JP2013077462A - COPPER FOIL FOR Li BATTERY COLLECTOR, ELECTRODE FOR Li BATTERY USING THE SAME, AND Li BATTERY - Google Patents

COPPER FOIL FOR Li BATTERY COLLECTOR, ELECTRODE FOR Li BATTERY USING THE SAME, AND Li BATTERY Download PDF

Info

Publication number
JP2013077462A
JP2013077462A JP2011216985A JP2011216985A JP2013077462A JP 2013077462 A JP2013077462 A JP 2013077462A JP 2011216985 A JP2011216985 A JP 2011216985A JP 2011216985 A JP2011216985 A JP 2011216985A JP 2013077462 A JP2013077462 A JP 2013077462A
Authority
JP
Japan
Prior art keywords
copper foil
battery
layer
point metal
alloy layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011216985A
Other languages
Japanese (ja)
Inventor
Satoru Fujisawa
哲 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2011216985A priority Critical patent/JP2013077462A/en
Publication of JP2013077462A publication Critical patent/JP2013077462A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper foil for negative electrode collector (electrode material) capable of maintaining excellent charge and discharge cycle life characteristic and high battery capacity at early charge as electrode material for Li battery and manufacturing therefor, and to provide rust prevention without using chrome by eliminating an adverse effect of environmental pollution due to hexavalent chromium from environmental problems.SOLUTION: The copper foil for battery collector is structured by forming an alloy layer of low-melting metal and copper on a surface of at least one side of unprocessed copper foil and then forming an alloy layer of a nickel layer or nickel and the low-melting metal thereon. Preferably, the low-melting metal is Zn, Bi, or In.

Description

本発明は、Li電池(リチウムイオン二次電池)用集電体としての銅箔、特に負極活物質を堆積して負極を構成する銅箔(集電体)に関するものである。
更に本発明は、該銅箔を用いたLi電池用電極、およびLi電池に関するものである。
The present invention relates to a copper foil as a current collector for a Li battery (lithium ion secondary battery), and more particularly to a copper foil (current collector) constituting a negative electrode by depositing a negative electrode active material.
Furthermore, this invention relates to the electrode for Li batteries using this copper foil, and a Li battery.

携帯電話、ビデオカメラなどの電子機器の小型化、ハイブリッド車や電気自動車への搭載などの要望により、エネルギー密度が高く、充放電特性に優れ、かつ軽量であるLi電池の消費量が増大し、開発も盛んに行われている。
Li電池の負極の電極材料としては、一般に集電体として銅箔が使用され、該銅箔の表面に黒鉛などの負極活物質を塗布、乾燥し、その後ロール圧延などで圧着して銅箔表面に活物質を堆積させ、負極電極としている。
正極集電体はアルミ箔などを用い、コバルト酸リチウムを堆積して正極電極とし、該正極電極と前記負極電極とをセパレーターを介して円筒状に巻き、有機電解液に接触させた構成で円筒型Li電池が形成される。
この他、角型やコイン型、ポリマー電解質を用いたLi電池などがある。
Due to demands such as downsizing of electronic devices such as mobile phones and video cameras, and mounting on hybrid vehicles and electric vehicles, the consumption of Li batteries, which have high energy density, excellent charge / discharge characteristics, and light weight, has increased. Development is also actively underway.
As an electrode material for the negative electrode of a Li battery, a copper foil is generally used as a current collector, and a negative electrode active material such as graphite is applied to the surface of the copper foil, dried, and then crimped by roll rolling or the like to obtain a copper foil surface. The active material is deposited on the negative electrode.
The positive electrode current collector is made of aluminum foil or the like, and lithium cobalt oxide is deposited to form a positive electrode. The positive electrode and the negative electrode are wound in a cylindrical shape through a separator and are in contact with the organic electrolyte. A type Li battery is formed.
In addition, there are a square type, a coin type, a Li battery using a polymer electrolyte, and the like.

負極活物質としては、平均粒径20μm程度のカーボン粉、人造黒鉛、天然黒鉛、コークスなどをバインダとともに溶剤に分散しスラリー化した液が用いられ、該液を銅箔に塗布した後、乾燥し、さらにロール圧着することにより成形して数十μm程度の厚さにして負極電極とする。通常、バインダとしては、有機系のPVDF(ポリフッ化ビニリデン)が使用され、溶剤としてはNMP(ノルマルメチルピロリドン)が使用されている。
また、カーボン以外の活物質として、Sn系合金やSi系合金、金属窒素化物、Sn−O化合物、Si−O化合物などが研究開発されている。
As the negative electrode active material, a carbon powder having an average particle size of about 20 μm, artificial graphite, natural graphite, coke and the like dispersed in a solvent together with a binder and slurried are used. After the liquid is applied to a copper foil, it is dried. Further, it is molded by roll pressure bonding to a thickness of about several tens of μm to obtain a negative electrode. Usually, organic PVDF (polyvinylidene fluoride) is used as the binder, and NMP (normal methylpyrrolidone) is used as the solvent.
In addition, Sn-based alloys, Si-based alloys, metal nitrides, Sn—O compounds, Si—O compounds, and the like have been researched and developed as active materials other than carbon.

負極集電体用銅箔としては現在8〜20μm厚程度の銅箔が主に用いられているが近年では、電池の高容量化などから使用される銅箔の薄肉化が進行している。
銅箔としては、硫酸銅などを主成分とする溶液からチタンなどのドラム上に電着させた電解銅箔や肉厚の素条から圧延加工された圧延銅箔が使用されている。
圧延銅箔の製造には、加工油が不可欠であるため、必然的に加工油による汚染があり、活物質との密着性が劣る欠点を有する。また、機械強度の点では電解銅箔よりも優れるとされているが、製造巾が狭いため生産性が劣る問題や薄箔化への対応によるコスト増大の問題がある。
As the copper foil for the negative electrode current collector, a copper foil having a thickness of about 8 to 20 μm is mainly used at present, but in recent years, the thinning of the copper foil used for increasing the capacity of the battery has progressed.
As the copper foil, an electrolytic copper foil electrodeposited on a drum such as titanium from a solution containing copper sulfate as a main component or a rolled copper foil rolled from a thick strip is used.
Since the processing oil is indispensable for the production of the rolled copper foil, the processing oil is inevitably contaminated and has a disadvantage that the adhesion with the active material is inferior. Moreover, although it is said that it is superior to an electrolytic copper foil in terms of mechanical strength, there are problems of inferior productivity due to a narrow manufacturing width and a problem of cost increase by dealing with thin foils.

また、Li電池用集電体としての銅箔には、その表面にクロメート処理、有機防錆処理などが施される場合が多い。
このような防錆処理が施された銅箔表面に負極活物質を堆積、付着させるため、負極活物質と銅箔表面との密着強度は銅箔の表面処理に大きく影響される。即ち、活物質の銅箔への密着性により、電池にとって最も重要な特性である充放電サイクル寿命特性と充電初期の電池容量が大きく影響される。したがって、負極活物質との密着性に優れた表面を有する銅箔の提供が要求されている。
しかし、環境問題から6価クロムによる環境汚染の影響が懸念されており、規制の方向へ向かっている。上述したようにクロメート処理においては6価クロムが使用されるため、環境問題への対処が極めて困難で、この代替技術が望まれている。
Further, the copper foil as the Li battery current collector is often subjected to chromate treatment, organic rust prevention treatment, and the like on the surface thereof.
Since the negative electrode active material is deposited and adhered on the surface of the copper foil subjected to such rust prevention treatment, the adhesion strength between the negative electrode active material and the copper foil surface is greatly influenced by the surface treatment of the copper foil. That is, due to the adhesion of the active material to the copper foil, the charge / discharge cycle life characteristics, which are the most important characteristics for the battery, and the battery capacity at the initial stage of charging are greatly affected. Therefore, provision of the copper foil which has the surface excellent in adhesiveness with a negative electrode active material is requested | required.
However, there are concerns about the impact of environmental pollution caused by hexavalent chromium due to environmental problems, and we are heading towards regulation. As described above, since hexavalent chromium is used in the chromate treatment, it is extremely difficult to deal with environmental problems, and this alternative technique is desired.

特許文献1(特開平8-306390公報)には、バインダを用いた活物質を使用した非水電解液二次電池の負極集電体用銅箔として、ピンホールの発生を防止した銅箔上に1μm以上のニッケル被膜またはクロム被膜を設けた銅箔が提案され、特に、ニッケル被膜については、過放電状態となった後にも初期の容量を維持することを期待している。
ところで近年、Li電池に使用する銅箔の厚さは12μm以下が求められるようになってきている。しかしこのような薄い銅箔の上にニッケル被膜またはクロム被膜を施しても、銅箔の表面硬さは一向に改善されず、電池の負極を製造するとき、銅箔(集電体)が皺になることがしばしば発生し、作業性に劣る課題が指摘されている。
Patent Document 1 (Japanese Patent Laid-Open No. 8-306390) discloses a copper foil for preventing the occurrence of pinholes as a copper foil for a negative electrode current collector of a non-aqueous electrolyte secondary battery using an active material using a binder. A copper foil provided with a nickel coating or chromium coating of 1 μm or more is proposed. In particular, the nickel coating is expected to maintain the initial capacity even after an overdischarge state.
By the way, in recent years, the thickness of the copper foil used for the Li battery is required to be 12 μm or less. However, even if a nickel coating or a chromium coating is applied on such a thin copper foil, the surface hardness of the copper foil is not improved at all, and when manufacturing the negative electrode of the battery, the copper foil (current collector) becomes a habit. It often happens that problems are inferior in workability.

また、特許文献2(特許4107004公報)には、電池の過放電時における銅箔溶出を効果的に防ぐことを目的として、表面にクロム系の皮膜を形成した圧延銅箔によって負極集電体を構成する提案がなされている。この提案の中でNi皮膜についても言及しているが、Ni付着量の規定はなされていない。
銅箔溶出を効果的に防ぐためには、特許文献1に示唆されているように、1μm以上の厚みが必要と考えられる。ニッケルの電気抵抗は、銅より高く、ニッケルの付着量が多すぎると、発熱の原因となり、電池の負極集電体に採用した場合、サイクル特性が著しく低下することが懸念される。
また圧延加工で、厚み12μm以下の銅箔を製造することは困難なため、12μm以下の銅箔としては電解銅箔をLi電池の負極に採用している。
Patent Document 2 (Patent No. 4107004) discloses a negative electrode current collector made of rolled copper foil having a chromium-based film formed on its surface for the purpose of effectively preventing elution of the copper foil during battery overdischarge. Proposals to make are made. Although the Ni film is also mentioned in this proposal, the amount of Ni adhesion is not specified.
In order to effectively prevent elution of copper foil, as suggested in Patent Document 1, a thickness of 1 μm or more is considered necessary. The electrical resistance of nickel is higher than that of copper, and if the amount of nickel deposited is too large, it will cause heat generation, and there is a concern that the cycle characteristics will be remarkably deteriorated when it is used for the negative electrode current collector of a battery.
In addition, since it is difficult to produce a copper foil having a thickness of 12 μm or less by rolling, an electrolytic copper foil is employed as the negative electrode of the Li battery as the copper foil having a thickness of 12 μm or less.

特許文献3(特開平7-192767公報)には、負極集電体として、銅箔を使用する場合、銅の電解液中への溶出を抑制し、充放電サイクル特性を向上させるため、両面にニッケルめっきを施すとの提案がなされ、その効果として、充放電サイクル時に炭素層(活物質層と思われる)が銅箔から剥離しにくく優れた充放電サイクル特性を有する、と開示している。しかし、この提案は銅箔上に直接ニッケル層を設けているため、ニッケルの付着量によっては電気抵抗が上昇する。また、電池にしたときに負極電極としての形状維持が困難になると推察され、サイクル特性のよいLi電池用の負極を製作することは難しいと思われる。   In Patent Document 3 (Japanese Patent Laid-Open No. 7-192767), when a copper foil is used as a negative electrode current collector, the elution of copper into the electrolytic solution is suppressed and the charge / discharge cycle characteristics are improved. It is proposed that nickel plating is applied, and as an effect thereof, it is disclosed that the carbon layer (which seems to be an active material layer) is difficult to peel off from the copper foil during the charge / discharge cycle and has excellent charge / discharge cycle characteristics. However, in this proposal, since the nickel layer is directly provided on the copper foil, the electric resistance increases depending on the amount of nickel deposited. Further, it is presumed that it becomes difficult to maintain the shape as a negative electrode when a battery is formed, and it seems difficult to produce a negative electrode for a Li battery with good cycle characteristics.

特開平8−306390号公報JP-A-8-306390 特許第4107004公報Japanese Patent No. 4107004 特開平7−192767号公報JP 7-192767 A

銅箔表面は酸化防止のために防錆処理が欠かせない。Li電池の負極用集電体として、防錆処理が施された銅箔表面に負極活物質を堆積、付着させるため、負極活物質と銅箔表面との密着強度は銅箔表面の防錆処理に大きく影響される。即ち、活物質の銅箔への密着性により、電池にとって最も重要な特性である充放電サイクル寿命特性と充電初期の電池容量が大きく影響される。したがって、負極活物質との密着性に優れた表面を有する銅箔の提供が要求されている。   Rust prevention treatment is indispensable for copper foil surface to prevent oxidation. As a current collector for the negative electrode of a Li battery, a negative electrode active material is deposited and adhered to the surface of a copper foil that has been subjected to a rust prevention treatment, so the adhesion strength between the negative electrode active material and the copper foil surface is a rust prevention treatment on the copper foil surface. It is greatly influenced by. That is, due to the adhesion of the active material to the copper foil, the charge / discharge cycle life characteristics, which are the most important characteristics for the battery, and the battery capacity at the initial stage of charging are greatly affected. Therefore, provision of the copper foil which has the surface excellent in adhesiveness with a negative electrode active material is requested | required.

本発明は、Li電池用電極材料としての銅箔の問題点を解決し、優れた充放電サイクル寿命特性と充電初期の高い電池容量の保持を可能とする負極集電体(電極材料)としての銅箔とその製造方法の提供を目的とする。
一方、環境問題から6価クロムによる環境汚染の影響が懸念されており、規制の方向へ向かっている。上述したようにクロメート処理においては6価クロムが使用されるため、環境問題への対処が極めて困難でありその代替技術が望まれている。
The present invention solves the problems of copper foil as an electrode material for Li batteries, and as a negative electrode current collector (electrode material) capable of maintaining excellent charge / discharge cycle life characteristics and high battery capacity at the beginning of charging. It aims at provision of copper foil and its manufacturing method.
On the other hand, there are concerns about the impact of environmental pollution by hexavalent chromium due to environmental problems, and it is heading toward regulation. As described above, since hexavalent chromium is used in the chromate treatment, it is extremely difficult to deal with environmental problems, and an alternative technique is desired.

本発明は、上記の問題に鑑み鋭意検討の結果、銅箔表面には6価クロムを含有する層が存在しないため、環境に優しい電極材料であり、有機防錆処理と比べ上記特性を改善した材料であり、かかる材料を用いることにより、環境に優しく、しかも優れた充放電サイクル寿命特性と充電初期の高い電池容量の保持を可能とした集電体(銅箔)の提供と、該集電体を用いたLi電池を提供することを目的とする。   As a result of intensive studies in view of the above problems, the present invention is an environment-friendly electrode material because there is no layer containing hexavalent chromium on the surface of the copper foil, and the above characteristics are improved compared to organic rust prevention treatment. And providing a current collector (copper foil) that is environmentally friendly and that is capable of maintaining excellent charge / discharge cycle life characteristics and a high battery capacity at the beginning of charging by using such a material. An object is to provide a Li battery using a body.

本発明のLi電池集電体用銅箔は、未処理銅箔の少なくとも一方の表面に低融点金属と銅との合金層が設けられ、その上にニッケル層またはニッケルと低融点金属の合金層が設けられている。
前記低融点金属はZn、Bi、Inであることが好ましい。
The copper foil for a Li battery current collector of the present invention is provided with an alloy layer of a low melting point metal and copper on at least one surface of an untreated copper foil, and a nickel layer or an alloy layer of nickel and a low melting point metal thereon. Is provided.
The low melting point metal is preferably Zn, Bi, or In.

前記低融点金属をZnとし、Zn−Cu合金層のZn含有率を1wt%以下とすることが好ましい。   Preferably, the low melting point metal is Zn, and the Zn content of the Zn—Cu alloy layer is 1 wt% or less.

本発明のLi電池集電体用銅箔の製造方法は、未処理銅箔の少なくとも一方の表面にNiと低融点金属との合金層を電解めっきで施し、Niと低融点金属との合金層を施した銅箔を300℃以下で熱処理し、銅箔表面にCuと低融点金属との合金層を形成する製造方法である。   In the method for producing a copper foil for a Li battery collector of the present invention, an alloy layer of Ni and a low-melting metal is applied to at least one surface of an untreated copper foil by electrolytic plating, and an alloy layer of Ni and a low-melting metal Is a manufacturing method in which a copper foil subjected to heat treatment is heat treated at 300 ° C. or lower to form an alloy layer of Cu and a low melting point metal on the surface of the copper foil.

また、本発明のLi電池集電体用銅箔の製造方法は、未処理銅箔の少なくとも一方の表面に低融点金属層をめっきで施し、該低融点金属層上にNi層をめっきで施し、次いで低融点金属層、Ni層を施した銅箔を300℃以下で熱処理し、銅箔表面にCuと低融点金属との合金層を形成する製造方法。   In the method for producing a copper foil for a Li battery current collector of the present invention, a low melting point metal layer is plated on at least one surface of an untreated copper foil, and a Ni layer is plated on the low melting point metal layer. Then, a manufacturing method in which a copper foil having a low melting point metal layer and a Ni layer is heat-treated at 300 ° C. or lower to form an alloy layer of Cu and a low melting point metal on the surface of the copper foil.

また、本発明のLi電池集電体用銅箔の製造方法は、未処理銅箔の少なくとも一方の表面に低融点金属層をめっきで施し、低融点金属層を施した銅箔を300℃以下で熱処理して銅箔表面にCuと低融点金属との合金層を形成し、次いでその上にNi層をめっきで施す製造方法。   Moreover, the manufacturing method of the copper foil for Li battery collectors of the present invention is such that the low melting point metal layer is plated on at least one surface of the untreated copper foil, and the copper foil having the low melting point metal layer is 300 ° C. or less. A manufacturing method in which an alloy layer of Cu and a low-melting-point metal is formed on the surface of the copper foil by heat treatment, and then a Ni layer is plated thereon.

前記低融点金属はZn、BiまたはInであることが好ましい。   The low melting point metal is preferably Zn, Bi or In.

本発明のLi電池用負極電極は、前記本発明銅箔を集電体とし、該集電体に活物質を堆積した電極である。
前記活物質はそのバインダに水分散系のバインダを使用することが好ましい。
The negative electrode for a Li battery of the present invention is an electrode in which the copper foil of the present invention is used as a current collector and an active material is deposited on the current collector.
The active material preferably uses an aqueous dispersion binder for the binder.

本発明のLi電池は前記負極電極を使用した電池である。   The Li battery of the present invention is a battery using the negative electrode.

本発明の銅箔は、その表面をNi層またはNi合金層で被覆するため、六価クロムなどの環境に影響を与える化学薬品を使用することなく、耐変色性と負極活物質との密着性を両立したLi電池電極用銅箔を提供することができる。
また、本発明は充放電サイクル寿命に優れる高性能のLi電池を提供することができる。
Since the surface of the copper foil of the present invention is coated with a Ni layer or a Ni alloy layer, discoloration resistance and adhesion between the negative electrode active material without using chemicals that affect the environment such as hexavalent chromium. It is possible to provide a copper foil for a Li battery electrode that satisfies both requirements.
Moreover, this invention can provide the high performance Li battery which is excellent in charging / discharging cycle life.

本発明の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of this invention. 本発明の一実施形態を示す表面処理工程を示す説明図である。It is explanatory drawing which shows the surface treatment process which shows one Embodiment of this invention.

本明細書で使用する用語を下記のとおり定義する。
「Li電池」とは、リチウムイオン二次電池である。形状は円筒型、平型を含む。
「未処理銅箔」とは、電解製箔した未処理の電解銅箔、圧延製箔した未処理の圧延銅箔で、これらを区別して表現する必要がない時の表現である。
The terms used in this specification are defined as follows.
The “Li battery” is a lithium ion secondary battery. The shape includes a cylindrical shape and a flat shape.
“Untreated copper foil” refers to an untreated electrolytic copper foil that has been electrolytically formed and an untreated rolled copper foil that has been rolled and does not need to be expressed separately.

本発明のLi電池電極用銅箔は、未処理銅箔表面にCuと低融点金属との合金層、その上にニッケル層またはNiと低融点金属との合金層を設けた銅箔である。低融点金属としてはZn、Bi、In等が用いられる。
未処理銅箔としては、圧延銅箔、電解銅箔のいずれを用いてもよいが、圧延銅箔を使用する場合は、圧延油の残存により、活物質の密着性の低下やニッケル含有層を形成する時にムラが発生する場合があるため、表面の清浄化に注意が必要である。清浄化方法としては、アルカリ浸漬や電解脱脂およびこれと硫酸などでの酸洗い処理を行うことが好適である。
The copper foil for Li battery electrodes of the present invention is a copper foil in which an untreated copper foil surface is provided with an alloy layer of Cu and a low melting point metal, and a nickel layer or an alloy layer of Ni and a low melting point metal thereon. Zn, Bi, In or the like is used as the low melting point metal.
As the untreated copper foil, either a rolled copper foil or an electrolytic copper foil may be used. However, when using a rolled copper foil, due to the remaining rolling oil, the decrease in the adhesion of the active material and the nickel-containing layer Since unevenness may occur when forming, care must be taken to clean the surface. As a cleaning method, it is preferable to perform alkali dipping, electrolytic degreasing, and pickling treatment with sulfuric acid and the like.

本発明は、未処理銅箔表面にZn、Bi、In等の低融点金属を設け、該低融点金属と銅箔表面とで低融点金属含有銅合金層を形成し、その上に設けるニッケル層のNi付着量を極力抑え、かつ、銅箔溶出を防ぎ、電気抵抗がそれほどあがらないようにしている。
本発明の銅箔は、未処理銅箔表面を低溶融金属と銅との合金皮膜で覆い、その上にNi層をNi付着量を極力抑えた皮膜とすることで、通常の銅箔と比較して、硬い箔となり、銅箔が皺になりにくい性質が現れる。従って、電池製造時、銅箔が取り扱い易く、活物質形成後、形状の崩れが少ない特徴を有する。また、電気抵抗が小さく、活物質との密着性がよく、銅箔溶出を効果的に防げ、電池としてのサイクル特性のよいLi電池負極用の集電体としの優れた銅箔となる。
In the present invention, a low melting point metal such as Zn, Bi, In or the like is provided on an untreated copper foil surface, a low melting point metal-containing copper alloy layer is formed by the low melting point metal and the copper foil surface, and a nickel layer provided thereon Ni adhesion amount is suppressed as much as possible, copper foil elution is prevented, and electrical resistance is not increased so much.
The copper foil of the present invention covers the surface of the untreated copper foil with an alloy film of a low-melting metal and copper, and the Ni layer is a film that suppresses the Ni adhesion amount as much as possible. As a result, it becomes a hard foil, and the property that the copper foil does not easily become wrinkles appears. Accordingly, the copper foil is easy to handle during battery production, and has a characteristic that the shape is less likely to collapse after the active material is formed. Moreover, it becomes an excellent copper foil as a current collector for a Li battery negative electrode having low electrical resistance, good adhesion to the active material, effectively preventing elution of the copper foil, and good cycle characteristics as a battery.

本発明の一実施形態として、前記低融点金属にZnを採用し、Zn−Cu合金層のZn含有率を1wt%以下とすることが好ましい。
Zn含有量を1wt%以下とするのは銅箔の導電率低下を極力抑えるためで、この上に皮膜するNi層(Ni合金層を含む)の厚さと共にCuと比較した導電率を95%IACS以上に抑えるためである。
As one embodiment of the present invention, it is preferable to employ Zn as the low melting point metal and to make the Zn content of the Zn—Cu alloy layer 1 wt% or less.
The Zn content is 1 wt% or less in order to suppress the decrease in conductivity of the copper foil as much as possible, and the conductivity compared to Cu is 95% together with the thickness of the Ni layer (including the Ni alloy layer) coated thereon. This is to suppress the IACS to more than that.

本実施形態において、低融点金属にZnを採用し、未処理銅箔の表面にZn−Ni合金層を0.05〜5mg/dm厚さに電解めっきで設ける。次いで、Ni−Zn合金層を被覆した銅箔を50℃〜300℃の大気雰囲気で、30秒〜5時間熱処理を施す。この熱処理でNi−Zn合金中のZnは、銅箔表面のCuに熱拡散し、合金化される。
なお、Ni−Zn合金を銅箔表面にめっきする際、二段階に分けてめっきすることで、Znは酸に溶けやすいため、Ni−Zn合金層のZn濃度は、銅箔表面の濃度が高く、銅箔表面から離れるに従って低くなる傾斜勾配とすることができる。なおその勾配率は10%以下とすることが好ましい。
In this embodiment, Zn is adopted as the low melting point metal, and a Zn—Ni alloy layer is provided on the surface of the untreated copper foil to a thickness of 0.05 to 5 mg / dm 2 by electrolytic plating. Next, the copper foil coated with the Ni—Zn alloy layer is subjected to heat treatment in an air atmosphere at 50 ° C. to 300 ° C. for 30 seconds to 5 hours. With this heat treatment, Zn in the Ni—Zn alloy is thermally diffused into Cu on the surface of the copper foil and alloyed.
In addition, when plating the Ni-Zn alloy on the copper foil surface, the Zn concentration in the Ni-Zn alloy layer is high because the Zn is easily dissolved in the acid by plating in two stages. The slope can be lowered as the distance from the copper foil surface increases. The gradient rate is preferably 10% or less.

このように未処理銅箔の表面にZn濃度傾斜勾配を有するZn−Ni合金層を0.05〜5mg/dm厚さに被覆し、次いで、Ni−Zn合金層を被覆した銅箔を50℃〜300℃の大気雰囲気で、30秒〜5時間熱処理することで、未処理銅箔の界面に熱拡散で1wt%以下のZnを含有する銅合金層を形成することができる。
なお、上記では銅箔表面にZn−Ni合金層を設けたが、銅箔表面にZn層を設け、次いでNi層を設けて熱処理することも可能である。
また、銅箔表面にZn層を設けて熱処理し、次いでその上にNi層を設けることも可能である。
Thus, the surface of the untreated copper foil was coated with a Zn—Ni alloy layer having a Zn concentration gradient to a thickness of 0.05 to 5 mg / dm 2 , and then the copper foil coated with the Ni—Zn alloy layer was coated with 50 A copper alloy layer containing 1 wt% or less of Zn by thermal diffusion can be formed at the interface of the untreated copper foil by heat treatment in an air atmosphere at ℃ to 300 ℃ for 30 seconds to 5 hours.
In the above description, the Zn—Ni alloy layer is provided on the surface of the copper foil. However, it is also possible to provide a Zn layer on the surface of the copper foil and then provide a Ni layer for heat treatment.
It is also possible to provide a Zn layer on the copper foil surface and heat-treat, and then provide a Ni layer thereon.

このように銅箔表面にZn層またはNi−Zn合金層を設けることによって、大気加熱中における銅箔の酸化腐食が防げ、不純物の少ないZn−Cu合金層を形成できる。このような銅箔表面にZn−Cu合金の被膜を設けることで、Cuより硬い表面層となり、また、箔全体の引張強度を高めることができる。
なお、製造のサイクルタイムを考えると、熱処理は、150℃×30秒とすることが好ましい。また熱処理温度を300℃以下とするため、Ni−Cu合金は形成されない。
銅箔最外層にNi―Cu合金層を形成させないのは、即ち、最外層をNi表面とすることで、該表面は水分散系のバインダを用いた活物質のスラリーとの間で、その濡れ性が顕著に改善され、バインダとの密着性は従来の銅箔より大幅に改善される。
Thus, by providing a Zn layer or a Ni—Zn alloy layer on the surface of the copper foil, oxidation corrosion of the copper foil during atmospheric heating can be prevented, and a Zn—Cu alloy layer with few impurities can be formed. By providing a coating of Zn—Cu alloy on the surface of such a copper foil, a surface layer harder than Cu can be obtained, and the tensile strength of the entire foil can be increased.
In view of manufacturing cycle time, the heat treatment is preferably 150 ° C. × 30 seconds. Further, since the heat treatment temperature is set to 300 ° C. or lower, a Ni—Cu alloy is not formed.
The reason why the Ni—Cu alloy layer is not formed on the outermost layer of the copper foil is that the outermost layer is the Ni surface, and the surface is wetted with the slurry of the active material using the water dispersion binder. Property is remarkably improved, and the adhesiveness with the binder is greatly improved as compared with the conventional copper foil.

未処理銅箔の表面に形成する亜鉛層はめっきで形成する。めっき液のZnイオン供給源としては、硫酸亜鉛、塩化亜鉛などの1種または2種混合物が使用できる。
上記Znめっき液中のZn含有量の総量は、Zn金属として1〜100g/L、好ましくは3〜50g/Lである。硫酸亜鉛、塩化亜鉛などを水酸化ナトリウムなどのアルカリを添加して溶液で溶解しめっき液とする。水酸化ナトリウムの量は20〜200g/L、好ましくは40〜150g/Lである。
The zinc layer formed on the surface of the untreated copper foil is formed by plating. As a Zn ion supply source of the plating solution, one kind or a mixture of two kinds such as zinc sulfate and zinc chloride can be used.
The total amount of Zn content in the Zn plating solution is 1 to 100 g / L, preferably 3 to 50 g / L, as Zn metal. Zinc sulfate, zinc chloride or the like is added with an alkali such as sodium hydroxide and dissolved in a solution to obtain a plating solution. The amount of sodium hydroxide is 20 to 200 g / L, preferably 40 to 150 g / L.

めっき処理は、未処理銅箔を前記Zn含有めっき液中にて陰極(カソード)電解する。電流密度は、0.05〜15A/dmが好ましい。電流密度がこれを越えるとガス発生が激しくなることや、不可避不純物の電析が生じやすくなりあまり好ましくない。
めっき液中のZn含有量はZn金属として1〜100g/L、好ましくは3〜50g/Lとする。上記Zn含有量を越えると、銅箔表面との熱拡散でZn含有量が1wt%以上となってしまう恐れがあり、好ましくない。
In the plating treatment, the untreated copper foil is subjected to cathode (cathode) electrolysis in the Zn-containing plating solution. Current density, 0.05 to 15 A / dm 2 is preferred. If the current density exceeds this, gas generation becomes intense and electrodeposition of inevitable impurities tends to occur, which is not preferable.
The Zn content in the plating solution is 1 to 100 g / L, preferably 3 to 50 g / L, as Zn metal. Exceeding the Zn content is not preferable because the Zn content may be 1 wt% or more due to thermal diffusion with the copper foil surface.

本実施形態において、ニッケル層はめっきで形成する。めっき液のニッケルイオン供給源としては、硫酸ニッケル、塩化ニッケル、炭酸ニッケルなどの1種または2種以上の混合物が使用できる。
上記ニッケルめっき液中のニッケル含有量の総量は、ニッケル金属として5〜200g/L、好ましくは10〜100g/Lである。
In this embodiment, the nickel layer is formed by plating. As a nickel ion supply source of the plating solution, one or a mixture of two or more of nickel sulfate, nickel chloride, nickel carbonate and the like can be used.
The total amount of nickel content in the nickel plating solution is 5 to 200 g / L, preferably 10 to 100 g / L, as nickel metal.

めっき液のpHは、酸やアルカリを添加してpHを0.5〜6.0、好ましくは2.0〜5.0に調整する。
めっき処理は、Zn処理銅箔をニッケル含有めっき液中にて陰極(カソード)電解する。電流密度は、0.05〜15A/dmが好ましい。電流密度がこれを越えるとガスの発生が激しくなることや、不可避不純物の電析が生じやすくなるためで、好ましくない。
このようにして得られるニッケル皮膜の厚さは、0.05〜5mg/dmとすることが好ましく、この上限の厚さを越えると、導電率が95%IACS以下となってしまうからであり、好ましくない。より好ましくは、0.1〜4mg/dmである。
なお、ニッケル含有皮膜中のニッケル量の測定は、蛍光X線法、銅箔全体を溶解して原子吸光法で求める方法により測定可能である。
The pH of the plating solution is adjusted to 0.5 to 6.0, preferably 2.0 to 5.0 by adding acid or alkali.
In the plating process, a Zn-treated copper foil is subjected to cathode (cathode) electrolysis in a nickel-containing plating solution. Current density, 0.05 to 15 A / dm 2 is preferred. If the current density exceeds this, the generation of gas becomes violent and electrodeposition of inevitable impurities tends to occur, which is not preferable.
The thickness of the nickel film thus obtained is preferably 0.05 to 5 mg / dm 2, and if the upper limit thickness is exceeded, the conductivity will be 95% IACS or less. Is not preferable. More preferably 0.1~4mg / dm 2.
The amount of nickel in the nickel-containing film can be measured by a fluorescent X-ray method or a method of obtaining the whole copper foil by an atomic absorption method.

未処理銅箔の表面に形成するニッケル-亜鉛合金層はめっきで形成する。めっき液のニッケルイオン供給源としては、硫酸ニッケル、塩化ニッケル、炭酸ニッケルなどの1種または2種以上の混合物が使用できる。めっき液の亜鉛イオン供給源としては、硫酸亜鉛、塩化亜鉛などの1種または2種混合物が使用できる。
上記Ni-Zn合金めっき液中のニッケル含有量の総量は、ニッケル金属として5〜200g/L、好ましくは20〜60g/Lである。また亜鉛含有量の総量は0.01〜80g/L、好ましくは0.05〜40g/Lである。
The nickel-zinc alloy layer formed on the surface of the untreated copper foil is formed by plating. As a nickel ion supply source of the plating solution, one or a mixture of two or more of nickel sulfate, nickel chloride, nickel carbonate and the like can be used. As a zinc ion supply source of the plating solution, one or a mixture of two kinds such as zinc sulfate and zinc chloride can be used.
The total amount of nickel content in the Ni—Zn alloy plating solution is 5 to 200 g / L, preferably 20 to 60 g / L, as nickel metal. The total zinc content is 0.01 to 80 g / L, preferably 0.05 to 40 g / L.

本実施形態でのめっき液のpHは、酸やアルカリを添加してpHを2.0〜7.0、好ましくは3.0〜6.0に調整することが好ましい。
めっき処理は、未処理銅箔をニッケル及び亜鉛含有めっき液中にて陰極(カソード)電解する。電流密度は、0.05〜10A/dmが好ましい。電流密度がこれを越えるとガス発生が激しくなることや、不可避不純物の電析が生じ、あまり好ましくない。
このようにして得られるNi-Zn皮膜は、その厚さが、0.05〜5mg/dmとすることが好ましく、この厚さを越えると、導電率が低下してしまい好ましくない。より好ましくは、0.1〜4mg/dmである。
The pH of the plating solution in this embodiment is preferably adjusted to 2.0 to 7.0, preferably 3.0 to 6.0 by adding acid or alkali.
In the plating treatment, the untreated copper foil is subjected to cathode (cathode) electrolysis in a nickel and zinc-containing plating solution. Current density, 0.05~10A / dm 2 is preferred. If the current density exceeds this, gas generation becomes intense and electrodeposition of inevitable impurities occurs, which is not preferable.
The thickness of the Ni—Zn film thus obtained is preferably 0.05 to 5 mg / dm 2, and if it exceeds this thickness, the electrical conductivity is lowered, which is not preferable. More preferably 0.1~4mg / dm 2.

前記した銅箔を図1、2を参照して説明する。
実施形態1
図1に示すように未処理銅箔1の表面にNi−Zn合金層2を形成する。
濃度勾配を有するNi−Zn合金層2の製膜条件の一例を、図2に示すめっき装置を使用して説明する。
未処理銅箔21を案内ロール8、電極ロール3を介してめっき槽24に導く。めっき曹24のめっき浴組成(めっき液)25は硫酸ニッケル(ニッケル濃度;50g/L)、硫酸亜鉛(亜鉛濃度;1.0g/L)、硫酸アンモニウム;10gとする。
このめっき液25を用いて、先ず図2のアノード26の電流密度を0.2A/dmとし、6秒の処理時間で第一段階の合金めっきを施し、その後続けて、アノード27の電流密度を2.0A/dmとして6秒の処理時間で第二段階の合金めっきを行い、Znの濃度勾配を有する表面処理箔を作成する。
前記めっき浴組成のめっき液を使用した場合、電流密度が低い(約0.05〜0.3A/dm)とZn含有率の高い合金皮膜が形成され、電流密度がより高い(約1.0〜3.0A/dm)とZn含有率の低い合金皮膜が形成される。
The copper foil described above will be described with reference to FIGS.
Embodiment 1
As shown in FIG. 1, a Ni—Zn alloy layer 2 is formed on the surface of the untreated copper foil 1.
An example of the film forming conditions of the Ni—Zn alloy layer 2 having a concentration gradient will be described using the plating apparatus shown in FIG.
The untreated copper foil 21 is guided to the plating tank 24 through the guide roll 8 and the electrode roll 3. The plating bath composition (plating solution) 25 of the plating solution 24 is nickel sulfate (nickel concentration: 50 g / L), zinc sulfate (zinc concentration: 1.0 g / L), and ammonium sulfate: 10 g.
Using this plating solution 25, first, the current density of the anode 26 in FIG. 2 is set to 0.2 A / dm 2, and the first stage alloy plating is performed with a processing time of 6 seconds. Is 2.0 A / dm 2 and a second stage alloy plating is performed in a treatment time of 6 seconds to produce a surface-treated foil having a Zn concentration gradient.
When the plating solution having the plating bath composition is used, an alloy film having a high Zn content is formed when the current density is low (about 0.05 to 0.3 A / dm 2 ), and the current density is higher (about 1. An alloy film having a low Zn content of 0 to 3.0 A / dm 2 ) is formed.

第一段階の電流密度を0.05〜0.3A/dm、第二段階の電流密度を1.0〜3.0A/dmと異なる電流密度で2段階のめっきを行うことで濃度勾配を有する合金被膜を形成することができる。
電流密度、めっき時間は、所望するNiおよびZnの付着量、めっき皮膜中のZn含有率、めっき表面のZn濃度に応じて調節する。
なお、処理時間は各工程とも1秒〜20秒とする。
本実施形態ではめっき処理を(工業的に好ましい)一つのめっき槽で2段階に分けて行ったが、めっき槽を複数設け、3段階以上で処理しても良いことは勿論である。
Concentration gradient by performing two-stage plating at a current density different from 0.05 to 0.3 A / dm 2 for the first stage current density and 1.0 to 3.0 A / dm 2 for the second stage current density. An alloy film having the following can be formed.
The current density and plating time are adjusted according to the desired amount of Ni and Zn deposited, the Zn content in the plating film, and the Zn concentration on the plating surface.
In addition, processing time shall be 1 second-20 seconds in each process.
In this embodiment, the plating process is performed in two stages in one (industrially preferable) plating tank, but it is needless to say that a plurality of plating tanks may be provided and processed in three or more stages.

なお、表面処理層表面のZn濃度、Zn濃度勾配の有無は、オージェ電子分光分析(AES)によって、処理面より深さ方向の分析を行い、濃度分布を判断することができる。
AES測定条件:使用機器 アルバック・ファイ株式会社製 Model 680
加速電圧 10keV
スパッタ速度 酸化膜部 2nm/min
メタル部 10nm/min (Cuピークが立ち上がるまで)
Note that the presence or absence of Zn concentration and Zn concentration gradient on the surface treatment layer surface can be analyzed by Auger electron spectroscopy (AES) in the depth direction from the treatment surface to determine the concentration distribution.
AES measurement conditions: Equipment used Model 680 made by ULVAC-PHI
Acceleration voltage 10 keV
Sputtering rate Oxide film part 2nm / min
Metal part 10nm / min (until Cu peak rises)

次いでNi−Zn合金層2を設けた未処理銅箔1を300℃以下の温度で熱処理する。熱処理することで銅箔表面のCuとNi−Zn合金とでCu−Zn合金層11が形成され、最表面はNi層またはNi−Zn層12となる。なお、加熱処理は300℃以下で行うため、Cu−Ni合金の反応は起こらない。   Next, the untreated copper foil 1 provided with the Ni—Zn alloy layer 2 is heat-treated at a temperature of 300 ° C. or lower. By performing the heat treatment, a Cu—Zn alloy layer 11 is formed by Cu and Ni—Zn alloy on the surface of the copper foil, and the outermost surface becomes the Ni layer or the Ni—Zn layer 12. Note that since the heat treatment is performed at 300 ° C. or lower, the reaction of the Cu—Ni alloy does not occur.

実施形態2
未処理銅箔1の表面にZn層3を形成する。Znめっき層は、未処理銅箔をZn含有めっき液中にて陰極(カソード)電解する。電流密度は、0.1〜1A/dmが好ましい。このようにして得られる亜鉛被膜の厚さは、0.01〜2mg/dmとすることが好ましく、この厚さを越えると、次工程の熱処理で、Zn−Cu合金化時間が長くかかるだけでなく、電気抵抗が上がり、電池にした時、発熱の原因となる。より好ましくは、0.05〜1mg/dmである。
次いで該Zn層2の上にNi層またはNi−Zn層4を設ける。なお、めっき条件は下記実施例に従って処理する。次いでZn層2の上にNi層またはNi−Zn層4を設けた銅箔1を300℃以下の温度で熱処理する。熱処理することで銅箔表面のCuとZn層とでCu−Zn合金層11が形成され、最表面はNi層またはNi−Zn層12が形成される。
Embodiment 2
A Zn layer 3 is formed on the surface of the untreated copper foil 1. The Zn plating layer electrolyzes the untreated copper foil in a Zn-containing plating solution. Current density, 0.1~1A / dm 2 is preferred. The thickness of the zinc coating thus obtained is preferably 0.01 to 2 mg / dm 2, and if this thickness is exceeded, it takes only a long time for Zn-Cu alloying in the subsequent heat treatment. In addition, the electrical resistance increases, and when it is made into a battery, it causes heat generation. More preferably 0.05 to 1 mg / dm 2.
Next, a Ni layer or a Ni—Zn layer 4 is provided on the Zn layer 2. The plating conditions are processed according to the following examples. Next, the copper foil 1 provided with the Ni layer or the Ni—Zn layer 4 on the Zn layer 2 is heat-treated at a temperature of 300 ° C. or lower. By performing the heat treatment, a Cu—Zn alloy layer 11 is formed by the Cu and Zn layers on the surface of the copper foil, and a Ni layer or a Ni—Zn layer 12 is formed on the outermost surface.

前記した表面処理銅箔を集電体とし、その表面に活物質を設けてLi電池の負極電極とする。活物質は集電体の表面に塗布し、乾燥、プレスの工程を経て堆積される。本発明の表面処理銅箔は、この工程で軟化が防げ、従来の銅箔より、高強度の銅箔であるため、電池にした場合、活物質の膨張、収縮に耐え、電池サイクル特性を向上できる。
特にシート型Li電池を製造するとき、シートを積層して、熱プレスにて加工するため、表面硬さが銅より硬い合金層を有することによって、圧力で、均一に活物質と接着することができ、密着性の良いLi電池負極を製造できる。当然ながら、Niめっきを施しているため、過放電時、銅の溶け出しを防止できる。
The surface-treated copper foil described above is used as a current collector, and an active material is provided on the surface thereof to form a negative electrode for a Li battery. The active material is applied to the surface of the current collector, and is deposited through drying and pressing processes. The surface-treated copper foil of the present invention can be prevented from softening in this process and is stronger than conventional copper foil. Therefore, when used as a battery, it withstands expansion and contraction of the active material and improves battery cycle characteristics. it can.
In particular, when manufacturing a sheet-type Li battery, the sheets are laminated and processed by hot pressing, so by having an alloy layer whose surface hardness is harder than copper, it is possible to adhere to the active material uniformly with pressure. And a lithium battery negative electrode with good adhesion can be produced. Of course, since Ni plating is performed, it is possible to prevent the copper from melting during overdischarge.

上述したように本発明の銅箔の特徴は、未処理銅箔表面がCu−低金属合金層で覆われているため、通常の銅箔と比較して、硬い特徴があり、銅箔が皺になりにくい。従って電池製造時、銅箔の取り扱いが容易であり、活物質形成後、形状の崩れが少ない特徴を有する。   As described above, the copper foil of the present invention is characterized by the fact that the surface of the untreated copper foil is covered with a Cu-low metal alloy layer, so that it has a hard characteristic compared to a normal copper foil. It is hard to become. Therefore, it is easy to handle the copper foil during battery production, and has a characteristic that the shape does not collapse after the active material is formed.

以下、本発明を実施例により、より具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

〈電解銅箔の製箔〉
バフ研磨にてRz=1.5μmとしたTi板をカソードとして、下記めっき浴・条件にて12μm厚の未処理電解銅箔を製箔した。
めっき浴;
硫酸銅五水和物280g/L、
硫酸100g/L、
塩素イオン35ppm
平均分子量3000の低分子量ゼラチン7ppm、
ヒドロキシエチルセルロ−ス3ppm、
3−メルカプト−1−プロパンスルホン酸ナトリウム1ppm
箔析出条件、
電解液温度;55℃、
流速;0.3m/分、
電流密度;50A/dm2
作成した未処理電解銅箔を用いて各実施例に示す条件でZn被膜、Ni被膜、或いはNi含有合金被膜の形成処理を施した。
<Electrolytic copper foil production>
Using a Ti plate with Rz = 1.5 μm by buffing as a cathode, an untreated electrolytic copper foil having a thickness of 12 μm was produced in the following plating bath and conditions.
Plating bath;
Copper sulfate pentahydrate 280 g / L,
Sulfuric acid 100g / L,
Chlorine ion 35ppm
7 ppm low molecular weight gelatin with an average molecular weight of 3000,
Hydroxyethyl cellulose 3 ppm,
1-ppm sodium 3-mercapto-1-propanesulfonate
Foil deposition conditions,
Electrolyte temperature: 55 ° C
Flow rate: 0.3 m / min,
Current density: 50A / dm2
Using the prepared untreated electrolytic copper foil, a Zn coating, a Ni coating, or a Ni-containing alloy coating was formed under the conditions shown in each example.

〈実施例1〉
濃度勾配を有するNi−Zn合金めっき層を図2に示す装置で製膜した。
(めっき浴組成)
硫酸ニッケル:ニッケル濃度 50g/L
硫酸亜鉛:亜鉛濃度 1.0g/L
硫酸アンモニウム: 10g
(めっき条件)
液温;40℃
pH;6
このめっき液を用いて、図2に示す装置で、
第一段階の電流密度:0.3A/dm、処理時間 20秒
第二段階の電流密度:3.0A/dm、処理時間 20秒
上記めっき液、めっき条件で電解銅箔にNi−Zn合金層を設けた。
製膜したNi−Zn合金層のZn含有率は7%、Ni付着量は4.9mg/dm、Znの濃度勾配(濃度差)は7%であった。
続いて、150℃の大気雰囲気で、5分以内、上記表面処理した銅箔を加熱し、Znを銅に拡散して、Zn−Cu合金層を形成した。
<Example 1>
A Ni—Zn alloy plating layer having a concentration gradient was formed using the apparatus shown in FIG.
(Plating bath composition)
Nickel sulfate: Nickel concentration 50g / L
Zinc sulfate: Zinc concentration 1.0 g / L
Ammonium sulfate: 10g
(Plating conditions)
Liquid temperature: 40 ° C
pH: 6
Using this plating solution, with the apparatus shown in FIG.
First stage current density: 0.3 A / dm 2 , treatment time 20 seconds Second stage current density: 3.0 A / dm 2 , treatment time 20 seconds Ni—Zn is applied to the electrolytic copper foil under the above plating solution and plating conditions. An alloy layer was provided.
The formed Ni—Zn alloy layer had a Zn content of 7%, a Ni adhesion amount of 4.9 mg / dm 2 , and a Zn concentration gradient (concentration difference) of 7%.
Subsequently, the surface-treated copper foil was heated in an air atmosphere at 150 ° C. within 5 minutes, and Zn was diffused into copper to form a Zn—Cu alloy layer.

〈実施例2〉
実施例1と同様のめっき液を用いて表面処理を行った。
第一段階の電流密度:0.25A/dm、処理時間 11秒
第二段階の電流密度:2.5A/dm、処理時間 11秒
銅箔に付着したNi−Zn合金のZn含有率は9%、Ni付着量は2.1mg/dm、Znの濃度勾配(濃度差)は6%であった。
次いで実施例1同様に上記銅箔の加熱し、Zn−Cu合金層を形成した。
<Example 2>
Surface treatment was performed using the same plating solution as in Example 1.
First stage current density: 0.25 A / dm 2 , treatment time 11 seconds Second stage current density: 2.5 A / dm 2 , treatment time 11 seconds The Zn content of the Ni—Zn alloy adhered to the copper foil is The amount of adhesion of Ni was 2.1 mg / dm 2 , and the Zn concentration gradient (concentration difference) was 6%.
Next, the copper foil was heated in the same manner as in Example 1 to form a Zn—Cu alloy layer.

〈実施例3〉
実施例1と同様のめっき液を用いて表面処理を行った。
第一段階の電流密度:0.2A/dm、処理時間 6秒
第二段階の電流密度:2.0A/dm、処理時間 6秒
付着したNi−Zn合金のZn含有率は11%、Ni付着量は0.90mg/dm、Znの濃度勾配(濃度差)は5%であった。
次いで実施例1同様に上記銅箔の加熱し、Zn−Cu合金層を形成した。
<Example 3>
Surface treatment was performed using the same plating solution as in Example 1.
First stage current density: 0.2 A / dm 2 , treatment time 6 seconds Second stage current density: 2.0 A / dm 2 , treatment time 6 seconds The Zn content of the deposited Ni—Zn alloy is 11%, The Ni adhesion amount was 0.90 mg / dm 2 , and the Zn concentration gradient (concentration difference) was 5%.
Next, the copper foil was heated in the same manner as in Example 1 to form a Zn—Cu alloy layer.

〈実施例4〉
実施例1と同様のめっき液を用いて表面処理を行った。
第一段階の電流密度:0.15A/dm、処理時間 4秒
第二段階の電流密度:1.5A/dm、処理時間 4秒
銅箔に付着したNi−Zn合金のZn含有率は12%、Ni付着量は0.45mg/dm、Znの濃度勾配(濃度差)は4%であった。
次いで実施例1同様に上記銅箔の加熱し、Zn−Cu合金層を形成した。
<Example 4>
Surface treatment was performed using the same plating solution as in Example 1.
First stage current density: 0.15 A / dm 2 , treatment time 4 seconds Second stage current density: 1.5 A / dm 2 , treatment time 4 seconds The Zn content of the Ni—Zn alloy attached to the copper foil is 12%, Ni adhesion amount was 0.45 mg / dm 2 , and Zn concentration gradient (concentration difference) was 4%.
Next, the copper foil was heated in the same manner as in Example 1 to form a Zn—Cu alloy layer.

〈実施例5〉
実施例1と同様のめっき液を用いて表面処理を行った。
第一段階の電流密度:0.05A/dm、処理時間 1秒
第二段階の電流密度:1.0A/dm、処理時間 1秒
銅箔に付着したNi−Zn合金のZn含有率は13%、Ni付着量は0.05mg/dm、Znの濃度勾配(濃度差)は3%であった。
次いで実施例1同様に上記銅箔の加熱し、Zn−Cu合金層を形成した。
<Example 5>
Surface treatment was performed using the same plating solution as in Example 1.
First stage current density: 0.05 A / dm 2 , treatment time 1 second Second stage current density: 1.0 A / dm 2 , treatment time 1 second Zn content of the Ni—Zn alloy attached to the copper foil is The Ni adhesion amount was 0.05 mg / dm 2 , and the Zn concentration gradient (concentration difference) was 3%.
Next, the copper foil was heated in the same manner as in Example 1 to form a Zn—Cu alloy layer.

〈実施例6〉
電解銅箔表面にZn被膜を下記の条件で形成した。
(めっき浴組成)
硫酸亜鉛:亜鉛濃度10g/L
水酸化ナトリウム:100g/L
(めっき条件)
液温;25℃
電流密度;1.0A/dm
処理時間;3秒
銅箔に付着したZn付着量は、0.20mg/dm2であった。
次に、150℃の窒素雰囲気で、5分以内、上記表面処理した銅箔を加熱した。これによりZnが銅箔中に拡散し、Zn−Cu合金層が形成された。
<Example 6>
A Zn film was formed on the surface of the electrolytic copper foil under the following conditions.
(Plating bath composition)
Zinc sulfate: Zinc concentration 10g / L
Sodium hydroxide: 100 g / L
(Plating conditions)
Liquid temperature: 25 ° C
Current density: 1.0 A / dm 2
Treatment time: 3 seconds The amount of Zn deposited on the copper foil was 0.20 mg / dm2.
Next, the surface-treated copper foil was heated in a nitrogen atmosphere at 150 ° C. within 5 minutes. Thereby, Zn diffused into the copper foil, and a Zn—Cu alloy layer was formed.

続いてニッケル皮膜を下記の条件で設け、水洗、乾燥した。
(Niめっき浴組成)
硫酸ニッケル6水和物:ニッケル金属として40g/L
ホウ酸:30g/L
次亜リン酸ナトリウム:8g/L
(めっき条件)
液温;30℃
pH;4
電流密度:3A/dm
処理時間;20秒
得られた銅箔に付着したNi量は、5.0mg/dmであった。
Subsequently, a nickel film was provided under the following conditions, washed with water and dried.
(Ni plating bath composition)
Nickel sulfate hexahydrate: 40 g / L as nickel metal
Boric acid: 30 g / L
Sodium hypophosphite: 8 g / L
(Plating conditions)
Liquid temperature: 30 ° C
pH; 4
Current density: 3 A / dm 2
Treatment time: 20 seconds The amount of Ni adhering to the obtained copper foil was 5.0 mg / dm 2 .

〈実施例7〉
実施例6と同様のめっき液を用いて表面処理及び加熱を行った。
Znめっきの電流密度:0.8A/dm、処理時間 2秒
Niめっきの電流密度:2.5A/dm、処理時間 11秒
銅箔に付着したNi付着量は2.1mg/dmでありZn付着量0.10mg/dmであった。
<Example 7>
Surface treatment and heating were performed using the same plating solution as in Example 6.
Current density of Zn plating: 0.8 A / dm 2 , treatment time 2 seconds Current density of Ni plating: 2.5 A / dm 2 , treatment time 11 seconds The amount of Ni attached to the copper foil was 2.1 mg / dm 2 The amount of deposited Zn was 0.10 mg / dm 2 .

〈実施例8〉
実施例6と同様のめっき液を用いて表面処理及び加熱を行った。
Znめっきの電流密度:0.5A/dm、処理時間 2秒
Niめっきの電流密度:2.0A/dm、処理時間 6秒
銅箔に付着したNi付着量は0.90mg/dmでありZn付着量0.07mg/dmあった。
<Example 8>
Surface treatment and heating were performed using the same plating solution as in Example 6.
Current density of Zn plating: 0.5 A / dm 2 , treatment time 2 seconds Current density of Ni plating: 2.0 A / dm 2 , treatment time 6 seconds The amount of Ni attached to the copper foil was 0.90 mg / dm 2 Yes, the amount of deposited Zn was 0.07 mg / dm 2 .

〈実施例9〉
実施例6と同様のめっき液を用いて表面処理及び加熱を行った。
Znめっきの電流密度:0.2A/dm、処理時間 3秒
Niめっきの電流密度:1.5A/dm、処理時間 4秒
銅箔に付着したNi付着量は0.45mg/dmでありZn付着量0.04mg/dmであった。
<Example 9>
Surface treatment and heating were performed using the same plating solution as in Example 6.
Current density of Zn plating: 0.2 A / dm 2 , treatment time 3 seconds Current density of Ni plating: 1.5 A / dm 2 , treatment time 4 seconds The amount of Ni attached to the copper foil was 0.45 mg / dm 2 . The amount of deposited Zn was 0.04 mg / dm 2 .

〈実施例10〉
実施例6と同様のめっき液を用いて表面処理及び加熱を行った。
Znめっきの電流密度:0.1A/dm、時間 1秒
Niめっきの電流密度:1.0A/dm、処理時間 1秒
銅箔に付着したNi付着量は0.05mg/dmでありZn付着量0.007mg/dmであった。
<Example 10>
Surface treatment and heating were performed using the same plating solution as in Example 6.
Current density of Zn plating: 0.1 A / dm 2 , time 1 second Current density of Ni plating: 1.0 A / dm 2 , treatment time 1 second The amount of Ni attached to the copper foil is 0.05 mg / dm 2 The amount of deposited Zn was 0.007 mg / dm 2 .

〈実施例11〉
圧延銅箔に対して実施例3と同様の表面処理を行った。銅箔に付着したNi−Zn合金のZn含有率は11%、Ni付着量は0.90mg/dm、Znの濃度勾配(濃度差)は5%であった。
実施例1同様に上記銅箔を加熱し、Zn−Cu合金層を形成した。
<Example 11>
The same surface treatment as in Example 3 was performed on the rolled copper foil. The Zn content of the Ni—Zn alloy attached to the copper foil was 11%, the amount of Ni attached was 0.90 mg / dm 2 , and the Zn concentration gradient (concentration difference) was 5%.
The copper foil was heated in the same manner as in Example 1 to form a Zn—Cu alloy layer.

〈実施例12〉
電解銅箔表面に濃度勾配を有するNi−Sn合金被膜を下記の条件で形成した。
(めっき浴組成)
塩化ニッケル:ニッケル濃度75g/L
塩化第一スズ:スズ濃度30g/L
ピロりん酸ナトリウム:200g/L
(めっき条件)
液温;30℃
pH;7
第一段階の電流密度:0.2A/dm、処理時間 10秒
第二段階の電流密度:2.0A/dm、処理時間 10秒
このめっき液を用いて、表面処理した電解銅箔に付着したNi−Sn層のSn含有率は15%、Ni付着量は0.90mg/dm、Snの濃度勾配(濃度差)は3%であった。
続いて、150℃の大気雰囲気で、5分以内、上記表面処理した銅箔を加熱した。これにより、Snは熱によってCuに拡散し、Sn−Cu合金層が形成された。
<Example 12>
A Ni—Sn alloy film having a concentration gradient on the surface of the electrolytic copper foil was formed under the following conditions.
(Plating bath composition)
Nickel chloride: Nickel concentration 75g / L
Stannous chloride: tin concentration 30g / L
Sodium pyrophosphate: 200 g / L
(Plating conditions)
Liquid temperature: 30 ° C
pH: 7
First stage current density: 0.2 A / dm 2 , treatment time 10 seconds Second stage current density: 2.0 A / dm 2 , treatment time 10 seconds Using this plating solution, surface treated electrolytic copper foil The Sn content of the deposited Ni—Sn layer was 15%, the Ni deposition amount was 0.90 mg / dm 2 , and the Sn concentration gradient (concentration difference) was 3%.
Subsequently, the surface-treated copper foil was heated in an air atmosphere at 150 ° C. within 5 minutes. Thereby, Sn diffused into Cu by heat, and a Sn—Cu alloy layer was formed.

〈実施例13〉
電解銅箔表面に濃度勾配を有するNi−In合金被膜を下記の条件で形成した。
(めっき浴組成)
塩化ニッケル:ニッケル濃度75g/L
塩化インジウム:インジウム濃度40g/L
塩酸:80g/L
(めっき条件)
液温;30℃
第一段階の電流密度:0.2A/dm、処理時間 10秒
第二段階の電流密度:2.0A/dm、処理時間 10秒
このめっき液を用いて、表面処理した電解銅箔に付着したNi−In層のIn含有率は4%、Ni付着量は0.90mg/dm、Inの濃度勾配(濃度差)は3%であった。
続いて、150℃の大気雰囲気で、5分以内、上記表面処理した銅箔を加熱する。これにより、Inは熱によってCuに拡散し、In−Cu合金層が形成された。
<Example 13>
A Ni—In alloy film having a concentration gradient on the surface of the electrolytic copper foil was formed under the following conditions.
(Plating bath composition)
Nickel chloride: Nickel concentration 75g / L
Indium chloride: Indium concentration 40 g / L
Hydrochloric acid: 80 g / L
(Plating conditions)
Liquid temperature: 30 ° C
First stage current density: 0.2 A / dm 2 , treatment time 10 seconds Second stage current density: 2.0 A / dm 2 , treatment time 10 seconds Using this plating solution, surface treated electrolytic copper foil The deposited Ni—In layer had an In content of 4%, an Ni deposition amount of 0.90 mg / dm 2 , and an In concentration gradient (concentration difference) of 3%.
Subsequently, the surface-treated copper foil is heated in an air atmosphere at 150 ° C. within 5 minutes. Thereby, In diffused into Cu by heat, and an In—Cu alloy layer was formed.

〈比較例1〉
未処理電解銅箔に表面処理を施さなかった。
<Comparative example 1>
The untreated electrolytic copper foil was not subjected to surface treatment.

〈比較例2〉
実施例1と同様のめっき液を用いて表面処理を行った。
第一段階の電流密度:0.3A/dm、処理時間 30秒
第二段階の電流密度:3.0A/dm、処理時間 30秒
銅箔に付着したNi−Zn合金のZn含有率は5%、Ni付着量は6.0mg/dmであった。
<Comparative example 2>
Surface treatment was performed using the same plating solution as in Example 1.
First stage current density: 0.3 A / dm 2 , treatment time 30 seconds Second stage current density: 3.0 A / dm 2 , treatment time 30 seconds Zn content of the Ni—Zn alloy attached to the copper foil is 5% and the Ni adhesion amount was 6.0 mg / dm 2 .

〈比較例3〉
未処理電解銅箔に下記条件のクロメート処理を施した。
CrO :1g/L
温度 :20℃
浸漬時間 :10秒
<Comparative Example 3>
The untreated electrolytic copper foil was subjected to chromate treatment under the following conditions.
CrO 3 : 1g / L
Temperature: 20 ° C
Immersion time: 10 seconds

〈比較例4〉
未処理電解銅箔に下記条件の防錆処理を施した。
ベンゾトリアゾール(BTA) :5g/L
温度 :20℃
浸漬時間 :10秒
<Comparative example 4>
The untreated electrolytic copper foil was subjected to rust prevention treatment under the following conditions.
Benzotriazole (BTA): 5 g / L
Temperature: 20 ° C
Immersion time: 10 seconds

〈比較例5〉
実施例3と同様の処理箔を使用し、活物質のバインダとして有機系バインダを使用した。
<Comparative Example 5>
The same treated foil as in Example 3 was used, and an organic binder was used as the active material binder.

測定手段、測定条件
(1)金属付着量(含有量)の測定
蛍光X線((株)リガク製ZSXPrimus、分析径:35φ)にて分析した。その結果を表1に記載する。
Measurement means, measurement conditions (1) Measurement of metal adhesion amount (content) Analysis was performed with fluorescent X-rays (ZSX Primus, manufactured by Rigaku Corporation, analysis diameter: 35φ). The results are listed in Table 1.

(2)活物質密着性の測定
黒鉛系活物質及び水分散系スチレンブタジエンゴム系バインダ、増粘剤としてカルボキシルメチルセルロース、溶媒として蒸留水を混錬しスラリー化させ、銅箔表面塗布し、110℃で3時間乾燥を行い、ロールプレスを行い、さらに真空乾燥した。この材料の炭素物質塗布面に560g/cmの接着強度を持つ樹脂テープを貼り付け、銅箔を剥がす時の接着強度を90度剥離試験(JIS K 6854−1)に基づきピール強度の測定を行った。結果を表1に併記した。
(2) Measurement of active material adhesion Graphite-based active material and water-dispersed styrene-butadiene rubber-based binder, carboxymethyl cellulose as a thickener, and distilled water as a solvent are kneaded and slurried, and coated on a copper foil surface at 110 ° C. For 3 hours, followed by roll pressing and further vacuum drying. A resin tape having an adhesive strength of 560 g / cm is applied to the carbon material-coated surface of this material, and the peel strength is measured based on a 90-degree peel test (JIS K 6854-1) when the copper foil is peeled off. It was. The results are also shown in Table 1.

(3)導電率の測定
JIS H 0505に基づき導電率の測定を行った。その結果を表1に併記する。
(3) Measurement of conductivity Conductivity was measured based on JIS H 0505. The results are also shown in Table 1.

(4)引張強度の測定
IPC規格TM−650に基づき、まず、表面処理前の幅10mmに切った銅箔の引張強度を測定する。次に同様の銅箔を用いて、実施例1〜13、比較例1〜5の銅箔をそれぞれ10mm幅に切って、同様に引張強度を測定した。その後、表面処理前に測定した引張強度の差を引張強度の上昇率として、表1にまとめた。
(4) Measurement of tensile strength Based on the IPC standard TM-650, first, the tensile strength of a copper foil cut to a width of 10 mm before the surface treatment is measured. Next, using the same copper foil, the copper foils of Examples 1 to 13 and Comparative Examples 1 to 5 were each cut to a width of 10 mm, and the tensile strength was measured in the same manner. Thereafter, the difference in tensile strength measured before the surface treatment was summarized in Table 1 as the rate of increase in tensile strength.

(5)充放電サイクル(電池サイクル)特性測定
充放電サイクル特性は、電解液として1mol/LのLiN(CF3SO2)2/EC:DEC(1:1)、対極に金属リチウムを用い、セパレーターを介して実施例1〜13及び比較例1〜5の負極を配置し、ドライルーム内でCR2032型コイン電池を作製し、25℃の高温槽中で、0〜1Vvs.Li/Li+の電圧範囲で測定した。
1サイクル目は、0.1mA/cmで充放電を行い、2サイクル目以降は0.2mA/cmで充放電を行った。このサイクルを200サイクル繰り返した後、初回充電時の電池容量に対して、95%以上で◎、92%以上で○、89%以上で△、それ以外をXとし、その結果を表1に併記した。
(5) Charging / discharging cycle (battery cycle) characteristic measurement The charging / discharging cycle characteristic is 1 mol / L LiN (CF3SO2) 2 / EC: DEC (1: 1) as an electrolyte, and metallic lithium is used as a counter electrode, and a separator is used. The negative electrodes of Examples 1 to 13 and Comparative Examples 1 to 5 were arranged, CR2032-type coin batteries were produced in a dry room, and measured in a voltage range of 0 to 1 V vs. Li / Li + in a high-temperature bath at 25 ° C. did.
The first cycle was charged / discharged at 0.1 mA / cm 2 and the second and subsequent cycles were charged / discharged at 0.2 mA / cm 2 . After repeating this cycle for 200 cycles, the battery capacity at the time of initial charge is 95% or more, ◎, 92% or more ○, 89% or more △, otherwise X, and the results are also shown in Table 1. did.

Figure 2013077462
Figure 2013077462

実施例1〜13の導電率は全て95%以上であり、電池サイクルも92%以上を維持し、満足する結果が得られている。特に実施例3、8は、Ni含有量が少ないため、Zn−Cu合金化された銅箔の導電率(IACS)は98%以上で、電気抵抗による導体の発熱が小さく、結果として電池サイクル特性が良いと判断される。
各実施例において、ニッケル含有量が少なくなるに従って活物質との密着性が減少し、逆に導電率は上昇している。なた、引張り強度は減少する傾向を示している。このようにニッケル含有量は、導電率、活物質との密着性、引張り強度に影響するが、各実施例の範囲では目的とする条件を全て満足するものであった。
The electric conductivity of Examples 1 to 13 is all 95% or more, the battery cycle is also maintained to 92% or more, and satisfactory results are obtained. In particular, in Examples 3 and 8, since the Ni content is small, the conductivity (IACS) of the Zn-Cu alloyed copper foil is 98% or more, and the heat generation of the conductor due to electric resistance is small, resulting in battery cycle characteristics. Is judged good.
In each example, as the nickel content decreases, the adhesion with the active material decreases, and conversely, the conductivity increases. However, the tensile strength tends to decrease. As described above, the nickel content affects the electrical conductivity, the adhesion to the active material, and the tensile strength, but all the target conditions are satisfied within the range of each example.

一方、比較例1では表面処理を行っていないため導電率は満足するものの、電池サイクルは満足できないものとなっている。
比較例2はニッケル含有量が多いため導電率が落ち、その結果充放電サイクル試験で発熱し、電池サイクルが満足できないものとなっている。
比較例3は表面にクロムが存在するために活物質との密着性が悪く、引張り強度も上昇せず、目的とする箔として満足できないものであった。
On the other hand, in Comparative Example 1, since the surface treatment is not performed, the conductivity is satisfactory, but the battery cycle is not satisfactory.
Since the comparative example 2 has much nickel content, electrical conductivity falls, As a result, it heat | fever-generates in a charging / discharging cycle test, and becomes a thing which cannot satisfy a battery cycle.
Comparative Example 3 was unsatisfactory as the intended foil because of the presence of chromium on the surface and poor adhesion to the active material, and the tensile strength did not increase.

比較例4は表面に有機防錆層が設けられている。本発明の銅箔表面はNi含有層であり、Ni層と水系バインダとの水濡れ性が良い観点から、有機バインダを使用した時よりも水系のバインダを使用する場合の方が電池特性が勝ることを示している。
比較例5は活物質のバインダに有機系バインダを用いたため、充放電サイクル試験でニッケル表面との間で剥離現象が生じ、電池サイクルで満足できない結果となった。
In Comparative Example 4, an organic rust preventive layer is provided on the surface. The copper foil surface of the present invention is a Ni-containing layer, and from the viewpoint of good water wettability between the Ni layer and the aqueous binder, the battery characteristics are superior when using an aqueous binder than when using an organic binder. It is shown that.
In Comparative Example 5, since an organic binder was used as the binder of the active material, a peeling phenomenon occurred between the nickel surface in the charge / discharge cycle test, and the battery cycle was not satisfactory.

上記実施例では特にZn濃度に勾配を設けている。Zn濃度に勾配を設けることで熱処理でのZn−Cu合金の合金化が容易にできるようになる。例えば150℃、5分以内の熱処理で合金化するのに対し、Zn濃度の勾配を設けずに、Cuの表面のZn濃度を高くすると150℃、5分の熱処理では合金化でない。5分以上の熱処理では合金層できるが、均一な層が得られない可能性があり、そのため結果として電気抵抗による導体の発熱が大きく、電池サイクル特性が実施例と比較して悪くなる。   In the above embodiment, a gradient is particularly provided in the Zn concentration. By providing a gradient in the Zn concentration, alloying of the Zn—Cu alloy by heat treatment can be easily performed. For example, alloying is performed by heat treatment at 150 ° C. within 5 minutes, whereas alloying is not performed by heat treatment at 150 ° C. for 5 minutes when the Zn concentration on the surface of Cu is increased without providing a gradient of Zn concentration. An alloy layer can be formed by a heat treatment of 5 minutes or longer, but a uniform layer may not be obtained. As a result, the heat generation of the conductor due to electric resistance is large, and the battery cycle characteristics are deteriorated as compared with the examples.

本発明は、上述したように、Ni層またはNi−低融点金属合金層で0銅箔表面を被覆するため、6価クロムを含有する層が存在せず、環境に優しい電極材料であり、しかも優れた充放電サイクル寿命特性と充電初期の高い電池容量の保持を可能とした集電体(銅箔)を提供でき、該集電体を用いたLi電池を提供することができる。   As described above, the present invention covers the surface of the copper foil with the Ni layer or the Ni-low melting point metal alloy layer, so that there is no layer containing hexavalent chromium, and it is an environmentally friendly electrode material. A current collector (copper foil) capable of maintaining excellent charge / discharge cycle life characteristics and a high battery capacity at the beginning of charge can be provided, and a Li battery using the current collector can be provided.

1. 未処理銅箔
2. Ni−Zn合金層
3. Zn層
4. Ni/NI−Zn層
11. Cu−Zn合金層
12. Ni/NI−Zn層
21. 未処理銅箔
22. 案内ロール
23. 電極ロール
24. めっき層
25. めっき液
26. アノード
27. アノード
28. 案内ロール
1. 1. Untreated copper foil Ni-Zn alloy layer3. Zn layer4. Ni / NI-Zn layer 11. Cu—Zn alloy layer 12. Ni / NI-Zn layer 21. Untreated copper foil 22. Guide roll 23. Electrode roll 24. Plating layer 25. Plating solution 26. Anode 27. Anode 28. Guide roll

Claims (10)

未処理銅箔の少なくとも一方の表面に低融点金属と銅との合金層が設けられ、その上にニッケル層またはニッケルと低融点金属の合金層が設けられているLi電池集電体用銅箔。   Copper foil for Li battery current collector in which an alloy layer of low melting point metal and copper is provided on at least one surface of the untreated copper foil, and a nickel layer or an alloy layer of nickel and low melting point metal is provided thereon . 前記低融点金属がZn、BiまたはInである請求項1に記載のLi電池集電体用銅箔。   The copper foil for a Li battery current collector according to claim 1, wherein the low melting point metal is Zn, Bi, or In. 前記銅と低融点金属との合金層がZn−Cu合金層であり、該Zn−Cu合金中のZn含有率が1wt%以下である請求項1に記載のLi電池集電体用銅箔。   The copper foil for a Li battery current collector according to claim 1, wherein the alloy layer of the copper and the low melting point metal is a Zn-Cu alloy layer, and the Zn content in the Zn-Cu alloy is 1 wt% or less. 未処理銅箔の少なくとも一方の表面にNiと低融点金属との合金層を電解めっきで施し、Niと低融点金属との合金層を施した銅箔を300℃以下で熱処理し、銅箔表面にCuと低融点金属との合金層を形成するLi電池集電体用銅箔の製造方法。   An alloy layer of Ni and a low melting point metal is applied to at least one surface of the untreated copper foil by electrolytic plating, and the copper foil on which the alloy layer of Ni and a low melting point metal is applied is heat-treated at 300 ° C. or less, and the copper foil surface The manufacturing method of the copper foil for Li battery electrical power collectors which forms the alloy layer of Cu and a low melting-point metal in the inside. 未処理銅箔の少なくとも一方の表面に低融点金属層をめっきで施し、該低融点金属層上にNi層をめっきで施し、次いで低融点金属層、Ni層を施した銅箔を300℃以下で熱処理し、銅箔表面にCuと低融点金属との合金層を形成するLi電池集電体用銅箔の製造方法。   A low-melting point metal layer is plated on at least one surface of the untreated copper foil, a Ni layer is plated on the low-melting point metal layer, and then the low-melting point metal layer and the copper foil with the Ni layer are 300 ° C. or less The manufacturing method of the copper foil for Li battery collectors which heat-processes by and forms the alloy layer of Cu and a low melting metal on the copper foil surface. 未処理銅箔の少なくとも一方の表面に低融点金属層をめっきで施し、低融点金属層を施した銅箔を300℃以下で熱処理して銅箔表面にCuと低融点金属との合金層を形成し、次いでその上にNi層をめっきで施すLi電池集電体用銅箔の製造方法。   A low melting point metal layer is plated on at least one surface of the untreated copper foil, and the copper foil with the low melting point metal layer is heat-treated at 300 ° C. or lower to form an alloy layer of Cu and a low melting point metal on the copper foil surface. A method for producing a copper foil for a Li battery current collector, which is formed and then a Ni layer is plated thereon. 前記低融点金属がZn、BiまたはInである請求項4〜6のいずれかに記載のLi電池集電体用銅箔の製造方法。   The method for producing a copper foil for a Li battery current collector according to any one of claims 4 to 6, wherein the low melting point metal is Zn, Bi or In. 前記銅と低融点金属との合金層がZn−Cu合金層であり、該Zn−Cu合金中のZn含有率が1wt%以下である請求項4〜6のいずれかに記載のLi電池集電体用銅箔の製造方法。   The Li battery current collector according to claim 4, wherein the alloy layer of copper and a low-melting-point metal is a Zn—Cu alloy layer, and the Zn content in the Zn—Cu alloy is 1 wt% or less. A method for producing body copper foil. 前記請求項1に記載の銅箔、または請求項4〜8のいずれかに記載の製造方法で製造した銅箔を集電体とし、該集電体に活物質を堆積したLi電池用負極電極。   The negative electrode for Li battery which made the collector the copper foil of the said Claim 1, or the copper foil manufactured by the manufacturing method in any one of Claims 4-8, and deposited the active material on this collector . 前記請求項9の負極電極を負極とするLi電池。   A Li battery using the negative electrode of claim 9 as a negative electrode.
JP2011216985A 2011-09-30 2011-09-30 COPPER FOIL FOR Li BATTERY COLLECTOR, ELECTRODE FOR Li BATTERY USING THE SAME, AND Li BATTERY Withdrawn JP2013077462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011216985A JP2013077462A (en) 2011-09-30 2011-09-30 COPPER FOIL FOR Li BATTERY COLLECTOR, ELECTRODE FOR Li BATTERY USING THE SAME, AND Li BATTERY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011216985A JP2013077462A (en) 2011-09-30 2011-09-30 COPPER FOIL FOR Li BATTERY COLLECTOR, ELECTRODE FOR Li BATTERY USING THE SAME, AND Li BATTERY

Publications (1)

Publication Number Publication Date
JP2013077462A true JP2013077462A (en) 2013-04-25

Family

ID=48480785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011216985A Withdrawn JP2013077462A (en) 2011-09-30 2011-09-30 COPPER FOIL FOR Li BATTERY COLLECTOR, ELECTRODE FOR Li BATTERY USING THE SAME, AND Li BATTERY

Country Status (1)

Country Link
JP (1) JP2013077462A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017512364A (en) * 2014-02-18 2017-05-18 エプコス アクチエンゲゼルシャフトEpcos Ag Method of manufacturing electrode for lightning arrester, electrode, and lightning arrester
CN114744205A (en) * 2022-03-29 2022-07-12 电子科技大学 Composite membrane material for current collector, preparation method and lithium ion battery
WO2022158187A1 (en) * 2021-01-20 2022-07-28 Tdk株式会社 Layered body, negative electrode current collector for lithium ion secondary battery, and negative electrode for lithium ion secondary battery
WO2022158188A1 (en) * 2021-01-20 2022-07-28 Tdk株式会社 Layered body, negative electrode current collector for lithium ion secondary battery, and negative electrode for lithium ion secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017512364A (en) * 2014-02-18 2017-05-18 エプコス アクチエンゲゼルシャフトEpcos Ag Method of manufacturing electrode for lightning arrester, electrode, and lightning arrester
US10236094B2 (en) 2014-02-18 2019-03-19 Epcos Ag Method of manufacturing an electrode for a surge arrester, electrode and surge arrester
WO2022158187A1 (en) * 2021-01-20 2022-07-28 Tdk株式会社 Layered body, negative electrode current collector for lithium ion secondary battery, and negative electrode for lithium ion secondary battery
WO2022158188A1 (en) * 2021-01-20 2022-07-28 Tdk株式会社 Layered body, negative electrode current collector for lithium ion secondary battery, and negative electrode for lithium ion secondary battery
CN114744205A (en) * 2022-03-29 2022-07-12 电子科技大学 Composite membrane material for current collector, preparation method and lithium ion battery

Similar Documents

Publication Publication Date Title
JP6155327B2 (en) All solid state secondary battery
JP5090028B2 (en) Copper foil for negative electrode current collector of lithium secondary battery and method for producing the same
KR101606251B1 (en) Lithium ion secondary cell, current collector constituting negative electrode of secondary cell, and electrolytic copper foil constituting negative-electrode current collector
WO2012091060A1 (en) Lithium-ion secondary battery, electrode for secondary battery, and electrolytic copper foil for secondary battery electrode
KR101346956B1 (en) Negative electrodes for secondary battery, copper foil for electrode, secondary battery, and processes for producing negative electrodes for secondary battery
TWI596827B (en) Method for producing negative electrode material of lithium ion secondary cell and negative electrode material for lithium ion secondary cell
JP5598884B2 (en) Lithium ion secondary battery, current collector constituting the negative electrode of the secondary battery, and electrolytic copper foil constituting the negative electrode current collector
CN108270016B (en) Electrolytic copper foil, electrode, secondary battery and method for manufacturing same
JP5437155B2 (en) Secondary battery negative electrode, electrode copper foil, secondary battery, and method for producing secondary battery negative electrode
JP2008047308A (en) Nonaqueous electrolyte secondary battery
KR20140051375A (en) Metal foil with coating layer and method for producing same, secondary cell electrode and method for producing same, and lithium ion secondary cell
JP5356309B2 (en) Secondary battery negative electrode, electrode copper foil, secondary battery, and method for producing secondary battery negative electrode
KR20170085425A (en) Copper Foil, Method for Manufacturing The Same, Electrode Comprising The Same, and Secondary Battery Comprising The Same
JP2013077462A (en) COPPER FOIL FOR Li BATTERY COLLECTOR, ELECTRODE FOR Li BATTERY USING THE SAME, AND Li BATTERY
JP4764232B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US20100209786A1 (en) Separator for fuel cell and manufacturing method therefor
JP3987851B2 (en) Secondary battery negative electrode and secondary battery including the same
JP2013187114A (en) Copper foil for lithium secondary battery collector, and display method thereof, negative electrode for lithium secondary battery using copper foil, and lithium secondary battery
JP6611751B2 (en) Rolled copper foil for lithium ion battery current collector and lithium ion battery
JP2009272086A (en) Copper foil and method of manufacturing the same, and current collecting copper foil for lithium ion secondary battery and method of manufacturing the same
JP7162026B2 (en) Surface-treated plate for alkaline secondary battery and manufacturing method thereof
JP2006348362A (en) Plated steel sheet for battery receptacle, battery receptacle using the plated steel sheet, and battery using the battery receptacle
JP2011003383A (en) Manufacturing method of negative electrode for lithium secondary battery, and lithium secondary battery
JP5356308B2 (en) Secondary battery negative electrode, electrode copper foil, secondary battery, and method for producing secondary battery negative electrode
JP2011216478A (en) Holed roughing-treated copper foil for secondary battery collector, method of manufacturing the same, and lithium ion secondary battery negative electrode

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202