JP2006348362A - Plated steel sheet for battery receptacle, battery receptacle using the plated steel sheet, and battery using the battery receptacle - Google Patents

Plated steel sheet for battery receptacle, battery receptacle using the plated steel sheet, and battery using the battery receptacle Download PDF

Info

Publication number
JP2006348362A
JP2006348362A JP2005178124A JP2005178124A JP2006348362A JP 2006348362 A JP2006348362 A JP 2006348362A JP 2005178124 A JP2005178124 A JP 2005178124A JP 2005178124 A JP2005178124 A JP 2005178124A JP 2006348362 A JP2006348362 A JP 2006348362A
Authority
JP
Japan
Prior art keywords
nickel
plating
battery
steel sheet
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005178124A
Other languages
Japanese (ja)
Inventor
Hitoshi Omura
等 大村
Kenzo Matsui
建造 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP2005178124A priority Critical patent/JP2006348362A/en
Publication of JP2006348362A publication Critical patent/JP2006348362A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plated steel sheet for a battery receptacle, which reduces the leakage of a liquid due to an increasing amount of gas generated along with improvement in battery characteristics, while improving the battery characteristics; a battery receptacle with the use of the plated steel sheet for the battery receptacle; and the battery with the use of the battery receptacle. <P>SOLUTION: A method for manufacturing the plated steel sheet for the battery receptacle comprises the steps of: forming a layer of a metal including titanium on a steel sheet, by plating the surface of the steel sheet to be an inner surface of the battery receptacle with a nickel-titanium alloy; and forming a plated layer of nickel or a nickel alloy on the above surface, or further heat-treating the plated steel sheet to make titanium exist in a boundary between a steel matrix and the plated layer formed thereon. The battery receptacle is made by forming the steel sheet, and is applied to a battery. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電池容器用めっき鋼板、その電池容器用めっき鋼板を用いた電池容器およびその電池容器を用いた電池に関する。   The present invention relates to a plated steel sheet for battery containers, a battery container using the plated steel sheet for battery containers, and a battery using the battery container.

近年、デジタルカメラ、CDプレーヤー、MDプレーヤー、液晶テレビ、ゲーム機器など、携帯用AV機器や携帯電話の発展とともに、重負荷の作動電源として一次電池であるアルカリ電池、二次電池であるニッケル水素電池、リチウムイオン電池などが多用されている。これらの電池においては、高出力化および長寿命化など、高性能化が求められており、正極および負極活物質を充填する電池容器も電池の重要な構成要素としての性能の向上が求められている。従来、これらの電池容器材料としては、強アルカリ性の電解液に対する耐食性と、電池容器内表面と正極合剤との界面における低接触抵抗の保持を可能とするため、予め冷延鋼板にニッケルめっきを施したニッケルめっき鋼板を電池容器に成形加工したもの、もしくは冷延鋼板を電池容器に成形加工した後、電池容器内外表面をバレルめっき法によりニッケルめっきしたものが用いられている。またニッケルめっき鋼板としては、ニッケルめっき層と鋼素地との密着性を向上し、成形加工時の鉄露出を抑制するため、ニッケルめっき後に、熱処理を施して鋼素地とニッケルめっき層の間に鉄−ニッケル合金層(拡散層)を設けた熱拡散処理の方法が採られているが、熱処理による拡散層を形成させる際に最表層にニッケル層が残存する場合は、ニッケル層の表面に強固な酸化皮膜が存在するようになり、接触抵抗を阻害するため、ニッケル層を全て鉄−ニッケル合金層(拡散層)に変換させる方法が提案されている(例えば特許文献1参照)。また、電池容器内面となる面に有機光沢剤を添加した硬質の光沢ニッケルめっきを施すことにより、プレス成形時に楔形の割れを生じさせて、正極合剤や密着性を高めて接触面積を大きくして電池の内部抵抗を減少させる方法が提案している(例えば特許文献2参照)。さらに、本発明者らは、ニッケル層または鉄−ニッケル合金層(拡散層)の上に、ニッケル−錫合金層を生成させた鋼板を用いることにより、電池容器に成形加工する際に細かいひび割れを生じさせて電池容器内面に凹凸面を構成し、正極合剤や導電性被膜との接触面積を大きくして電池の内部抵抗を減少させる方法を提案している(例えば特許文献3参照)。   In recent years, with the development of portable AV equipment and mobile phones such as digital cameras, CD players, MD players, liquid crystal televisions, game machines, etc., alkaline batteries as primary batteries and nickel metal hydride batteries as secondary batteries as heavy load operating power sources Lithium ion batteries are often used. In these batteries, there is a demand for higher performance such as higher output and longer life, and battery containers filled with positive and negative electrode active materials are also required to have improved performance as important components of the battery. Yes. Conventionally, as these battery container materials, in order to make it possible to maintain corrosion resistance against a strong alkaline electrolyte and low contact resistance at the interface between the inner surface of the battery container and the positive electrode mixture, nickel plating is applied to the cold-rolled steel sheet in advance. A formed nickel-plated steel sheet is formed into a battery container, or a cold-rolled steel sheet is formed into a battery container, and then the inner and outer surfaces of the battery container are nickel-plated by barrel plating. In addition, for nickel-plated steel sheets, in order to improve the adhesion between the nickel-plated layer and the steel substrate, and to suppress the exposure of iron during the forming process, heat treatment is performed after the nickel plating, and iron is interposed between the steel substrate and the nickel-plated layer. -Although the thermal diffusion treatment method provided with a nickel alloy layer (diffusion layer) is adopted, if the nickel layer remains on the outermost layer when forming the diffusion layer by heat treatment, the surface of the nickel layer is solid In order to inhibit the contact resistance due to the presence of an oxide film, a method of converting the entire nickel layer into an iron-nickel alloy layer (diffusion layer) has been proposed (for example, see Patent Document 1). In addition, hard gloss nickel plating with an organic brightener added to the inner surface of the battery container causes wedge-shaped cracks during press molding, increasing the positive electrode mixture and adhesion, and increasing the contact area. A method for reducing the internal resistance of the battery has been proposed (see, for example, Patent Document 2). Furthermore, the present inventors use a steel plate in which a nickel-tin alloy layer is formed on a nickel layer or an iron-nickel alloy layer (diffusion layer), so that fine cracks are not formed when the battery container is formed. A method has been proposed in which an uneven surface is formed on the inner surface of a battery container to reduce the internal resistance of the battery by increasing the contact area with the positive electrode mixture or the conductive coating (see, for example, Patent Document 3).

絞り加工や絞りしごき加工を施して電池容器に成形加工する際に電池容器内面側のめっき層に割れが生じた場合、鋼素地が局所的に露出する。鋼素地が露出すると、露出部は直接強アルカリ性の電解液に接するようになり、鋼板素地近傍においては鉄よりも貴な金属であるニッケルめっき層のニッケル、活物質の二酸化マンガン、酸素が存在するために鉄の溶解が生じる。溶出した鉄イオンが亜鉛からなる負極へ移行すると、その亜鉛との反応により水素ガスが発生するようになる。このようにして生じたガスは電池内圧を上昇させて漏液発生の原因となる。また、ニッケルめっき層の厚さが薄いほど電池性能が良好であることが知られているが、その反面鋼素地の露出度合が大きくなり、ガス発生による漏液性が増大するという問題が生じる。また、特許文献2や特許文献3に記載されているように、めっき皮膜を硬質化させた場合、放電特性が向上する反面、電池容器に成形加工する際に鋼素地に達する割れを誘起させて、よりガス発生が増大する恐れが大きくなる。   When cracking occurs in the plating layer on the inner side of the battery container when the battery container is formed by drawing or ironing, the steel substrate is locally exposed. When the steel substrate is exposed, the exposed part comes into direct contact with a strong alkaline electrolyte, and in the vicinity of the steel plate substrate, nickel of the nickel plating layer, which is a noble metal than iron, manganese dioxide of active material, and oxygen are present. Therefore, iron dissolution occurs. When the eluted iron ions move to the negative electrode made of zinc, hydrogen gas is generated by reaction with the zinc. The gas generated in this way increases the battery internal pressure and causes leakage. Further, it is known that the battery performance is better as the thickness of the nickel plating layer is thinner. However, the degree of exposure of the steel base is increased, and there is a problem that the liquid leakage due to gas generation increases. In addition, as described in Patent Document 2 and Patent Document 3, when the plating film is hardened, the discharge characteristics are improved, but when the battery container is formed, cracks reaching the steel base are induced. The risk of increasing gas generation is increased.

本出願に関する先行技術文献情報として次のものがある。
特開平08−017406号公報 特許公報 第2810257号公報 特許公報 第2877957号公報
Prior art document information relating to the present application includes the following.
Japanese Patent Application Laid-Open No. 08-017406 Japanese Patent Publication No. 2810257 Japanese Patent No. 2877957

本発明においては、ニッケルめっき鋼板のめっき厚さを低減して電池特性を向上する方法や、硬質めっき層やめっき後に熱処理してめっき皮膜を硬質化させて電池容器に成形加工する際に微小クラックを生じせしめて正極活物質との密着性を高めて電池性能の向上を図る方法などの従来の方法において、電池性能の向上を保持しつつ、これらの方法に付随するガス発生による漏液性を低減させることを目的とする。   In the present invention, a method of improving the battery characteristics by reducing the plating thickness of the nickel-plated steel sheet, or a microcrack when forming a hard plating layer and heat-treating the plating film to form a battery container by heat treatment after plating. In conventional methods, such as improving the battery performance by increasing the adhesion with the positive electrode active material, while maintaining the improvement in battery performance, the liquid leakage due to gas generation associated with these methods is maintained. The purpose is to reduce.

本発明の目的を達成するため、本発明の電池容器用めっき鋼板は、鋼板の電池容器内面となる側の鋼板上にチタンを含む金属層が形成されてなることを特徴とする電池容器用めっき鋼板(請求項1)であり、
上記(請求項1)の電池容器用めっき鋼板において、前記チタンを含む金属層上に、ニッケル層が形成されてなること(請求項2)を特徴とし、または
前記チタンを含む金属層上に、ニッケル合金層が形成されてなること(請求項3)を特徴とし、また
上記(請求項2または3)の電池容器用めっき鋼板において、前記ニッケル層中または前記ニッケル合金層中に炭素質が分散されてなること(請求項4)を特徴とし、さらに
上記(請求項3または4)の電池容器用めっき鋼板において、前記ニッケル合金が、ニッケル−錫合金、ニッケル−リン合金、ニッケル−コバルト合金、ニッケル−コバルト−リン合金、ニッケル−ボロン合金、ニッケル−コバルト−ボロン合金のいずれかであること(請求項5)を特徴とする。
In order to achieve the object of the present invention, the plated steel sheet for battery containers according to the present invention is characterized in that a metal layer containing titanium is formed on a steel sheet on the side that is the battery container inner surface of the steel sheet. A steel plate (claim 1),
In the plated steel sheet for battery containers of the above (Claim 1), a nickel layer is formed on the metal layer containing titanium (Claim 2), or on the metal layer containing titanium, A nickel alloy layer is formed (Claim 3), and in the plated steel sheet for battery containers according to (Claim 2 or 3), carbonaceous matter is dispersed in the nickel layer or the nickel alloy layer. (Claim 4), and in the above (Claim 3 or 4), the nickel alloy is a nickel-tin alloy, a nickel-phosphorus alloy, a nickel-cobalt alloy, It is any one of a nickel-cobalt-phosphorus alloy, a nickel-boron alloy, and a nickel-cobalt-boron alloy (Claim 5).

また、本発明の電池容器は上記(請求項1〜5)のいずれかの電池容器用めっき鋼板を有底の筒型形状に成形加工してなる電池容器(請求項6)であり、
本発明の電池は上記の(請求項6)の電池容器を用いてなる電池(請求項7)である。
Moreover, the battery container of the present invention is a battery container (Claim 6) formed by processing the plated steel sheet for a battery container according to any one of the above (Claims 1 to 5) into a bottomed cylindrical shape,
The battery of the present invention is a battery (Claim 7) using the battery container of (Claim 6) described above.

本発明の電池容器用めっき鋼板は、鋼板の少なくとも電池容器内面となる側にニッケル−チタン合金めっきを施すなどして鋼板上にチタンを含む金属層を形成し、その上層にニッケルめっきまたはニッケル合金めっきを施すか、またはめっきを施した後に熱処理を施すことにより、鋼素地とその上のめっき層との境界部にチタンを存在させたものである。鋼素地上にチタンを存在させると、チタンは鉄よりも卑な電位を有しているため、チタンの犠牲溶解により鉄の溶解を抑止することができる。そのため、鋼素地上のニッケルめっきなどのめっき皮膜が薄く、またはめっき層のピンホール、もしくは光沢ニッケルめっきやニッケル−錫合金層などの硬質層を成形加工した際に微小クラックが発生して鋼素地が露出しても、鉄の溶解による負極からのガス発生が低下して、耐漏液性が向上し、従来では電池の放電性能は優れていても耐漏液性が劣る、硬質なニッケル−錫合金などのニッケル合金めっきを形成する従来方法における問題を解決することができる。   The plated steel sheet for battery containers of the present invention forms a metal layer containing titanium on the steel sheet by performing nickel-titanium alloy plating on at least the inner surface of the steel sheet, and nickel plating or nickel alloy on the upper layer. Titanium is made to exist in the boundary part of a steel base and the plating layer on it by plating, or by heat-processing after plating. When titanium is present on the steel substrate, since titanium has a lower potential than iron, dissolution of iron can be suppressed by sacrificial dissolution of titanium. Therefore, when the plating film such as nickel plating on the steel substrate is thin, or when pinholes in the plating layer or hard layers such as bright nickel plating or nickel-tin alloy layer are formed and processed, micro cracks occur and the steel substrate Hard nickel-tin alloy, which has improved gas leakage from the negative electrode due to dissolution of iron, improves leakage resistance, and has poor battery leakage performance even though it has excellent battery discharge performance. The problem in the conventional method of forming nickel alloy plating such as can be solved.

以下、本発明の内容を説明する。本発明の電池容器用めっき鋼板の基板となる鋼板としては、絞り加工用の低炭素アルミキルド鋼(炭素量0.01〜0.15重量%)、またはニオブやチタンを添加した深絞り加工用の非時効性の極低炭素アルミキルド鋼(炭素量0.01重量%未満)を用いる。これらの鋼の熱間圧延板を酸洗して表面のスケールを除去した後、常法により冷間圧延し、次いで電解洗浄、焼鈍、調質圧延したものを基板として用いる。あるいは、冷間圧延し、次いで電解洗浄した後の未焼鈍材を基板として用いることもできる。   The contents of the present invention will be described below. As a steel plate used as the substrate of the plated steel plate for battery containers of the present invention, low carbon aluminum killed steel for drawing (carbon content 0.01 to 0.15% by weight), or deep drawing for adding niobium or titanium. Non-aging ultra-low carbon aluminum killed steel (carbon content less than 0.01% by weight) is used. These steel hot-rolled plates are pickled to remove surface scales, then cold-rolled by a conventional method, and then subjected to electrolytic cleaning, annealing, and temper rolling as a substrate. Alternatively, an unannealed material after cold rolling and then electrolytically cleaning can be used as a substrate.

まず、基板である鋼板の電池容器の内面となる片面にニッケル−チタン合金めっきを施す。次いで鋼板の電池容器の外面となる片面および内面に施したニッケル−チタン合金めっきの上層に、ニッケルめっき、ニッケル合金めっき、炭素質分散ニッケルめっき、炭素質分散ニッケル合金めっきのいずれかを施すか、またはニッケルめっきを施し、引き続いてその上に、ニッケル合金めっき、炭素質分散ニッケルめっき、炭素質分散ニッケル合金めっき、錫めっきのいずれかを施す。錫めっきを施した後にはめっき後に熱処理を施すが、錫めっき以外の各めっきについては、めっき後に熱処理を施してもよいし、めっきままでもよい。   First, nickel-titanium alloy plating is performed on one surface which is the inner surface of a battery container of a steel plate as a substrate. Next, either nickel plating, nickel alloy plating, carbonaceous dispersion nickel plating, carbonaceous dispersion nickel alloy plating is applied to the upper layer of the nickel-titanium alloy plating applied to one side and the inner surface of the battery container of the steel plate, Alternatively, nickel plating is performed, and subsequently, nickel alloy plating, carbonaceous dispersion nickel plating, carbonaceous dispersion nickel alloy plating, or tin plating is applied thereon. After the tin plating is performed, a heat treatment is performed after the plating. However, for each plating other than the tin plating, the heat treatment may be performed after the plating, or the plating may be left as it is.

ニッケル−チタン合金めっきに用いるめっき浴として、チタンのイオン供給源としてフッ化チタンカリウムを用い、これに硫酸ニッケル、および錯化剤としてグリシン等のアミノ酸など有機錯化剤を添加しためっき浴を用い、電気めっき法でめっきすることが好ましい。めっき付着量は0.1〜1.0g/m の範囲とすることが好ましい。0.1g/m 未満では、チタンの犠牲溶解にいる露出した鋼素地の鉄溶解を抑止する効果が小さく、一方、また1.0g/m を超えても、抑止効果は飽和に達し不経済になる。適用するめっき浴組成、pH、電解条件などにより変動するが、10〜30%のチタン含有率のニッケル−チタン合金めっき皮膜が得られる。 As a plating bath used for nickel-titanium alloy plating, a plating bath in which titanium fluoride is used as an ion source of titanium, nickel sulfate, and an organic complexing agent such as glycine as a complexing agent is added thereto is used. It is preferable to perform plating by an electroplating method. The plating adhesion amount is preferably in the range of 0.1 to 1.0 g / m 2 . If it is less than 0.1 g / m 2 , the effect of suppressing the iron dissolution of the exposed steel substrate in the sacrificial dissolution of titanium is small. On the other hand, if it exceeds 1.0 g / m 2 , the suppression effect reaches saturation and is not satisfactory. Become an economy. A nickel-titanium alloy plating film having a titanium content of 10 to 30% can be obtained, although it varies depending on the applied plating bath composition, pH, electrolysis conditions, and the like.

ニッケル−チタン合金めっきに次いでニッケルめっきを施す場合は、ワット浴による無光沢ニッケルめっき、ワット浴に有機添加剤を加えた半光沢ニッケルめっきを施すことが好ましい。ニッケルめっき付着量は2g/m 以上とすることが好ましい。2g/m 未満ではめっき皮膜のピンホールや、電池容器に成形加工する際の疵などによる鋼素地の露出度が過度になり、チタンの犠牲溶解による鉄イオンのアルカリ電解液中への溶解を抑止することが困難となる。ニッケルめっき付着量の上限は経済性により適宜定めることができる。ニッケルめっき後に熱処理を施してもよい。熱処理により、鋼素地側から順に、鉄−ニッケル−チタン合金層が形成され、その上層に鉄−ニッケル合金層、または鉄−ニッケル−チタン合金層が形成され、さらにその上層に鉄−ニッケル合金層、またその上層にニッケル層が形成される。 When nickel plating is performed after nickel-titanium alloy plating, it is preferable to perform matte nickel plating using a Watt bath, or semi-bright nickel plating in which an organic additive is added to the Watt bath. The amount of nickel plating attached is preferably 2 g / m 2 or more. If it is less than 2 g / m 2 , the steel substrate is exposed excessively due to pinholes in the plating film and wrinkles when forming into the battery container, and iron ions are dissolved in the alkaline electrolyte by sacrificial dissolution of titanium It becomes difficult to deter. The upper limit of the nickel plating adhesion amount can be appropriately determined depending on economy. Heat treatment may be performed after nickel plating. By the heat treatment, an iron-nickel-titanium alloy layer is formed in order from the steel substrate side, an iron-nickel alloy layer or an iron-nickel-titanium alloy layer is formed thereon, and an iron-nickel alloy layer is further formed thereon. In addition, a nickel layer is formed thereon.

ニッケル−チタン合金めっきに次いでニッケル合金めっきを施す場合は、硬質層または硬質でかつ導電性を向上させた層が得られる。硬質層が得られるニッケル合金めっきとしては、ニッケル−リン合金めっき、ニッケル−コバルト合金めっき、ニッケル−コバルト−リン合金めっき、ニッケル−ボロン合金めっき、ニッケル−コバルト−ボロン合金めっきなどを上げることができる。これらのニッケル合金めっきのめっき付着量は、いずれのニッケル合金めっきにおいてもニッケル量として0.5〜5g/m の範囲であることが好ましい。0.5g/m 未満では電池放電特性の向上効果が得られず、一方、5g/m を超えると電池容器に成形加工する際に微細クラックが過度に生じるようになり、チタンの犠牲溶解による鉄溶出を抑止できなるため、耐漏液性の向上効果が得られなくなる。 When nickel alloy plating is performed after nickel-titanium alloy plating, a hard layer or a hard layer with improved conductivity is obtained. Examples of nickel alloy plating that can provide a hard layer include nickel-phosphorus alloy plating, nickel-cobalt alloy plating, nickel-cobalt-phosphorus alloy plating, nickel-boron alloy plating, and nickel-cobalt-boron alloy plating. . The plating adhesion amount of these nickel alloy platings is preferably in the range of 0.5 to 5 g / m 2 as the nickel amount in any nickel alloy plating. If it is less than 0.5 g / m 2 , the effect of improving battery discharge characteristics cannot be obtained. On the other hand, if it exceeds 5 g / m 2 , fine cracks are excessively formed when the battery container is molded, and titanium is sacrificed and dissolved. As a result, it becomes impossible to prevent the elution of iron from occurring, and thus the effect of improving the leakage resistance cannot be obtained.

ニッケル合金めっきとしてニッケル−リン合金めっきを用いる場合は、無光沢ニッケルめっき浴に亜リン酸を添加した浴を用いることが好ましい。ニッケルリン合金めっきのリン含有率(P/(Ni+P)×100)は1〜12%とすることが好ましい。1%未満では、ニッケル−リン合金めっきが充分に硬質化せず、一方12%を超えると析出効率が低下するなど、安定しためっき作業が困難となる。   When nickel-phosphorus alloy plating is used as nickel alloy plating, it is preferable to use a bath obtained by adding phosphorous acid to a matte nickel plating bath. The phosphorus content (P / (Ni + P) × 100) of the nickel phosphorus alloy plating is preferably 1 to 12%. If it is less than 1%, the nickel-phosphorus alloy plating is not sufficiently hardened. On the other hand, if it exceeds 12%, the deposition efficiency is lowered, so that stable plating work becomes difficult.

ニッケル合金めっきとしてニッケル−コバルト合金めっきを用いる場合は、ワット浴に硫酸コバルトを添加した浴を用いることが好ましい。ニッケル−コバルト合金めっきのコバルト含有率(Co/(Ni+Co)×100)は2.5〜50%の範囲とすることが好ましい。2.5%未満ではコバルトを含有させることによる電池保存後の導電性の劣化を抑止する効果が小さく、一方50%を超えても導電性の劣化抑止の効果は飽和に達し不経済になる。   When nickel-cobalt alloy plating is used as the nickel alloy plating, it is preferable to use a bath in which cobalt sulfate is added to the watt bath. The cobalt content (Co / (Ni + Co) × 100) of the nickel-cobalt alloy plating is preferably in the range of 2.5 to 50%. If it is less than 2.5%, the effect of suppressing the deterioration of conductivity after battery storage by containing cobalt is small. On the other hand, if it exceeds 50%, the effect of suppressing the deterioration of conductivity reaches saturation and becomes uneconomical.

ニッケル合金めっきとしてニッケル−コバルト−リン合金めっきを用いる場合は、ワット浴に硫酸コバルトと亜リン酸を添加した浴を用いることが好ましい。ニッケル−コバルト−リン合金めっきのコバルト含有率(Co/(Ni+Co+P)×100)は、前記のニッケル−コバルト合金めっきを用いる場合と同様の理由で2.5〜50%の範囲とすることが好ましい。リン含有率(P/(Ni+Co+P)×100)は、前記のニッケル−リン合金めっきを用いる場合と同様の理由により1〜12%の範囲とすることが好ましい。   When nickel-cobalt-phosphorus alloy plating is used as the nickel alloy plating, it is preferable to use a bath in which cobalt sulfate and phosphorous acid are added to the Watt bath. The cobalt content (Co / (Ni + Co + P) × 100) of the nickel-cobalt-phosphorus alloy plating is preferably set to a range of 2.5 to 50% for the same reason as in the case of using the nickel-cobalt alloy plating. . The phosphorus content (P / (Ni + Co + P) × 100) is preferably in the range of 1 to 12% for the same reason as in the case of using the nickel-phosphorus alloy plating.

ニッケル合金めっきとしてニッケル−ボロン合金めっきを用いる場合は、ワット浴にトリメチルアミンボランを添加した浴を用いることが好ましい。ニッケル−ボロン合金めっきのボロン含有率(B/(Ni+B)×100)は1〜5%の範囲とすることが好ましい。1%未満では、ニッケル−ボロン合金めっきが充分に硬質化せず、また5%を超えてはめっき皮膜の析出効率の低下や皮膜組成の制御が困難となる。   When nickel-boron alloy plating is used as the nickel alloy plating, it is preferable to use a bath in which trimethylamine borane is added to the Watt bath. The boron content (B / (Ni + B) × 100) of the nickel-boron alloy plating is preferably in the range of 1 to 5%. If it is less than 1%, the nickel-boron alloy plating is not sufficiently hardened, and if it exceeds 5%, it is difficult to lower the deposition efficiency of the plating film and to control the film composition.

ニッケル合金めっきとしてニッケル−コバルト−ボロン合金めっきを用いる場合は、ワット浴に硫酸コバルトとトリメチルアミンボランを添加した浴を用いることが好ましい。ニッケル−コバルト−ボロン合金めっきのコバルト含有率(Co/(Ni+Co+B)×100)は、前記のニッケル−コバルト合金めっきを用いる場合と同様の理由で2.5〜50%の範囲とすることが好ましい。また、ボロン含有率(B/(Ni+Co+B)×100)は前記のニッケル−ボロン合金めっきを用いる場合と同様の理由により1〜5%の範囲とすることが好ましい。   When nickel-cobalt-boron alloy plating is used as the nickel alloy plating, it is preferable to use a bath in which cobalt sulfate and trimethylamine borane are added to the Watt bath. The cobalt content (Co / (Ni + Co + B) × 100) of the nickel-cobalt-boron alloy plating is preferably in the range of 2.5 to 50% for the same reason as in the case of using the nickel-cobalt alloy plating. . Further, the boron content (B / (Ni + Co + B) × 100) is preferably in the range of 1 to 5% for the same reason as in the case of using the nickel-boron alloy plating.

上記の各種ニッケル合金めっきは、ニッケル−チタン合金めっきの上に直接施してもよいし、ニッケル−チタン合金めっきを施し次いでニッケルめっきを施したその上に施してもよい。   The various nickel alloy platings described above may be performed directly on the nickel-titanium alloy plating, or may be performed on the nickel-titanium alloy plating and then the nickel plating.

また、上記のようにしてニッケル−チタン合金層を形成させたその上、もしくはニッケル−チタン合金層とその上にニッケル層を形成させたその上に、上記のニッケルめっき浴や各種ニッケル合金めっき浴に炭素質を分散含有させた分散めっき浴を用いて、炭素質分散ニッケルめっきまたは炭素質分散ニッケル合金めっきを施してもよい。炭素質としては、粒径が1〜10μmの天然黒鉛粉末や人造黒鉛粉末、チャンネルブラック、サーマルブラック、ファーネスブラック、ケッチェンブラック、アセチレンブラックなどのカーボンブラックからなる微細炭素質、カーボンナノチューブなどの極微細炭素質、あるいはこれらの2種以上を混合したものを用いることができる。極微細炭素質は高価であるため、平均径が10〜60nmのケッチェンブラックや平均径が50〜200nmのアセチレンブラックなどのカーボンブラックからなる微細炭素質を用いることがより好ましい。炭素質分散ニッケルめっきまたは炭素質分散ニッケル合金めっきのめっき皮膜中の炭素質含有量は0.1〜5重量%(全金属量に対する炭素質含有量の比率)の範囲とすることが好ましく、0.5〜3重量%の量で分散されていることがより好ましい。これらの炭素質は疎水性であるので、界面活性剤を用いてめっき液中に分散させる。これらの炭素質を分散させためっき液を用いて電解処理することにより、めっき層中にこれらの炭素質が分散してなる分散めっきが得られる。   Further, on the nickel-titanium alloy layer formed as described above, or on the nickel-titanium alloy layer and the nickel layer formed thereon, the above nickel plating bath and various nickel alloy plating baths Carbonaceous dispersion nickel plating or carbonaceous dispersion nickel alloy plating may be applied using a dispersion plating bath in which carbonaceous material is dispersed and contained. Examples of carbonaceous materials include natural graphite powder having a particle size of 1 to 10 μm, artificial graphite powder, fine carbonaceous materials composed of carbon black such as channel black, thermal black, furnace black, ketjen black, acetylene black, and carbon nanotubes. Fine carbonaceous materials or a mixture of two or more of these can be used. Since the ultrafine carbonaceous material is expensive, it is more preferable to use a fine carbonaceous material made of carbon black such as ketjen black having an average diameter of 10 to 60 nm or acetylene black having an average diameter of 50 to 200 nm. The carbonaceous content in the plating film of carbonaceous dispersed nickel plating or carbonaceous dispersed nickel alloy plating is preferably in the range of 0.1 to 5% by weight (ratio of carbonaceous content to the total amount of metals). More preferably, it is dispersed in an amount of from 5 to 3% by weight. Since these carbonaceous materials are hydrophobic, they are dispersed in the plating solution using a surfactant. By performing an electrolytic treatment using a plating solution in which these carbonaceous materials are dispersed, a dispersion plating in which these carbonaceous materials are dispersed in the plating layer is obtained.

これらの炭素質分散ニッケルめっきまたは炭素質分散ニッケル合金めっきのめっき付着量は、ニッケル量として0.5〜5g/m の範囲が好ましい。0.5g/m 未満では電池放電特性の効果が得られず、一方5g/m を超えると電池欲に成形加工する際に微小クラックが過度に生じるようになり、チタンの犠牲溶解による鉄溶出を抑止できなり、耐漏液性への充分な効果が得られなくなる。 The plating adhesion amount of these carbonaceous dispersed nickel plating or carbonaceous dispersed nickel alloy plating is preferably in the range of 0.5 to 5 g / m 2 as the nickel amount. If it is less than 0.5 g / m 2 , the effect of the battery discharge characteristics cannot be obtained. On the other hand, if it exceeds 5 g / m 2 , microcracks are excessively formed when molding the battery, and iron due to sacrificial dissolution of titanium. Elution cannot be suppressed and a sufficient effect on leakage resistance cannot be obtained.

以上のようにして、ニッケル−チタン合金層上に硬質なニッケル合金めっきを施す方法の他に、ニッケル−チタン合金層上にニッケルめっきを施し、さらにその上に錫めっきを施した後、熱処理を施して硬質のニッケル−錫合金層を生成させる方法もある。ニッケルめっき後に施す錫めっきのめっき付着量は0.5〜5g/m の範囲とすることが好ましい。0.5g/m 未満では熱処理により形成されるニッケル−錫合金層の厚さが薄く、電池容器に成形加工した際に微小クラックが充分に生成せず、正極活物質との充分な密着性が得られず、電池放電特性の向上効果が不充分である。一方、5g/m を超えるとニッケル−錫合金層の厚さが厚くなりすぎ、微小クラックが鋼素地へ達する程度が過度になり、チタンの犠牲溶解による鉄溶解抑止効果の限界を超えてしまい、耐漏液性が劣下するようになる。錫めっきの付着量とその下層のニッケルめっきの付着量との比は、錫がすべてニッケル−錫合金(NiSn)の元素比以上のニッケル付着量とする必要がある。最表層に合金化しない錫が残存した場合、錫がアルカリ電解液に溶出して電池性能の劣化をきたす。熱処理は500℃以上の加熱温度で、1時間以上加熱することが好ましい。この範囲をはずれた熱処理条件では、ニッケル−錫合金として錫リッチなNiSnやNiSnが生成し、アルカリ電解液中への錫の溶解量が増加するため好ましくない。 As described above, in addition to the method of performing hard nickel alloy plating on the nickel-titanium alloy layer, nickel plating is applied on the nickel-titanium alloy layer, and further tin plating is applied thereon, followed by heat treatment. There is also a method of applying a hard nickel-tin alloy layer. The amount of tin plating applied after nickel plating is preferably in the range of 0.5 to 5 g / m 2 . If it is less than 0.5 g / m 2 , the thickness of the nickel-tin alloy layer formed by heat treatment is thin, and when formed into a battery container, microcracks are not sufficiently formed, and sufficient adhesion to the positive electrode active material is achieved. Is not obtained, and the effect of improving the battery discharge characteristics is insufficient. On the other hand, if it exceeds 5 g / m 2 , the thickness of the nickel-tin alloy layer becomes too thick, and the extent to which microcracks reach the steel substrate becomes excessive, exceeding the limit of the iron dissolution inhibiting effect due to the sacrificial dissolution of titanium. As a result, the leakage resistance deteriorates. The ratio between the amount of tin plating and the amount of nickel plating below it is necessary that the amount of tin deposited is equal to or greater than the elemental ratio of nickel-tin alloy (Ni 2 Sn). When tin that is not alloyed remains in the outermost layer, the tin is eluted into the alkaline electrolyte and the battery performance is deteriorated. The heat treatment is preferably performed at a heating temperature of 500 ° C. or higher for 1 hour or longer. Heat treatment conditions outside this range are not preferable because tin-rich Ni 2 Sn 2 and Ni 2 Sn 4 are produced as a nickel-tin alloy and the amount of tin dissolved in the alkaline electrolyte increases.

上記のニッケル−チタン合金めっきを施し、その上にニッケルめっきと錫めっきを施した後に熱処理する方法以外の、ニッケル−チタン合金めっきを施し、その上にニッケルめっきを施し、さらにその上にニッケル合金めっき、炭素質分散ニッケルめっき、炭素質分散ニッケル合金めっきいずれかのめっきを施した場合は、めっきのままとしてもよいし、前記したように、ニッケル−チタン合金めっきとニッケルめっきを施した後に熱処理を施してから、その上にニッケル合金めっき、炭素質分散ニッケルめっき、炭素質分散ニッケル合金めっきのいずれかのめっきを施してもよい。もしくはニッケル−チタン合金めっき、ニッケルめっき、次いでニッケル合金めっき、炭素質分散ニッケルめっき、炭素質分散ニッケル合金めっきのいずれかのめっきを施した後に熱処理を施してもよい。これらのめっき後に熱処理を施す場合は、箱型焼鈍法または連続焼鈍法のいずれかを用いる。熱処理条件としては箱型焼鈍法を用いる場合は、450℃未満の加熱ではニッケルめっき層は軟化せず、また鉄−ニッケル合金層(拡散層)も形成されない。一方700℃を超える温度で加熱した場合は鉄−ニッケル合金層(拡散層)は充分に形成されるものの、鋼素地は軟質化し過ぎて電池容器の強度劣化を生じ好ましくない。このため熱処理温度としては450〜650℃、好ましくは500〜600℃の範囲が好適である。加熱時間としては上記の温度範囲において1〜6時間の均熱加熱することが好ましい。連続焼鈍法を用いる場合は600〜850℃の加熱温度で1〜5分間の加熱時間とすることが好ましい。   Apply nickel-titanium alloy plating, apply nickel-titanium alloy plating other than the method of heat treatment after applying nickel plating and tin plating on the nickel-titanium alloy plating, and then apply nickel plating on the nickel-titanium alloy plating. When plating, carbonaceous dispersion nickel plating, or carbonaceous dispersion nickel alloy plating is applied, the plating may be left as it is, or as described above, heat treatment after nickel-titanium alloy plating and nickel plating are performed. Then, any of nickel alloy plating, carbonaceous dispersed nickel plating, and carbonaceous dispersed nickel alloy plating may be applied thereon. Or you may heat-process, after giving nickel-titanium alloy plating, nickel plating, then nickel alloy plating, carbonaceous dispersion nickel plating, and carbonaceous dispersion nickel alloy plating. When heat treatment is performed after these platings, either a box-type annealing method or a continuous annealing method is used. When the box annealing method is used as the heat treatment condition, the nickel plating layer is not softened and the iron-nickel alloy layer (diffusion layer) is not formed by heating at less than 450 ° C. On the other hand, when heated at a temperature exceeding 700 ° C., the iron-nickel alloy layer (diffusion layer) is sufficiently formed, but the steel substrate becomes too soft and undesirably deteriorates the strength of the battery container. For this reason, the heat treatment temperature is 450 to 650 ° C, preferably 500 to 600 ° C. The heating time is preferably soaking for 1 to 6 hours in the above temperature range. When using a continuous annealing method, it is preferable to set it as the heating time of 1 to 5 minutes at the heating temperature of 600-850 degreeC.

本発明の電池容器は、上記の電池容器用めっき鋼板を、絞り加工法、絞りしごき加工法(DI加工法)、絞りストレッチ加工法(DTR加工法)、または絞り加工後ストレッチ加工としごき加工を併用する加工法を用いて、有底の筒型形状に成形加工して得られる。筒型形状としては、底面が円、楕円、または長方形や正方形などの多角形の形状であり、用途に応じて側壁の高さを適宜選択した筒型形状に成形加工する。このようにして得られる電池容器に正極合剤、負極活物質等を充填して電池とする。   The battery container of the present invention is obtained by subjecting the above-described plated steel sheet for a battery container to a drawing process, a drawing ironing process (DI processing method), a drawing stretch processing method (DTR processing method), or a drawing process as a stretching process. It is obtained by forming into a bottomed cylindrical shape using the processing method used in combination. As the cylindrical shape, the bottom surface is a circle, an ellipse, or a polygonal shape such as a rectangle or a square, and is molded into a cylindrical shape with the side wall height appropriately selected according to the application. The battery container thus obtained is filled with a positive electrode mixture, a negative electrode active material, and the like to obtain a battery.

以下、実施例にて本発明を詳細に説明する。
[電池容器用めっき鋼板の作成]
めっき基板として、表1に化学組成を示す熱間圧延済みの低炭素アルミキルド鋼(I)または極低炭素アルミキルド鋼(II)を用いた。
Hereinafter, the present invention will be described in detail with reference to examples.
[Creation of plated steel sheets for battery containers]
As the plating substrate, hot-rolled low carbon aluminum killed steel (I) or extremely low carbon aluminum killed steel (II) whose chemical composition is shown in Table 1 was used.

Figure 2006348362
Figure 2006348362

上記のIまたはIIの鋼種の熱間圧延板に、常法により冷間圧延、電解洗浄を施して0.25mmの板厚を有する冷間圧延板とした後、鋼種Iの場合は箱型焼鈍法を用いて均熱温度640〜680℃で均熱時間8時間の焼鈍を施した焼鈍板に、下記に示す各種のめっきを施し、そのまま用いるか、またはめっき後に箱型焼鈍法を用いて500〜550℃、過熱時間6〜8時間の熱処理を施した。また鋼種Iの一部については電解洗浄を施したままの未焼鈍板に下記に示す各種のめっきを施した後、連続焼鈍炉法により加熱温度650℃、加熱時間2分の熱処理を施した。鋼種IIの場合は電解洗浄を施したままの未焼鈍板に下記に示す各種のめっきを施した後、連続焼鈍炉法により加熱温度780℃、加熱時間2分の熱処理を施した。このようにして、下記のイ)〜ヌ)に示す工程を経て電池容器用めっき鋼板を作成した。
イ)低炭素アルミキルド鋼(I)→冷間圧延→電解洗浄→焼鈍(箱型焼鈍法)→調質圧延→ニッケルめっき(内、外面側)
ロ)低炭素アルミキルド鋼(I)→冷間圧延→電解洗浄→焼鈍(箱型焼鈍法)→調質圧延→ニッケルめっき(内、外面側)→熱処理(箱型焼鈍法)→調質圧延
ハ)低炭素アルミキルド鋼(I)→冷間圧延→電解洗浄→焼鈍(箱型焼鈍法)→調質圧延→ニッケル−チタン合金めっき(内面側)→ニッケルめっき(内、外面側)→錫めっき(内面側)→熱処理(箱型焼鈍法)→調質圧延
ニ)低炭素アルミキルド鋼(I)→冷間圧延→電解洗浄→焼鈍(箱型焼鈍法)→調質圧延→ニッケルめっき(内、外面側)→錫めっき(内面側)→熱処理(箱型焼鈍法)→調質圧延
ホ)極低炭素アルミキルド鋼(II)→冷間圧延→電解洗浄→ニッケル−チタン合金めっき(内面側)→ニッケルめっき(内、外面側)→ニッケル合金めっき(内面側)→熱処理(連続焼鈍法)→調質圧延
ヘ)極低炭素アルミキルド鋼(II)→冷間圧延→電解洗浄→ニッケルめっき(内、外面側)→ニッケル合金めっき(内面側)→熱処理(連続焼鈍法)→調質圧延
ト)低炭素アルミキルド鋼(I)→冷間圧延→電解洗浄→焼鈍(箱型焼鈍法)→調質圧延→ニッケル−チタン合金めっき(内面側)→ニッケルめっき(内、外面側)→炭素質分散ニッケルめっき(内面側)
チ)低炭素アルミキルド鋼(I)→冷間圧延→電解洗浄→焼鈍(箱型焼鈍法)→調質圧延→ニッケルめっき(内、外面側)→炭素質分散ニッケルめっき(内面側)
リ)低炭素アルミキルド鋼(I)→冷間圧延→電解洗浄→焼鈍(箱型焼鈍法)→調質圧延→ニッケルチタン合金めっき(内面側)→ニッケルめっき(内、外面側)→炭素質分散ニッケル合金めっき(内面側)→熱処理(箱型焼鈍法)→調質圧延
ヌ)低炭素アルミキルド鋼(I)→冷間圧延→電解洗浄→焼鈍(箱型焼鈍法)→調質圧延→ニッケルめっき(内、外面側)→炭素質分散ニッケル合金めっき(内面側)→熱処理(箱型焼鈍法)→調質圧延
上記イ)〜ヌ)の工程における各めっき処理は以下に示す条件で行なった。
A hot rolled sheet of the above steel grade I or II is subjected to cold rolling and electrolytic cleaning by a conventional method to obtain a cold rolled sheet having a thickness of 0.25 mm. The following various types of plating are applied to an annealed plate that has been subjected to annealing at a soaking temperature of 640 to 680 ° C. for 8 hours using a method, and the plating is used as it is, or after plating, using a box-type annealing method. Heat treatment was applied at ˜550 ° C. and an overheating time of 6 to 8 hours. Moreover, about some steel types I, after performing various plating shown below to the unannealed board which performed electrolytic cleaning, the heat processing temperature 650 degreeC and the heat processing for 2 minutes were performed by the continuous annealing furnace method. In the case of steel type II, the following various platings were applied to the unannealed plate that had been subjected to electrolytic cleaning, and then heat treatment was performed at a heating temperature of 780 ° C. and a heating time of 2 minutes by a continuous annealing furnace method. Thus, the plated steel plate for battery containers was created through the process shown to following i) -nu).
B) Low carbon aluminum killed steel (I) → Cold rolling → Electrolytic cleaning → Annealing (box annealing method) → Temper rolling → Nickel plating (inside and outside side)
B) Low carbon aluminum killed steel (I) → Cold rolling → Electrolytic cleaning → Annealing (box annealing method) → Temper rolling → Nickel plating (inner and outer surfaces) → Heat treatment (box annealing method) → Temper rolling ) Low carbon aluminum killed steel (I) → cold rolling → electrolytic cleaning → annealing (box annealing) → temper rolling → nickel-titanium alloy plating (inner side) → nickel plating (inner and outer side) → tin plating ( Inner side) → Heat treatment (box annealing method) → Temper rolling d) Low carbon aluminum killed steel (I) → Cold rolling → Electrolytic cleaning → Annealing (box annealing method) → Temper rolling → Nickel plating (inner and outer surfaces) Side) → tin plating (inside surface) → heat treatment (box annealing method) → temper rolling e) ultra-low carbon aluminum killed steel (II) → cold rolling → electrolytic cleaning → nickel-titanium alloy plating (inside side) → nickel Plating (inside and outside) → Nickel alloy plating (inside) → Heat treatment Continuous annealing method) → Temper rolling f) Ultra-low carbon aluminum killed steel (II) → Cold rolling → Electrolytic cleaning → Nickel plating (inside and outside) → Nickel alloy plating (inside) → Heat treatment (continuous annealing) → Tempered rolling g) Low carbon aluminum killed steel (I) → Cold rolling → Electrolytic cleaning → Annealing (box annealing method) → Temper rolling → Nickel-titanium alloy plating (inner side) → Nickel plating (inner and outer side) → Carbon dispersion nickel plating (inner side)
H) Low carbon aluminum killed steel (I) → Cold rolling → Electrolytic cleaning → Annealing (box annealing method) → Temper rolling → Nickel plating (inside and outside) → Carbon dispersion nickel plating (inside)
B) Low carbon aluminum killed steel (I) → cold rolling → electrolytic cleaning → annealing (box annealing) → temper rolling → nickel titanium alloy plating (inner side) → nickel plating (inner and outer side) → carbon dispersion Nickel alloy plating (inner surface side) → Heat treatment (box annealing method) → Temper rolling n) Low carbon aluminum killed steel (I) → Cold rolling → Electrolytic cleaning → Annealing (box annealing method) → Temper rolling → Nickel plating (Inner, outer surface side) → carbon-dispersed nickel alloy plating (inner surface side) → heat treatment (box-type annealing method) → temper rolling Each plating treatment in the steps a) to n) was performed under the following conditions.

<ニッケルめっき>
浴組成 硫酸ニッケル 300g/L
塩化ニッケル 35g/L
ホウ酸 40g/L
ビット抑制剤(ラウリル硫酸ナトリウム) 0.4mL/L
陽極 ニッケルベレット(チタンバスケットにINCO(株)製Sペレットを
充填しポリプロピレン製アノードバッグを装着)
攪拌 空気撹拝
pH 4.0〜4.6
浴温 55〜60℃
電流密度 15A/dm
<Nickel plating>
Bath composition Nickel sulfate 300g / L
Nickel chloride 35g / L
Boric acid 40g / L
Bit inhibitor (sodium lauryl sulfate) 0.4mL / L
Anode Nickel Beret (Stainless steel pellets from INCO Co., Ltd. in a titanium basket)
Filled with polypropylene anode bag)
Stirring air stirring
pH 4.0-4.6
Bath temperature 55-60 ° C
Current density 15A / dm 2

<ニッケル−チタン合金めっき>
浴組成 硫酸ニッケル 8g/L
フッ化チタンカリウム 24g/L
L−グルタミン酸 8g/L
グリシン 10g/L
陽極 ニッケルベレット(チタンバスケットにINCO(株)製Sペレットを
充填しポリプロピレン製アノードバッグを装着)
攪拌 空気撹拝
pH 5.0〜5.5
浴温 55〜60℃
電流密度 5A/dm
<Nickel-titanium alloy plating>
Bath composition Nickel sulfate 8g / L
Potassium fluoride titanium 24g / L
L-glutamic acid 8g / L
Glycine 10g / L
Anode Nickel Beret (Stainless steel pellets from INCO Co., Ltd. in a titanium basket)
Filled with polypropylene anode bag)
Stirring air stirring
pH 5.0-5.5
Bath temperature 55-60 ° C
Current density 5A / dm 2

<錫めっき>
浴組成 硫酸第一スズ 30g/L
フェノールスルホン酸 60g/L
エトキシ化α−ナフトール 5g/L
陽極 錫板
攪拌 めっき浴の循環
浴温 45〜50℃
電流密度 5A/dm
<Tin plating>
Bath composition Stannous sulfate 30g / L
Phenolsulfonic acid 60g / L
Ethoxylated α-naphthol 5g / L
Anode Tin plate Agitation Plating bath circulation
Bath temperature 45-50 ° C
Current density 5A / dm 2

<ニッケル−リン合金めっき>
浴組成 硫酸ニッケル 300g/L
塩化ニッケル 35g/L
ホウ酸 20g/L
亜リン酸 5〜20g/L
ビット抑制剤(ラウリル硫酸ナトリウム) 0.4mL/L
陽極 ニッケルベレット(チタンバスケットにINCO(株)製Sペレットを
充填しポリプロピレン製アノードバッグを装着)
攪拌 空気撹拝
pH 4.0〜4.6
浴温 55〜60℃
電流密度 15A/dm
<Nickel-phosphorus alloy plating>
Bath composition Nickel sulfate 300g / L
Nickel chloride 35g / L
Boric acid 20g / L
Phosphorous acid 5-20g / L
Bit inhibitor (sodium lauryl sulfate) 0.4mL / L
Anode Nickel Beret (Stainless steel pellets from INCO Co., Ltd. in a titanium basket)
Filled with polypropylene anode bag)
Stirring air stirring
pH 4.0-4.6
Bath temperature 55-60 ° C
Current density 15A / dm 2

<ニッケル−コバルト合金めっき>
浴組成 硫酸ニッケル 250g/L
硫酸コバルト 5〜40g/L
塩化ニッケル 40g/L
ホウ酸 30g/L
陽極 ニッケルベレット(チタンバスケットにINCO(株)製Sペレットを
充填しポリプロピレン製アノードバッグを装着)
攪拌 空気撹拝
pH 1.5〜2.5
浴温 40〜60℃
電流密度 10〜15A/dm
<Nickel-cobalt alloy plating>
Bath composition Nickel sulfate 250g / L
Cobalt sulfate 5-40g / L
Nickel chloride 40g / L
Boric acid 30g / L
Anode Nickel Beret (Stainless steel pellets from INCO Co., Ltd. in a titanium basket)
Filled with polypropylene anode bag)
Stirring air stirring
pH 1.5-2.5
Bath temperature 40-60 ° C
Current density 10-15A / dm 2

<ニッケル−コバルト−ボロン合金めっき>
浴組成 硫酸ニッケル 250g/L
硫酸コバルト 30g/L
塩化ニッケル 40g/L
トリメチルアミンボラン 10g/L
ホウ酸 20g/L
陽極 ニッケルベレット(チタンバスケットにINCO(株)製Sペレットを
充填しポリプロピレン製アノードバッグを装着)
攪拌 空気撹拝
pH 1.5〜2.5
浴温 40〜60℃
電流密度 10〜15A/dm
<Nickel-cobalt-boron alloy plating>
Bath composition Nickel sulfate 250g / L
Cobalt sulfate 30g / L
Nickel chloride 40g / L
Trimethylamine borane 10g / L
Boric acid 20g / L
Anode Nickel Beret (Stainless steel pellets from INCO Co., Ltd. in a titanium basket)
Filled with polypropylene anode bag)
Stirring air stirring
pH 1.5-2.5
Bath temperature 40-60 ° C
Current density 10-15A / dm 2

<炭素質分散ニッケルめっき>
浴組成 硫酸ニッケル 300g/L
塩化ニッケル 35g/L
ホウ酸 40g/L
ケッチェンブラック(平均粒径40nm) 10〜20g/L
分散剤 御国色素(株)製 TCDA−10 10〜20g/L
(ナフタレンスルフォン酸縮合物系)
ビット抑制剤(ラウリル硫酸ナトリウム) 0.4mL/L
陽極 ニッケルベレット(チタンバスケットにINCO(株)製Sペレットを
充填しポリプロピレン製アノードバッグを装着)
攪拌 空気撹拝
pH 4.5〜5.0
浴温 55〜60℃
電流密度 5〜10A/dm
<Carbon dispersion nickel plating>
Bath composition Nickel sulfate 300g / L
Nickel chloride 35g / L
Boric acid 40g / L
Ketjen black (average particle size 40nm) 10-20g / L
Dispersant TKDA-10 10-20 g / L from Gokoku Color Co., Ltd.
(Naphthalene sulfonic acid condensate system)
Bit inhibitor (sodium lauryl sulfate) 0.4mL / L
Anode Nickel Beret (Stainless steel pellet made by INCO Co., Ltd. in a titanium basket)
Filled with polypropylene anode bag)
Stirring air stirring
pH 4.5-5.0
Bath temperature 55-60 ° C
Current density 5-10 A / dm 2

<炭素質分散ニッケル−コバルト−リン合金めっき>
浴組成 硫酸ニッケル 250g/L
硫酸コバルト 30g/L
塩化ニッケル 40g/L
亜リン酸 15g/L
ホウ酸 20g/L
カーボンブラック(平均粒径180nm) 10〜20g/L
分散剤 御国色素(株)製 TCDA−10 10〜20g/L
(ナフタレンスルフォン酸縮合物系)
ビット抑制剤(ラウリル硫酸ナトリウム) 0.4mL/L
陽極 ニッケルベレット(チタンバスケットにINCO(株)製Sペレットを
充填しポリプロピレン製アノードバッグを装着)
攪拌 空気撹拝
pH 4.5〜5.0
浴温 55〜60℃
電流密度 5〜10A/dm
<Carbonaceous dispersed nickel-cobalt-phosphorus alloy plating>
Bath composition Nickel sulfate 250g / L
Cobalt sulfate 30g / L
Nickel chloride 40g / L
Phosphorous acid 15g / L
Boric acid 20g / L
Carbon black (average particle size 180nm) 10-20g / L
Dispersant TKDA-10 10-20 g / L from Gokoku Color Co., Ltd.
(Naphthalene sulfonic acid condensate system)
Bit inhibitor (sodium lauryl sulfate) 0.4mL / L
Anode Nickel Beret (Stainless steel pellets from INCO Co., Ltd. in a titanium basket)
Filled with polypropylene anode bag)
Stirring air stirring
pH 4.5-5.0
Bath temperature 55-60 ° C
Current density 5-10 A / dm 2

<炭素質分散ニッケル−ボロン合金めっき>
浴組成 硫酸ニッケル 240g/L
塩化ニッケル 40g/L
トリメチルアミンボラン 6〜12g/L
ホウ酸 30g/L
アセチレンブラック(平均粒径120nm) 10〜20g/L
分散剤 御国色素(株)製 TCDA−10 10〜20g/L
(ナフタレンスルフォン酸縮合物系)
ビット抑制剤(ラウリル硫酸ナトリウム) 0.4mL/L
陽極 ニッケルベレット(チタンバスケットにINCO(株)製Sペレットを
充填しポリプロピレン製アノードバッグを装着)
攪拌 めっき液の攪拌
pH 4.5〜5.0
浴温 55〜60℃
電流密度 1〜5A/dm
以上のようにして表2及び表3に示す電池容器用めっき鋼板の試料(試料番号1〜16)を作成した。なお、試料番号15〜16では、熱処理を施さなかった。
<Carbon dispersion nickel-boron alloy plating>
Bath composition Nickel sulfate 240g / L
Nickel chloride 40g / L
Trimethylamine borane 6-12g / L
Boric acid 30g / L
Acetylene black (average particle size 120 nm) 10-20 g / L
Dispersant TKDA-10 10-20 g / L from Gokoku Color Co., Ltd.
(Naphthalene sulfonic acid condensate system)
Bit inhibitor (sodium lauryl sulfate) 0.4mL / L
Anode Nickel Beret (Stainless steel pellets from INCO Co., Ltd. in a titanium basket)
Filled with polypropylene anode bag)
Agitation Agitation of plating solution
pH 4.5-5.0
Bath temperature 55-60 ° C
Current density 1-5A / dm 2
Samples (sample numbers 1 to 16) of the plated steel sheets for battery containers shown in Tables 2 and 3 were prepared as described above. In Sample Nos. 15 to 16, no heat treatment was performed.

Figure 2006348362
Figure 2006348362

Figure 2006348362
Figure 2006348362

[電池容器の作成]
これらの試料番号1〜16の試料から57mm径でブランクを打ち抜いた後、10段の絞り加工により、外径13.8mm、高さ49.3mmの円筒形のLR6型電池(単三型電池)容器に成形加工した。
[Create battery container]
After blanking a blank with a 57 mm diameter from the samples of sample numbers 1 to 16, a cylindrical LR6 type battery (AA type battery) having an outer diameter of 13.8 mm and a height of 49.3 mm by drawing with 10 steps. Molded into a container.

[電池の作成]
この電池容器を用いて、以下のようにしてアルカリマンガン電池を作成した。二酸化マンガンと黒鉛を10:1の比率で採取し、水酸化カリウム(10モル)を添加混合して正極合剤を作成した。次いでこの正極合剤を金型中で加圧して所定寸法のドーナツ形状の正極合剤ベレットに成形した。電池容器内へ黒鉛粉末を主剤とした導電物質を内面に塗布した。次いで電池容器に先に作製した正極合剤ベレットを圧挿入した。次に、負極集電棒をスポット溶接した負極板を電池容器に装着した。次いで、電池容器に圧挿入した正極合剤ベレットの内周に沿うようにしてビニロン製織布からなるセパレータを挿入し、亜鉛粒と酸化亜鉛を飽和させた水酸化カリウムからなる負極ゲルを電池容器内に充填した。さらに、負極板に絶縁体のガスケットを装着して電池容器内に挿入した後、カシメ加工してアルカリマンガン電池を作成した。
[Create battery]
Using this battery container, an alkaline manganese battery was prepared as follows. Manganese dioxide and graphite were collected at a ratio of 10: 1, and potassium hydroxide (10 mol) was added and mixed to prepare a positive electrode mixture. Next, this positive electrode mixture was pressed in a mold to form a donut-shaped positive electrode mixture beret having a predetermined size. A conductive material mainly composed of graphite powder was applied to the inner surface of the battery container. Subsequently, the positive electrode mixture beret previously produced was press-inserted into the battery container. Next, the negative electrode plate spot-welded with the negative electrode current collector rod was attached to the battery container. Next, a separator made of vinylon woven fabric is inserted along the inner periphery of the positive electrode mixture beret pressure-inserted into the battery container, and a negative electrode gel made of potassium hydroxide saturated with zinc particles and zinc oxide is inserted into the battery container. Filled in. Further, an insulating gasket was attached to the negative electrode plate and inserted into the battery container, followed by caulking to prepare an alkaline manganese battery.

[特性評価]
以上のようにして試料番号1〜16の試料から作成した電池容器を用いて作成した電池の特性を、以下のようにして評価した。
[Characteristic evaluation]
The characteristics of the batteries prepared using the battery containers prepared from the samples Nos. 1 to 16 as described above were evaluated as follows.

<漏液性評価>
電池を100個作成後、90℃、RH50%の恒温恒湿の雰囲気中に挿入し、5、10、15、20日経時後の電解液の漏液発生率(%)を求めた。
<Leakage evaluation>
After preparing 100 batteries, the battery was inserted into a 90 ° C., RH 50% constant temperature and humidity atmosphere, and the leakage rate (%) of the electrolyte after 5 days, 10 days, 15 days and 20 days was determined.

Figure 2006348362
Figure 2006348362

表4に示すように、本発明の電池容器内面となる側にニッケル−チタン合金めっきを施した電池容器用めっき鋼板を用いた電池は、いずれも耐漏液性が顕著に向上することが認められる。   As shown in Table 4, it is recognized that all of the batteries using the plated steel sheet for the battery container in which the nickel-titanium alloy plating is applied to the battery container inner surface side according to the present invention are remarkably improved in leakage resistance. .

鋼板の電池容器内面となる側に、予めニッケル−チタン合金めっき層を形成した後、ニッケルめっき、各種のニッケル−合金めっき、炭素質分散ニッケル、もしくは炭素質を分散した各種のニッケル合金めっきなどの硬質めっきを施した場合は、その上に形成するニッケルめっき層の厚さが薄くピンホールが存在しても、あるいは電池容器に成形加工する際に硬質なめっき層にクラックが生じて鋼素地が露出したとしても、耐漏液性が向上する。その結果、電池容器内面となる側に硬質めっき層を形成させ、電池容器に成形加工する際にクラックを生じさせて、正極活物質との密着性を高めることにより電池の放電性能は向上させることができる反面、過度のクラックが発生することにより鉄が露出して耐漏液性が劣化しやすくなるという、相反する問題が本発明の電池容器用めっき鋼板を用いることにより解決される。すなわち、電池の耐漏液性損なわずに、電池の放電性能の向上を図ることが可能となる。
After a nickel-titanium alloy plating layer is formed in advance on the battery vessel inner surface of the steel sheet, nickel plating, various nickel-alloy platings, carbon-dispersed nickel, or various nickel-alloy platings in which carbon is dispersed, etc. When hard plating is applied, even if the nickel plating layer formed thereon is thin and pinholes are present, or cracking occurs in the hard plating layer when forming into a battery container, Even if it is exposed, the leakage resistance is improved. As a result, it is possible to improve the discharge performance of the battery by forming a hard plating layer on the inner side of the battery case, causing cracks when forming the battery case, and improving the adhesion with the positive electrode active material. On the other hand, the conflicting problem that iron is exposed and leakage resistance is liable to deteriorate due to excessive cracks is solved by using the plated steel sheet for battery containers of the present invention. That is, it is possible to improve the discharge performance of the battery without impairing the leakage resistance of the battery.

Claims (7)

鋼板の電池容器内面となる側の鋼板上にチタンを含む金属層が形成されてなることを特徴とする電池容器用めっき鋼板。 A plated steel sheet for a battery container, wherein a metal layer containing titanium is formed on a steel sheet on the side of the steel sheet that is the inner surface of the battery container. 前記チタンを含む金属層上に、ニッケル層が形成されてなることを特徴とする、請求項1に記載の電池容器用めっき鋼板。 The plated steel sheet for battery containers according to claim 1, wherein a nickel layer is formed on the metal layer containing titanium. 前記チタンを含む金属層上に、ニッケル合金層が形成されてなることを特徴とする、請求項1に記載の電池容器用めっき鋼板。 The plated steel sheet for battery containers according to claim 1, wherein a nickel alloy layer is formed on the metal layer containing titanium. 前記ニッケル層中または前記ニッケル合金層中に炭素質が分散されてなることを特徴とする、請求項2または3に記載の電池容器用めっき鋼板。 The plated steel sheet for battery containers according to claim 2, wherein carbonaceous matter is dispersed in the nickel layer or the nickel alloy layer. 前記ニッケル合金が、ニッケル−錫合金、ニッケル−リン合金、ニッケル−コバルト合金、ニッケル−コバルト−リン合金、ニッケル−ボロン合金、ニッケル−コバルト−ボロン合金のいずれかであることを特徴とする、請求項3または4に記載の電池容器用めっき鋼板。 The nickel alloy is any one of a nickel-tin alloy, a nickel-phosphorus alloy, a nickel-cobalt alloy, a nickel-cobalt-phosphorus alloy, a nickel-boron alloy, and a nickel-cobalt-boron alloy, Item 5. A plated steel sheet for battery containers according to Item 3 or 4. 請求項1〜5のいずれかに記載の電池容器用めっき鋼板を有底の筒型形状に成形加工してなる電池容器。 The battery container formed by shape | molding the plated steel plate for battery containers in any one of Claims 1-5 in a bottomed cylindrical shape. 請求項6に記載の電池容器を用いてなる電池。
A battery comprising the battery container according to claim 6.
JP2005178124A 2005-06-17 2005-06-17 Plated steel sheet for battery receptacle, battery receptacle using the plated steel sheet, and battery using the battery receptacle Withdrawn JP2006348362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005178124A JP2006348362A (en) 2005-06-17 2005-06-17 Plated steel sheet for battery receptacle, battery receptacle using the plated steel sheet, and battery using the battery receptacle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005178124A JP2006348362A (en) 2005-06-17 2005-06-17 Plated steel sheet for battery receptacle, battery receptacle using the plated steel sheet, and battery using the battery receptacle

Publications (1)

Publication Number Publication Date
JP2006348362A true JP2006348362A (en) 2006-12-28

Family

ID=37644506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005178124A Withdrawn JP2006348362A (en) 2005-06-17 2005-06-17 Plated steel sheet for battery receptacle, battery receptacle using the plated steel sheet, and battery using the battery receptacle

Country Status (1)

Country Link
JP (1) JP2006348362A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149314A (en) * 2011-01-20 2012-08-09 Jfe Steel Corp Metal plate for polymer electrolyte fuel cell separator and method for producing the same
JP2013216971A (en) * 2012-03-02 2013-10-24 Rohm & Haas Electronic Materials Llc Composite of carbon black and metal
WO2014007002A1 (en) * 2012-07-03 2014-01-09 東洋鋼鈑株式会社 Surface treated steel plate for battery container, battery container, and battery
JP5984800B2 (en) * 2011-04-28 2016-09-06 東洋鋼鈑株式会社 Surface-treated steel sheet for battery container, battery container and battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149314A (en) * 2011-01-20 2012-08-09 Jfe Steel Corp Metal plate for polymer electrolyte fuel cell separator and method for producing the same
JP5984800B2 (en) * 2011-04-28 2016-09-06 東洋鋼鈑株式会社 Surface-treated steel sheet for battery container, battery container and battery
JP2013216971A (en) * 2012-03-02 2013-10-24 Rohm & Haas Electronic Materials Llc Composite of carbon black and metal
WO2014007002A1 (en) * 2012-07-03 2014-01-09 東洋鋼鈑株式会社 Surface treated steel plate for battery container, battery container, and battery
JPWO2014007002A1 (en) * 2012-07-03 2016-06-02 東洋鋼鈑株式会社 Surface-treated steel sheet for battery container, battery container and battery

Similar Documents

Publication Publication Date Title
JP5083931B2 (en) Battery container manufacturing method, battery container manufactured by the battery container manufacturing method, and battery using the battery container
JP5102945B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and alkaline battery using the battery container
JP2006093096A (en) Plated steel sheet for battery container, battery container using same, and battery using its battery container
JPWO2003098718A1 (en) Surface-treated steel sheet for battery case, battery case and battery using the same
JP4824961B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2006348362A (en) Plated steel sheet for battery receptacle, battery receptacle using the plated steel sheet, and battery using the battery receptacle
JP4748665B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2007052997A (en) Plated steel sheet for battery case, battery case using plated steel sheet for battery case, and battery using battery case
JP2006190648A (en) Plated sheet steel for battery case, battery case using the plated sheet steel for battery case, and battery using the battery case
JP2007051325A (en) Plated steel plate for battery case, battery case using the steel plate for battery case and battery using the battery case
JP2013077462A (en) COPPER FOIL FOR Li BATTERY COLLECTOR, ELECTRODE FOR Li BATTERY USING THE SAME, AND Li BATTERY
JP4675707B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2007051324A (en) Plated steel plate for battery case, battery case using the steel plate for battery case and battery using the battery case
JPWO2005018021A1 (en) Surface-treated steel sheet for battery case, battery case and battery using the same
JP2006351432A (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2007005157A (en) Plated steel plate for battery case, battery case using it, battery using it and manufacturing method of plated steel plate for battery case
JP2007059087A (en) Plated steel sheet for battery case, battery case using same, and battery using the battery case
JP2006294353A (en) Plated steel sheet for battery container, battery container using plated steel sheet for battery container, and battery using battery container
JP4817724B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2006093097A (en) Plated steel sheet for battery container, battery container using same, and battery using its battery container
JP4911952B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP4968877B2 (en) Plated steel sheet for battery container, method for producing the same, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2006307321A (en) Plated steel sheet for battery vessel, battery vessel using the plated steel sheet for battery vessel, and battery using the battery vessel
JP4386230B2 (en) Alkaline battery core and battery using the same
JP2012114097A (en) Plated steel sheet for battery container, method for producing the same, battery container using the plated steel sheet for battery container and battery using the battery container

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902