WO2005057693A1 - Negative electrode collector for nonaqueous electrolyte secondary battery - Google Patents

Negative electrode collector for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2005057693A1
WO2005057693A1 PCT/JP2004/010016 JP2004010016W WO2005057693A1 WO 2005057693 A1 WO2005057693 A1 WO 2005057693A1 JP 2004010016 W JP2004010016 W JP 2004010016W WO 2005057693 A1 WO2005057693 A1 WO 2005057693A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
plating
plating layer
negative electrode
layer
Prior art date
Application number
PCT/JP2004/010016
Other languages
French (fr)
Japanese (ja)
Inventor
Tomohiro Sakata
Kazuko Taniguchi
Makoto Dobashi
Original Assignee
Mitsui Mining & Smelting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co., Ltd. filed Critical Mitsui Mining & Smelting Co., Ltd.
Publication of WO2005057693A1 publication Critical patent/WO2005057693A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode current collector for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery.
  • Representative examples of a metal foil used as a current collector include those manufactured by a rolling method and those manufactured by an electrolytic method.
  • a 1 ⁇ m thick nickel foil is applied to each surface of a 20 ⁇ m thick electrolytic iron foil to increase the strength of the metal foil manufactured by the electrolytic method.
  • the current collector thus obtained is used as a negative electrode of a lithium ion secondary battery (see Patent Document 1), or an alkaline storage battery obtained by applying a nickel or nickel alloy to the surface of a current collector made of a thin steel plate (Patent Reference 2) has been proposed.
  • Patent Document 1 a lithium ion secondary battery
  • Patent Reference 2 an alkaline storage battery obtained by applying a nickel or nickel alloy to the surface of a current collector made of a thin steel plate
  • Patent Document 4 Apart from Patent Documents 1 to 3, there has been proposed a lithium ion secondary battery in which a current collector made of copper is plated with nickel (see Patent Document 4). However, the technique described in this document does not aim to increase the strength of the current collector, and does not disclose the conditions for nickel knolling, so it is unclear whether the effect of improving the strength was recognized.
  • the current collector is subjected to a high-temperature and long-time heat treatment after the active material is supported on the current collector.
  • Patent Document 5 describes that it is preferable to bake the current collector supporting the active material at 400 ° C., and in this example, the baking time is set to 10 hours or the like. Therefore, the strength of the current collector after heat treatment is also required.
  • Patent Document 1 JP-A-6-310147
  • Patent Document 2 JP-A-11-233117
  • Patent Document 3 JP-A-2003-7305
  • Patent Document 4 JP-A-5-159781
  • Patent Document 5 JP-A-2002-260637
  • an object of the present invention is to provide a negative electrode current collector for a non-aqueous electrolyte secondary battery, which can solve the above-mentioned various disadvantages of the related art.
  • the present invention provides a hard nickel plating layer in which at least one surface of an electrolytic foil made of a metal material having a low ability to form a lithium compound is subjected to electrolytic plating using a plating bath containing a nickel salt and an ammonium salt.
  • the object has been achieved by providing a negative electrode current collector for a non-aqueous electrolyte secondary battery, characterized in that a negative electrode current collector is formed.
  • the present invention also provides, as a preferred method for producing the current collector,
  • At least one side of the electrolytic foil made of a metal material with low lithium compound formation is electroplated using a plating bath containing 100-250 g / l nickel sulfate, 10-50 gZl ammonium chloride and 10-50 g / l boric acid.
  • a plating bath containing 100-250 g / l nickel sulfate, 10-50 gZl ammonium chloride and 10-50 g / l boric acid.
  • the present invention provides a negative electrode for a non-aqueous electrolyte secondary battery provided with the current collector, and a non-aqueous electrolyte secondary battery provided with the negative electrode.
  • a current collector having a high tensile strength despite its thinness can be obtained at low cost. Further, according to the present invention, it is possible to obtain a current collector in which a sufficient level of high tensile strength is maintained even after heat treatment. Furthermore, by subjecting the surface of the hard nickel plating layer to a roughening treatment and / or an anti-rust treatment, the adhesion between the current collector and the active material can be increased. Further, by adjusting the thickness of the hard nickel plating layer on each surface of the electrolytic foil, it is possible to effectively prevent the occurrence of curling due to plating or internal stress inherent to the electrolytic foil. BEST MODE FOR CARRYING OUT THE INVENTION
  • the negative electrode current collector for a non-aqueous electrolyte secondary battery of the present invention (hereinafter, simply referred to as a current collector) is one in which a hard nickel plating layer is formed on at least one surface of a foil made of a metal material.
  • An electrolytic foil is used as a foil made of a metal material. The electrolytic foil has an advantage that when the foil is made thinner, the manufacturing cost can be reduced as compared with the rolled foil.
  • the above-mentioned electrolytic foil is preferably thin because it can increase the energy density of the battery. From this point of view and from the viewpoint of the production cost when the rolling method is used, the electrolytic foil has a thickness force of —50 / im, particularly 3-18 ⁇ , and especially 9-118 / im. . If the thickness is converted by weight per unit (when the density of copper is 8.96 g / cm 3 ), it should be 8.96-448 g / m 2 , especially 80-6-161 ⁇ 3 g / m 2 Power S preferred ,. The thickness of the box is measured by analyzing cross-sectional photographs taken with a micrometer or an electron microscope.
  • the electrolytic foil is made of a metal material having a low ability to form a lithium compound.
  • "Low ability to form a lithium compound” means that no intermetallic compound or solid solution is formed with lithium, or even if it is formed, the amount of lithium is a very small force or very unstable.
  • a metal material for example, copper, nickel, iron, cobalt, chromium, zinc, silver or an alloy of two or more of these is used.
  • copper or an alloy thereof which is a material having low electric resistance and excellent workability. Good.
  • a conventionally known technique may be used without particular limitation on the method for producing an electrolytic foil.
  • the electrolytic foil is generally obtained by using a rotating drum as a cathode, performing electrolysis in an electrolytic bath containing ions of the above-mentioned metal material, depositing the metal material on the drum peripheral surface, and peeling the deposited metal material.
  • the electrolytic foil is, for example, a copper foil, a sulfuric acid acidic copper sulfate electrolytic bath can be used.
  • a thin release agent layer is formed on one surface of a conductive carrier foil, and a metal material having a low ability to form a lithium compound is electrolytically deposited thereon.
  • a method of obtaining an electrolytic foil with a foil In the electrolytic foil with a carrier foil, since the carrier foil functions as a support for the electrolytic foil, there is no occurrence of blemishes or the like in the manufacturing process even when the electrolytic foil is made extremely thin. According to this manufacturing method, the electrolytic foil can be made extremely thin, so that a high density and a high capacity density can be obtained when the electrode is formed.
  • the thickness of the electrolytic foil produced by this method is about 1 / m in consideration of production stability.
  • the upper limit of the thickness is not particularly limited.However, if an electrolytic foil having a thickness exceeding 10 / m is to be manufactured, it is not necessary to employ the present manufacturing method. The upper limit is about 10 ⁇ m.
  • the conductive carrier foil preferably has a thickness of about 18-50 / m. When it is less than 18 / im, the effect as a support becomes insufficient. On the other hand, exceeding 50 / im does not have any particular effect, but rather leads to an increase in manufacturing cost.
  • the material of the conductive carrier foil is not particularly limited as long as it has conductivity. However, considering the recyclability of the material, the material is preferably the same as that of the electrolytic foil.
  • an organic compound is preferably used, and particularly, a nitrogen-containing compound or a sulfur-containing compound is preferably used.
  • the nitrogen-containing compound include benzotriazole (BTA), carboxybenzotriazole (CBTA), trinoletriazolone (TTA), N ,, N, monobis (benzotriazolylmethyl) urea (BTD —U) and triazole-based compounds such as 3-amino-1H-1,2,4-triazole (ATA) are preferably used.
  • Sulfur-containing compounds include mercaptobenzothiazole (MBT), thiocyanuric acid (TCA) and 2_benzimidazole thiol (BIT).
  • the conductive carrier is dissolved in a solution in which the release agent is dissolved.
  • the foil may be dipped, or the solution may be applied on a conductive carrier foil.
  • the concentration of the release agent is preferably 3-4 g / present when CBTA is used as the release agent.
  • it is also effective to perform a chromate treatment instead of the organic compound release agent layer.
  • the hard nickel layer is preferably formed in a state where the electrolytic foil is supported on a conductive carrier foil.
  • the method for forming the hard nickel layer will be described later.
  • a hard nickel layer is provided on both sides of the electrolytic foil, a hard nickel layer is formed on the surface of the electrolytic foil while the electrolytic foil is supported on the conductive carrier foil, and then the electrolytic foil is transferred to the conductive carrier foil. And then a hard nickel layer can be formed on the other side of the electrolytic foil.
  • a hard nickel plating layer is formed on at least one surface of the electrolytic foil.
  • nickel plating or nickel alloy plating is generally called hard nickel plating as a general term (for example, see Patent Document 2).
  • the hard nickel plating layer in the present invention is formed by electroplating using a plating bath containing a nickel salt and an ammonium salt.
  • the hard nickel plating layer formed by electroplating using this plating bath is formed by electroplating using another plating bath (for example, a Watt bath or a sulfamic acid bath). It was found that the material was harder than the formed echnoke plating layer, and as a result, it was possible to obtain a current collector having a high tensile strength.
  • the Watts bath is a bath containing nickel sulfate, nickel chloride and boric acid
  • the sulfamic acid bath is a bath containing nickel sulfamate, nickel chloride and boric acid.
  • Examples of the nickel salt in the plating bath used for forming the hard nickel plating layer include nickel sulfate hexahydrate.
  • Examples of the ammonium salt include Shii-dani ammonium and the like.
  • the plating bath may contain boric acid or the like.
  • the concentration of nickel sulfate in the plating bath is 100-250 g / l, especially 130 190 gZl.
  • the concentration of ammonium chloride is 10-50 g / l, especially 20 30 gZl It's preferable that there is.
  • the concentration of boric acid is between 10 and 50 g / l, especially between 20 and 40 g / l.
  • the bath temperature is preferably 20 to 60 ° C, particularly preferably 30 to 40 ° C, and the current density is preferably 1 to 50 A / dm 2 , particularly 5 to 5 ° C. Sile, it preferred to be a 15dm 2.
  • the pH is preferably 26, especially 35.
  • hard nickel plating using the above-mentioned plating bath is an alternative to hard chrome plating used for abrasion parts or overfilling of balta, such as a part with excessive ij, or used in combination with hard chrome plating. It was the main application (see, for example, “Surface Treatment Handbook” written by Sakae Tajima, published on November 15, 1955, Sangyo Tosho Co., Ltd., page 143).
  • hard nickel plating has not been conventionally formed on the surface of a thin material such as a metal foil, and the strength (tensile strength) against elongation of the metal foil is increased by forming the force on the surface of the metal foil. It was not known to increase. The characteristics of such hard nickel plating were first discovered by the present inventors.
  • the hard nickel plating layer formed using the plating bath has a thickness of 0.5 018 ⁇ ⁇ ⁇ on each surface of the electrolytic foil, and particularly, 11 1010 / im. It is preferable in terms of the balance between increasing the energy density of the battery and increasing the strength of the current collector. For the same reason, when hard nickel plating layers are provided on both sides of the electrolytic foil, the total thickness of the plating layers is preferably 118 / im, particularly preferably 2-12 ⁇ .
  • the thickness of the hard nickel plating layer can be measured by observing a SIM image by FIB cross-section processing or by taking an element mapping image of the cross section of the electrolytic foil with an electron microscope and analyzing it.
  • the electrolytic foil has a smooth surface called a glossy surface and a rough surface called a matte surface.
  • the glossy surface is the surface facing the rotating drum or carrier foil used as a cathode during electrolysis
  • the matte surface is the surface that was in contact with the electrolyte.
  • the plating layer may be formed on either the glossy surface or the matte surface. Considering that the adhesion to the active material is improved, it is preferable to form a hard nickel plating layer on the matte surface, which is a rough surface, and to form the active material layer on the plating layer.
  • a hard nickel plating layer on the mat surface, curling of the electrolytic foil can be prevented.
  • a hard nickel plating layer is formed on one surface of the electrolytic foil, for example, on a glossy surface, the electrolytic foil may be deformed into a curl shape with the plating layer side inside. This deformation becomes conspicuous when the thickness of the electrolytic foil is 12 / im or less and the thickness of the hard nickel plating layer is 3 ⁇ m or more.
  • it is preferable to form a hard nickel plating layer on each surface of the electrolytic foil that is, on each of the matte surface and the glossy surface).
  • curling can be effectively prevented by making the thickness of the plating layer on one side smaller than the thickness of the plating layer on the other side.
  • the thickness of the hard nickel plating layer on the glossy surface side smaller than the thickness of the hard nickel plating layer on the matte surface side, curling can be more effectively prevented.
  • the reason for this is that the effect of suppressing the force caused by the internal stress inherent in the electrolytic foil occurs. This effect is obtained when the thickness of the hard nickel plating layer on the matte side becomes preferably 1.1 to 1.2 times, more preferably 1.3 to 1.7 times the thickness of the hard nickel plating layer on the glossy side. It will be even more pronounced.
  • the thickness of the hard nickel plating layer on the matte side is preferably 0.5 ⁇ 10 / im, particularly preferably 16 ⁇ , and the thickness of the hard nickel plating layer on the glossy side is 0.3. — 8 / im, preferably 0.8—8 / im.
  • an intermediate layer between the electrolytic foil and the hard nickel layer It is preferable to provide an intermediate layer between the electrolytic foil and the hard nickel layer.
  • the intermediate layer a layer containing cobalt or iron is preferred, and a layer coated with cobalt or iron alone is particularly preferred.
  • the heat treatment is carried out at a temperature of 400 ° C or more for a long time in the subsequent electrode manufacturing process, the hard nickel layer and the electrolytic foil will interdiffuse There is a concern that the Kirkendall effect of moving will occur and the strength that the hard nickel layer should have originally will be reduced. It is known that when the Kirkendall effect occurs, voids occur at the diffusion boundary between the hard nickel layer and the electrolytic foil.
  • the locations where voids exist are locations where tensile stress is concentrated, and the foil is likely to break. This phenomenon is remarkable when a copper foil or a copper alloy foil is used as the electrolytic foil. Therefore, when a copper foil or a copper alloy foil is used as the electrolytic foil, it is particularly preferable to provide an intermediate layer.
  • the thickness of the intermediate layer is generally about 0.1 to 0.5 zm, as long as the intermediate layer can prevent mutual occurrence of the hard nickel layer and the electrolytic foil.
  • the material of the intermediate layer is limited to cobalt or iron as long as it has an effect of preventing mutual diffusion between the hard nickel layer and the electrolytic foil. What?
  • the intermediate layer is preferably formed by electroplating from the viewpoint of simplifying the manufacturing process. When the intermediate layer is provided, it is preferable that the material of the intermediate layer is different from the material of the electrolytic foil.
  • the current collector of the present invention having the above-described structure is a thin type having a thickness of 3 to 50 ⁇ m, particularly 14 to 24 ⁇ m. Preferred from the viewpoint of obtaining
  • the current collector of the present invention has a high tensile strength despite its thinness and the use of an electrolytic foil as a base material.
  • an electrolytic foil for example, when the electrolytic foil is made of copper, tensile strength 600N / mm 2 or more, a high value of particular 700NZmm 2 or more.
  • the tensile strength is 800-1000 N / mm 2 , especially around 900 NZmm 2 , wrinkles may occur on the current collector due to expansion and contraction of the active material, It is possible to effectively prevent the body from being cut off.
  • the electrolytic foil is made of copper, its elongation is 110. /. And particularly preferably 2 to 8%.
  • the tensile strength and elongation are measured using an Autograph AG-I manufactured by Shimadzu Corporation under the conditions of a gauge length of 50 mm and a tensile speed of 50 mm / min.
  • the surface of the plating layer may be roughened. This improves the adhesion between the hard nickel plating layer and the active material layer formed thereon.
  • the roughing treatment after performing a plating treatment for forming a granular metal on the surface of the hard nickel plating layer, the granular metal is compacted so as not to impair the uneven shape due to the granular metal.
  • a plating process of covering with a dense plating layer is included. The first plating is called so-called plating, and the second plating is called so-called plating.
  • Such roughening treatment is known as a method for roughening the surface of a copper foil for a printed circuit, and is disclosed, for example, in Japanese Patent Publication No.
  • Burning is plating in which a granular metal is precipitated by a current near the critical current density.
  • Covering is a method in which a dense non-granular plating layer is formed by a current at or below the critical current density. It is plating that is deposited so as to cover the powdered metal.
  • the first-stage burn plating includes a plating bath containing 20 to 80 g / l of copper sulfate pentahydrate and 50 to 150 g / l of sulfuric acid. Can be used at a current density of 10-20 A / dm 2 . The latter cover is copper sulfate The plating can be performed at a current density of 5 to 3 OA / dm 2 using a plating bath containing 200 to 300 g / l of pentahydrate and 50 to 150 g / l of sulfuric acid.
  • the roughness treatment layer formed on the surface of the hard nickel plating layer has a ten-point average surface roughness R zjis (JIS B0601) of preferably 2 to 12 zm, more preferably 418 to 8 ⁇ m.
  • the coarse roughness is also the same.
  • the ten-point average surface roughness Rzjis is the height from the highest peak to the fifth peak, measured in the direction of the longitudinal magnification from the average line of the part extracted by the reference length from the longitudinal section curve of the roughened layer. It is the difference between the average of the absolute values of the altitude and the average of the absolute values of the depths of the valleys from the lowest to the fifth.
  • Rzjis can be measured, for example, using a surface roughness' contour measuring instrument SEF-30D manufactured by Kosaka Laboratory Co., Ltd.
  • the surface of the hard nickele-coated layer may be subjected to an anti-dust treatment.
  • the surface of the roughening treatment layer may be subjected to an anti-rust treatment.
  • This adhesion prevention also improves the adhesion between the hard nickel plating layer and the active material layer formed thereon.
  • the prevention treatment include (i) metal plating treatment, (ii) chromate treatment, and (iii) silane coupling treatment. In the metal plating process, zinc, nickel, cobalt or their alloys are coated on the surface of a hard nickel plating layer (when the roughing process is not performed) or a roughened layer (when the roughening process is performed).
  • alloy plating such as zinc-copper, zinc-nickel, zinc-cobalt, zinc-nickel-copper, zinc-nickel-cobalt, zinc-copper-tin and the like can be mentioned.
  • zinc plating contain zinc at 16 g / l, potassium pyrophosphate at 50-200 g / l, adjust the pH to 10-12, and use a plating bath with 0.3-1AZdm It can be performed under the condition of the current density of 2 .
  • a hard nickel plating layer (a case where the roughening treatment is not performed) or a roughening treatment layer (the case where the roughening treatment is performed) is performed using a solution containing chromate or dichromate as a main component.
  • the heat protection film formed by this treatment is made of a chromium oxide layer.
  • the chromate treatment is specified in, for example, JIS Z 0103. Specific conditions for the chromate treatment includes the chromic acid 0. 5- 2gZl, pH by using a plated bath adjusted to 11 one 13, it is carried out at a current density of 0. 5- 2A / dm 2 Can be.
  • the surface of the hard nickel plating layer (when the roughing treatment is not performed) or the surface of the roughening treatment layer (when the roughing treatment is performed) is treated with a silane coupling agent.
  • a silicon-containing compound commonly known as For example, the general formula R-SiX (X is
  • R is a substituent having a functional group such as a butyl group, an epoxy group, or an amino group, which easily reacts with an organic substance.
  • a silane coupling agent having a concentration of, for example, 3-lOg / 1 may be used.
  • the silane coupling agent having the concentration may be applied to the hard nickel plating layer and dried at a predetermined temperature for a predetermined time.
  • the order of the roughing treatment and the protection treatment is no particular limitation on the order of the roughing treatment and the protection treatment.
  • only the roughing process may be performed.
  • only one of the (i) one (m) protection processes may be performed, or two or more of the (i) one (m) protection processes may be combined.
  • a chromate treatment can be performed after the metal plating treatment, or a silane coupling treatment can be performed after the metal plating treatment. After the metal plating, the chromate treatment and the silane coupling treatment can be performed in this order. Further, a chromate treatment may be performed first, followed by a silane coupling treatment.
  • the roughening treatment and the prevention treatment can be combined.
  • the order of the prevention processing can be as described above. It should be noted that the tensile strength of the current collector of the present invention does not substantially change even if the roughing treatment and / or the anti-rust treatment is performed.
  • a layer containing a negative electrode active material is formed on the surface of the current collector of the present invention to produce a negative electrode for a non-aqueous electrolyte secondary battery.
  • the negative electrode active material include a material having a high ability to form a lithium compound.
  • the negative electrode active material is carried by being deposited on the current collector by electrolysis. Alternatively, it is also supported by applying a paste containing particles of the negative electrode active material on a current collector and drying. Sintering may be performed after application of the paste. As is clear from the examples described later, ADVANTAGE OF THE INVENTION According to the collector of this invention, even if this collector is exposed to high temperature by sintering, there exists an advantage that fall of tensile strength can be suppressed. The effect is particularly great when a hard nickel plating layer is provided on both sides of the electrolytic foil.
  • the negative electrode provided with the current collector of the present invention is used together with a known positive electrode, a separator, and a non-aqueous electrolyte to form a non-aqueous electrolyte secondary battery.
  • the positive electrode is prepared by suspending a positive electrode active material and, if necessary, a conductive agent and a binder in an appropriate solvent to prepare a positive electrode mixture, applying the mixture to a current collector, drying the mixture, rolling, pressing, and Obtained by cutting and punching.
  • a conventionally known positive electrode active material such as a lithium nickel composite oxide, a lithium manganese composite oxide, and a lithium control composite oxide is used.
  • the nonaqueous electrolyte is a solution in which a lithium salt as a supporting electrolyte is dissolved in an organic solvent.
  • lithium salts include, for example, LiClO, LiAlCl, LiPF, LiAsF, LiSbF, LiSCN, LiCl, UBr, UI, LiCF SO, Li
  • the present invention is not limited to the above embodiment.
  • the hard nickel plating layer may be subjected to a roughening treatment, but instead of or in addition to this, various hardening treatments may be performed to the hard nickel plating layer.
  • the prevention treatment include (i) a plating treatment with zinc or a zinc alloy, (ii) a chromate treatment, and (m) a silane coupling treatment.
  • VLP foil (trade name) manufactured by Mitsui Kinzoku Mining was used as a current collector.
  • This foil is an electrolytic copper foil obtained using a rotating drum as a cathode. Electroplating was performed on the matte surface of the electrolytic copper foil using a plating bath having the following composition to form a hard nickel plating layer having a thickness of 3 / im. The bath temperature was 50 ° C. and the current density was 5 A / dm 2 . pH was 4. Thus, a negative electrode current collector was obtained. [Composition of Plating Bath]
  • a negative electrode current collector was obtained in the same manner as in Example 1 except that a sulfamic acid bath having the following composition was used instead of the plating bath used in Example 1. Bath temperature 50 ° C, current density was lOAZd m 2.
  • a negative electrode current collector was obtained in the same manner as in Example 1 except that a nickel-phosphorus alloy plating bath having the following composition was used instead of the plating bath used in Example 1. Bath temperature is 50 ° C, current density is
  • Example 2 The electrolytic copper foil used in Example 1 was used as it was. No nickel plating was performed. (Example 2)
  • VLP foil (trade name) manufactured by Mitsui Kinzoku Mining having a thickness of 12 zm was used as a current collector.
  • This foil is an electrolytic copper foil obtained using a rotating drum as a cathode. Electroplating was performed on the matte surface of the electrolytic copper foil using the same plating bath as in Example 1, and a 3 zm thick hard nickel A plating layer was formed.
  • the plating conditions were a bath temperature of 35 ° C., a current density of 10 A / dm 2 , and a pH of 4. Next, a hard nickel plating layer having a thickness of 2 / im was formed on the glossy surface under the same conditions. Thus, a negative electrode current collector was obtained.
  • Example 2 The same electrolytic copper foil as in Example 2 was used as a current collector. A 0.3 xm cobalt intermediate layer was formed on both sides of the electrolytic copper foil by electrolytic plating. Next, the same hard nickel layer as in Example 2 was formed.
  • the bath composition and plating conditions for cobalt plating are as follows.
  • Example 2 The same electrolytic copper foil as in Example 2 was used as a current collector. Iron intermediate layers of 0.5 ⁇ were formed on both sides of the electrolytic copper foil by electrolytic plating. Next, the same hard nickel layer as in Example 2 was formed.
  • the bath composition and plating conditions for iron plating are as follows.
  • a negative electrode current collector was obtained in the same manner as in Example 1 except that a cobalt plating layer was formed using a plating bath having the following composition instead of the plating bath used in Example 1.
  • the plating conditions were a bath temperature of 40 ° C., a current density of 10 AZdm 2 , and a pH of 4.
  • the current collector of Example 1 shows higher tensile strength before and after the heat treatment than the current collectors of Comparative Examples 1 to 3.
  • the current collector of Example 1 had the same tensile strength as the current collectors of Reference Examples 1 and 2 before and after the heat treatment. It turns out that it shows.
  • the current collector of Reference Example 1 is inferior to the current collector of the present invention in that the current collector has high strength but has a high manufacturing cost due to the presence of the cobalt plating layer.
  • the current collector of Reference Example 2 also has high strength, but the thin rolled foil is inferior to the current collector of the present invention in that the production cost is high.
  • Example 1 the current collector of Example 2 in which the hard nickel plating layers were provided on both surfaces of the electrolytic foil was provided with the hard nickel layer only on one surface of the electrolytic foil. It can be seen that despite having a smaller total thickness than the current collector of Example 1, the current collector exhibits higher tensile strength than the current collector. Furthermore, as is clear from the comparison between Examples 3 and 4 and Examples 1 and 2, the heat treatment time in Examples 3 and 4 is twice as long as that in Examples 1 and 2. It can be seen that the tensile strength after the heat treatment maintained a value equal to or higher than that of Examples 1 and 2. Therefore, the current collector according to the present invention has a high tensile strength even if it is made thin, and can be manufactured at low cost, and can be applied as a new negative electrode current collector for a nonaqueous electrolyte secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

[PROBLEMS] To obtain a collector having, despite being thin, a high tensile strength at low cost. [MEANS FOR SOLVING PROBLEMS] There is provided a negative electrode collector for nonaqueous electrolyte secondary battery characterized in that at least one major surface of an electrolytic foil of a metal material exhibiting low capability of lithium compound formation is furnished with a hard nickel plating layer. This hard nickel plating layer is formed by electroplating in a plating bath containing a nickel salt and an ammonium salt. The metal material is constituted of, for example, any of copper, iron, cobalt, nickel, zinc and silver or an alloy of at least two members thereof.

Description

明 細 書  Specification
非水電解液二次電池用負極集電体  Negative electrode current collector for non-aqueous electrolyte secondary batteries
技術分野  Technical field
[0001] 本発明は、リチウムイオン二次電池等の非水電解液二次電池用の負極集電体に関 する。  The present invention relates to a negative electrode current collector for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery.
背景技術  Background art
[0002] 最近、リチウムイオン二次電池を始めとする非水電解液二次電池用の負極活物質 にシリコン系材料やスズ系材料など高容量な活物質を用レ、る研究が進められている 。これらの活物質を使用する場合は、従来の炭素系活物質を用いた場合と比べて電 池の充放電に伴う活物質の体積膨張により集電体へ力かる応力が大きぐそれに起 因して集電体に皺が発生したり集電体が変形してしまうことが問題となる。集電体に 皺が発生したり変形してしまうことにより、集電体と活物質の密着性が低下してしまい 電池寿命が低下してしまう。その対策として、体積膨張によりかかる応力に耐え得る、 より高強度な集電体が要求されている。強度を高める手段の一つとして集電体を厚く すること力 s考えられる。しかし集電体を厚くしても強度 (抗張力)の大きな向上は期待 できず、それば力、りでなく電池のエネルギー密度を低下させてしまうというデメリットが 生じる。  [0002] Recently, research has been conducted on using a high-capacity active material such as a silicon-based material or a tin-based material as a negative electrode active material for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. There. When these active materials are used, the stress applied to the current collector due to the volume expansion of the active material accompanying the charging and discharging of the battery is larger than when using a conventional carbon-based active material. Therefore, there is a problem that the current collector is wrinkled or the current collector is deformed. When the current collector is wrinkled or deformed, the adhesion between the current collector and the active material is reduced, and the battery life is shortened. As a countermeasure, a higher strength current collector that can withstand the stress applied by volume expansion is required. Thickening the current collector is one of the ways to increase the strength. However, even if the current collector is made thicker, a significant improvement in strength (tensile strength) cannot be expected, and this has the disadvantage of lowering the energy density of the battery instead of the strength.
[0003] 集電体として用いられる金属箔としては、圧延法により製造されるものと電解法によ り製造されるものが代表的である。これらの方法によって製造される金属箔のうち、電 解法によって製造された金属箔の強度を高めることを目的として、厚み 20 μ mの電 解鉄箔の各面に厚み 1 μ mニッケノレめつきを施してなる集電体を、リチウムイオン二 次電池の負極に用いること(特許文献 1参照)や、薄い鋼板からなる集電体の表面に ニッケノレ又はニッケノレ合金めつきを施してなるアルカリ蓄電池(特許文献 2参照)が提 案されている。し力し、これらの集電体は、ニッケルめっき浴の組成或いは被覆方法 から判断して、集電体強度は圧延銅合金箔に劣るという欠点がある。  [0003] Representative examples of a metal foil used as a current collector include those manufactured by a rolling method and those manufactured by an electrolytic method. Among the metal foils manufactured by these methods, a 1 μm thick nickel foil is applied to each surface of a 20 μm thick electrolytic iron foil to increase the strength of the metal foil manufactured by the electrolytic method. The current collector thus obtained is used as a negative electrode of a lithium ion secondary battery (see Patent Document 1), or an alkaline storage battery obtained by applying a nickel or nickel alloy to the surface of a current collector made of a thin steel plate (Patent Reference 2) has been proposed. However, these current collectors have the disadvantage that the current collector strength is inferior to that of rolled copper alloy foil, judging from the composition of the nickel plating bath or the coating method.
[0004] 圧延法によって製造される金属箔に関しては、圧延銅合金箔を集電体として用いる ことが提案されている(特許文献 3参照)。しかし圧延箔は、その厚みを薄くすればす るほど高価になるので、薄く且つ高強度の集電体を得るという観点からは経済性に劣 る。 [0004] With respect to metal foils manufactured by the rolling method, it has been proposed to use rolled copper alloy foils as current collectors (see Patent Document 3). However, rolled foils can be made thinner Therefore, it is inexpensive from the viewpoint of obtaining a thin and high-strength current collector.
[0005] 前記特許文献 1ないし 3とは別に、銅からなる集電体の表面にニッケルめっきを施し てなるリチウムイオン二次電池が提案されている(特許文献 4参照)。しかし、この文献 に記載の技術は、集電体の強度を高めることを目的としておらず、ニッケノレめつきの 条件も開示されていないため、強度向上の効果が認められたかは不明である。  [0005] Apart from Patent Documents 1 to 3, there has been proposed a lithium ion secondary battery in which a current collector made of copper is plated with nickel (see Patent Document 4). However, the technique described in this document does not aim to increase the strength of the current collector, and does not disclose the conditions for nickel knolling, so it is unclear whether the effect of improving the strength was recognized.
[0006] 更に集電体は、これに活物質を担持させた後に高温長時間の熱処理を施されるこ と力 Sある。例えば特許文献 5には、活物質を担持させた集電体を 400°Cで焼成するこ とが好ましいと記載されており、その実施例では焼成時間を 10時間などとしている。 従って集電体には熱処理後の強度も要求される。  [0006] Furthermore, the current collector is subjected to a high-temperature and long-time heat treatment after the active material is supported on the current collector. For example, Patent Document 5 describes that it is preferable to bake the current collector supporting the active material at 400 ° C., and in this example, the baking time is set to 10 hours or the like. Therefore, the strength of the current collector after heat treatment is also required.
[0007] 特許文献 1 :特開平 6— 310147号公報  Patent Document 1: JP-A-6-310147
特許文献 2:特開平 11-233117号公報  Patent Document 2: JP-A-11-233117
特許文献 3:特開 2003 - 7305号公報  Patent Document 3: JP-A-2003-7305
特許文献 4 :特開平 5— 159781号公報  Patent Document 4: JP-A-5-159781
特許文献 5:特開 2002 - 260637号公報  Patent Document 5: JP-A-2002-260637
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 従って本発明の目的は、前述した従来技術が有する種々の欠点を解消し得る非水 電解液二次電池用負極集電体を提供することにある。  [0008] Therefore, an object of the present invention is to provide a negative electrode current collector for a non-aqueous electrolyte secondary battery, which can solve the above-mentioned various disadvantages of the related art.
課題を解決するための手段  Means for solving the problem
[0009] 本発明は、リチウム化合物の形成能の低い金属材料からなる電解箔の少なくとも一 面に、ニッケル塩及びアンモニゥム塩を含むめっき浴を用いた電解めつきが施されて 、硬質ニッケルめっき層が形成されていることを特徴とする非水電解液二次電池用負 極集電体を提供することにより前記目的を達成したものである。  [0009] The present invention provides a hard nickel plating layer in which at least one surface of an electrolytic foil made of a metal material having a low ability to form a lithium compound is subjected to electrolytic plating using a plating bath containing a nickel salt and an ammonium salt. The object has been achieved by providing a negative electrode current collector for a non-aqueous electrolyte secondary battery, characterized in that a negative electrode current collector is formed.
[0010] また本発明は、前記集電体の好ましい製造方法として、  [0010] The present invention also provides, as a preferred method for producing the current collector,
リチウム化合物の形成の低い金属材料からなる電解箔の少なくとも一面に、 100— 250g/lの硫酸ニッケル、 10 50gZlの塩化アンモニゥム及び 10— 50g/lのホウ 酸を含むめっき浴を用いて電解めつきを行レ、、硬質ニッケノレめつき層を形成すること を特徴とする非水電解液二次電池用負極集電体の製造方法を提供するものである。 At least one side of the electrolytic foil made of a metal material with low lithium compound formation is electroplated using a plating bath containing 100-250 g / l nickel sulfate, 10-50 gZl ammonium chloride and 10-50 g / l boric acid. To form a hard nickel plating layer And a method for producing a negative electrode current collector for a non-aqueous electrolyte secondary battery.
[0011] 更に本発明は、前記集電体を備えた非水電解液二次電池用負極及び該負極を備 えた非水電解液二次電池を提供するものである。  Further, the present invention provides a negative electrode for a non-aqueous electrolyte secondary battery provided with the current collector, and a non-aqueous electrolyte secondary battery provided with the negative electrode.
発明の効果  The invention's effect
[0012] 本発明によれば、薄いにもかかわらず高抗張力を有する集電体を低コストで得るこ とができる。また本発明によれば、熱処理後であっても十分なレベルの高抗張力が維 持される集電体を得ることができる。更に、硬質ニッケルめっき層の表面を粗ィ匕処理 及び/又は防鲭処理することで、集電体と活物質との密着性を高めることができる。 更に、電解箔の各面における硬質ニッケノレめつき層の厚みを調整することで、めっき 或いは電解箔固有の内部応力に起因するカールの発生を効果的に防止できる。 発明を実施するための最良の形態  According to the present invention, a current collector having a high tensile strength despite its thinness can be obtained at low cost. Further, according to the present invention, it is possible to obtain a current collector in which a sufficient level of high tensile strength is maintained even after heat treatment. Furthermore, by subjecting the surface of the hard nickel plating layer to a roughening treatment and / or an anti-rust treatment, the adhesion between the current collector and the active material can be increased. Further, by adjusting the thickness of the hard nickel plating layer on each surface of the electrolytic foil, it is possible to effectively prevent the occurrence of curling due to plating or internal stress inherent to the electrolytic foil. BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下本発明を、その好ましい実施形態に基づき説明する。本発明の非水電解液二 次電池用負極集電体 (以下、単に集電体という)は、金属材料力 なる箔の少なくとも 一面に硬質ニッケルめっき層が形成されてなるものである。金属材料からなる箔とし ては電解箔が用レ、られる。電解箔は、箔を薄型化した場合に、圧延箔に比較して製 造コストを低くできるという利点がある。  Hereinafter, the present invention will be described based on preferred embodiments. The negative electrode current collector for a non-aqueous electrolyte secondary battery of the present invention (hereinafter, simply referred to as a current collector) is one in which a hard nickel plating layer is formed on at least one surface of a foil made of a metal material. An electrolytic foil is used as a foil made of a metal material. The electrolytic foil has an advantage that when the foil is made thinner, the manufacturing cost can be reduced as compared with the rolled foil.
[0014] 前記の電解箔はその厚みが薄いことが、電池のエネルギー密度を高め得る点から 好ましレ、。この観点及び圧延法を用いた場合の製造コストとの観点から、電解箔はそ の厚み力 — 50 /i m、特に 3— 18 μ ΐη、とりわけ 9一 18 /i mであること力 S好ましレヽ。当 該厚みを単位当たりの重量で換算すると (銅の密度を 8. 96g/cm3とした場合)、 8. 96— 448g/m2、特に 80· 6— 161 · 3g/m2であること力 S好ましレ、。電角军箱の厚み は、マイクロメーターや電子顕微鏡で撮影した断面写真の解析により測定される。 [0014] The above-mentioned electrolytic foil is preferably thin because it can increase the energy density of the battery. From this point of view and from the viewpoint of the production cost when the rolling method is used, the electrolytic foil has a thickness force of —50 / im, particularly 3-18 μΐη, and especially 9-118 / im. . If the thickness is converted by weight per unit (when the density of copper is 8.96 g / cm 3 ), it should be 8.96-448 g / m 2 , especially 80-6-161 · 3 g / m 2 Power S preferred ,. The thickness of the box is measured by analyzing cross-sectional photographs taken with a micrometer or an electron microscope.
[0015] 電解箔は、リチウム化合物の形成能の低い金属材料力 構成されている。 「リチウム 化合物の形成能が低い」とは、リチウムと金属間化合物若しくは固溶体を形成しない か、又は形成したとしてもリチウムが微量である力若しくは非常に不安定であることを 意味する。このような金属材料としては、例えば銅、ニッケル、鉄、コバルト、クロム、亜 鉛若しくは銀又はこれらの 2種以上の合金等が用いられる。これらの金属のうち、特 に電気抵抗が小さぐ加工性に優れた材料である銅又はその合金を用いることが好 ましい。 [0015] The electrolytic foil is made of a metal material having a low ability to form a lithium compound. "Low ability to form a lithium compound" means that no intermetallic compound or solid solution is formed with lithium, or even if it is formed, the amount of lithium is a very small force or very unstable. As such a metal material, for example, copper, nickel, iron, cobalt, chromium, zinc, silver or an alloy of two or more of these is used. Among these metals, it is preferable to use copper or an alloy thereof, which is a material having low electric resistance and excellent workability. Good.
[0016] 電解箔の製造方法に特に制限はなぐ従来公知の技術を用いることができる。電解 箔は一般に、回転ドラムを陰極として用い、前記の金属材料のイオンを含む電解浴 中で電解を行いドラム周面に金属材料を析出させ、析出した金属材料を剥離して得 られる。電解箔が例えば銅箔である場合には、硫酸酸性の硫酸銅電解浴を用いるこ とができる。  [0016] A conventionally known technique may be used without particular limitation on the method for producing an electrolytic foil. The electrolytic foil is generally obtained by using a rotating drum as a cathode, performing electrolysis in an electrolytic bath containing ions of the above-mentioned metal material, depositing the metal material on the drum peripheral surface, and peeling the deposited metal material. When the electrolytic foil is, for example, a copper foil, a sulfuric acid acidic copper sulfate electrolytic bath can be used.
[0017] 本発明で用いる電解箔の別の製法として、導電性キャリア箔の一面に薄い剥離剤 層を形成し、その上にリチウム化合物の形成能の低い金属材料を電解めつきすること でキャリア箔付の電解箔を得る方法もある。このキャリア箔付の電解箔では、キャリア 箔が電解箔の支持体として機能することから、電解箔を極薄化しても製造工程にお いてョレ等の発生がない。この製法によれば電解箔を極薄化できることから、電極を 構成した時に高レ、容量密度を得ることができる。本製法で製造される電解箔の厚さの 下限値に特に制限はないが、製造安定性を考慮すると 1 / m程度である。厚さの上 限値も特に制限はないが、 10 / mを超える厚さの電解箔を製造するのであれば、本 製法を採用する必要性がないので、本製法においては電解箔の厚さの上限は 10 μ m程度である。一方、導電性キャリア箔は、その厚みが 18— 50 / m程度であることが 好ましい。 18 /i m未満であると、支持体としての効果が不十分となる。一方、 50 /i m を超えても特に効果はなぐむしろ製造コストの増大につながる。導電性キャリア箔の 材質は導電性を有してさえいれば特に制限はないが、材料のリサイクル性を考慮す ると、電解箔と同材質であることが好ましい。  [0017] As another method for producing the electrolytic foil used in the present invention, a thin release agent layer is formed on one surface of a conductive carrier foil, and a metal material having a low ability to form a lithium compound is electrolytically deposited thereon. There is also a method of obtaining an electrolytic foil with a foil. In the electrolytic foil with a carrier foil, since the carrier foil functions as a support for the electrolytic foil, there is no occurrence of blemishes or the like in the manufacturing process even when the electrolytic foil is made extremely thin. According to this manufacturing method, the electrolytic foil can be made extremely thin, so that a high density and a high capacity density can be obtained when the electrode is formed. There is no particular lower limit on the thickness of the electrolytic foil produced by this method, but it is about 1 / m in consideration of production stability. The upper limit of the thickness is not particularly limited.However, if an electrolytic foil having a thickness exceeding 10 / m is to be manufactured, it is not necessary to employ the present manufacturing method. The upper limit is about 10 μm. On the other hand, the conductive carrier foil preferably has a thickness of about 18-50 / m. When it is less than 18 / im, the effect as a support becomes insufficient. On the other hand, exceeding 50 / im does not have any particular effect, but rather leads to an increase in manufacturing cost. The material of the conductive carrier foil is not particularly limited as long as it has conductivity. However, considering the recyclability of the material, the material is preferably the same as that of the electrolytic foil.
[0018] 導電性キャリア箔の表面に施される剥離剤としては有機化合物を用いることが好ま しぐ特に窒素含有化合物又は硫黄含有化合物を用いることが好ましい。窒素含有 化合物としては、例えばべンゾトリアゾール(BTA)、カルボキシベンゾトリアゾール(C BTA)、トリノレトリァゾーノレ(TTA)、 N,, N,一ビス(ベンゾトリアゾリルメチル)ユリア(B TD— U)及び 3—ァミノ— 1H— 1, 2, 4—トリァゾール (ATA)などのトリァゾール系化合 物が好ましく用いられる。硫黄含有化合物としては、メルカプトべンゾチアゾール (M BT)、チオシァヌル酸(TCA)および 2_ベンズイミダゾールチオール(BIT)などが挙 げられる。剥離剤層の設け方としては、剥離剤を溶解させた溶液中に導電性キャリア 箔を浸漬させても良いし、該溶液を導電性キャリア箔上に塗工しても良い。この場合 の剥離剤の濃度は、例えば剥離剤として CBTAを用いた場合には 3— 4g/ 呈度が 好ましレ、。一方、有機化合物剥離剤層に代えて、クロメート処理を施すことも有効で ある。 As the release agent applied to the surface of the conductive carrier foil, an organic compound is preferably used, and particularly, a nitrogen-containing compound or a sulfur-containing compound is preferably used. Examples of the nitrogen-containing compound include benzotriazole (BTA), carboxybenzotriazole (CBTA), trinoletriazolone (TTA), N ,, N, monobis (benzotriazolylmethyl) urea (BTD —U) and triazole-based compounds such as 3-amino-1H-1,2,4-triazole (ATA) are preferably used. Sulfur-containing compounds include mercaptobenzothiazole (MBT), thiocyanuric acid (TCA) and 2_benzimidazole thiol (BIT). As for the method of providing the release agent layer, the conductive carrier is dissolved in a solution in which the release agent is dissolved. The foil may be dipped, or the solution may be applied on a conductive carrier foil. In this case, the concentration of the release agent is preferably 3-4 g / present when CBTA is used as the release agent. On the other hand, it is also effective to perform a chromate treatment instead of the organic compound release agent layer.
[0019] 導電性キャリア箔付電解箔を用いた場合、硬質ニッケノレ層は、電解箔を導電性キヤ リア箔に担持させた状態で形成させることが好ましい。硬質ニッケノレ層の形成方法に ついては後述する。電解箔の両面に硬質ニッケノレ層を設ける場合には、電解箔を導 電性キャリア箔に担持させた状態で、電解箔の表面に硬質ニッケル層を形成させた 後、電解箔を導電性キャリア箔から引き剥がし、その後に電解箔の他方の面に硬質 ニッケノレ層を形成させることができる。  When an electrolytic foil with a conductive carrier foil is used, the hard nickel layer is preferably formed in a state where the electrolytic foil is supported on a conductive carrier foil. The method for forming the hard nickel layer will be described later. When a hard nickel layer is provided on both sides of the electrolytic foil, a hard nickel layer is formed on the surface of the electrolytic foil while the electrolytic foil is supported on the conductive carrier foil, and then the electrolytic foil is transferred to the conductive carrier foil. And then a hard nickel layer can be formed on the other side of the electrolytic foil.
[0020] 電解箔の少なくとも一面には、硬質ニッケノレめつき層が形成される。ところでニッケ ルめっきは高強度を有する傾向があることから、一般的用語としてニッケルめっき或 いはニッケル合金めつきのことを硬質ニッケルめっきと呼ぶことがある(例えば特許文 献 2参照)。しかし、後述する実施例に示すように、ニッケルめっきはそのめつき条件 によって強度 (抗張力)が異なることに留意すべきである。本発明における硬質ニッケ ルめっき層とは、ニッケル塩及びアンモニゥム塩を含むめっき浴を用いた電解めつき によって形成されたものである。本発明者らの検討の結果、このめつき浴を用いて電 解めつきにより形成される硬質ニッケルめっき層は、他のめっき浴(例えばワット浴や スルファミン酸浴)を用いた電解めつきにより形成されたエッケノレめつき層に比較して 硬質であり、その結果、得られる集電体を高抗張力のものにすることが可能であること が判明した。なお、ワット浴は、硫酸ニッケル、塩ィヒニッケル及びホウ酸を含む浴であ り、スルフアミン酸浴は、スルファミン酸ニッケル、塩化ニッケル及びホウ酸を含む浴で ある。  [0020] A hard nickel plating layer is formed on at least one surface of the electrolytic foil. By the way, since nickel plating tends to have high strength, nickel plating or nickel alloy plating is generally called hard nickel plating as a general term (for example, see Patent Document 2). However, it should be noted that the strength (tensile strength) of nickel plating differs depending on the plating conditions, as shown in the examples described later. The hard nickel plating layer in the present invention is formed by electroplating using a plating bath containing a nickel salt and an ammonium salt. As a result of the study by the present inventors, the hard nickel plating layer formed by electroplating using this plating bath is formed by electroplating using another plating bath (for example, a Watt bath or a sulfamic acid bath). It was found that the material was harder than the formed echnoke plating layer, and as a result, it was possible to obtain a current collector having a high tensile strength. The Watts bath is a bath containing nickel sulfate, nickel chloride and boric acid, and the sulfamic acid bath is a bath containing nickel sulfamate, nickel chloride and boric acid.
[0021] 硬質ニッケルめっき層を形成するために用いられるめっき浴におけるニッケル塩とし ては、硫酸ニッケル 6水和物等が挙げられる。アンモニゥム塩としては、塩ィ匕アンモニ ゥム等が挙げられる。これらの成分の他に、めっき浴にはホウ酸等が含まれていても よレヽ。めっき浴における硫酸ニッケルの濃度は 100— 250g/l、特に 130 190gZl であることが好ましレ、。塩化アンモニゥムの濃度は 10— 50g/l、特に 20 30gZlで あることが好ましレ、。ホウ酸の濃度は 10— 50g/l、特に 20— 40g/lであることが好 ましい。 [0021] Examples of the nickel salt in the plating bath used for forming the hard nickel plating layer include nickel sulfate hexahydrate. Examples of the ammonium salt include Shii-dani ammonium and the like. In addition to these components, the plating bath may contain boric acid or the like. Preferably, the concentration of nickel sulfate in the plating bath is 100-250 g / l, especially 130 190 gZl. The concentration of ammonium chloride is 10-50 g / l, especially 20 30 gZl It's preferable that there is. Preferably, the concentration of boric acid is between 10 and 50 g / l, especially between 20 and 40 g / l.
[0022] 前記のめっき浴を用いためっき条件としては、浴温は 20— 60°C、特に 30— 40°C であることが好ましぐ電流密度は 1一 50A/dm2、特に 5— 15dm2であることが好ま しレ、。 pHは 2 6、特に 3 5であることが好ましい。 [0022] As plating conditions using the plating bath, the bath temperature is preferably 20 to 60 ° C, particularly preferably 30 to 40 ° C, and the current density is preferably 1 to 50 A / dm 2 , particularly 5 to 5 ° C. Sile, it preferred to be a 15dm 2. The pH is preferably 26, especially 35.
[0023] 従来、前記のめっき浴を用いた硬質ニッケルめっきは、摩耗部品や、肖 ijり過ぎ部分 といったバルタの肉盛りに用いられていた硬質クロムめつきの代替又は硬質クロムめ つきとの併用が主たる用途であった(例えば田島栄著の「表面処理ハンドブック」、昭 和 30年 11月 15日、産業図書株式会社発行、第 143頁参照)。しかし、硬質ニッケル めっきを、金属箔のような薄物の表面に形成することは従来行われておらず、し力も 金属箔の表面に形成することで、該金属箔の伸びに対する強度 (抗張力)が高まるこ とは知られていなかった。このような硬質ニッケルめっきの特徴は、本発明者らが初め て見出したものである。  Conventionally, hard nickel plating using the above-mentioned plating bath is an alternative to hard chrome plating used for abrasion parts or overfilling of balta, such as a part with excessive ij, or used in combination with hard chrome plating. It was the main application (see, for example, “Surface Treatment Handbook” written by Sakae Tajima, published on November 15, 1955, Sangyo Tosho Co., Ltd., page 143). However, hard nickel plating has not been conventionally formed on the surface of a thin material such as a metal foil, and the strength (tensile strength) against elongation of the metal foil is increased by forming the force on the surface of the metal foil. It was not known to increase. The characteristics of such hard nickel plating were first discovered by the present inventors.
[0024] 前記のめっき浴を用いて形成された硬質ニッケルめっき層は、電解箔の各面にお ける厚みがそれぞれ 0· 5— 18 μ ΐη、特に 1一 10 /i mであること力 二次電池のエネ ルギー密度を高めることと集電体の強度を高めることとのバランスの点から好ましい。 同様の理由により、硬質ニッケルめっき層を電解箔の両面に設けた場合の該めっき 層の総厚みは 1一 18 /i m、特に 2— 12 μ ΐηであることが好ましレ、。硬質ニッケルめつ き層の厚みは、 FIB断面加工による SIM像観察や電解箔断面の元素マッピング像を 電子顕微鏡で撮影し、それを解析することで測定することができる。  [0024] The hard nickel plating layer formed using the plating bath has a thickness of 0.5 018 μ 各 η on each surface of the electrolytic foil, and particularly, 11 1010 / im. It is preferable in terms of the balance between increasing the energy density of the battery and increasing the strength of the current collector. For the same reason, when hard nickel plating layers are provided on both sides of the electrolytic foil, the total thickness of the plating layers is preferably 118 / im, particularly preferably 2-12 μΐη. The thickness of the hard nickel plating layer can be measured by observing a SIM image by FIB cross-section processing or by taking an element mapping image of the cross section of the electrolytic foil with an electron microscope and analyzing it.
[0025] ところで、電解箔は、光沢面と呼ばれる平滑な面及びマット面と呼ばれる粗面を有 してレ、る。光沢面は、電解時に陰極として用いられる回転ドラムやキャリア箔に対向し ていた面であり、マット面は電解液に接していた面である。本発明に用いられる電解 箔の一面にのみ硬質ニッケルめっき層を形成する場合には、光沢面及びマット面の 何れに該めっき層を形成してもよい。活物質との密着性が良好になることを考慮する と、粗面であるマット面上に硬質ニッケルめっき層を形成し、該めっき層上に活物質 の層を形成することが好ましい。またマット面上に硬質ニッケルめっき層を形成するこ とで、電解箔のカールを防止することもできる。 [0026] 電解箔の一面に、例えば光沢面に硬質ニッケルめっき層を形成すると、該電解箔 力 該めっき層側を内側にしたカール形状に変形する場合がある。この変形は、電解 箔の厚みが 12 /i m以下で且つ硬質ニッケルめっき層の厚みが 3 μ m以上になると顕 著になる。このカールの発生を防止するために、電解箔の各面(つまりマット面および 光沢面のそれぞれ)に、硬質ニッケルめっき層を形成することが好ましい。この場合、 一方の面側のめっき層の厚みを他方の面側のめっき層の厚みよりも小さくすることで 、カールの発生を効果的に防止できる。特に、光沢面側の硬質ニッケルめっき層の 厚みを、マット面側の硬質ニッケルめっき層の厚みよりも小さくすることで、カールの 発生を一層効果的に防止できる。この理由は、電解箔固有の内部応力に起因する力 ールを抑制する効果が発生するためである。この効果は、マット面側の硬質ニッケノレ めっき層の厚さ力 光沢面側の硬質ニッケルめっき層の厚さの好ましくは 1. 1一 2倍 、更に好ましくは 1. 3- 1. 7倍になると一層顕著なものとなる。この場合、マット面側 の硬質ニッケルめっき層の厚みは 0· 5— 10 /i m、特に 1一 6 μ ΐηであることが好まし く、光沢面側の硬質ニッケルめっき層の厚みは 0. 3— 8 /i m、特に 0. 8— 8 /i mであ ることが好ましい。 By the way, the electrolytic foil has a smooth surface called a glossy surface and a rough surface called a matte surface. The glossy surface is the surface facing the rotating drum or carrier foil used as a cathode during electrolysis, and the matte surface is the surface that was in contact with the electrolyte. When the hard nickel plating layer is formed only on one surface of the electrolytic foil used in the present invention, the plating layer may be formed on either the glossy surface or the matte surface. Considering that the adhesion to the active material is improved, it is preferable to form a hard nickel plating layer on the matte surface, which is a rough surface, and to form the active material layer on the plating layer. Further, by forming a hard nickel plating layer on the mat surface, curling of the electrolytic foil can be prevented. When a hard nickel plating layer is formed on one surface of the electrolytic foil, for example, on a glossy surface, the electrolytic foil may be deformed into a curl shape with the plating layer side inside. This deformation becomes conspicuous when the thickness of the electrolytic foil is 12 / im or less and the thickness of the hard nickel plating layer is 3 μm or more. In order to prevent this curl, it is preferable to form a hard nickel plating layer on each surface of the electrolytic foil (that is, on each of the matte surface and the glossy surface). In this case, curling can be effectively prevented by making the thickness of the plating layer on one side smaller than the thickness of the plating layer on the other side. In particular, by making the thickness of the hard nickel plating layer on the glossy surface side smaller than the thickness of the hard nickel plating layer on the matte surface side, curling can be more effectively prevented. The reason for this is that the effect of suppressing the force caused by the internal stress inherent in the electrolytic foil occurs. This effect is obtained when the thickness of the hard nickel plating layer on the matte side becomes preferably 1.1 to 1.2 times, more preferably 1.3 to 1.7 times the thickness of the hard nickel plating layer on the glossy side. It will be even more pronounced. In this case, the thickness of the hard nickel plating layer on the matte side is preferably 0.5 · 10 / im, particularly preferably 16 μΐη, and the thickness of the hard nickel plating layer on the glossy side is 0.3. — 8 / im, preferably 0.8—8 / im.
[0027] 電解箔と硬質ニッケル層との間には中間層を設けることが好ましい。中間層として はコバルト又は鉄を含む層が好ましぐ特にコバルト又は鉄の単独めつき層が好まし レ、。中間層を設けずに電解箔と硬質ニッケノレ層とを直接積層させた場合、後の電極 製造工程において 400°C以上の温度で長時間加熱処理すると、硬質ニッケノレ層と電 解箔とが相互拡散により移動するカーケンダール効果が発生し、硬質ニッケノレ層が 本来持つはずの強度が低下することが懸念される。カーケンダール効果が発生した 場合、硬質ニッケル層と電解箔との拡散境界にはボイドが発生することが知られてい る。ボイドが存在する箇所は引張り応力の集中箇所となり、箔の破断が起こりやすくな る。この現象は電解箔として銅箔または銅合金箔を採用した場合に顕著である。従つ て、電解箔として銅箔又は銅合金箔を採用した場合に、中間層を設けることが特に 好ましい。中間層の厚みは、硬質ニッケノレ層と電解箔との相互を防止し得る程度であ ればよぐ一般には 0. 1-0. 5 z m程度である。硬質ニッケノレ層と電解箔との相互拡 散を防止し得る効果があるものであれば、中間層の材質はコバルトや鉄に限定され なレ、。中間層は電解めつきにより形成させることが製造工程の簡略化の観点から好ま しい。尚、中間層を設ける場合には、中間層の材料と電解箔の材料とが異なることが 好ましい。 It is preferable to provide an intermediate layer between the electrolytic foil and the hard nickel layer. As the intermediate layer, a layer containing cobalt or iron is preferred, and a layer coated with cobalt or iron alone is particularly preferred. When the electrolytic foil and the hard nickel layer are directly laminated without providing an intermediate layer, if the heat treatment is carried out at a temperature of 400 ° C or more for a long time in the subsequent electrode manufacturing process, the hard nickel layer and the electrolytic foil will interdiffuse There is a concern that the Kirkendall effect of moving will occur and the strength that the hard nickel layer should have originally will be reduced. It is known that when the Kirkendall effect occurs, voids occur at the diffusion boundary between the hard nickel layer and the electrolytic foil. The locations where voids exist are locations where tensile stress is concentrated, and the foil is likely to break. This phenomenon is remarkable when a copper foil or a copper alloy foil is used as the electrolytic foil. Therefore, when a copper foil or a copper alloy foil is used as the electrolytic foil, it is particularly preferable to provide an intermediate layer. The thickness of the intermediate layer is generally about 0.1 to 0.5 zm, as long as the intermediate layer can prevent mutual occurrence of the hard nickel layer and the electrolytic foil. The material of the intermediate layer is limited to cobalt or iron as long as it has an effect of preventing mutual diffusion between the hard nickel layer and the electrolytic foil. What? The intermediate layer is preferably formed by electroplating from the viewpoint of simplifying the manufacturing process. When the intermediate layer is provided, it is preferable that the material of the intermediate layer is different from the material of the electrolytic foil.
[0028] 以上の構成を有する本発明の集電体は、その厚みが 3— 50 μ m、特に 14一 24 μ mという薄型のものであることが、低コストで高強度の集電体を得る観点から好ましい [0028] The current collector of the present invention having the above-described structure is a thin type having a thickness of 3 to 50 µm, particularly 14 to 24 µm. Preferred from the viewpoint of obtaining
。本発明の集電体は、このような薄型であり且つ電解箔を基材としているにもかかわ らずその抗張力が高レ、ものとなる。例えば電解箔が銅からなる場合、抗張力が 600N /mm2以上、特に 700NZmm2以上という高い値となる。抗張力の上限値に特に制 限はないが、 800— 1000N/mm2、特に 900NZmm2程度であれば、活物質の膨 張収縮に起因して集電体に皺が発生することや、集電体が切断してしまうこと等を効 果的に防止できる。また電解箔が銅からなる場合、その伸度は 1一 10。/。、特に 2— 8 %であることが好ましい。 . The current collector of the present invention has a high tensile strength despite its thinness and the use of an electrolytic foil as a base material. For example, when the electrolytic foil is made of copper, tensile strength 600N / mm 2 or more, a high value of particular 700NZmm 2 or more. There is no particular upper limit on the tensile strength, but if it is 800-1000 N / mm 2 , especially around 900 NZmm 2 , wrinkles may occur on the current collector due to expansion and contraction of the active material, It is possible to effectively prevent the body from being cut off. If the electrolytic foil is made of copper, its elongation is 110. /. And particularly preferably 2 to 8%.
[0029] 前記の抗張力及び伸度は、株式会社島津製作所製のオートグラフ AG— Iを用い、 標点間距離 50mm、引張速度 50mm/minの条件で測定される。  [0029] The tensile strength and elongation are measured using an Autograph AG-I manufactured by Shimadzu Corporation under the conditions of a gauge length of 50 mm and a tensile speed of 50 mm / min.
[0030] 硬質ニッケルめっき層の形成後、該めっき層の表面を粗ィ匕処理してもよレ、。これに よって硬質ニッケルめっき層とその上に形成される活物質層との密着性が良好になる 。粗ィ匕処理としては、硬質ニッケノレめつき層の表面に粒粉状金属を形成するめつき処 理を施した後、該粒粉状金属による凹凸形状を損なわないように該粒粉状金属を緻 密なめつき層で被覆するめつき処理が挙げられる。前段のめっき処理はいわゆるャケ めっきと呼ばれるものであり、後段のめっき処理はいわゆる被せめつきと呼ばれるもの である。このような粗ィ匕処理はプリント回路用銅箔の表面を粗ィ匕する方法として知ら れており、例えば特公昭 53—39376号公報に開示されている。やけめつきは、限界 電流密度近傍の電流により、粒粉状金属を析出させるめっきであり、被せめつきは、 限界電流密度程度またはそれ以下の電流によって、粒状ではない緻密なめっき層を 、粒粉状金属を被覆するように析出させるめっきである。  After the formation of the hard nickel plating layer, the surface of the plating layer may be roughened. This improves the adhesion between the hard nickel plating layer and the active material layer formed thereon. In the roughing treatment, after performing a plating treatment for forming a granular metal on the surface of the hard nickel plating layer, the granular metal is compacted so as not to impair the uneven shape due to the granular metal. A plating process of covering with a dense plating layer is included. The first plating is called so-called plating, and the second plating is called so-called plating. Such roughening treatment is known as a method for roughening the surface of a copper foil for a printed circuit, and is disclosed, for example, in Japanese Patent Publication No. 53-39376. Burning is plating in which a granular metal is precipitated by a current near the critical current density. Covering is a method in which a dense non-granular plating layer is formed by a current at or below the critical current density. It is plating that is deposited so as to cover the powdered metal.
[0031] 粗ィ匕処理として、例えば銅によるめつき処理を行う場合、前段のャケめっきは、硫酸 銅 5水和物を 20— 80g/l含み、硫酸を 50 150g/l含むめっき浴を用いて、 10— 20A/dm2の電流密度の条件で行うことができる。後段の被せめつきは、硫酸銅 5水和物を 200— 300g/l含み、硫酸を 50— 150g/l含むめっき浴を用いて、 5— 3 OA/dm2の電流密度の条件で行うことができる。 [0031] In the case of performing a plating treatment with copper, for example, as a roughing treatment, the first-stage burn plating includes a plating bath containing 20 to 80 g / l of copper sulfate pentahydrate and 50 to 150 g / l of sulfuric acid. Can be used at a current density of 10-20 A / dm 2 . The latter cover is copper sulfate The plating can be performed at a current density of 5 to 3 OA / dm 2 using a plating bath containing 200 to 300 g / l of pentahydrate and 50 to 150 g / l of sulfuric acid.
[0032] 硬質ニッケルめっき層の表面に形成された粗ィヒ処理層はその十点平均表面粗さ R zjis (JIS B0601)は、好ましくは 2— 12 z m、更に好ましくは 4一 8 μ mとレヽぅ粗レヽも のとなる。十点平均表面粗さ Rzjisとは、粗化処理層の縦断面曲線から基準長さしだ け抜き取った部分の平均線から縦倍率の方向に測定した、最も高い山頂から 5番目 までの山頂の標高の絶対値の平均値と、最も低い谷底から 5番目までの谷底の深さ の絶対値の平均値との差を求めたものである。 Rzjisは、例えば株式会社小坂研究 所製表面粗さ'輪郭形状測定器 SEF-30Dを用いて測定することができる。  [0032] The roughness treatment layer formed on the surface of the hard nickel plating layer has a ten-point average surface roughness R zjis (JIS B0601) of preferably 2 to 12 zm, more preferably 418 to 8 μm. The coarse roughness is also the same. The ten-point average surface roughness Rzjis is the height from the highest peak to the fifth peak, measured in the direction of the longitudinal magnification from the average line of the part extracted by the reference length from the longitudinal section curve of the roughened layer. It is the difference between the average of the absolute values of the altitude and the average of the absolute values of the depths of the valleys from the lowest to the fifth. Rzjis can be measured, for example, using a surface roughness' contour measuring instrument SEF-30D manufactured by Kosaka Laboratory Co., Ltd.
[0033] 粗ィ匕処理に代えて、硬質ニッケノレめつき層の表面を防鲭処理してもよレ、。或いは粗 化処理に加えて、粗化処理層の表面を防鲭処理してもよい。この防鲭処理によって も、硬質ニッケノレめつき層とその上に形成される活物質層との密着性が良好になる。 防鲭処理としては、(i)金属めつき処理、(ii)クロメート処理、(iii)シランカップリング処 理などが挙げられる。金属めつき処理では、亜鉛、ニッケル、コバルト又はそれらの合 金を硬質ニッケノレめつき層(粗ィ匕処理を行わなレ、場合)又は粗化処理層(粗化処理を 行った場合)の表面にめっきして、硬質ニッケノレめつき層や粗ィ匕処理層の腐食を防 止する。硬質ニッケノレめつき層や粗ィ匕処理層の腐食の防止効果が特に高い観点か ら、亜鉛又は亜鉛合金めつきを行うことが好ましい。具体的には、亜鉛一銅、亜鉛一二 ッケル、亜鉛一コバルト、亜鉛一ニッケル一銅、亜鉛一ニッケル一コバルト、亜鉛一銅一錫 などの合金めつきが挙げられる。例えば亜鉛めつきを行う場合、亜鉛を 1一 6g/l含 み、ピロリン酸カリウムを 50— 200g/l含み、 pHが 10— 12に調整されためつき浴を 用いて、 0. 3— 1AZ dm2の電流密度の条件で行うことができる。 [0033] Instead of the roughening treatment, the surface of the hard nickele-coated layer may be subjected to an anti-dust treatment. Alternatively, in addition to the roughening treatment, the surface of the roughening treatment layer may be subjected to an anti-rust treatment. This adhesion prevention also improves the adhesion between the hard nickel plating layer and the active material layer formed thereon. Examples of the prevention treatment include (i) metal plating treatment, (ii) chromate treatment, and (iii) silane coupling treatment. In the metal plating process, zinc, nickel, cobalt or their alloys are coated on the surface of a hard nickel plating layer (when the roughing process is not performed) or a roughened layer (when the roughening process is performed). To prevent corrosion of the hard nickel plating layer and the roughened layer. It is preferable to perform zinc or zinc alloy plating from the viewpoint that the effect of preventing corrosion of the hard nickel plating layer and the roughening treatment layer is particularly high. Specifically, alloy plating such as zinc-copper, zinc-nickel, zinc-cobalt, zinc-nickel-copper, zinc-nickel-cobalt, zinc-copper-tin and the like can be mentioned. For example, in the case of zinc plating, contain zinc at 16 g / l, potassium pyrophosphate at 50-200 g / l, adjust the pH to 10-12, and use a plating bath with 0.3-1AZdm It can be performed under the condition of the current density of 2 .
[0034] クロメート処理では、クロム酸又はニクロム酸塩を主成分とする溶液で硬質ニッケル めっき層(粗ィ匕処理を行わなレ、場合)又は粗化処理層(粗ィヒ処理を行った場合)を処 理して表面に防鲭被膜を形成する。この処理により形成される防鲭被膜は酸化クロム 層からなる。クロメート処理は例えば JIS Z 0103に規定されている。クロメート処理 の具体的な条件は、クロム酸を 0. 5— 2gZl含み、 pHが 11一 13に調整されためつき 浴を用いて、 0. 5— 2A/dm2の電流密度の条件で行うことができる。 [0035] シランカップリング処理では、硬質ニッケノレめつき層(粗ィ匕処理を行わなレ、場合)又 は粗化処理層(粗ィ匕処理を行った場合)の表面を、シランカップリング剤として一般的 に知られているケィ素含有化合物で処理する。例えば、一般式 R-SiX (Xはアルコ [0034] In the chromate treatment, a hard nickel plating layer (a case where the roughening treatment is not performed) or a roughening treatment layer (the case where the roughening treatment is performed) is performed using a solution containing chromate or dichromate as a main component. ) To form a protective coating on the surface. The heat protection film formed by this treatment is made of a chromium oxide layer. The chromate treatment is specified in, for example, JIS Z 0103. Specific conditions for the chromate treatment includes the chromic acid 0. 5- 2gZl, pH by using a plated bath adjusted to 11 one 13, it is carried out at a current density of 0. 5- 2A / dm 2 Can be. [0035] In the silane coupling treatment, the surface of the hard nickel plating layer (when the roughing treatment is not performed) or the surface of the roughening treatment layer (when the roughing treatment is performed) is treated with a silane coupling agent. Treated with a silicon-containing compound commonly known as For example, the general formula R-SiX (X is
3  Three
キシ基やハロゲンなどの加水分解性の置換基、 Rは有機質と反応し易いビュル基、 エポキシ基、アミノ基などの官能基を有する置換基である。 )で表される化合物をシラ ンカップリング剤として用いることができる。シランカップリング剤は例えば 3— lOg/1 の濃度のものを用いることができ、当該濃度のシランカップリング剤を硬質ニッケルめ つき層に塗布し、所定時間、所定温度で乾燥させればよい。  R is a substituent having a functional group such as a butyl group, an epoxy group, or an amino group, which easily reacts with an organic substance. ) Can be used as a silane coupling agent. A silane coupling agent having a concentration of, for example, 3-lOg / 1 may be used. The silane coupling agent having the concentration may be applied to the hard nickel plating layer and dried at a predetermined temperature for a predetermined time.
[0036] 粗ィ匕処理と防鲭処理の順序に特に制限はない。例えば粗ィ匕処理のみを行っても良 レ、。或いは前記(i)一(m)の何れか一つの防鲭処理のみを行うか、又は前記(i)一(m )の防鲭処理の二つ以上を組み合わせてもよレ、。前記(i)一 (in)の防鲭処理を二つ 以上を組み合わせる場合には、例えば金属めつき処理後にクロメート処理を行うか、 又は金属めつき処理後にシランカップリング処理を行うことができる。また、金属めつ き処理後にクロメート処理及びシランカップリング処理をこの順で行うこともできる。更 に、先ずクロメート処理を行い、次いでシランカップリング処理を行うこともできる。 [0036] There is no particular limitation on the order of the roughing treatment and the protection treatment. For example, only the roughing process may be performed. Alternatively, only one of the (i) one (m) protection processes may be performed, or two or more of the (i) one (m) protection processes may be combined. When two or more of the (i) first (in) protection treatments are combined, for example, a chromate treatment can be performed after the metal plating treatment, or a silane coupling treatment can be performed after the metal plating treatment. After the metal plating, the chromate treatment and the silane coupling treatment can be performed in this order. Further, a chromate treatment may be performed first, followed by a silane coupling treatment.
[0037] 粗化処理と防鲭処理とを組み合わせることもできる。特に、先ず粗化処理を行い、 次いで防鲭処理を行うことが好ましい。防鲭処理の順序は前述した通りとすることが できる。なお、粗ィヒ処理及び/又は防鲭処理を行っても、本発明の集電体の抗張力 は実質的に変化しない。  [0037] The roughening treatment and the prevention treatment can be combined. In particular, it is preferable to first perform a roughening treatment and then perform a rust prevention treatment. The order of the prevention processing can be as described above. It should be noted that the tensile strength of the current collector of the present invention does not substantially change even if the roughing treatment and / or the anti-rust treatment is performed.
[0038] 本発明の集電体には、その表面に負極活物質を含む層が形成されて非水電解液 二次電池用負極が製造される。負極活物質としては、リチウム化合物の形成能の高 い物質が挙げられる。例えば周期律表の第 13族元素や第 14族元素が挙げられる。 具体的には、カーボン、シリコン、スズ、ゲルマニウム若しくはアルミニウム又はそれら の合金が挙げられる。これらのうち、特にスズ若しくはシリコン又はそれらの合金を用 レ、ることが好ましい。  [0038] A layer containing a negative electrode active material is formed on the surface of the current collector of the present invention to produce a negative electrode for a non-aqueous electrolyte secondary battery. Examples of the negative electrode active material include a material having a high ability to form a lithium compound. For example, there are Group 13 and Group 14 elements of the periodic table. Specifically, carbon, silicon, tin, germanium, aluminum, or an alloy thereof may be used. Among these, it is particularly preferable to use tin or silicon or an alloy thereof.
[0039] 負極活物質は、電解によって集電体上に析出されることで担持される。或いは負極 活物質の粒子を含むペーストを集電体上に塗布し乾燥させることによつても担持され る。ペーストの塗布後に焼結を行ってもよい。後述する実施例から明ら力、なように、本 発明の集電体によれば、焼結によって該集電体が高温にさらされても、抗張力の低 下を抑制できるという利点がある。特に電解箔両面に硬質ニッケノレめつき層を設けた 場合はその効果が大きい。 [0039] The negative electrode active material is carried by being deposited on the current collector by electrolysis. Alternatively, it is also supported by applying a paste containing particles of the negative electrode active material on a current collector and drying. Sintering may be performed after application of the paste. As is clear from the examples described later, ADVANTAGE OF THE INVENTION According to the collector of this invention, even if this collector is exposed to high temperature by sintering, there exists an advantage that fall of tensile strength can be suppressed. The effect is particularly great when a hard nickel plating layer is provided on both sides of the electrolytic foil.
[0040] 本発明の集電体を備えた負極は、公知の正極、セパレータ、非水系電解液と共に 用いられて非水電解液二次電池となされる。正極は、正極活物質並びに必要により 導電剤及び結着剤を適当な溶媒に懸濁し、正極合剤を作製し、これを集電体に塗 布、乾燥した後、ロール圧延、プレスし、さらに裁断、打ち抜きすることにより得られる 。正極活物質としては、リチウムニッケノレ複合酸化物、リチウムマンガン複合酸化物、 リチウムコノ ルト複合酸化物等の従来公知の正極活物質が用いられる。セパレータ 一としては、合成樹脂製不織布、ポリエチレン又はポリプロピレン多孔質フィルム等 が好ましく用いられる。非水電解液は、リチウム二次電池の場合、支持電解質である リチウム塩を有機溶媒に溶解した溶液からなる。リチウム塩としては、例えば、 LiClO 、 LiAlCl、 LiPF、 LiAsF、 LiSbF、 LiSCN, LiCl , UBr、 UI、 LiCF SO、 Li The negative electrode provided with the current collector of the present invention is used together with a known positive electrode, a separator, and a non-aqueous electrolyte to form a non-aqueous electrolyte secondary battery. The positive electrode is prepared by suspending a positive electrode active material and, if necessary, a conductive agent and a binder in an appropriate solvent to prepare a positive electrode mixture, applying the mixture to a current collector, drying the mixture, rolling, pressing, and Obtained by cutting and punching. As the positive electrode active material, a conventionally known positive electrode active material such as a lithium nickel composite oxide, a lithium manganese composite oxide, and a lithium control composite oxide is used. As the separator, a synthetic resin nonwoven fabric, a polyethylene or polypropylene porous film, or the like is preferably used. In the case of a lithium secondary battery, the nonaqueous electrolyte is a solution in which a lithium salt as a supporting electrolyte is dissolved in an organic solvent. Examples of lithium salts include, for example, LiClO, LiAlCl, LiPF, LiAsF, LiSbF, LiSCN, LiCl, UBr, UI, LiCF SO, Li
4 4 6 6 6 3 34 4 6 6 6 3 3
C F SO等が例示される。 C F SO is exemplified.
4 9 3  4 9 3
[0041] 本発明は前記実施形態に制限されない。例えば本発明においては、前述の通り、 硬質ニッケノレめつき層に粗ィヒ処理を施してもよいが、これに代えて又はこれに加えて 硬質ニッケノレめつき層に各種防鲭処理を施してもよい。防鲭処理としては、例えば (i) 亜鉛や亜鉛合金によるめつき処理、(ii)クロメート処理、(m)シランカップリング処理な どが挙げられる。 実施例  [0041] The present invention is not limited to the above embodiment. For example, in the present invention, as described above, the hard nickel plating layer may be subjected to a roughening treatment, but instead of or in addition to this, various hardening treatments may be performed to the hard nickel plating layer. Good. Examples of the prevention treatment include (i) a plating treatment with zinc or a zinc alloy, (ii) a chromate treatment, and (m) a silane coupling treatment. Example
[0042] 以下、本実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は 力、かる実施例に制限されるものではない。  Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the scope of the present invention is not limited to such examples.
[0043] 〔実施例 1〕  Example 1
厚み 18 z mの三井金属鉱業製の VLP箔 (商品名)を集電体として用いた。この箔 は回転ドラムを陰極として用いて得られた電解銅箔である。この電解銅箔のマット面 に以下の組成を有するめっき浴を用いて電解めつきを行い、厚み 3 /i mの硬質ニッケ ルめっき層を形成した。浴温は 50°C、電流密度は 5A/ dm2であった。 pHは 4であつ た。このようにして負極集電体を得た。 [0044] 〔めっき浴の組成〕 An 18 zm thick VLP foil (trade name) manufactured by Mitsui Kinzoku Mining was used as a current collector. This foil is an electrolytic copper foil obtained using a rotating drum as a cathode. Electroplating was performed on the matte surface of the electrolytic copper foil using a plating bath having the following composition to form a hard nickel plating layer having a thickness of 3 / im. The bath temperature was 50 ° C. and the current density was 5 A / dm 2 . pH was 4. Thus, a negative electrode current collector was obtained. [Composition of Plating Bath]
*硫酸ニッケル 6水和物 162g/l  * Nickel sulfate hexahydrate 162g / l
'塩化アンモニゥム 25g/l  'Ammonia chloride 25g / l
'ホウ酸 30g/l  'Boric acid 30g / l
[0045] 〔比較例 1〕 [Comparative Example 1]
実施例 1で用いためっき浴に代えて以下の組成を有するスルフアミン酸浴を用いる 以外は実施例 1と同様にして負極集電体を得た。浴温は 50°C、電流密度は lOAZd m2であった。 A negative electrode current collector was obtained in the same manner as in Example 1 except that a sulfamic acid bath having the following composition was used instead of the plating bath used in Example 1. Bath temperature 50 ° C, current density was lOAZd m 2.
[0046] 〔スルファミン酸浴の組成〕 [Composition of Sulfamic Acid Bath]
• 60重量0 /0スルファミン酸ニッケル溶液 lOOOg/1 • 60 weight 0/0 nickel sulfamate solution LOOOg / 1
•塩化ニッケル 6水和物 5gZl  • Nickel chloride hexahydrate 5gZl
'ホウ酸 40gZl  'Boric acid 40gZl
[0047] 〔比較例 2〕 [Comparative Example 2]
実施例 1で用いためっき浴に代えて以下の組成を有するニッケル リン合金めつき浴 を用いる以外は実施例 1と同様にして負極集電体を得た。浴温は 50°C、電流密度は A negative electrode current collector was obtained in the same manner as in Example 1 except that a nickel-phosphorus alloy plating bath having the following composition was used instead of the plating bath used in Example 1. Bath temperature is 50 ° C, current density is
5 A/dm2であった。 5 was A / dm 2.
[0048] 〔ニッケル リン合金めつき浴の組成〕 [Composition of nickel-phosphorus alloy plating bath]
*硫酸ニッケル 6水和物 56g/l  * Nickel sulfate hexahydrate 56g / l
•塩化ニッケル 6水和物 45g/l  • Nickel chloride hexahydrate 45g / l
•NiCO · 2Νί (ΟΗ) ·ηΗ Ο 48g/l  NiCO2Νί (Νί) ηΟΗ Ο48g / l
3 2 2  3 2 2
'亜リン酸 41g/l  '' Phosphorous acid 41g / l
'リン酸 49g/l  '' Phosphoric acid 49g / l
[0049] 〔比較例 3〕 [Comparative Example 3]
実施例 1で用いた電解銅箔をそのまま用いた。ニッケルめっきは行わなかった。 〔実施例 2〕  The electrolytic copper foil used in Example 1 was used as it was. No nickel plating was performed. (Example 2)
厚み 12 z mの三井金属鉱業製の VLP箔 (商品名)を集電体として用いた。この箔 は回転ドラムを陰極として用いて得られた電解銅箔である。この電解銅箔のマット面 に実施例 1と同様のめっき浴を用いて電解めつきを行レ、、厚み 3 z mの硬質ニッケル めっき層を形成した。めっき条件は、浴温 35°C、電流密度 10A/dm2、 pH4であつ た。次いで光沢面に同様の条件で厚み 2 /i mの硬質ニッケルめっき層を形成した。こ のようにして負極集電体を得た。 VLP foil (trade name) manufactured by Mitsui Kinzoku Mining having a thickness of 12 zm was used as a current collector. This foil is an electrolytic copper foil obtained using a rotating drum as a cathode. Electroplating was performed on the matte surface of the electrolytic copper foil using the same plating bath as in Example 1, and a 3 zm thick hard nickel A plating layer was formed. The plating conditions were a bath temperature of 35 ° C., a current density of 10 A / dm 2 , and a pH of 4. Next, a hard nickel plating layer having a thickness of 2 / im was formed on the glossy surface under the same conditions. Thus, a negative electrode current collector was obtained.
[0051] 〔実施例 3〕 [Example 3]
実施例 2と同様の電解銅箔を集電体として用いた。この電解銅箔の両面にそれぞ れ 0. 3 x mのコバルト中間層を電解めつきによって形成させた。次いで実施例 2と同 様の硬質ニッケル層を形成させた。コバルトめっきの浴組成及びめつき条件は以下 の通りである。  The same electrolytic copper foil as in Example 2 was used as a current collector. A 0.3 xm cobalt intermediate layer was formed on both sides of the electrolytic copper foil by electrolytic plating. Next, the same hard nickel layer as in Example 2 was formed. The bath composition and plating conditions for cobalt plating are as follows.
〔コバルトめっき浴の組成〕  [Composition of cobalt plating bath]
•硫酸コバルト 6水和物 180g/l  • Cobalt sulfate hexahydrate 180g / l
•ホウ酸 30gZl  • Boric acid 30gZl
•凝集剤 0. lg/1  • Flocculant 0.lg / 1
(凝集剤はアクリルアミド系ポリマー)  (Aggregating agent is acrylamide polymer)
〔コバルトめっき条件〕  [Cobalt plating conditions]
•浴温 35°C  • Bath temperature 35 ° C
•pH 4  • pH 4
'電流密度 10A/dm2 '' Current density 10A / dm 2
,攪拌 あり  , Stirring
[0052] 〔実施例 4〕  Example 4
実施例 2と同様の電解銅箔を集電体として用いた。この電解銅箔の両面にそれぞ れ 0. 5 μ ΐηの鉄中間層を電解めつきによって形成させた。次いで実施例 2と同様の 硬質ニッケノレ層を形成させた。鉄めつきの浴組成及びめつき条件は以下の通りであ る。  The same electrolytic copper foil as in Example 2 was used as a current collector. Iron intermediate layers of 0.5 μΐη were formed on both sides of the electrolytic copper foil by electrolytic plating. Next, the same hard nickel layer as in Example 2 was formed. The bath composition and plating conditions for iron plating are as follows.
〔鉄めつき浴の組成〕  [Composition of iron plating bath]
•硫酸鉄 7水和物 180gZl  • Iron sulfate heptahydrate 180gZl
•ホウ酸 30gZl  • Boric acid 30gZl
•凝集剤 0. lg/1  • Flocculant 0.lg / 1
(凝集剤はアクリルアミド系ポリマー) 〔鉄めつき条件〕 (Aggregating agent is acrylamide polymer) [Iron plating conditions]
•浴温 30°C  • Bath temperature 30 ° C
•pH 4  • pH 4
•電流密度 5AZdm2 • Current density 5AZdm 2
•攪拌 あり  • With stirring
[0053] 〔参考例 1〕  [Reference Example 1]
実施例 1で用いためっき浴に代えて以下の組成を有するめっき浴を用いてコバルト めっき層を形成する以外は実施例 1と同様にして負極集電体を得た。めっき条件は、 浴温 40°C、電流密度 10AZdm2、 pH4であった。 A negative electrode current collector was obtained in the same manner as in Example 1 except that a cobalt plating layer was formed using a plating bath having the following composition instead of the plating bath used in Example 1. The plating conditions were a bath temperature of 40 ° C., a current density of 10 AZdm 2 , and a pH of 4.
[0054] 〔コバルトめっき浴の組成〕 [Composition of Cobalt Plating Bath]
•硫酸コバルト 6水和物 281gZl  • Cobalt sulfate hexahydrate 281gZl
'塩化コバルト 6水和物 47gZl  '' Cobalt chloride hexahydrate 47gZl
'ホウ酸 40g/l  'Boric acid 40g / l
[0055] 〔参考例 2〕 [Reference Example 2]
圧延銅合金箔(組成 Ni3. Owt%、 SiO. 65wt%、 MgO. 15wt%、残部 Cu。厚さ 1 Rolled copper alloy foil (composition Ni3. Owt%, SiO. 65 wt%, MgO. 15 wt%, balance Cu. Thickness 1
8 /i m)を負極集電体として用いた。 8 / im) was used as the negative electrode current collector.
[0056] 〔性能評価〕 [Performance evaluation]
実施例 1なレ、し 4、比較例 1なレ、し 3並びに参考例 1及び 2で得られた負極集電体に ついて、熱処理前及び熱処理後の抗張力及び伸度を、株式会社島津製作所製のォ ートグラフ AG— Iを用いて測定した。測定条件は、標点間距離 50mm、引張速度 50 mm/minとした。熱処理の条件は、真空中 400°C、 5時間とした。但し、実施例 3及 び 4については熱処理を 10時間行った。結果を表 1に示す。  For the negative electrode current collectors obtained in Examples 1 and 4, Comparative Example 1 and 3, and Reference Examples 1 and 2, the tensile strength and elongation before and after heat treatment were measured by Shimadzu Corporation. The measurement was carried out using an autograph AG-I manufactured by Toshiba Corporation. The measurement conditions were a distance between gauge marks of 50 mm and a tensile speed of 50 mm / min. The conditions of the heat treatment were 400 ° C. in vacuum for 5 hours. However, in Examples 3 and 4, the heat treatment was performed for 10 hours. The results are shown in Table 1.
[0057] [表 1]
Figure imgf000016_0001
[0057] [Table 1]
Figure imgf000016_0001
表 1の結果から明らかなように、実施例 1の集電体は、比較例 1ないし 3の集電体に 比べて、熱処理の前後何れの場合においても高抗張力を示すことが判る。また実施 例 1と参考例 1との対比から明らかなように、熱処理の前後何れの場合においても、 実施例 1の集電体は、参考例 1及び 2の集電体と同程度の抗張力を示すことが判る。 参考例 1の集電体は、強度は高いがコバルトめっき層を有するため製造コストが高い という点で本発明の集電体より劣る。参考例 2の集電体も強度は高いが、薄型の圧延 箔は製造コストが高いという点で本発明の集電体より劣る。また、実施例 1と実施例 2 との対比から明らかなように、電解箔の両面に硬質ニッケルめっき層を設けた実施例 2の集電体は、電解箔の片面にのみ硬質ニッケル層を設けた実施例 1の集電体より も全厚が薄いにもかかわらず、同集電体よりも高抗張力を示すことが判る。更に、実 施例 3及び 4と実施例 1及び 2との対比から明らかなように、実施例 3及び 4では実施 例 1及び 2と比べて熱処理時間が 2倍になっているにもかかわらず、熱処理後の抗張 力が実施例 1及び 2と同等又はそれ以上の値を維持していることが判る。従って本発 明による集電体は、薄型化しても高抗張力であり且つ低コストでの製造が可能であり 新規な非水電解液二次電池用負極集電体として適用可能である。 As is clear from the results in Table 1, the current collector of Example 1 shows higher tensile strength before and after the heat treatment than the current collectors of Comparative Examples 1 to 3. As is clear from the comparison between Example 1 and Reference Example 1, the current collector of Example 1 had the same tensile strength as the current collectors of Reference Examples 1 and 2 before and after the heat treatment. It turns out that it shows. The current collector of Reference Example 1 is inferior to the current collector of the present invention in that the current collector has high strength but has a high manufacturing cost due to the presence of the cobalt plating layer. The current collector of Reference Example 2 also has high strength, but the thin rolled foil is inferior to the current collector of the present invention in that the production cost is high. As is clear from the comparison between Example 1 and Example 2, the current collector of Example 2 in which the hard nickel plating layers were provided on both surfaces of the electrolytic foil was provided with the hard nickel layer only on one surface of the electrolytic foil. It can be seen that despite having a smaller total thickness than the current collector of Example 1, the current collector exhibits higher tensile strength than the current collector. Furthermore, as is clear from the comparison between Examples 3 and 4 and Examples 1 and 2, the heat treatment time in Examples 3 and 4 is twice as long as that in Examples 1 and 2. It can be seen that the tensile strength after the heat treatment maintained a value equal to or higher than that of Examples 1 and 2. Therefore, the current collector according to the present invention has a high tensile strength even if it is made thin, and can be manufactured at low cost, and can be applied as a new negative electrode current collector for a nonaqueous electrolyte secondary battery.

Claims

請求の範囲 The scope of the claims
[I] リチウム化合物の形成能の低い金属材料からなる電解箔の少なくとも一面に、ニッ ケル塩及びアンモニゥム塩を含むめっき浴を用いた電解めつきが施されて、硬質ニッ ケルめっき層が形成されていることを特徴とする非水電解液二次電池用負極集電体  [I] At least one surface of an electrolytic foil made of a metal material having a low ability to form a lithium compound is subjected to electrolytic plating using a plating bath containing a nickel salt and an ammonium salt to form a hard nickel plating layer. Negative electrode current collector for a non-aqueous electrolyte secondary battery
[2] 前記金属材料が、銅、鉄、コバルト、ニッケル、亜鉛若しくは銀又はこれらの 2種以 上の合金からなる請求項 1記載の集電体。 [2] The current collector according to claim 1, wherein the metal material is made of copper, iron, cobalt, nickel, zinc, or silver, or an alloy of two or more thereof.
[3] 前記金属材料が、銅又はその合金からなる請求項 1記載の集電体。 3. The current collector according to claim 1, wherein the metal material is made of copper or an alloy thereof.
[4] 前記電解箔と前記硬質ニッケルめっき層との間に、該電解箔と該硬質ニッケル層と の相互拡散を防止し得る中間層が設けられている請求項 1ないし 3の何れかに記載 の集電体。 4. The method according to claim 1, wherein an intermediate layer capable of preventing mutual diffusion between the electrolytic foil and the hard nickel layer is provided between the electrolytic foil and the hard nickel plating layer. Current collector.
[5] 前記中間層がコバルト又は鉄を含む層である請求項 4記載の集電体。  5. The current collector according to claim 4, wherein the intermediate layer is a layer containing cobalt or iron.
[6] 前記電解箔の厚みが 1一 50 /i mであり、前記めつき層の総厚みが 1一 18 /i mであ る請求項 1なレ、し 5の何れかに記載の集電体。  [6] The current collector according to any one of [1] to [5], wherein the thickness of the electrolytic foil is 110 / im, and the total thickness of the plating layer is 118 / im. .
[7] 前記金属材料が銅であり、前記集電体の抗張力力 ½00N/mm2以上である請求 項 1ないし 6の何れかに記載の集電体。 7. The current collector according to claim 1, wherein the metal material is copper, and the tensile strength of the current collector is not less than 00 N / mm 2 .
[8] 前記めつき層の表面が粗ィ匕処理されている請求項 1ないし 7の何れかに記載の集 電体。 [8] The current collector according to any one of [1] to [7], wherein the surface of the plating layer is subjected to a roughening treatment.
[9] 前記めつき層の表面が防鲭処理されている請求項 1ないし 8の何れかに記載の集 電体。  [9] The current collector according to any one of [1] to [8], wherein a surface of the plating layer is subjected to a heat-proof treatment.
[10] 前記電解箔のマット面及び光沢面のそれぞれに前記めつき層が形成されており、 且つ一方の面側のめっき層の厚みを他方の面側のめっき層の厚みよりも小さくした 請求項 1ないし 9の何れかに記載の集電体。  [10] The plated layer is formed on each of the matte surface and the glossy surface of the electrolytic foil, and the thickness of the plating layer on one side is smaller than the thickness of the plating layer on the other side. Item 10. The current collector according to any one of Items 1 to 9.
[I I] 光沢面側のめっき層の厚みをマット面側のめっき層の厚みよりも小さくした請求項 1 0記載の集電体。  [II] The current collector according to claim 10, wherein the thickness of the plating layer on the glossy side is smaller than the thickness of the plating layer on the matte side.
[12] 請求項 1記載の非水電解液二次電池用負極集電体の製造方法であって、  [12] A method for producing a negative electrode current collector for a non-aqueous electrolyte secondary battery according to claim 1,
リチウム化合物の形成能の低い金属材料からなる電解箔の少なくとも一面に、 100 一 250g/lの硫酸ニッケル、 10— 50g/lの塩化アンモニゥム及び 10— 50g/lのホ ゥ酸を含むめっき浴を用いて電解めつきを行レ、、硬質ニッケノレめつき層を形成するこ とを特徴とする非水電解液二次電池用負極集電体の製造方法。 At least one surface of an electrolytic foil made of a metal material having a low ability to form a lithium compound has 100-250 g / l of nickel sulfate, 10-50 g / l of ammonium chloride and 10-50 g / l of A method for producing a negative electrode current collector for a non-aqueous electrolyte secondary battery, comprising performing electrolytic plating using a plating bath containing sulfuric acid, and forming a hard nickel plating layer.
[13] 請求項 1記載の非水電解液二次電池用負極集電体を備えた非水電解液二次電池 用負極。  [13] A negative electrode for a non-aqueous electrolyte secondary battery, comprising the negative electrode current collector for a non-aqueous electrolyte secondary battery according to claim 1.
[14] 負極活物質としてシリコン系材料又はスズ系材料を用いた請求項 13記載の非水電 解液二次電池用負極。  14. The negative electrode for a non-aqueous electrolyte secondary battery according to claim 13, wherein a silicon-based material or a tin-based material is used as the negative electrode active material.
[15] 請求項 13記載の非水電解液二次電池用負極を備えた非水電解液二次電池。 [15] A non-aqueous electrolyte secondary battery comprising the negative electrode for a non-aqueous electrolyte secondary battery according to claim 13.
PCT/JP2004/010016 2003-12-12 2004-07-14 Negative electrode collector for nonaqueous electrolyte secondary battery WO2005057693A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003415723 2003-12-12
JP2003-415723 2003-12-12

Publications (1)

Publication Number Publication Date
WO2005057693A1 true WO2005057693A1 (en) 2005-06-23

Family

ID=34675139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010016 WO2005057693A1 (en) 2003-12-12 2004-07-14 Negative electrode collector for nonaqueous electrolyte secondary battery

Country Status (2)

Country Link
TW (1) TW200520291A (en)
WO (1) WO2005057693A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110637385A (en) * 2017-05-18 2019-12-31 富士胶片株式会社 Perforated metal foil, method for producing perforated metal foil, negative electrode for secondary battery, and positive electrode for secondary battery
WO2022210654A1 (en) * 2021-03-31 2022-10-06 日鉄ケミカル&マテリアル株式会社 Current collector steel foil, electrode, and battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306504A (en) * 1996-05-08 1997-11-28 Sony Corp Nonaqueous electrolyte secondary battery
JPH11307102A (en) * 1998-04-24 1999-11-05 Hitachi Ltd Lithium secondary battery and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306504A (en) * 1996-05-08 1997-11-28 Sony Corp Nonaqueous electrolyte secondary battery
JPH11307102A (en) * 1998-04-24 1999-11-05 Hitachi Ltd Lithium secondary battery and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110637385A (en) * 2017-05-18 2019-12-31 富士胶片株式会社 Perforated metal foil, method for producing perforated metal foil, negative electrode for secondary battery, and positive electrode for secondary battery
WO2022210654A1 (en) * 2021-03-31 2022-10-06 日鉄ケミカル&マテリアル株式会社 Current collector steel foil, electrode, and battery

Also Published As

Publication number Publication date
TW200520291A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
JP3644542B1 (en) Anode current collector for non-aqueous electrolyte secondary battery
KR101606251B1 (en) Lithium ion secondary cell, current collector constituting negative electrode of secondary cell, and electrolytic copper foil constituting negative-electrode current collector
WO2005122297A1 (en) Metal foil with carrier foil, method for producing such metal foil with carrier foil, collector for nonaqueous electrolyte secondary battery using such metal foil with carrier foil
JP4823384B1 (en) Copper foil for current collector of lithium secondary battery
JP3764470B1 (en) Anode for non-aqueous electrolyte secondary battery
JP4616584B2 (en) Anode for non-aqueous electrolyte secondary battery
JP7085394B2 (en) Laminated electrolytic foil
JP3987851B2 (en) Secondary battery negative electrode and secondary battery including the same
JP4764232B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR101150400B1 (en) Multilayer metal foil for lithium-battery and producing method thereof
WO2004049476A1 (en) Negative electrode collector for nonaqueous electrolyte secondary battery and method for manufacturing same
KR100974402B1 (en) Secondary battery-use electrode and production method therefor and secondary battery
JP2005197217A (en) Anode for non-aqueous electrolytic solution secondary battery
JP2005350761A (en) Composite foil for negative electrode current collector of nonaqueous electrolyte secondary battery, and method for producing the same, negative electrode current collector using the composite foil, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2013077462A (en) COPPER FOIL FOR Li BATTERY COLLECTOR, ELECTRODE FOR Li BATTERY USING THE SAME, AND Li BATTERY
JP4746328B2 (en) Anode for non-aqueous electrolyte secondary battery
WO2005057693A1 (en) Negative electrode collector for nonaqueous electrolyte secondary battery
JP4948656B2 (en) Perforated roughening copper foil for secondary battery current collector, method for producing the same, and negative electrode for lithium ion secondary battery
JP4763995B2 (en) Nonaqueous electrolyte secondary battery electrode
JP2013187114A (en) Copper foil for lithium secondary battery collector, and display method thereof, negative electrode for lithium secondary battery using copper foil, and lithium secondary battery
JP2006228512A (en) Anode for nonaqueous electrolyte secondary battery
JP3742828B2 (en) Anode for non-aqueous electrolyte secondary battery
JP2006134891A (en) Negative electrode for nonaqueous electrolyte secondary battery
JP2006147316A (en) Anode for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase