil obtained is also increased. Conversely, if a rolling roll having a small Ra is used, the Ra of the rolled copper foil obtained is likely to be reduced. In addition, by increasing the rolling speed, increasing the viscosity of the rolling oil, or decreasing the rolling reduction per pass, the amount of oil pits generated increases and RSm tends to decrease. Conversely, by reducing the rolling speed, lowering the viscosity of the rolling oil, or increasing the rolling reduction per pass, the amount of oil pits decreases and RSm tends to increase. RSk indicates a value peculiar to oil pits due to rolling, and generally satisfies the above-described conditions as long as the rolling conditions generate oil pits.

このようにして表面性状を制御した圧延銅箔を負極活物質と接着させる方法としては、銅箔表面をシランカップリング処理した後に活物質と接着する方法があり、当該方法を採用する事が負極活物質との高い密着性を得る上で好ましい。シランカップリング処理は、銅箔の上下面のうち負極活物質との密着性が要求される少なくとも一面にシランカップリング剤を浸漬、塗布及び噴霧などによって接触させ、その後に乾燥してシランカップリング剤を銅箔表面に固定することで行う事ができる。   As a method of adhering the rolled copper foil whose surface properties are controlled in this way to the negative electrode active material, there is a method of adhering the copper foil surface to the active material after silane coupling treatment. It is preferable for obtaining high adhesion with the active material. In the silane coupling treatment, at least one surface of the upper and lower surfaces of the copper foil that requires adhesion to the negative electrode active material is brought into contact with the silane coupling agent by dipping, coating, spraying, etc., and then dried to allow silane coupling. This can be done by fixing the agent to the copper foil surface.

シランカップリング剤は分子内に有機材料と反応結合する官能基、及び無機材料と反応結合する官能基を同時に有する有機ケイ素化合物である。有機材料と反応結合する官能基としては、例えば、ビニル基、エポキシ基、スチリル基、アクリロキシ基、メタクリロキシ基、アミノ基、N−フェニルアミノプロピル基、ウレイド基、クロロプロピル基、メルカプト基、イソシアネート基、スルフィド基、ヘキシル基等が挙げられ、アミノ基、ビニル基、エポキシ基、ヘキシル基が好ましい。無機材料と反応結合する官能基としては、例えば、クロル基等のハロゲン基、アルコキシ基、アセトキシ基、イソプロペノキシ基等が挙げられる。シランカップリング剤は2種以上を組み合わせて用いることもできる。   A silane coupling agent is an organosilicon compound having simultaneously a functional group reactively bonded to an organic material and a functional group reactively bonded to an inorganic material in the molecule. Examples of functional groups reactively bonded to organic materials include vinyl groups, epoxy groups, styryl groups, acryloxy groups, methacryloxy groups, amino groups, N-phenylaminopropyl groups, ureido groups, chloropropyl groups, mercapto groups, and isocyanate groups. , Sulfide groups, hexyl groups and the like, and amino groups, vinyl groups, epoxy groups and hexyl groups are preferred. Examples of the functional group reactively bonded to the inorganic material include a halogen group such as a chloro group, an alkoxy group, an acetoxy group, and an isopropenoxy group. Two or more silane coupling agents can be used in combination.

シランカップリング剤はエタノールや水等の溶媒に溶かして使用することができ、その濃度は銅箔と負極活物質との密着性を高める観点から、0.01質量%以上とするのが好ましい。   The silane coupling agent can be used by dissolving in a solvent such as ethanol or water, and the concentration is preferably 0.01% by mass or more from the viewpoint of improving the adhesion between the copper foil and the negative electrode active material.

本発明に係る圧延銅箔を材料とする集電体とその上に形成された活物質層によって構成された負極を用いて、慣用手段によりリチウム電池を作製することができる。   A lithium battery can be produced by conventional means using a negative electrode composed of a current collector made of the rolled copper foil according to the present invention and an active material layer formed thereon.

以下、本発明の実施例を示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。   EXAMPLES Examples of the present invention will be described below, but these are provided for better understanding of the present invention and are not intended to limit the present invention.

例1
種々の圧延銅箔及び電解銅箔について、負極活物質との密着性を評価した。圧延銅箔は最終パスの圧延速度を調節して表面粗さを変化させた。電解銅箔は、表面粗さの異なる市販品を入手した。
[圧延銅箔の製造]
厚さ200mm、幅600mmのタフピッチ銅のインゴットを製造し、熱間圧延により10mmまで圧延した。次に、焼鈍と冷間圧延を繰り返し、最後に冷間圧延で、ワークロール径60mm、ワークロール表面粗さRa0.03μmとし、最終パスでは圧延速度50〜400m/分及び圧下率20%として厚さ10μmに仕上げた。圧延油の粘度は9.0cSt(25℃)であった。
[表面粗さ測定]
銅箔をガラス板上に乗せて固定し、レーザーテック社のコンフォーカル顕微鏡HD100Dを用いて、圧延銅箔は圧延平行方向、電解銅箔は製品の長手方向の表面粗さを測定した。圧延銅箔については、上下面のうち一方の面についての測定結果を記載したが、両面とも同様の表面性状であった。Ra、RSm及びRSkはJIS B0601:2001に準拠してレーザーテック社製HD100Dを使用して測定した。
[シランカップリング処理]
上記の通り製造した板厚10μmの圧延銅箔及び表面粗さの異なる2種類の電解銅箔を濃度0.5質量%のアミノプロピルトリメトキシシランに3秒間浸漬し、ドライヤーにて乾燥した後、以下の通り、活物質の塗布及び密着性評価を行った。
[活物質塗布と密着性評価]
(1)平均径9μmの人工黒鉛とポリビニリデンフルオライドを重量比1:9で混合し、これを溶剤N−メチル−2−ピロリドンに分散させて活物質分散液を作製する。
(2)集電体である銅箔の表面に上記の活物質分散液を塗布する。
(3)活物質分散液を塗布した銅箔を乾燥機にて90℃×30分間加熱する。
(4)乾燥後、20mm角に切り出し、1.5トン/mm2×20秒間の荷重をかける。
(5)上記サンプルをカッターにて碁盤目状に切り傷を形成し、市販の粘着テープ(登録商標:セロテープ)を貼り、重さ2kgのローラーを置いて1往復させて粘着テープを圧着する。
(6)粘着テープを剥がし、銅箔上に残存した活物質は、表面の画像をPCに取り込み、二値化によって活物質の残存率を算出。残存率は、各サンプル3つの平均値とした。活物質密着性の判定は、残存率0〜50%を「×」、50〜70%を「△」、70〜90%を「○」、90%以上を「◎」とした。
Example 1
About various rolled copper foil and electrolytic copper foil, the adhesiveness with a negative electrode active material was evaluated. The surface roughness of the rolled copper foil was changed by adjusting the rolling speed of the final pass. The electrolytic copper foil obtained the commercial item from which surface roughness differs.
[Manufacture of rolled copper foil]
A tough pitch copper ingot having a thickness of 200 mm and a width of 600 mm was manufactured and rolled to 10 mm by hot rolling. Next, annealing and cold rolling are repeated, and finally, by cold rolling, the work roll diameter is 60 mm, the work roll surface roughness Ra is 0.03 μm, and in the final pass, the rolling speed is 50 to 400 m / min and the reduction rate is 20%. It finished to 10 μm. The viscosity of the rolling oil was 9.0 cSt (25 ° C.).
[Surface roughness measurement]
The copper foil was placed on a glass plate and fixed, and the surface roughness of the rolled copper foil in the rolling parallel direction and the electrolytic copper foil in the longitudinal direction of the product were measured using a laser tech confocal microscope HD100D. About the rolled copper foil, although the measurement result about one side was described among upper and lower surfaces, both surfaces had the same surface property. Ra, RSm, and RSk were measured using HD100D manufactured by Lasertec in accordance with JIS B0601: 2001.
[Silane coupling treatment]
After immersing the rolled copper foil having a thickness of 10 μm produced as described above and two types of electrolytic copper foils having different surface roughness in aminopropyltrimethoxysilane having a concentration of 0.5 mass% for 3 seconds and drying with a dryer, Application of the active material and adhesion evaluation were performed as follows.
[Application of active material and evaluation of adhesion]
(1) Artificial graphite having an average diameter of 9 μm and polyvinylidene fluoride are mixed at a weight ratio of 1: 9, and this is dispersed in a solvent N-methyl-2-pyrrolidone to prepare an active material dispersion.
(2) The active material dispersion is applied to the surface of the copper foil that is the current collector.
(3) The copper foil coated with the active material dispersion is heated at 90 ° C. for 30 minutes in a dryer.
(4) After drying, cut into 20 mm squares and apply a load of 1.5 ton / mm 2 × 20 seconds.
(5) The sample is cut into a grid pattern with a cutter, a commercially available adhesive tape (registered trademark: cello tape) is applied, and a 2 kg weight roller is placed to reciprocate once to pressure-bond the adhesive tape.
(6) The active material remaining on the copper foil is peeled off and the surface image is taken into a PC and the residual rate of the active material is calculated by binarization. The residual rate was an average value of three samples. In the determination of the active material adhesion, a residual rate of 0 to 50% was “x”, 50 to 70% was “Δ”, 70 to 90% was “◯”, and 90% or more was “◎”.

結果を表1に示す。

Figure 2011009207
The results are shown in Table 1.
Figure 2011009207

No.1−1〜1−4は、圧延によるオイルピットによりRa及びRSmが規定の範囲であることから、いずれも活物質の残存率が良好である。RSkも好ましい範囲にあった。また、表面粗さRSmが小さいほど、より残存率が高い。
No.1−5〜1−6は圧延銅箔であるが、No.1〜4と比較して圧延速度が小さいために圧延によるオイルピットが少なく、RSmが規定の範囲を超えているため、活物質の残存率が低い。RSkの値も好ましくない。
No.1−7は電解銅箔であり、M面はRSkは好ましい範囲であるが、RaおよびRSmが規定の範囲を超えているため、活物質の残存率が低い。S面はRaが規定の範囲であるが、RSmおよびRSkが規定の範囲を超えているため、活物質の残存率が低い。
No.1−8は電解銅箔であり、M面はRaおよびRSmが規定の範囲を超えており、RSkも不適切であったため、活物質の残存率が低い。S面はRaおよびRSkは好ましい範囲であるが、RSmが規定の範囲を超えているため、活物質の残存率が低い。
一般に、電解銅箔の表面粗さは凹凸が大きく、圧延銅箔のオイルピットのような微細な凹凸が形成されていないため、活物質の残存率が低い。
No. In 1-1 to 1-4, Ra and RSm are within the specified range due to oil pits by rolling, and therefore, the remaining ratio of the active material is good. RSk was also in the preferred range. Further, the smaller the surface roughness RSm, the higher the residual rate.
No. 1-5 to 1-6 are rolled copper foils. Since the rolling speed is low compared with 1-4, there are few oil pits by rolling, and since RSm exceeds the prescribed range, the residual ratio of the active material is low. The value of RSk is also not preferable.
No. 1-7 is an electrolytic copper foil, and Mk has a preferable range of RSk, but since Ra and RSm exceed the specified range, the residual ratio of the active material is low. On the S surface, Ra is in the specified range, but since RSm and RSk exceed the specified range, the residual ratio of the active material is low.
No. 1-8 is an electrolytic copper foil. On the M surface, Ra and RSm exceed the specified ranges, and RSk is also inappropriate. Therefore, the residual ratio of the active material is low. In the S plane, Ra and RSk are in a preferable range, but since the RSm exceeds the specified range, the residual ratio of the active material is low.
In general, the surface roughness of the electrolytic copper foil has large irregularities, and fine irregularities such as oil pits of the rolled copper foil are not formed, so that the residual ratio of the active material is low.

例2
種々の圧延銅箔について、活物質との密着性を評価した。圧延銅箔はワークロールの表面粗さを調節して表面粗さを変化させた。
[圧延銅箔の製造]
厚さ200mm、幅600mmのタフピッチ銅のインゴットを製造し、熱間圧延により10mmまで圧延した。次に、焼鈍と冷間圧延を繰り返し、最後に冷間圧延で、ワークロール径60mm、ワークロール表面粗さRa0.01〜0.12μmとし、最終パスでは圧延速度250m/分及び圧下率20%として厚さ10μmに仕上げた。圧延油の粘度は9.0cSt(25℃)であった。
[表面粗さ測定]
例1と同様の方法で測定した。上下面のうち一方の面についての測定結果を記載したが、両面とも同様の表面性状であった。
[シランカップリング処理]
例1と同様の方法でシランカップリング処理した。
[活物質塗布と密着性評価]
例1と同様の方法で活物質分散液を塗布し、密着性を評価した。
Example 2
About various rolled copper foil, the adhesiveness with an active material was evaluated. The rolled copper foil changed the surface roughness by adjusting the surface roughness of the work roll.
[Manufacture of rolled copper foil]
A tough pitch copper ingot having a thickness of 200 mm and a width of 600 mm was manufactured and rolled to 10 mm by hot rolling. Next, annealing and cold rolling are repeated, and finally, by cold rolling, the work roll diameter is 60 mm and the work roll surface roughness Ra is 0.01 to 0.12 μm. In the final pass, the rolling speed is 250 m / min and the reduction rate is 20%. To a thickness of 10 μm. The viscosity of the rolling oil was 9.0 cSt (25 ° C.).
[Surface roughness measurement]
Measurement was performed in the same manner as in Example 1. The measurement results for one of the upper and lower surfaces were described, but both surfaces had the same surface properties.
[Silane coupling treatment]
Silane coupling treatment was performed in the same manner as in Example 1.
[Application of active material and evaluation of adhesion]
The active material dispersion was applied in the same manner as in Example 1, and the adhesion was evaluated.

結果を表2に示す。

Figure 2011009207
The results are shown in Table 2.
Figure 2011009207

No.2−1〜2−3は、圧延ワークロールの表面粗さ0.01〜0.09μmであり、圧延速度250m/分の場合においては圧延によるオイルピットの発生によりRa及びRSmが規定の範囲内となり、いずれも活物質の残存率が良好である。RSkも好ましい範囲にあった。また、ワークロール粗さが小さいほど、活物質残存率が大きくなる傾向が見られた。   No. 2-1 to 2-3 are rolled work rolls having a surface roughness of 0.01 to 0.09 μm, and in the case of a rolling speed of 250 m / min, Ra and RSm are within the specified ranges due to the occurrence of oil pits due to rolling. In both cases, the residual ratio of the active material is good. RSk was also in the preferred range. Moreover, the tendency for the active material residual rate to become large was seen, so that work roll roughness was small.

No.2−4及び2−5は実施例と比較してワークロール粗さが大きいため、圧延によるオイルピットが少なく、Ra及びRSmが規定の範囲を超えているため、活物質の残存率が低い。RSkの値も好ましくない。   No. Since 2-4 and 2-5 have a larger work roll roughness than the examples, there are few oil pits due to rolling, and Ra and RSm exceed the specified range, so the residual ratio of the active material is low. The value of RSk is also not preferable.

例3
種々の銅合金で形成した圧延銅箔について、活物質との密着性を評価した。圧延銅箔はワークロールの表面粗さを調節して表面粗さを変化させた。
[圧延銅箔の製造]
表3に記載の種々の合金成分を酸素濃度10ppm以下の無酸素銅の溶湯に添加して、厚さ200mm、幅600mmのタフピッチ銅のインゴットを製造し、熱間圧延により10mmまで圧延した。次に、焼鈍と冷間圧延を繰り返し、最後に冷間圧延で、ワークロール径60mm、ワークロール表面粗さRa0.03μm、0.12μmとし、最終パスでは圧延速度250m/分及び圧下率10〜20%として厚さ6〜20μmに仕上げた。圧延油の粘度は9.0cSt(25℃)であった。
[表面粗さ測定]
例1と同様の方法で測定した。上下面のうち一方の面についての測定結果を記載したが、両面とも同様の表面性状であった。
[シランカップリング処理]
上記の通り製造した板厚10μmの各種銅合金箔につき、濃度0.5質量%のN−(2−アミノエチル)−3−アミノプロピルトリメトキシシランに5秒間浸漬し、ドライヤーにて乾燥した後、以下の通り活物質の塗布および密着性評価を行った。
[活物質塗布と密着性評価]
例1と同様の方法で活物質分散液を塗布し、密着性を評価した。残存率は、各サンプル3つの平均値とした。活物質密着性の判定は、残存率0〜50%を「×」、50%以上を「○」とした。
Example 3
About the rolled copper foil formed with various copper alloys, the adhesiveness with an active material was evaluated. The rolled copper foil changed the surface roughness by adjusting the surface roughness of the work roll.
[Manufacture of rolled copper foil]
Various alloy components shown in Table 3 were added to an oxygen-free copper melt having an oxygen concentration of 10 ppm or less to produce a tough pitch copper ingot having a thickness of 200 mm and a width of 600 mm, and rolled to 10 mm by hot rolling. Next, annealing and cold rolling are repeated, and finally, by cold rolling, the work roll diameter is 60 mm, the work roll surface roughness Ra is 0.03 μm, 0.12 μm, and the rolling speed is 250 m / min and the reduction rate is 10 to 10 in the final pass. It finished to 6-20 micrometers in thickness as 20%. The viscosity of the rolling oil was 9.0 cSt (25 ° C.).
[Surface roughness measurement]
Measurement was performed in the same manner as in Example 1. The measurement results for one of the upper and lower surfaces were described, but both surfaces had the same surface properties.
[Silane coupling treatment]
Each copper alloy foil having a thickness of 10 μm produced as described above was immersed in N- (2-aminoethyl) -3-aminopropyltrimethoxysilane having a concentration of 0.5 mass% for 5 seconds and dried with a dryer. Then, application of the active material and adhesion evaluation were performed as follows.
[Application of active material and evaluation of adhesion]
The active material dispersion was applied in the same manner as in Example 1, and the adhesion was evaluated. The residual rate was an average value of three samples. In the determination of the active material adhesion, a residual rate of 0 to 50% was “x”, and 50% or more was “◯”.

結果を表3に示す。

Figure 2011009207
The results are shown in Table 3.
Figure 2011009207

No.3−1〜3−6は、圧延銅箔であり、圧延によるオイルピットによりRSm、RSkが規定の範囲であることから、いずれも活物質の残存率が良好であった。
No.3−7及び3−8は、実施例と比較して圧延ワークロールの表面粗さが大きいために圧延によるオイルピットが少なく、RSmおよびRSkが規定の範囲を超えており、活物質の残存率が低かった。
No. 3-1 to 3-6 are rolled copper foils. Since RSm and RSk are in the specified ranges due to oil pits by rolling, the remaining ratio of the active material was good.
No. As for 3-7 and 3-8, since the surface roughness of a rolling work roll is large compared with an Example, there are few oil pits by rolling, RSm and RSk exceed the prescribed | regulated range, and the residual rate of an active material Was low.

Claims (6)

上下面の圧延平行方向における表面粗さについて、0.01μm≦Ra≦0.10μmを満たし、且つ、RSm≦20μmを満たすリチウム電池集電体用圧延銅箔。   A rolled copper foil for a lithium battery current collector that satisfies 0.01 μm ≦ Ra ≦ 0.10 μm and RSm ≦ 20 μm with respect to the surface roughness in the rolling parallel direction of the upper and lower surfaces. RSk≦−0.3である請求項1記載の圧延銅箔。   The rolled copper foil according to claim 1, wherein RSk ≦ −0.3. RSm/Ra≦200である請求項1又は2記載の圧延銅箔。   The rolled copper foil according to claim 1, wherein RSm / Ra ≦ 200. 上下面のうち少なくとも一方の面がシランカップリング処理されている請求項1〜3何れか一項記載の圧延銅箔。   The rolled copper foil according to any one of claims 1 to 3, wherein at least one surface of the upper and lower surfaces is subjected to silane coupling treatment. リチウムイオン二次電池負極集電体用である請求項1〜4何れか一項記載の圧延銅箔。   It is for lithium ion secondary battery negative electrode collectors, The rolled copper foil as described in any one of Claims 1-4. 請求項1〜5何れか一項記載の圧延銅箔を集電体として用いたリチウム電池。   A lithium battery using the rolled copper foil according to claim 1 as a current collector.
JP2010122769A 2009-05-29 2010-05-28 Rolled copper foil for lithium battery current collector Active JP5416037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010122769A JP5416037B2 (en) 2009-05-29 2010-05-28 Rolled copper foil for lithium battery current collector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009131170 2009-05-29
JP2009131170 2009-05-29
JP2010122769A JP5416037B2 (en) 2009-05-29 2010-05-28 Rolled copper foil for lithium battery current collector

Publications (2)

Publication Number Publication Date
JP2011009207A true JP2011009207A (en) 2011-01-13
JP5416037B2 JP5416037B2 (en) 2014-02-12

Family

ID=43565598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010122769A Active JP5416037B2 (en) 2009-05-29 2010-05-28 Rolled copper foil for lithium battery current collector

Country Status (1)

Country Link
JP (1) JP5416037B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015222659A (en) * 2014-05-23 2015-12-10 古河電気工業株式会社 Rolled copper foil and lithium ion secondary battery negative electrode collector
KR20160018352A (en) 2014-08-07 2016-02-17 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Rolled copper foil and collector for secondary battery using the same
CN110462901A (en) * 2017-03-31 2019-11-15 Jx金属株式会社 Lithium ion battery current collector rolled copper foil and lithium ion battery
JP2020026563A (en) * 2018-08-16 2020-02-20 ケイシーエフ テクノロジース カンパニー リミテッド Copper foil having minimized sag, wrinkle, and tear, electrode comprising the same, secondary battery comprising the same, and manufacturing method therefor
JP2020145002A (en) * 2019-03-04 2020-09-10 ナミックス株式会社 Copper foil and negative electrode current collector of lithium ion battery including the same, and method for manufacturing the same
US10787752B2 (en) 2017-07-13 2020-09-29 Kcf Technologies Co., Ltd. Copper foil with minimized bagginess, wrinkle or tear, electrode including the same, secondary battery including the same and method for manufacturing the same
TWI716210B (en) * 2019-01-30 2021-01-11 日商Jx金屬股份有限公司 Surface treatment copper foil, copper clad laminate and printed wiring board
WO2022050001A1 (en) * 2020-09-07 2022-03-10 ナミックス株式会社 Copper foil and laminate, and manufacturing methods therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07296802A (en) * 1994-04-26 1995-11-10 Sumitomo Chem Co Ltd Manufacture of lithium secondary battery electrode, and lithium secondary battery
JP2002083594A (en) * 1999-10-22 2002-03-22 Sanyo Electric Co Ltd Electrode for lithium battery, lithium battery using it and lithium secondary battery
JP2002151056A (en) * 2000-11-14 2002-05-24 Sanyo Electric Co Ltd Electrode for lithium secondary battery and lithium secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07296802A (en) * 1994-04-26 1995-11-10 Sumitomo Chem Co Ltd Manufacture of lithium secondary battery electrode, and lithium secondary battery
JP2002083594A (en) * 1999-10-22 2002-03-22 Sanyo Electric Co Ltd Electrode for lithium battery, lithium battery using it and lithium secondary battery
JP2002151056A (en) * 2000-11-14 2002-05-24 Sanyo Electric Co Ltd Electrode for lithium secondary battery and lithium secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015222659A (en) * 2014-05-23 2015-12-10 古河電気工業株式会社 Rolled copper foil and lithium ion secondary battery negative electrode collector
KR20160018352A (en) 2014-08-07 2016-02-17 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Rolled copper foil and collector for secondary battery using the same
KR101677852B1 (en) * 2014-08-07 2016-11-18 제이엑스금속주식회사 Rolled copper foil and collector for secondary battery using the same
CN110462901A (en) * 2017-03-31 2019-11-15 Jx金属株式会社 Lithium ion battery current collector rolled copper foil and lithium ion battery
CN110462901B (en) * 2017-03-31 2022-06-21 Jx金属株式会社 Rolled copper foil for lithium ion battery collector and lithium ion battery
US10787752B2 (en) 2017-07-13 2020-09-29 Kcf Technologies Co., Ltd. Copper foil with minimized bagginess, wrinkle or tear, electrode including the same, secondary battery including the same and method for manufacturing the same
JP2020026563A (en) * 2018-08-16 2020-02-20 ケイシーエフ テクノロジース カンパニー リミテッド Copper foil having minimized sag, wrinkle, and tear, electrode comprising the same, secondary battery comprising the same, and manufacturing method therefor
TWI716210B (en) * 2019-01-30 2021-01-11 日商Jx金屬股份有限公司 Surface treatment copper foil, copper clad laminate and printed wiring board
JP2020145002A (en) * 2019-03-04 2020-09-10 ナミックス株式会社 Copper foil and negative electrode current collector of lithium ion battery including the same, and method for manufacturing the same
WO2022050001A1 (en) * 2020-09-07 2022-03-10 ナミックス株式会社 Copper foil and laminate, and manufacturing methods therefor
CN116018428A (en) * 2020-09-07 2023-04-25 纳美仕有限公司 Copper foil, laminate, and method for producing same

Also Published As

Publication number Publication date
JP5416037B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JP5416037B2 (en) Rolled copper foil for lithium battery current collector
JP5417458B2 (en) Copper foil for secondary battery negative electrode current collector
JP5391366B2 (en) Electrolytic copper foil, wiring board using the electrolytic copper foil, and flexible wiring board
JP5400960B2 (en) Surface treated copper foil
KR101782737B1 (en) Electrolytic copper foil, the negative electrode for a lithium ion secondary battery and a lithium ion secondary battery, printed circuit board and an electromagnetic shielding material
JP5219952B2 (en) Copper foil for lithium-ion battery current collector
JP5810249B1 (en) Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, printed wiring board, and electromagnetic shielding material
KR102378297B1 (en) Electrodeposited copper foil, current collectors for negative electrode of lithium-ion secondary batteries and lithium-ion secondary batteries
JP2012172198A (en) Electrolytic copper foil and method for manufacturing the same
TWI455394B (en) Copper foil for lithium ion battery collectors
JP2016036829A (en) Rolled copper foil, and secondary battery power collector using the same
WO2014112619A1 (en) Copper foil, anode for lithium ion battery, and lithium ion secondary battery
KR102048116B1 (en) High-strength, low-warping electrolytic copper foil and method for producing same
WO2004049476A1 (en) Negative electrode collector for nonaqueous electrolyte secondary battery and method for manufacturing same
JP2015045092A (en) Electrolytic copper foil and method for producing the same
KR102643400B1 (en) Rolled copper foil for lithium ion battery current collector and lithium ion battery
KR102299094B1 (en) Rolled copper foil for lithium ion battery current collector and lithium ion battery
JP6316095B2 (en) Rolled copper foil and negative electrode current collector of lithium ion secondary battery
JP5019654B2 (en) Copper (alloy) foil for negative electrode current collector of lithium ion secondary battery, manufacturing method thereof, negative electrode of lithium ion secondary battery, manufacturing method thereof
WO2013150640A1 (en) Electrolytic copper foil and method for manufacturing same
JP2004162144A (en) Method for manufacturing electrolytic copper foil
TW201943134A (en) Rolled copper foil for lithium ion battery collectors and lithium ion battery wherein the rolled copper foil for lithium ion battery collectors has good adhesion to a negative electrode active material and reduces the generation of metal powder during ultrasonic welding
WO2005057693A1 (en) Negative electrode collector for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131114

R150 Certificate of patent or registration of utility model

Ref document number: 5416037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250