JP5083931B2 - Battery container manufacturing method, battery container manufactured by the battery container manufacturing method, and battery using the battery container - Google Patents

Battery container manufacturing method, battery container manufactured by the battery container manufacturing method, and battery using the battery container Download PDF

Info

Publication number
JP5083931B2
JP5083931B2 JP2005310682A JP2005310682A JP5083931B2 JP 5083931 B2 JP5083931 B2 JP 5083931B2 JP 2005310682 A JP2005310682 A JP 2005310682A JP 2005310682 A JP2005310682 A JP 2005310682A JP 5083931 B2 JP5083931 B2 JP 5083931B2
Authority
JP
Japan
Prior art keywords
nickel
battery
battery container
alloy plating
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005310682A
Other languages
Japanese (ja)
Other versions
JP2007122940A (en
Inventor
信夫 坂本
龍夫 友森
義孝 本田
栄治 山根
栄次 岡松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP2005310682A priority Critical patent/JP5083931B2/en
Publication of JP2007122940A publication Critical patent/JP2007122940A/en
Application granted granted Critical
Publication of JP5083931B2 publication Critical patent/JP5083931B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は、電池容器の製造方法、その電池容器の製造方法により製造した電池容器およびその電池容器を用いた電池に関する。特にアルカリマンガン電池、リチウム一次電池、ニッカド電池、ニッケル水素電池あるいはリチウムイオン電池に使われる安価な電池容器、あるいはその容器を用いた電池に関する。   The present invention relates to a battery container manufacturing method, a battery container manufactured by the battery container manufacturing method, and a battery using the battery container. In particular, the present invention relates to an inexpensive battery container used for an alkaline manganese battery, a lithium primary battery, a nickel cadmium battery, a nickel metal hydride battery, or a lithium ion battery, or a battery using the container.

近年、オーディオ機器やモバイル電話など、多方面において携帯用機器が用いられ、その作動電源として一次電池であるアルカリ電池、二次電池であるニッケル水素電池、リチウムイオン電池などが多用されている。これらの電池においては、高出力化および長寿命化など、高性能化が常時求められており、正極および負極活物質を充填する電池容器も電池の重要な構成要素としての性能の向上が求められている。例えば、プレス絞りしごき加工してなる缶を用いた電池において、電池の内部抵抗を減少させるために、缶内面となる側に硬質なニッケル−コバルト合金めっきを被覆し、その上に、銀めっきなどを被覆する方法(例えば特許文献1参照)などが提案されている。   In recent years, portable devices such as audio devices and mobile phones have been used in various fields, and alkaline batteries that are primary batteries, nickel-hydrogen batteries that are secondary batteries, lithium ion batteries, and the like are frequently used as operating power sources. In these batteries, there is a constant demand for higher performance such as higher output and longer life, and battery containers filled with positive and negative electrode active materials are also required to have improved performance as important components of the battery. ing. For example, in a battery using a can formed by press drawing and ironing, in order to reduce the internal resistance of the battery, a hard nickel-cobalt alloy plating is coated on the side that becomes the inner surface of the can, and silver plating or the like is coated thereon. For example, a method of covering the surface (see Patent Document 1, for example) has been proposed.

しかしながら、特許文献1に記載の方法は、電池性能が優れているが、高価な銀めっきを施すため高価な電池容器となる。また、鋼板を電池容器に成形加工し、ニッケル系のめっきを施した場合、電池容器内面は、薄くしかめっきされない。特に電池容器内面の底部は非常に薄く、電池性能が悪い原因となっている。   However, although the method described in Patent Document 1 is excellent in battery performance, it is an expensive battery container because of expensive silver plating. Further, when a steel plate is formed into a battery container and nickel-based plating is applied, the inner surface of the battery container is plated only thinly. In particular, the bottom of the inner surface of the battery container is very thin, which causes poor battery performance.

本出願に関する先行技術文献情報として次のものがある。
特開平09−306439号公報
Prior art document information relating to the present application includes the following.
JP 09-306439 A

本発明においては、薄くニッケルまたはニッケル合金めっきを施し、あるいは薄くニッケルまたはニッケル合金めっきを施した後熱拡散処理を施し、深絞り加工法、絞りしごき加工法(DI加工法)、絞りストレッチ加工法(DTR加工法)、または絞り加工後ストレッチ加工としごき加工を併用する加工法を用いて、電池容器に成形加工した後、耐食性が要求される電池容器外面または外面側の一部にさらにニッケルめっきを施して、安価で、電池性能及び耐食性に優れた電池用容器の製造方法、その電池容器用の製造方法により製造した電池容器およびその電池容器を用いた電池を提供することを目的とする。   In the present invention, a thin nickel or nickel alloy plating is applied, or a thin nickel or nickel alloy plating is applied, followed by a thermal diffusion treatment, a deep drawing method, a drawing ironing method (DI processing method), a drawing stretch processing method. (DTR processing method) Or, after forming into a battery container using a processing method that uses both ironing and stretching after drawing, nickel plating is further applied to the outer surface of the battery container or a part of the outer surface where corrosion resistance is required The object is to provide a battery container manufacturing method that is inexpensive and excellent in battery performance and corrosion resistance, a battery container manufactured by the battery container manufacturing method, and a battery using the battery container.

本発明の電池容器の製造方法は以下の特徴を有する。
(1)鋼板の両面に、ニッケルまたはニッケル合金めっきを行った後、有底の筒型形状に成形加工し、さらに筒型形状の有底部を含む外面部にのみ、0.1〜3μm厚のニッケルめっきまたはニッケル合金めっきを行うことを特徴とする。
(2)鋼板の両面に、ニッケルまたはニッケル合金めっきを行った後、該鋼板に熱拡散処理を施してニッケルめっき層と鋼板の間に鉄ーニッケル拡散層を形成し、有底の筒型形状に成形加工し、さらに筒型形状の有底部を含む外面部にのみ、0.1〜3μm厚のニッケルめっきまたはニッケル合金めっきを行うことを特徴とする。
(3)上記の(1)又は(2)において、
前記鋼板の両面に行うニッケルまたはニッケル合金めっきの厚みが、0.1〜1.5μmであることを特徴とする。
(4)上記の(1)〜(3)のいずれかにおいて、
ニッケルまたはニッケル合金めっきは、鋼板の電池缶を形成する箇所のみ施すことを特徴とする。
(5)上記の(1)〜(4)のいずれかにおいて、
前記ニッケル合金めっきが、ニッケルーコバルト合金めっき、ニッケル−コバルト−リン合金めっき、ニッケルーマンガン合金めっき、ニッケルー鉄合金めっき、ニッケルーリン合金めっきまたはニッケルーボロン合金めっきであることを特徴とする。
(6)上記の(1)〜(5)のいずれかにおいて、
前記筒型形状の有底部を含む外面部が、ピップ部を含んでいることを特徴とする。
The battery container manufacturing method of the present invention has the following characteristics.
(1) After performing nickel or nickel alloy plating on both surfaces of the steel plate, the steel plate is molded into a bottomed cylindrical shape, and further, the outer surface portion including the cylindrical bottomed portion has a thickness of 0.1 to 3 μm. Nickel plating or nickel alloy plating is performed.
(2) After performing nickel or nickel alloy plating on both surfaces of the steel plate, the steel plate is subjected to a thermal diffusion treatment to form an iron-nickel diffusion layer between the nickel plating layer and the steel plate, thereby forming a bottomed cylindrical shape. It is characterized in that the nickel plating or nickel alloy plating with a thickness of 0.1 to 3 μm is performed only on the outer surface portion which is molded and further includes a bottom portion having a cylindrical shape.
(3) In the above (1) or (2),
The thickness of nickel or nickel alloy plating performed on both surfaces of the steel sheet is 0.1 to 1.5 μm.
(4) In any one of the above (1) to (3),
Nickel or nickel alloy plating is performed only at a portion where a battery can of a steel plate is formed.
(5) In any one of the above (1) to (4),
The nickel alloy plating is nickel-cobalt alloy plating, nickel-cobalt-phosphorus alloy plating, nickel-manganese alloy plating, nickel-iron alloy plating, nickel-phosphorus alloy plating, or nickel-boron alloy plating.
(6) In any of (1) to (5) above,
The outer surface portion including the cylindrical bottomed portion includes a pip portion.

(7)本発明の電池容器は、上記の(1)〜(6)のいずれかに記載の電池容器の製造方法により製造したものであることを特徴とする。
(8)本発明の電池は、上記の(7)に記載の電池容器を用いてなるものであることを特徴とする。
(7) The battery container of the present invention is manufactured by the method for manufacturing a battery container according to any one of (1) to (6) above.
(8) The battery of the present invention is characterized by using the battery container described in (7) above.

本発明の電池容器は、鋼板の両面に薄くニッケルまたはニッケル合金めっきを施した後、あるいは薄くニッケルまたはニッケル合金めっきを施した後に熱拡散熱処理を行った後、有底の筒型形状に成形加工し、さらに耐食性の要求される筒型形状の外面または外面側の一部にニッケルめっきを施すので、安価で耐食性に優れた電池容器の製造方法を提供することができる。   The battery container of the present invention is formed into a bottomed cylindrical shape after thinly nickel or nickel alloy plating on both sides of the steel sheet or after heat diffusion heat treatment after thinly nickel or nickel alloy plating In addition, since nickel plating is applied to the outer surface of the cylindrical shape or a part on the outer surface side where further corrosion resistance is required, it is possible to provide a battery container manufacturing method that is inexpensive and excellent in corrosion resistance.

以下、本発明の内容を説明する。本発明の電池容器の基板となる鋼板としては、汎用の低炭素アルミキルド鋼(炭素量0.01〜0.15重量%)、またはニオブやチタンを添加した非時効性の極低炭素アルミキルド鋼(炭素量0.01重量%未満)を用いる。これらの鋼の熱間圧延板を酸洗して表面のスケールを除去した後、冷間圧延し次いで電解洗浄、焼鈍、調質圧延したものを基板として用いる。また、冷間圧延し次いで電解洗浄後にニッケルあるいはニッケル合金めっきを施した後、鋼素地の再結晶焼鈍とめっき層の拡散処理を兼ねる熱処理を同時に行なってもよい。   The contents of the present invention will be described below. As the steel plate used as the substrate of the battery container of the present invention, general-purpose low carbon aluminum killed steel (carbon content 0.01 to 0.15 wt%), or non-aging ultra low carbon aluminum killed steel to which niobium or titanium is added ( Carbon amount of less than 0.01% by weight). These steel hot-rolled sheets are pickled to remove surface scales, then cold-rolled, and then subjected to electrolytic cleaning, annealing, and temper rolling as a substrate. Further, after cold rolling and electrolytic cleaning after nickel or nickel alloy plating, a heat treatment that doubles as a recrystallization annealing of the steel substrate and a diffusion treatment of the plating layer may be performed simultaneously.

基板である鋼板の両面に、まずニッケルあるいはニッケル合金めっきを施す。ニッケルあるいはニッケル合金めっきとしては無光沢めっき、または無光沢めっき浴に有機光沢剤を含有させた浴を用いてめっきした半光沢めっきであることが好ましい。めっき浴としては、通常使われるワット浴、硫酸浴、塩化浴等を用いることができる。硫黄成分を含有する有機光沢剤を含有させた浴を用いる光沢めっきは、めっき後に加熱すると硫黄成分により皮膜が脆化し、耐食性が低下するので好ましくない。めっき量としては、ニッケルとして0.1〜1.5μmであることが好ましい。ニッケルとしての厚みが0.1μm未満では電池缶内面における耐食性が充分でなく、電池性能の劣化をもたらす。また1.5μmを超えると、ピップ部を除いて耐食性の向上効果あるいは電池性能の向上効果は飽和に達し、不経済になる。   First, nickel or nickel alloy plating is applied to both surfaces of a steel plate as a substrate. Nickel or nickel alloy plating is preferably matte plating or semi-gloss plating obtained by plating using a bath containing an organic brightener in a matte plating bath. As the plating bath, a commonly used watt bath, sulfuric acid bath, chloride bath, or the like can be used. Bright plating using a bath containing an organic brightener containing a sulfur component is not preferred because heating after plating results in brittleness of the coating due to the sulfur component and a decrease in corrosion resistance. The plating amount is preferably 0.1 to 1.5 μm as nickel. If the thickness as nickel is less than 0.1 μm, the corrosion resistance on the inner surface of the battery can is insufficient, and the battery performance is deteriorated. On the other hand, when the thickness exceeds 1.5 μm, the effect of improving the corrosion resistance or the effect of improving the battery performance except for the pip portion reaches saturation and becomes uneconomical.

ニッケル合金めっきとしては、コバルト、鉄あるいはマンガンを添加したニッケル合金めっきが適用できる。コバルト、鉄あるいはマンガンの含有率としては、めっき層中に20重量%以下が好ましい。20重量%を超えると価格が上昇してしまう点で好ましくない。   As the nickel alloy plating, nickel alloy plating to which cobalt, iron or manganese is added can be applied. The content of cobalt, iron or manganese is preferably 20% by weight or less in the plating layer. Exceeding 20% by weight is not preferable in that the price increases.

また、ニッケルあるいはニッケル合金めっきは、鋼板の電池容器を形成する箇所のみ行っても良い。目的とする電気容器の筒型形状に加工する際、打ち抜くブランク径の大きさ及び形に合わせて部分的にめっきを行う。この場合、部分的にめっき厚みを変えても良い。電池容器を形成しない箇所は、スクラップとして廃棄する場合ニッケルなどの鉄以外の不純物金属が少なく、再利用のためにリサイクルする場合低コストで、再生できる。また、電池容器に相当する箇所のみ厚めっき化することが可能となる。   Further, nickel or nickel alloy plating may be performed only at a portion where a battery container of a steel plate is formed. When processing into the cylindrical shape of the target electric container, plating is partially performed in accordance with the size and shape of the blank diameter to be punched. In this case, the plating thickness may be partially changed. The portion where the battery container is not formed has few impurity metals other than iron such as nickel when discarded as scrap, and can be regenerated at low cost when recycled for reuse. In addition, it is possible to thick plate only the portion corresponding to the battery container.

上記ニッケルあるいはニッケル合金めっきを施したまま電池容器を成形しても良いが、めっき後引き続いて、保護ガス雰囲気中で箱型焼鈍法または連続焼鈍法を用いて熱拡散処理を施す。箱型焼鈍法を用いる場合は500〜650℃の温度範囲で1〜15時間均熱することが好ましく、連続焼鈍法を用いる場合は600〜850℃の温度範囲で10秒〜3分間加熱することが好ましい。このような条件で熱拡散処理を行うことにより、鋼素地とニッケルめっき層の界面に鉄−ニッケル(合金)拡散層、または鉄−ニッケル(合金)拡散層とその上に再結晶して軟質化したニッケル層が形成される。特に、鉄−ニッケル(合金)拡散層とその上に再結晶して軟質化したニッケル層が形成された場合は、電池容器に成形加工した後の耐食性の点で望ましい。   The battery container may be molded with the nickel or nickel alloy plating applied, but subsequently, after the plating, a thermal diffusion treatment is performed using a box-type annealing method or a continuous annealing method in a protective gas atmosphere. When using a box-type annealing method, it is preferable to soak for 1 to 15 hours in a temperature range of 500 to 650 ° C. When using a continuous annealing method, heating is performed for 10 seconds to 3 minutes at a temperature range of 600 to 850 ° C. Is preferred. By performing thermal diffusion treatment under such conditions, the iron-nickel (alloy) diffusion layer or the iron-nickel (alloy) diffusion layer at the interface between the steel substrate and the nickel plating layer is recrystallized and softened. A nickel layer is formed. In particular, when an iron-nickel (alloy) diffusion layer and a nickel layer softened by recrystallization are formed thereon, it is desirable in terms of corrosion resistance after being molded into a battery container.

このようにしていずれかの熱拡散処理を行った後、ストレッチヤーストレインの発生を防止するため、2%以下の圧延率で調質圧延する。より望ましくは1.3%未満の圧延率で調質圧延する。   After performing any of the thermal diffusion treatments in this manner, temper rolling is performed at a rolling rate of 2% or less in order to prevent the occurrence of stretch yarn strain. More desirably, temper rolling is performed at a rolling rate of less than 1.3%.

上記のように製造した鋼板を、深絞り加工法、絞りしごき加工法(DI加工法)、絞りストレッチ加工法(DTR加工法)、または絞り加工後ストレッチ加工としごき加工を併用する加工法を用いて、有底の筒型形状に成形加工する。筒型形状としては、底面が円、楕円、または長方形や正方形などの多角形の形状であり、用途に応じて側壁の高さを適宜選択した筒型形状に成形加工する。このようにして筒状に成形した電池容器は、電池容器外面または外面側の有底部にのみにニッケルあるいはニッケル合金めっきを行う。ピップ部を有する電池容器の場合、ピップ部を含んだ有底部のみにニッケルあるいはニッケル合金めっきを行う。ニッケルあるいはニッケル合金めっきは無電解めっきおよび電解めっきにより行うのが望ましい。電解めっきの場合、めっき液に光沢剤を含んだ半光沢あるいは光沢めっきを行っても良く、また光沢剤を含まない無光沢めっきでも適用できる。ニッケル合金めっきとしては、ニッケルーリン合金めっき、ニッケルーボロン合金めっき、ニッケルーコバルト合金めっき、ニッケル−コバルト−リン合金めっき、ニッケルーマンガン合金めっき、ニッケルー鉄合金めっきあるいはニッケルー錫合金めっきが適用できる。めっき中のリン、ボロン、コバルト、マンガン、鉄あるいは錫の含有率は20%以下が望ましい。より望ましくは5%以下である。20%以上超えても特性上影響はないが、コバルトなど高価な金属を適用すると経済的でなくなる。ニッケルーリン合金めっきあるいはニッケルーボロン合金めっきは無電解めっきでも適用できる。ニッケルあるいはニッケル合金めっきの厚みは0.1〜3μmが望ましい。0.1μm未満では、電池容器の外面側の耐食性が不十分であり、逆に3μmを超えると耐食性が飽和し、経済的でない。このようにして得られる電池容器に正極合剤、負極活物質等を充填して電池とする。   For steel plates manufactured as described above, use a deep drawing method, drawing ironing method (DI processing method), drawing stretch processing method (DTR processing method), or a processing method that combines ironing with stretching after drawing. To form a bottomed cylindrical shape. As the cylindrical shape, the bottom surface is a circle, an ellipse, or a polygonal shape such as a rectangle or a square, and is molded into a cylindrical shape with the side wall height appropriately selected according to the application. Thus, the battery container shape | molded in the cylinder shape performs nickel or nickel alloy plating only on the bottom part of a battery container outer surface or an outer surface side. In the case of a battery container having a pip part, nickel or nickel alloy plating is performed only on the bottomed part including the pip part. The nickel or nickel alloy plating is preferably performed by electroless plating or electrolytic plating. In the case of electrolytic plating, semi-gloss or bright plating containing a brightening agent in the plating solution may be performed, or matte plating containing no brightening agent can be applied. As the nickel alloy plating, nickel-phosphorus alloy plating, nickel-boron alloy plating, nickel-cobalt alloy plating, nickel-cobalt-phosphorus alloy plating, nickel-manganese alloy plating, nickel-iron alloy plating, or nickel-tin alloy plating can be applied. The content of phosphorus, boron, cobalt, manganese, iron or tin during plating is preferably 20% or less. More desirably, it is 5% or less. Even if it exceeds 20% or more, there is no influence on the characteristics, but if an expensive metal such as cobalt is applied, it is not economical. Nickel-phosphorus alloy plating or nickel-boron alloy plating can be applied even by electroless plating. The thickness of the nickel or nickel alloy plating is preferably 0.1 to 3 μm. If it is less than 0.1 μm, the corrosion resistance on the outer surface side of the battery container is insufficient, and conversely if it exceeds 3 μm, the corrosion resistance is saturated, which is not economical. The battery container thus obtained is filled with a positive electrode mixture, a negative electrode active material, and the like to obtain a battery.

以下、実施例にて本発明を詳細に説明する。
[電池容器用めっき鋼板の作成]
基板として、表1に化学組成を示す低炭素アルミキルド鋼(I)または極低炭素アルミキルド鋼(II)の0.25mmまたは0.4mmの板厚を有する冷間圧延板を用いて、通常の電解洗浄、酸洗を行い、ニッケルあるいはニッケル合金めっきを行った。冷間圧延後に焼鈍する場合は、低炭素アルミキルド鋼(I)の場合、箱型焼鈍により640〜660℃で8時間均熱した。極低炭素アルミキルド鋼(II)の場合、冷間圧延後、連続焼鈍により650〜850℃で1〜2分間加熱した。また、極低炭素アルミキルド鋼(II)の場合、冷間圧延後の焼鈍を実施せず、ニッケルまたはニッケル合金めっき後に連続焼鈍による焼鈍兼熱拡散処理を実施することもできる。
Hereinafter, the present invention will be described in detail with reference to examples.
[Creation of plated steel sheets for battery containers]
As a substrate, a cold rolled sheet having a thickness of 0.25 mm or 0.4 mm made of low carbon aluminum killed steel (I) or extremely low carbon aluminum killed steel (II) whose chemical composition is shown in Table 1 is used. Washing and pickling were performed, and nickel or nickel alloy plating was performed. In the case of annealing after cold rolling, in the case of low carbon aluminum killed steel (I), it was soaked at 640 to 660 ° C. for 8 hours by box annealing. In the case of extremely low carbon aluminum killed steel (II), after cold rolling, it was heated at 650-850 ° C. for 1-2 minutes by continuous annealing. Further, in the case of the ultra-low carbon aluminum killed steel (II), the annealing and thermal diffusion treatment by continuous annealing can be performed after nickel or nickel alloy plating without performing the annealing after cold rolling.

Figure 0005083931
Figure 0005083931

ニッケルめっき、ニッケル−コバルト合金めっき、ニッケルー鉄めっきは以下に示す条件で行った。
<ニッケルめっき>
浴組成 硫酸ニッケル 300g/L
塩化ニッケル 40g/L
ホウ酸 40g/L
ピット抑制剤(ラウリル硫酸ナトリウム) 0.4mL/L
陽極 ニッケルペレット(チタンバスケットに充填)
攪拌 空気撹拝
pH 4〜4.6
浴温 55〜60℃
電流密度 20A/dm2
Nickel plating, nickel-cobalt alloy plating, and nickel-iron plating were performed under the following conditions.
<Nickel plating>
Bath composition Nickel sulfate 300g / L
Nickel chloride 40g / L
Boric acid 40g / L
Pit inhibitor (sodium lauryl sulfate) 0.4mL / L
Anode Nickel pellet (filled in titanium basket)
Stirring Air stirring pH 4 to 4.6
Bath temperature 55-60 ° C
Current density 20A / dm2

<ニッケル−コバルト合金めっき>
浴組成 硫酸ニッケル 300g/L
塩化ニッケル 40g/L
硫酸コバルト (適宜添加)
ホウ酸 40g/L
ピット抑制剤(ラウリル硫酸ナトリウム) 0.4mL/L
陽極 ニッケルペレット(チタンバスケットに充填)
攪拌 空気撹拝
pH 4〜4.6
浴温 55〜60℃
電流密度 20A/dm2
<Nickel-cobalt alloy plating>
Bath composition Nickel sulfate 300g / L
Nickel chloride 40g / L
Cobalt sulfate (added as appropriate)
Boric acid 40g / L
Pit inhibitor (sodium lauryl sulfate) 0.4mL / L
Anode Nickel pellet (filled in titanium basket)
Stirring Air stirring pH 4 to 4.6
Bath temperature 55-60 ° C
Current density 20A / dm2

<ニッケル−鉄合金めっき>
浴組成 硫酸ニッケル 300g/L
塩化ニッケル 40g/L
硫酸鉄 (適宜添加)
ホウ酸 40g/L
ピット抑制剤(ラウリル硫酸ナトリウム) 0.4mL/L
陽極 ニッケルペレット(チタンバスケットに充填)
攪拌 空気撹拝
pH 4〜4.6
浴温 55〜60℃
電流密度 20A/dm2
<Nickel-iron alloy plating>
Bath composition Nickel sulfate 300g / L
Nickel chloride 40g / L
Iron sulfate (added as appropriate)
Boric acid 40g / L
Pit inhibitor (sodium lauryl sulfate) 0.4mL / L
Anode Nickel pellet (filled in titanium basket)
Stirring Air stirring pH 4 to 4.6
Bath temperature 55-60 ° C
Current density 20A / dm2

ニッケルまたはニッケル合金めっき後、拡散処理を行う場合、熱拡散処理は低炭素アルミキルド鋼(I)の場合は箱型焼鈍により500〜560℃で6〜8時間均熱し、低炭素アルミキルド鋼(I)の一部および極低炭素アルミキルド鋼(II)の場合は連続焼鈍により650〜820℃で30秒〜3分間加熱した。 When diffusion treatment is performed after nickel or nickel alloy plating, the thermal diffusion treatment is performed in the case of low carbon aluminum killed steel (I) by soaking at 500 to 560 ° C. for 6 to 8 hours by box annealing, and the low carbon aluminum killed steel (I) In the case of a part of and a very low carbon aluminum killed steel (II), it was heated at 650 to 820 ° C. for 30 seconds to 3 minutes by continuous annealing.

以上のようにして表2に示す電池容器の試料(試料番号1〜8)を作成した。また、比較用として鋼板にはめっきを施さず、電池容器に加工後に光沢ニッケルめっきを外面側に3μmめっきを施した電池容器(試料番号9)とした。さらに、比較用に半光沢ニッケルめっきを鋼板の外面に相当する面に2μm、内面に相当する面に1μm施した後拡散処理を施し、電池容器に加工後にはめっきを施さなかった電池容器(試料番号10)、および無光沢ニッケルめっきを鋼板の外面に相当する面に2.3μm、内面に相当する面に1.2μm施し、電池容器に加工後にはめっきを施さななかった電池容器(試料番号11)を作成した。なお、電池容器の作成方法は下記の通り。
[電池容器の作成]
これらの試料番号1〜11の試料からブランクを打ち抜いた後、深絞り加工法、絞りしごき加工法(DI加工法)、または絞りストレッチ加工法(DTR加工法)を用いて、外径13.8mm、高さ49.3mmの円筒形のLR6型電池(単3型電池)容器に成形加工した。
<深絞り加工条件>
深絞り加工法による電池容器の作製は、板厚0.25mmのめっき鋼板を用い、ブランク径57mmに打ち抜き、数回の絞り、再絞り成形によって外径13.8mm、容器側壁0.25mm、高さ49.3mmのLR6型電池容器を作製した。
<絞りしごき加工条件>
DI加工法による電池容器の作製は、板厚0.4mmの上記めっき鋼板を用い直径41mmのブランク径から直径20.5mmのカッピングの後、DI成形機でリドロ−および2段階のしごき成形を行って外径13.8mm、容器側壁0.20mm、高さ56mmに成形した。最終的に上部をトリミングして、高さ49.3mmのLR6型電池容器を作製した。
<絞りストレッチ加工(DTR加工)条件>
DTR加工法による電池容器の作製は、板厚0.25mmのめっき鋼板を用い、ブランク径58mmに打ち抜き、数回の絞り、再絞り成形によって外径13.8mm、容器側壁0.20mm、高さ49.3mmのLR6型電池容器を作製した。
The battery container samples (sample numbers 1 to 8) shown in Table 2 were prepared as described above. For comparison, the steel plate was not plated, and a battery container (Sample No. 9) in which bright nickel plating was applied to the outer surface side and 3 μm plating was performed after the battery container was processed. For comparison, a semi-bright nickel plating was applied to the surface corresponding to the outer surface of the steel plate by 2 μm, and the surface corresponding to the inner surface was applied by 1 μm, followed by diffusion treatment. No. 10), and a battery container (sample number) in which the matte nickel plating is applied to the surface corresponding to the outer surface of the steel plate by 2.3 μm and the surface corresponding to the inner surface is 1.2 μm, and the battery container is not plated after being processed. 11) was created. The battery container is created as follows.
[Create battery container]
After blanks are punched from these samples Nos. 1 to 11, the outer diameter is 13.8 mm using a deep drawing method, a drawing and ironing method (DI processing method), or a drawing stretch processing method (DTR processing method). Then, it was molded into a cylindrical LR6 battery (AA battery) container having a height of 49.3 mm.
<Deep drawing processing conditions>
The battery container is manufactured by a deep drawing method using a plated steel sheet having a thickness of 0.25 mm, punched to a blank diameter of 57 mm, drawn several times, and redrawed to an outer diameter of 13.8 mm, a container side wall of 0.25 mm, and a high A 49.3 mm LR6 type battery container was produced.
<Drawing and ironing conditions>
The battery container is manufactured by the DI processing method using the above plated steel plate with a thickness of 0.4 mm, cupping from a blank diameter of 41 mm to a diameter of 20.5 mm, and then performing a redo and two-stage ironing with a DI molding machine. The outer diameter was 13.8 mm, the container side wall was 0.20 mm, and the height was 56 mm. Finally, the upper part was trimmed to produce an LR6 type battery container having a height of 49.3 mm.
<Drawing stretch processing (DTR processing) conditions>
The battery container is manufactured by the DTR processing method using a plated steel sheet having a thickness of 0.25 mm, punched to a blank diameter of 58 mm, drawn several times, and redrawed to an outer diameter of 13.8 mm, a container side wall of 0.20 mm, and a height. A 49.3 mm LR6 type battery container was produced.

上記のように、電池容器を製造した後、電池容器の外面側のピップ部を有する有底部に下記のニッケルあるいはニッケル合金めっきを施した。表2にはバレルめっきとして示した。ニッケル−リン合金めっきは下記の条件で実施した。なお、ニッケルめっきは、上述しためっき条件で行った。
<ニッケル−リン合金めっき>
浴組成 硫酸ニッケル 240g/L
塩化ニッケル 40g/L
硼酸 30g/L
亜リン酸 8g/L
陽極 ニッケルペレット(チタンバスケットに充填)
攪拌 空気撹拝
浴温 40〜45℃
電流密度 8A/dm2
As described above, after manufacturing the battery container, the following nickel or nickel alloy plating was applied to the bottomed part having the pip part on the outer surface side of the battery container. Table 2 shows the barrel plating. Nickel-phosphorus alloy plating was performed under the following conditions. Nickel plating was performed under the above-described plating conditions.
<Nickel-phosphorus alloy plating>
Bath composition Nickel sulfate 240g / L
Nickel chloride 40g / L
Boric acid 30g / L
Phosphorous acid 8g / L
Anode Nickel pellet (filled in titanium basket)
Stirring Air stirring bath temperature 40-45 ° C
Current density 8A / dm2

Figure 0005083931
Figure 0005083931

[電池の作成]
この電池容器を用いて、以下のようにしてアルカリマンガン電池を作成した。二酸化マンガンと黒鉛を10:1の比率で採取し、水酸化カリウム(10モル)を添加混合して正極合剤を作成した。次いでこの正極合剤を金型中で加圧して所定寸法のドーナツ形状の正極合剤ぺレットに成形し、上記の電池容器に圧挿入した。なお、一部の電池容器は、内面に黒鉛粉末を主成分とする塗料を塗布したものを用いた。次に、負極集電棒をスポット溶接した負極板を電池容器に装着した。次いで、電池容器に圧挿入した正極合剤ぺレットの内周に沿うようにしてビニロン製織布からなるセパレータを挿入し、亜鉛粒と酸化亜鉛を飽和させた水酸化カリウムからなる負極ゲルを電池容器内に充填した。さらに、負極板に絶縁体のガスケットを装着して電池容器内に挿入した後、カシメ加工してアルカリマンガン電池を作成した。
[Create battery]
Using this battery container, an alkaline manganese battery was prepared as follows. Manganese dioxide and graphite were collected at a ratio of 10: 1, and potassium hydroxide (10 mol) was added and mixed to prepare a positive electrode mixture. Next, the positive electrode mixture was pressurized in a mold to form a donut-shaped positive electrode mixture pellet with a predetermined size, and was press-inserted into the battery container. In addition, some battery containers used what applied the coating material which has graphite powder as a main component on the inner surface. Next, the negative electrode plate spot-welded with the negative electrode current collector rod was attached to the battery container. Next, a separator made of vinylon woven fabric is inserted along the inner circumference of the positive electrode mixture pellet inserted into the battery container, and a negative electrode gel made of potassium hydroxide saturated with zinc particles and zinc oxide is added to the battery. The container was filled. Further, an insulating gasket was attached to the negative electrode plate and inserted into the battery container, followed by caulking to prepare an alkaline manganese battery.

[特性評価]
以上のようにして試料番号1〜11の試料から作成した電池容器を用いて作成した電池の特性を、以下のようにして評価した。
[Characteristic evaluation]
The characteristics of the batteries prepared using the battery containers prepared from the samples Nos. 1 to 11 as described above were evaluated as follows.

<内部抵抗>
電池を80℃で3日間放置した後、交流インピーダンス法で内部抵抗値(mΩ)を測定した。内部抵抗値が小であるほど特性が良好であることを示す。
<Internal resistance>
The battery was left at 80 ° C. for 3 days, and then the internal resistance value (mΩ) was measured by the AC impedance method. The smaller the internal resistance value, the better the characteristics.

<短絡電流>
電池を80℃で3日間放置した後、電池に電流計を接続して閉回路を設けて電流値を測定し、これを短絡電流とした。短絡電流が大であるほど特性が良好であることを示す。
<Short-circuit current>
After leaving the battery at 80 ° C. for 3 days, an ammeter was connected to the battery, a closed circuit was provided, and the current value was measured, which was defined as a short-circuit current. It shows that a characteristic is so favorable that a short circuit current is large.

<放電特性>
電池を80℃で3日間放置した後、電池を1.5Aの一定電流に放電し、電圧が0.9Vに到達するまでの時間を放電時間として測定した。放電時間が長いほど放電特性が良好であることを示す。
<Discharge characteristics>
After leaving the battery at 80 ° C. for 3 days, the battery was discharged to a constant current of 1.5 A, and the time until the voltage reached 0.9 V was measured as the discharge time. The longer the discharge time, the better the discharge characteristics.

<耐食性>
電池を、塩水噴霧試験(SST)で2.5時間放置して、電池の有底部(ピップ加工部を含む)の赤錆の発生状況を調べた。錆発生個数が0〜5個/電池の場合を○で、6〜10個/電池の場合を△で、11個以上/電池の場合を×で評価した。○のみを合格範囲とした。
<Corrosion resistance>
The battery was allowed to stand for 2.5 hours in a salt spray test (SST), and the occurrence of red rust on the bottomed part (including the pip-processed part) of the battery was examined. The case where the number of rust generations was 0 to 5 / battery was evaluated as ◯, the case of 6 to 10 / battery was evaluated as Δ, and the case of 11 or more / battery was evaluated as ×. Only ○ was considered acceptable.

Figure 0005083931
Figure 0005083931

表3に示すように、本発明の電池は、めっきを鋼板の状態で施さず電池容器に加工後めっきを施す電池(比較例1)に較べて放電特性に優れ且つ耐食性にも優れる。また、電池容器に加工後めっき施さない電池(比較例2と3)に比べて同等の放電特性を示し、電池流れ性及び耐食性において優れた特性を有する。   As shown in Table 3, the battery of the present invention is excellent in discharge characteristics and corrosion resistance as compared with a battery (Comparative Example 1) in which plating is not performed in the state of a steel sheet and plating is performed on the battery container. Moreover, it has the same discharge characteristics as batteries (Comparative Examples 2 and 3) in which the battery container is not plated after processing, and has excellent battery flowability and corrosion resistance.

鋼板の両面に、厚み0.1〜1.5μmのニッケルまたはニッケル合金めっきを施した後、有底部を有する電池容器に成形加工し、さらに電池容器の外面側有底部(ピップ部を含む)に厚み0.1〜3μmニッケルまたはニッケル合金めっきを施し、負極剤及び正極剤等を充填して作成した電池は、電池容器形成後めっきを施さない作成した電池に比べて短絡電流、放電特性において同等の特性を示し、電池流れ性及び耐食性に優れた特性を有する。
このように、電池容器に成形加工後、耐食性を要求される有底部のみめっきを施した電池はより安価な電池となる。
After nickel or nickel alloy plating with a thickness of 0.1 to 1.5 μm is applied to both surfaces of the steel sheet, it is molded into a battery container having a bottomed part, and further to the bottomed part (including the pip part) on the outer surface side of the battery container. Batteries made with nickel or nickel alloy plating with a thickness of 0.1 to 3 μm and filled with negative electrode agent and positive electrode agent etc. are equivalent in short circuit current and discharge characteristics compared to batteries made without plating after forming the battery container And has excellent battery flowability and corrosion resistance.
Thus, a battery in which only a bottomed portion requiring corrosion resistance is plated after the battery container is molded is a cheaper battery.

Claims (8)

鋼板の両面に、ニッケルまたはニッケル合金めっきを行った後、有底の筒型形状に成形加工し、さらに筒型形状の有底部を含む外面部にのみ、0.1〜3μm厚のニッケルめっきまたはニッケル合金めっきを行うことを特徴とする電池容器の製造方法。 After performing nickel or nickel alloy plating on both surfaces of the steel plate, it is molded into a bottomed cylindrical shape, and further , nickel plating with a thickness of 0.1 to 3 μm or only on the outer surface including the bottomed portion of the cylindrical shape The manufacturing method of the battery container characterized by performing nickel alloy plating. 鋼板の両面に、ニッケルまたはニッケル合金めっきを行った後、該鋼板に熱拡散処理を施してニッケルめっき層と鋼板の間に鉄ーニッケル拡散層を形成し、有底の筒型形状に成形加工し、さらに筒型形状の有底部を含む外面部にのみ、0.1〜3μm厚のニッケルめっきまたはニッケル合金めっきを行うことを特徴とする電池容器の製造方法。 After nickel or nickel alloy plating is performed on both sides of the steel plate, the steel plate is subjected to a thermal diffusion treatment to form an iron-nickel diffusion layer between the nickel plating layer and the steel plate, and then formed into a cylindrical shape with a bottom. Furthermore , a nickel container or nickel alloy plating having a thickness of 0.1 to 3 μm is performed only on an outer surface portion including a bottom portion having a cylindrical shape. 前記鋼板の両面に行うニッケルまたはニッケル合金めっきの厚みが、0.1〜1.5μmであることを特徴とする請求項1又は2に記載の電池容器の製造方法。The method for manufacturing a battery container according to claim 1 or 2, wherein a thickness of nickel or nickel alloy plating performed on both surfaces of the steel plate is 0.1 to 1.5 µm. 前記ニッケルまたはニッケル合金めっきは、鋼板の電池缶を形成する箇所のみ施すことを特徴とする請求項1〜3のいずれかに記載の電池容器の製造方法。 The said nickel or nickel alloy plating is performed only in the location which forms the battery can of a steel plate, The manufacturing method of the battery container in any one of Claims 1-3 characterized by the above-mentioned. 前記ニッケル合金めっきが、ニッケルーコバルト合金めっき、ニッケル−コバルト−リン合金めっき、ニッケルーマンガン合金めっき、ニッケルー鉄合金めっき、ニッケルーリン合金めっきまたはニッケルーボロン合金めっきであることを特徴とする請求項1〜4のいずれかに記載の電池容器の製造方法。 Claim phosphorus alloy plating, nickel-manganese alloy plating, nickel-iron alloy plating, characterized in that it is a nickel-phosphorus alloy plating or nickel-boron alloy plating - said nickel alloy plating, nickel-cobalt alloy plating, nickel - cobalt The manufacturing method of the battery container in any one of 1-4 . 前記筒型形状の有底部を含む外面部が、ピップ部を含んでいることを特徴とする請求項1〜5のいずれかに記載の電池容器の製造方法。 The method for manufacturing a battery container according to any one of claims 1 to 5, wherein the outer surface portion including the bottom portion having the cylindrical shape includes a pip portion. 請求項1〜6のいずれかに記載の電池容器の製造方法により製造した電池容器。 The battery container manufactured by the manufacturing method of the battery container in any one of Claims 1-6 . 請求項7に記載の電池容器を用いてなる電池。 A battery comprising the battery container according to claim 7.
JP2005310682A 2005-10-26 2005-10-26 Battery container manufacturing method, battery container manufactured by the battery container manufacturing method, and battery using the battery container Active JP5083931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005310682A JP5083931B2 (en) 2005-10-26 2005-10-26 Battery container manufacturing method, battery container manufactured by the battery container manufacturing method, and battery using the battery container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005310682A JP5083931B2 (en) 2005-10-26 2005-10-26 Battery container manufacturing method, battery container manufactured by the battery container manufacturing method, and battery using the battery container

Publications (2)

Publication Number Publication Date
JP2007122940A JP2007122940A (en) 2007-05-17
JP5083931B2 true JP5083931B2 (en) 2012-11-28

Family

ID=38146574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005310682A Active JP5083931B2 (en) 2005-10-26 2005-10-26 Battery container manufacturing method, battery container manufactured by the battery container manufacturing method, and battery using the battery container

Country Status (1)

Country Link
JP (1) JP5083931B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4995140B2 (en) * 2008-04-25 2012-08-08 新日本製鐵株式会社 Ni-plated steel sheet for containers, container manufactured thereby, and method for manufacturing the same
EP2472631B1 (en) 2009-08-26 2016-03-30 Toyo Kohan Co., Ltd. Ni-plated steel sheet for battery can having excellent pressability
CN102763237B (en) * 2010-01-08 2015-04-22 东洋钢钣株式会社 Ni-plated steel sheet with excellent pressability for battery can
EP2704228B1 (en) * 2011-04-28 2018-06-13 Toyo Kohan Co., Ltd. Surface-treated steel sheet for battery cases, battery case, and battery
WO2013005774A1 (en) * 2011-07-07 2013-01-10 東洋鋼鈑株式会社 Surface-treated steel sheet for battery case, process for producing same, battery case, and battery
DE112014005205T5 (en) * 2013-11-15 2016-08-04 Panasonic Intellectual Property Management Co., Ltd. Alkaline dry cell
JP6843668B2 (en) * 2017-03-27 2021-03-17 Fdk株式会社 Manufacturing method of battery can, battery can, battery equipped with this battery can, and manufacturing method of this battery
SG11202003854WA (en) * 2017-10-27 2020-05-28 Toyo Kohan Co Ltd Surface-treated steel sheet and method for manufacturing the same
CN112368426B (en) * 2018-07-06 2023-06-30 日本制铁株式会社 Surface-treated steel sheet and method for producing surface-treated steel sheet
KR20220004672A (en) * 2019-04-27 2022-01-11 도요 고한 가부시키가이샤 Surface-treated steel sheet and its manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725666A (en) * 1980-07-21 1982-02-10 Fuji Elelctrochem Co Ltd Manufacture of alkaline battery
JPH0773860A (en) * 1993-09-02 1995-03-17 Toshiba Battery Co Ltd Manufacture of square alkaline battery
JPH09306439A (en) * 1996-05-21 1997-11-28 Katayama Tokushu Kogyo Kk Battery can forming material, battery can forming method and battery can
JPH10212595A (en) * 1998-03-06 1998-08-11 Katayama Tokushu Kogyo Kk Manufacture of battery can forming material and battery can made of the same forming material
JP3664046B2 (en) * 2000-06-01 2005-06-22 新日本製鐵株式会社 Method for producing Ni-plated steel sheet for positive electrode can of alkaline manganese battery

Also Published As

Publication number Publication date
JP2007122940A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
JP5083931B2 (en) Battery container manufacturing method, battery container manufactured by the battery container manufacturing method, and battery using the battery container
WO1995011527A1 (en) Surface-treated steel sheet for battery case and battery case
JP4159051B2 (en) Surface-treated steel sheet for battery case and battery case using the same
JP2006093096A (en) Plated steel sheet for battery container, battery container using same, and battery using its battery container
JP4824961B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2006351434A (en) Plated steel sheet for battery container, battery container using plated steel sheet for battery container, and battery using battery container
JP2007051325A (en) Plated steel plate for battery case, battery case using the steel plate for battery case and battery using the battery case
JP2006190648A (en) Plated sheet steel for battery case, battery case using the plated sheet steel for battery case, and battery using the battery case
JP4748665B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2007052997A (en) Plated steel sheet for battery case, battery case using plated steel sheet for battery case, and battery using battery case
JP3272866B2 (en) Surface treated steel sheet for alkaline battery case, alkaline battery case and alkaline battery
JP2006351432A (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JPWO2005018021A1 (en) Surface-treated steel sheet for battery case, battery case and battery using the same
JP2007059087A (en) Plated steel sheet for battery case, battery case using same, and battery using the battery case
JP2004076117A (en) Surface treated steel sheet for battery case, and battery case using the same
JP3840430B2 (en) Surface-treated steel sheet for battery case and battery case
JP4817724B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP4675707B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2007051324A (en) Plated steel plate for battery case, battery case using the steel plate for battery case and battery using the battery case
JP2006093097A (en) Plated steel sheet for battery container, battery container using same, and battery using its battery container
JP4911952B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP4798953B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP4968877B2 (en) Plated steel sheet for battery container, method for producing the same, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2007005157A (en) Plated steel plate for battery case, battery case using it, battery using it and manufacturing method of plated steel plate for battery case
JP2006307321A (en) Plated steel sheet for battery vessel, battery vessel using the plated steel sheet for battery vessel, and battery using the battery vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080731

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120829

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120831

R150 Certificate of patent or registration of utility model

Ref document number: 5083931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250