JP3840430B2 - Surface-treated steel sheet for battery case and battery case - Google Patents

Surface-treated steel sheet for battery case and battery case Download PDF

Info

Publication number
JP3840430B2
JP3840430B2 JP2002141080A JP2002141080A JP3840430B2 JP 3840430 B2 JP3840430 B2 JP 3840430B2 JP 2002141080 A JP2002141080 A JP 2002141080A JP 2002141080 A JP2002141080 A JP 2002141080A JP 3840430 B2 JP3840430 B2 JP 3840430B2
Authority
JP
Japan
Prior art keywords
layer
iron
nickel
plating
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002141080A
Other languages
Japanese (ja)
Other versions
JP2003328158A (en
Inventor
等 大村
龍夫 友森
義孝 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP2002141080A priority Critical patent/JP3840430B2/en
Publication of JP2003328158A publication Critical patent/JP2003328158A/en
Application granted granted Critical
Publication of JP3840430B2 publication Critical patent/JP3840430B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アルカリ液を封入する容器、より詳しくはアルカリマンガン電池やニッケル−カドミウム電池などの電池外装ケース用表面処理鋼板及び該表面処理鋼板を深絞り成形法、DI成形法又はDTR成形法によって成形して得られる電池ケースに関する。
【0002】
【従来の技術】
従来、アルカリマンガン電池やニッケル−カドミウム電池などの強アルカリ液を封入する電池ケースには、冷延鋼帯を電池ケ−スにプレス成形後、バレルめっきする方法またはニッケルめっき鋼帯を電池ケ−スにプレス成形する方法が採用されてきた。
【0003】
このように、アルカリマンガン電池やニッケル−カドミウム電池などの電池用途に、ニッケルめっきが使用される理由は、これら電池は主として強アルカリ性の水酸化カリウムを電解液としているため、耐アルカリ腐食性にニッケルが強いこと、さらに電池を外部端子に接続する場合、安定した接触抵抗をニッケルは有していること、更には電池製造時、各構成部品を溶接し、電池に組み立てられる際、スポット溶接が行われるが、ニッケルはスポット溶接性にも優れているという利点があるからである。
【0004】
近年、電池ケースのプレス成形法として、電池容量の増大を図るため、深絞り成形法に替わって、薄肉化する方法としてDI(drawing and ironing)成形法も用いられるようになった(特公平7−99686号公報)。このDI成形法やDTR(drawing thin and redraw)成形法は、底面厚みよりケース側壁厚みが薄くなる分だけ、正極、負極活物質が多く充填でき、電池の容量増加が図れるとともに、ケース底が厚いため、電池の耐圧強度の向上をも得られる利点がある。
【0005】
更に、近年、アルカリマンガン電池には、内部抵抗、短絡電流、放電特性などの性能が優れることが要求されている。
【0006】
【発明が解決すべき課題】
上記したように、近年、深絞り成形法、DI成形法あるいはDTR成形法で作製した電池ケースは、電池性能の点から、内面の表層がニッケルめっき、あるいは鉄−ニッケル拡散層からなっている。
【0007】
しかし、缶内面の最表層がニッケルめっき、あるいは鉄−ニッケル拡散層では、電池特性に限界があり、改善が望まれている
本発明はこれらの点に鑑みてなされたものであり、電池性能に優れた電池ケース及び該電池ケースを作製するために好適に用いることができる表面処理鋼板を提供することを目的とする。
【0008】
【課題を解決するための手段】
そこで、本発明者等は、このような観点から、深絞り成形法、DI成形法ならびにDTR成形法で作製した電池ケースにおいて、缶内面の最表層に鉄−ニッケル合金めっき層を有すると、内部抵抗、短絡電流等の電池性能が優れることを見いだして本発明を完成させた。
【0011】
請求項1に記載の電池ケース用表面処理鋼板は、鋼板からなるめっき原板において、ケース内面に相当する面では、下層として鉄−ニッケル拡散層と、上層としてコバルトを5〜25重量%含んだ鉄−コバルト−ニッケル合金めっき層を拡散処理することにより形成した鉄を4〜70重量%含んだ鉄−コバルト−ニッケル拡散層を有し、ケース外面に相当する面では、下層として鉄−ニッケル拡散層、上層としてニッケル層を有することを特徴とする。なお、本発明における重量%は質量%を意味する。
【0012】
請求項2に記載の電池ケース用表面処理鋼板は、鋼板からなるめっき原板において、ケース内面に相当する面では、鉄−ニッケル拡散層、中間層としてニッケル層と、上層としてコバルトを5〜25重量%含んだ鉄−コバルト−ニッケル合金めっき層を拡散処理することにより形成した鉄を4〜70重量%含んだ鉄−コバルト−ニッケル拡散層を有し、ケース外面に相当する面では、下層として鉄−ニッケル拡散層と、上層としてニッケル層を有することを特徴とする。
【0013】
請求項3に記載の電池ケース用表面処理鋼板は、鋼板からなるめっき原板において、ケース内面に相当する面では、下層として鉄−ニッケル拡散層、上層としてコバルトを5〜25重量%含んだ鉄−コバルト−ニッケル合金めっき層を拡散処理することにより形成した鉄を4〜70重量%含んだ鉄−コバルト−ニッケル拡散層を有し、ケース外面に相当する面では、下層として鉄−ニッケル拡散層、上層として鉄−ニッケル合金層を拡散処理した層を有することを特徴とする。
【0014】
請求項4に記載の電池ケース用表面処理鋼板は、鋼板からなるめっき原板において、ケース内面に相当する面では、下層として、鉄−ニッケル拡散層、中間層としてニッケルめっき層と、上層としてコバルトを5〜25重量%含んだ鉄−コバルト−ニッケル合金めっき層を拡散処理することにより形成した鉄を4〜70重量%含んだ鉄−コバルト−ニッケル拡散層を有し、ケース外面に相当する面では、下層として鉄−ニッケル拡散層、中間層としてニッケル層と、上層として鉄−ニッケル合金めっき層を拡散処理した層を有することを特徴とする。
【0015】
請求項5に記載の電池ケースは、請求項1乃至請求項4のいずれか1項に記載の電池ケース用表面処理鋼板を深絞り成形法、DI成形法又はDTR成形法によって成形して得られることを特徴とする。
【0016】
【発明の実施の形態】
上記した電池ケース及び表面処理鋼板におけるニッケル−鉄合金めっきの生成について述べると、ワット浴、スルファミン酸浴に硫酸鉄を添加した場合、鉄がニッケルと共析し、その結果、共析めっき層はめっき皮膜中の鉄含有量が増加する。これらのニッケル−鉄合金めっきだけでなく、更に熱処理することにより、この合金層中の鉄の割合がある一定の範囲で良好な電池性能を示す。単なるニッケル層だけでは、理由は不明であるが電池性能が向上しない。また、鋼板の上に、ニッケルめっきを施した後、熱処理により鉄−ニッケル拡散層を表層に作る場合では、表層の鉄の割合をある一定の範囲に制御することが困難である。
【0017】
なお、本発明は、電池ケースの成形法によらないで、例えば、深絞り成形法、DI成形法やDTR成形法によらないで、優れた電池性能を有する電池ケースが得られる。
【0018】
ところで、鉄−ニッケル合金めっき層あるいは更に熱処理した後の合金層中の鉄含有量は4.0重量%〜70重量%の範囲が好適である。鉄含有量が4.0重量%未満では、内部抵抗が高く、好ましくない。70重量%を超えると耐食性が悪い。
【0019】
ニッケルめっき厚みは、鉄−ニッケル合金めっきの下層めっきとして行う場合は0〜3μmの範囲が好ましい。3μmを超えても、特性に影響ないが、厚すぎて不経済となる。缶外面側がニッケルめっきの単層の構成となる場合では、1〜4μmが好ましい。1μm未満では、耐食性が悪い。4μmを超えても、耐食性はほとんど向上せず、不経済である。
【0020】
本発明の鉄−ニッケル合金めっきでは、0.2〜3μmの範囲が望ましい。0.2μm未満では、めっき層、あるいは拡散層が薄くて電池性能は悪い。一方、3μmを超えても、電池性能はほとんど変わらないが、厚すぎて不経済である。
【0021】
表面処理鋼板の母材となる鋼板、即ち、めっき原板としては、通常、低炭素アルミキルド鋼が好適に用いられる。さらに、ニオブ、チタンを添加し、非時効性極低炭素鋼(炭素0.01%未満)から製造された冷延鋼帯も用いられる。
【0022】
そして、通常法により、冷延後、電解清浄、焼鈍、調質圧延した鋼帯をめっき原板とする。その後、このめっき原板を用い、ニッケルめっきを片面あるいは両面に行っても良い。めっき浴は公知の硫酸浴、スルファミン酸浴のいずれでもかまわないが、浴管理が比較的容易な硫酸浴が好適である。ニッケルめっきでは、無光沢めっき、半光沢めっきが良い。このニッケルめっき後、あるいはニッケルめっきを施さないで、鉄−ニッケル合金めっきを行う。めっき浴は公知の硫酸浴、スルファミン酸浴のいずれでもかまわないが、浴管理が比較的容易な硫酸浴が好適である。鉄−ニッケルめっきでは、無光沢めっき、半光沢めっきが良い。
【0023】
この鉄−ニッケル合金めっき後、熱処理により表層にニッケル−鉄拡散層を形成しても良い。鉄−ニッケル合金めっき層を熱処理した後の合金層中の鉄含有量は4.0重量%〜70重量%の範囲が好適である。鉄含有量が4.0重量%未満では、内部抵抗が高く、好ましくない。70重量%を超えると、耐食性が悪い。この鉄−ニッケル合金めっき層は、更にコバルトを5〜25重量%含んでも良い。
【0024】
この際、下層にも、下地の鉄とニッケルめっきによる鉄−ニッケル拡散層ができるが、このニッケルめっき層は全て鉄−ニッケル拡散層にしても良いし、1部残存しても良い。この目的のためには、箱型焼鈍法による熱処理では、450〜650℃の温度で4〜15時間、連続焼鈍法では、600〜850℃の温度で、0.5〜3分程度の熱処理が好ましい。
【0025】
【実施例】
本発明について、さらに、以下の実施例を参照して具体的に説明する。
【0026】
板厚0.25mmならびに0.4mmの冷間圧延、焼鈍、調質圧延済の低炭素アルミキルド鋼板を、それぞれ、めっき原板とした。また、板厚0.25mmならびに0.4mmの冷間圧延後の極低炭素アルミキルド鋼板をめっき原板とした。両めっき原板の鋼化学組成は、共に、下記の通りである。
【0027】
C:0.04%(%は重量%、以下同じ)
Si:0.01%
Mn:0.22%、
P:0.012%
S:0.006%
Al:0.0.48%
N:0.0025%
上記めっき原板を、常法により、アルカリ電解脱脂、水洗、硫酸浸漬、水洗後の前処理を行った後、通常の無光沢ニッケルめっきを行う。
【0028】
1)無光沢ニッケルめっき
下記の硫酸ニッケル浴を用いて無光沢ニッケルめっきを行った。
【0029】
浴組成
硫酸ニッケル(NiSO4・6H2O) 300 g/L
塩化ニッケル(NiCl2・6H2O) 45 g/L
硼酸 (H3BO3) 30 g/L
浴pH:4(硫酸で調整)
撹拌:空気撹拌
浴温度: 60 ℃
アノ−ド:Sペレット(INCO社製商品名、球状)をチタンバスケットに装填してポリプロレン製バッグで覆ったもの。
【0030】
また、半光沢ニッケルめっきについては、下記のめっき浴を使う。この半光沢ニッケルめっきは、最初の無光沢ニッケルめっきの替わりに実施しても良い。
【0031】
2)半光沢ニッケルめっき
硫酸ニッケル浴に半光沢剤として不飽和アルコールのポリオキシ−エチレン付加物および不飽和カルボン酸ホルムアルデヒドを適宜添加して半光沢ニッケルめっきを行った。
【0032】
浴組成
硫酸ニッケル(NiSO4・6H2O) 300 g/L
塩化ニッケル(NiCl2・6H2O) 45 g/L
硼酸 (H3BO3) 30 g/L
不飽和アルコールのポリオキシーエチレン付加物 3.0 g/L
不飽和カルボン酸ホルムアルデヒド 3.0g/L
浴pH: 4(硫酸で調整)
撹拌:空気撹拌
浴温度: 60 ℃
アノ−ド:Sペレット(INCO社製商品名、球状)をチタンバスケットに
装填してポリプロピレン製バッグで覆ったもの。
【0033】
更に、鉄−ニッケル合金めっきを行った。
【0034】
3)鉄−ニッケル合金めっき
硫酸ニッケル浴に硫酸鉄を適宜添加してニッケルめっき層中に鉄を含有させた。
【0035】
浴組成
硫酸ニッケル(NiSO4・6H2O) 320 g/L
塩化ニッケル(NiCl2・6H2O) 20 g/L
硫酸鉄 (FeSO4・6H2O) (適宜)
硼酸 (H3BO3) 30 g/L
浴pH: 4(硫酸で調整)
撹拌:空気撹拌
浴温度: 60 ℃
アノ−ド:Sペレット(INCO社製商品名、球状)をチタンバスケットに
装填してポリプロピレン製バッグで覆ったもの。
【0036】
また、更にコバルトを含む場合では、硫酸コバルトをこのめっき浴に適宜添加すればよい。
【0037】
上記の条件で、硫酸鉄添加量および電解時間を変えて、めっき皮膜中の鉄含有量、めっき厚みを変化させた。これらのめっき条件については、表1に示す。
【0038】
鉄−ニッケル合金めっき後、熱処理により、鉄−ニッケル合金層に拡散処理を施しても良い。拡散処理条件は、非酸化性雰囲気あるいは還元性雰囲気が好ましく、例えば水素6.5%、残部窒素ガスの非酸化性雰囲気中で行っても良い。この拡散処理は、箱型焼鈍炉、あるいは連続焼鈍炉などの公知の設備を使っても良い。なお、熱処理条件は、表1に示す。
【0039】
(電池ケース作製)
DI成形法による電池ケースの作製は、板厚0.4mmの上記めっき鋼板を用い、直径41mmのブランク径から直径20.5mmのカッピングの後、DI成形機でリドロ−および2段階のしごき成形を行って外径13.8mm、ケース壁0.20mm、高さ56mmに成形した。最終的に上部をトリミングして、高さ49.3mmのLR6型電池ケースを作製した。DI成形法は、実施例1〜6、比較例1と比較例4の表面処理鋼板を用いた。
【0040】
また、DTR成形法による電池ケースの作製は、板厚0.25mmのめっき鋼板を用い、ブランク径58mmに打ち抜き、数回の絞り、再絞り成形によって外径13.8mm、ケース壁0.20mm、高さ49.3mmのLR6型電池ケースを作製した。DTR成形法は、実施例7〜10と比較例2の表面処理鋼板を用いた。
【0041】
更に、深絞り成形法による電池ケースの作製は、板厚0.25mmのめっき鋼板を用い、ブランク径57mmに打ち抜き、数回の絞り、再絞り成形によって外径13.8mm、ケース壁0.25mm、高さ49.3mmのLR6型電池ケースを作製した。深絞り成形法は、実施例11〜14と比較例3の表面処理鋼板を用いた。
【0042】
上記のように、作成した電池ケースを用いてアルカリマンガン電池を作成し、特性を評価した。評価結果を表1に示す。
【0043】
[内部抵抗(IR)の評価]
作製した電池を80℃で3日経時後、交流インピーダンス法で内部抵抗(mΩ)を測定した。
【0044】
[短絡電流(SCC)の評価]
作製した電池を80℃で3日経時後、該電池に電流計を接続して閉回路を設け、電池の電流値を測定し、これを短絡電流とした。
【0045】
[放電特性]
作製した電池を80℃で3日経時後、該電池に2Ωの抵抗を使用して閉回路を作成し、電圧が0.9Vに達するまでの経時時間を測定した。
【0046】
【表1】

Figure 0003840430
【0047】
【発明の効果】
深絞り成形法、DI成形法またはDTR成形法によって成形して得た内面側の最表層に鉄−ニッケル合金めっき層あるいは熱処理した拡散処理層を有する電池ケースは、従来のような電池ケース内面のニッケルめっき層あるいはニッケル層を有する電池ケースと比べて電池性能(内部抵抗、短絡電流、放電特性)が良好である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a container enclosing an alkaline solution, more specifically, a surface-treated steel sheet for battery outer cases such as alkaline manganese batteries and nickel-cadmium batteries, and the surface-treated steel sheet by a deep drawing method, DI molding method or DTR molding method. The present invention relates to a battery case obtained by molding.
[0002]
[Prior art]
Conventionally, a battery case enclosing a strong alkaline solution such as an alkaline manganese battery or a nickel-cadmium battery is formed by pressing a cold-rolled steel strip into a battery case, followed by barrel plating or using a nickel-plated steel strip as a battery case. A method of press molding in a mold has been adopted.
[0003]
As described above, nickel plating is used for battery applications such as alkaline manganese batteries and nickel-cadmium batteries. These batteries are mainly made of strong alkaline potassium hydroxide as an electrolyte, so that nickel corrosion resistance is improved. In addition, when connecting batteries to external terminals, nickel has stable contact resistance.Moreover, when manufacturing batteries, each component is welded, and spot welding is performed when assembled into batteries. However, nickel is advantageous in that it has excellent spot weldability.
[0004]
In recent years, in order to increase battery capacity as a press forming method for battery cases, a DI (drawing and ironing) forming method has been used as a thinning method instead of the deep drawing forming method (Japanese Patent Publication No. 7). -99686). This DI molding method and DTR (drawing thin and redraw) molding method can fill more positive and negative electrode active materials as the case side wall thickness is thinner than the bottom surface thickness, increasing the battery capacity and thickening the case bottom. Therefore, there is an advantage that an improvement in the pressure strength of the battery can be obtained.
[0005]
Furthermore, in recent years, alkaline manganese batteries are required to have excellent performance such as internal resistance, short-circuit current, and discharge characteristics.
[0006]
[Problems to be Solved by the Invention]
As described above, in recent years, a battery case produced by a deep drawing method, DI molding method or DTR molding method has an inner surface layer made of nickel plating or an iron-nickel diffusion layer from the viewpoint of battery performance.
[0007]
However, if the outermost layer on the inner surface of the can is nickel-plated or an iron-nickel diffusion layer, the battery characteristics are limited, and the present invention, which is desired to be improved, has been made in view of these points. An object is to provide an excellent battery case and a surface-treated steel sheet that can be suitably used for producing the battery case.
[0008]
[Means for Solving the Problems]
Therefore, from such a viewpoint, the inventors of the present invention have a battery case produced by a deep drawing method, a DI molding method and a DTR molding method, and the inner surface of the can has an iron-nickel alloy plating layer. The present invention was completed by finding that the battery performance such as resistance and short circuit current was excellent.
[0011]
The surface-treated steel sheet for a battery case according to claim 1 is an iron-nickel diffusion layer as a lower layer and an iron containing 5 to 25% by weight of cobalt as an upper layer on a surface corresponding to the inner surface of the plating base plate made of a steel plate . -An iron- cobalt- nickel diffusion layer containing 4 to 70 wt% of iron formed by diffusion treatment of a cobalt- nickel alloy plating layer, and an iron-nickel diffusion layer as a lower layer on the surface corresponding to the outer surface of the case And having a nickel layer as an upper layer. In the present invention, “% by weight” means “% by mass”.
[0012]
The surface-treated steel sheet for a battery case according to claim 2 is a plating base sheet made of a steel sheet, and has an iron-nickel diffusion layer, a nickel layer as an intermediate layer, and cobalt as an upper layer in an amount corresponding to 5 to 25 wt. % inclusive of iron - cobalt - iron 4 to 70 wt% inclusive iron formed by diffusing processing nickel alloy plating layer - cobalt - has a nickel diffusion layer, the surface corresponding to the case outer surface, iron as the lower layer -It has a nickel diffusion layer and a nickel layer as an upper layer.
[0013]
The surface-treated steel sheet for a battery case according to claim 3 is a plating original sheet made of a steel sheet, and on the surface corresponding to the inner surface of the case, an iron-nickel diffusion layer as a lower layer and an iron containing 5 to 25% by weight of cobalt as an upper layer It has an iron- cobalt- nickel diffusion layer containing 4 to 70% by weight of iron formed by diffusion treatment of a cobalt- nickel alloy plating layer, and on the surface corresponding to the outer surface of the case, an iron-nickel diffusion layer as a lower layer, It is characterized by having a layer obtained by diffusing an iron-nickel alloy layer as an upper layer.
[0014]
The surface-treated steel sheet for a battery case according to claim 4 is a plating base plate made of a steel sheet, and on the surface corresponding to the inner surface of the case, an iron-nickel diffusion layer as a lower layer, a nickel plating layer as an intermediate layer, and cobalt as an upper layer. In the surface corresponding to the outer surface of the case, it has an iron- cobalt- nickel diffusion layer containing 4 to 70% by weight of iron formed by diffusion treatment of an iron- cobalt- nickel alloy plating layer containing 5 to 25% by weight. The lower layer has an iron-nickel diffusion layer, the intermediate layer has a nickel layer, and the upper layer has a diffusion-treated layer of an iron-nickel alloy plating layer.
[0015]
The battery case according to claim 5 is obtained by forming the surface-treated steel sheet for battery case according to any one of claims 1 to 4 by a deep drawing method, a DI forming method, or a DTR forming method. It is characterized by that.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The generation of nickel-iron alloy plating in the above battery case and surface-treated steel sheet will be described. When iron sulfate is added to the Watt bath and sulfamic acid bath, iron is co-deposited with nickel, and as a result, the eutectoid plating layer is The iron content in the plating film increases. In addition to these nickel-iron alloy platings, by further heat treatment, good battery performance is exhibited within a certain range of the ratio of iron in the alloy layer. The mere nickel layer alone does not improve the battery performance, for unknown reasons. In addition, when an iron-nickel diffusion layer is formed as a surface layer by heat treatment after nickel plating on a steel plate, it is difficult to control the ratio of iron in the surface layer within a certain range.
[0017]
Note that the present invention can provide a battery case having excellent battery performance without depending on a battery case molding method, for example, a deep drawing method, a DI molding method, or a DTR molding method.
[0018]
By the way, the iron content in the iron-nickel alloy plating layer or the alloy layer after further heat treatment is preferably in the range of 4.0 wt% to 70 wt%. If the iron content is less than 4.0% by weight, the internal resistance is high, which is not preferable. If it exceeds 70% by weight, the corrosion resistance is poor.
[0019]
The nickel plating thickness is preferably in the range of 0 to 3 μm when the lower plating of iron-nickel alloy plating is performed. Even if it exceeds 3 μm, the properties are not affected, but it is too thick and uneconomical. In the case where the outer surface side of the can has a single layer structure of nickel plating, 1 to 4 μm is preferable. If it is less than 1 μm, the corrosion resistance is poor. Even if it exceeds 4 μm, the corrosion resistance is hardly improved, which is uneconomical.
[0020]
In the iron-nickel alloy plating of the present invention, a range of 0.2 to 3 μm is desirable. If the thickness is less than 0.2 μm, the plating layer or the diffusion layer is thin and the battery performance is poor. On the other hand, even if it exceeds 3 μm, the battery performance is hardly changed, but it is too thick and uneconomical.
[0021]
As a steel plate that serves as a base material for the surface-treated steel plate, that is, a plating original plate, usually, a low carbon aluminum killed steel is suitably used. Furthermore, a cold-rolled steel strip produced by adding niobium and titanium and made from non-aging ultra-low carbon steel (carbon less than 0.01%) is also used.
[0022]
And the steel strip which carried out the electrolytic cleaning, the annealing, and the temper rolling after the cold rolling by a normal method is used as a plating original plate. Thereafter, nickel plating may be performed on one side or both sides using this plating original plate. The plating bath may be either a known sulfuric acid bath or a sulfamic acid bath, but a sulfuric acid bath that is relatively easy to manage is suitable. For nickel plating, matte plating and semi-gloss plating are good. Iron-nickel alloy plating is performed after this nickel plating or without nickel plating. The plating bath may be either a known sulfuric acid bath or a sulfamic acid bath, but a sulfuric acid bath whose bath management is relatively easy is suitable. For iron-nickel plating, matte plating and semi-gloss plating are good.
[0023]
After the iron-nickel alloy plating, a nickel-iron diffusion layer may be formed on the surface layer by heat treatment. The iron content in the alloy layer after heat-treating the iron-nickel alloy plating layer is preferably in the range of 4.0 wt% to 70 wt%. If the iron content is less than 4.0% by weight, the internal resistance is high, which is not preferable. If it exceeds 70% by weight, the corrosion resistance is poor. This iron-nickel alloy plating layer may further contain 5 to 25% by weight of cobalt.
[0024]
At this time, an iron-nickel diffusion layer formed by underlying iron and nickel plating is also formed in the lower layer, but all of this nickel plating layer may be an iron-nickel diffusion layer, or one part may remain. For this purpose, the heat treatment by the box-type annealing method is performed at a temperature of 450 to 650 ° C. for 4 to 15 hours, and the continuous annealing method is performed at a temperature of 600 to 850 ° C. for about 0.5 to 3 minutes. preferable.
[0025]
【Example】
The present invention will be further specifically described with reference to the following examples.
[0026]
Cold rolled, annealed and temper-rolled low carbon aluminum killed steel sheets having a thickness of 0.25 mm and 0.4 mm were used as plating original sheets, respectively. Further, an ultra-low carbon aluminum killed steel sheet after cold rolling with a plate thickness of 0.25 mm and 0.4 mm was used as a plating original sheet. The steel chemical composition of both plating original plates is as follows.
[0027]
C: 0.04% (% is% by weight, the same applies hereinafter)
Si: 0.01%
Mn: 0.22%,
P: 0.012%
S: 0.006%
Al: 0.0.48%
N: 0.0025%
After performing the pretreatment after alkaline electrolytic degreasing, water washing, sulfuric acid immersion, and water washing, the above-mentioned plating original plate is subjected to normal matte nickel plating.
[0028]
1) Matte nickel plating Matte nickel plating was performed using the following nickel sulfate bath.
[0029]
Bath composition Nickel sulfate (NiSO4 ・ 6H2O) 300 g / L
Nickel chloride (NiCl2 · 6H2O) 45 g / L
Boric acid (H3BO3) 30 g / L
Bath pH: 4 (adjusted with sulfuric acid)
Stirring: Air stirring bath temperature: 60 ° C
Anod: S pellets (trade name, manufactured by INCO, spherical shape) loaded in a titanium basket and covered with a polyprolene bag.
[0030]
For semi-bright nickel plating, the following plating bath is used. This semi-bright nickel plating may be performed instead of the initial matte nickel plating.
[0031]
2) Semi-bright nickel plating Semi-bright nickel plating was performed by appropriately adding polyoxy-ethylene adduct of unsaturated alcohol and unsaturated carboxylic acid formaldehyde as a semi-bright agent to a nickel sulfate bath.
[0032]
Bath composition Nickel sulfate (NiSO4 ・ 6H2O) 300 g / L
Nickel chloride (NiCl2 · 6H2O) 45 g / L
Boric acid (H3BO3) 30 g / L
Polyoxyethylene adduct of unsaturated alcohol 3.0 g / L
Unsaturated carboxylic acid formaldehyde 3.0g / L
Bath pH: 4 (adjusted with sulfuric acid)
Stirring: Air stirring bath temperature: 60 ° C
Anod: S pellets (trade name, manufactured by INCO, spherical) are loaded into a titanium basket and covered with a polypropylene bag.
[0033]
Furthermore, iron-nickel alloy plating was performed.
[0034]
3) Iron-nickel alloy plating Iron sulfate was appropriately added to a nickel sulfate bath to contain iron in the nickel plating layer.
[0035]
Bath composition Nickel sulfate (NiSO4 ・ 6H2O) 320 g / L
Nickel chloride (NiCl2 ・ 6H2O) 20 g / L
Iron sulfate (FeSO4 · 6H2O) (as appropriate)
Boric acid (H3BO3) 30 g / L
Bath pH: 4 (adjusted with sulfuric acid)
Stirring: Air stirring bath temperature: 60 ° C
Anod: S pellets (trade name, manufactured by INCO, spherical) are loaded into a titanium basket and covered with a polypropylene bag.
[0036]
Further, in the case where cobalt is further contained, cobalt sulfate may be appropriately added to the plating bath.
[0037]
Under the above conditions, the iron content and plating thickness in the plating film were changed by changing the iron sulfate addition amount and the electrolysis time. These plating conditions are shown in Table 1.
[0038]
After the iron-nickel alloy plating, the iron-nickel alloy layer may be subjected to a diffusion treatment by heat treatment. The diffusion treatment condition is preferably a non-oxidizing atmosphere or a reducing atmosphere. For example, the diffusion treatment may be performed in a non-oxidizing atmosphere of 6.5% hydrogen and the remaining nitrogen gas. For this diffusion treatment, a known facility such as a box annealing furnace or a continuous annealing furnace may be used. The heat treatment conditions are shown in Table 1.
[0039]
(Battery case fabrication)
The battery case is produced by DI molding using the above-mentioned plated steel plate with a thickness of 0.4 mm, cupping from a blank diameter of 41 mm to a diameter of 20.5 mm, and then using a DI molding machine to perform redo and two-stage ironing. The outer diameter was 13.8 mm, the case wall was 0.20 mm, and the height was 56 mm. Finally, the upper part was trimmed to produce an LR6 type battery case having a height of 49.3 mm. As the DI forming method, the surface-treated steel sheets of Examples 1 to 6, Comparative Example 1 and Comparative Example 4 were used.
[0040]
In addition, the battery case by the DTR molding method is manufactured by using a plated steel sheet having a thickness of 0.25 mm, punching out to a blank diameter of 58 mm, drawing several times, redrawing and forming an outer diameter of 13.8 mm, a case wall of 0.20 mm, An LR6 type battery case having a height of 49.3 mm was produced. The surface-treated steel sheets of Examples 7 to 10 and Comparative Example 2 were used for the DTR forming method.
[0041]
Further, the battery case was manufactured by deep drawing using a plated steel plate having a thickness of 0.25 mm, punched to a blank diameter of 57 mm, drawn several times, and redrawed to give an outer diameter of 13.8 mm and a case wall of 0.25 mm. An LR6 type battery case having a height of 49.3 mm was produced. For the deep drawing method, the surface-treated steel sheets of Examples 11 to 14 and Comparative Example 3 were used.
[0042]
As described above, an alkaline manganese battery was prepared using the prepared battery case, and the characteristics were evaluated. The evaluation results are shown in Table 1.
[0043]
[Evaluation of internal resistance (IR)]
The produced battery was aged at 80 ° C. for 3 days, and then the internal resistance (mΩ) was measured by an AC impedance method.
[0044]
[Evaluation of short circuit current (SCC)]
The produced battery was aged at 80 ° C. for 3 days, an ammeter was connected to the battery, a closed circuit was provided, the current value of the battery was measured, and this was used as a short-circuit current.
[0045]
[Discharge characteristics]
After the produced battery was aged for 3 days at 80 ° C., a closed circuit was created using a resistance of 2Ω for the battery, and the elapsed time until the voltage reached 0.9 V was measured.
[0046]
[Table 1]
Figure 0003840430
[0047]
【The invention's effect】
A battery case having an iron-nickel alloy plating layer or a heat-treated diffusion treatment layer on the innermost surface layer obtained by molding by a deep drawing method, DI molding method or DTR molding method is a conventional battery case inner surface. Battery performance (internal resistance, short-circuit current, discharge characteristics) is better than a battery case having a nickel plating layer or nickel layer.

Claims (5)

鋼板からなるめっき原板において、ケース内面に相当する面では、下層として鉄−ニッケル拡散層と、上層としてコバルトを5〜25重量%含んだ鉄−コバルト−ニッケル合金めっき層を拡散処理することにより形成した鉄を4〜70重量%含んだ鉄−コバルト−ニッケル拡散層を有し、ケース外面に相当する面では、下層として鉄−ニッケル拡散層、上層としてニッケル層を有することを特徴とする電池ケース用表面処理鋼板。  In the plating base plate made of a steel plate, the surface corresponding to the inner surface of the case is formed by diffusion treatment of an iron-nickel diffusion layer as a lower layer and an iron-cobalt-nickel alloy plating layer containing 5 to 25% by weight of cobalt as an upper layer. A battery case having an iron-cobalt-nickel diffusion layer containing 4 to 70% by weight of iron and having an iron-nickel diffusion layer as a lower layer and a nickel layer as an upper layer on a surface corresponding to the outer surface of the case Surface treated steel sheet. 鋼板からなるめっき原板において、ケース内面に相当する面では、鉄−ニッケル拡散層、中間層としてニッケル層と、上層としてコバルトを5〜25重量%含んだ鉄−コバルト−ニッケル合金めっき層を拡散処理することにより形成した鉄を4〜70重量%含んだ鉄−コバルト−ニッケル拡散層を有し、ケース外面に相当する面では、下層として鉄−ニッケル拡散層と、上層としてニッケル層を有することを特徴とする電池ケース用表面処理鋼板。  In the plating plate made of a steel plate, on the surface corresponding to the inner surface of the case, an iron-nickel diffusion layer, a nickel layer as an intermediate layer, and an iron-cobalt-nickel alloy plating layer containing 5 to 25% by weight of cobalt as an upper layer are diffusion-treated. Having an iron-cobalt-nickel diffusion layer containing 4 to 70% by weight of iron formed, and having an iron-nickel diffusion layer as a lower layer and a nickel layer as an upper layer on the surface corresponding to the outer surface of the case A surface-treated steel sheet for battery cases. 鋼板からなるめっき原板において、ケース内面に相当する面では、下層として鉄−ニッケル拡散層、上層としてコバルトを5〜25重量%含んだ鉄−コバルト−ニッケル合金めっき層を拡散処理することにより形成した鉄を4〜70重量%含んだ鉄−コバルト−ニッケル拡散層を有し、ケース外面に相当する面では、下層として鉄−ニッケル拡散層、上層として鉄−ニッケル合金層を拡散処理した層を有することを特徴とする電池ケース用表面処理鋼板。  In the plating base plate made of a steel plate, the surface corresponding to the inner surface of the case was formed by diffusion treatment of an iron-nickel diffusion layer as a lower layer and an iron-cobalt-nickel alloy plating layer containing 5 to 25% by weight of cobalt as an upper layer. It has an iron-cobalt-nickel diffusion layer containing 4 to 70% by weight of iron, and on the surface corresponding to the outer surface of the case, it has an iron-nickel diffusion layer as a lower layer and a layer obtained by diffusing an iron-nickel alloy layer as an upper layer. A surface-treated steel sheet for a battery case. 鋼板からなるめっき原板において、ケース内面に相当する面では、下層として、鉄−ニッケル拡散層、中間層としてニッケルめっき層と、上層としてコバルトを5〜25重量%含んだ鉄−コバルト−ニッケル合金めっき層を拡散処理することにより形成した鉄を4〜70重量%含んだ鉄−コバルト−ニッケル拡散層を有し、ケース外面に相当する面では、下層として鉄−ニッケル拡散層、中間層としてニッケル層と、上層として鉄−ニッケル合金めっき層を拡散処理した層を有することを特徴とする電池ケース用表面処理鋼板。  On the surface corresponding to the inner surface of the case in the plating original plate made of a steel plate, an iron-cobalt-nickel alloy plating containing 5-25% by weight of cobalt as an upper layer and an iron-nickel diffusion layer as a lower layer, a nickel plating layer as an intermediate layer An iron-cobalt-nickel diffusion layer containing 4 to 70% by weight of iron formed by diffusion treatment of the layer, and on the surface corresponding to the outer surface of the case, an iron-nickel diffusion layer as a lower layer and a nickel layer as an intermediate layer And a surface-treated steel sheet for a battery case, comprising a layer obtained by diffusing an iron-nickel alloy plating layer as an upper layer. 請求項1乃至請求項4のいずれか1項に記載の電池ケース用表面処理鋼板を深絞り成形法、DI成形法又はDTR成形法によって成形して得られる電池ケース。The battery case obtained by shape | molding the surface-treated steel sheet for battery cases of any one of Claim 1 thru | or 4 with a deep drawing forming method, DI forming method, or DTR forming method.
JP2002141080A 2002-05-16 2002-05-16 Surface-treated steel sheet for battery case and battery case Expired - Lifetime JP3840430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002141080A JP3840430B2 (en) 2002-05-16 2002-05-16 Surface-treated steel sheet for battery case and battery case

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002141080A JP3840430B2 (en) 2002-05-16 2002-05-16 Surface-treated steel sheet for battery case and battery case

Publications (2)

Publication Number Publication Date
JP2003328158A JP2003328158A (en) 2003-11-19
JP3840430B2 true JP3840430B2 (en) 2006-11-01

Family

ID=29701773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002141080A Expired - Lifetime JP3840430B2 (en) 2002-05-16 2002-05-16 Surface-treated steel sheet for battery case and battery case

Country Status (1)

Country Link
JP (1) JP3840430B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2339038B8 (en) 2006-07-21 2017-01-11 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet for electric and electronic part
JP6394847B1 (en) * 2017-03-02 2018-09-26 新日鐵住金株式会社 Surface-treated steel sheet
JP6669321B2 (en) 2018-02-14 2020-03-18 日本製鉄株式会社 Surface-treated steel sheet for battery container and method for producing surface-treated steel sheet for battery container
WO2020009213A1 (en) * 2018-07-06 2020-01-09 日本製鉄株式会社 Surface-treated steel sheet and method for manufacturing surface-treated steel sheet

Also Published As

Publication number Publication date
JP2003328158A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
JP4808834B2 (en) Surface-treated steel sheet for battery case
US20120231329A1 (en) Surface treated steel sheet for battery case, battery case and battery using the case
JP5083931B2 (en) Battery container manufacturing method, battery container manufactured by the battery container manufacturing method, and battery using the battery container
WO1995011527A1 (en) Surface-treated steel sheet for battery case and battery case
JP3432523B2 (en) Surface-treated steel sheet for battery case, battery case, and battery using the same
JP2006093096A (en) Plated steel sheet for battery container, battery container using same, and battery using its battery container
JP3840430B2 (en) Surface-treated steel sheet for battery case and battery case
JPWO2005018021A1 (en) Surface-treated steel sheet for battery case, battery case and battery using the same
JP4748665B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2004076117A (en) Surface treated steel sheet for battery case, and battery case using the same
JP3631143B2 (en) Battery case and surface-treated steel sheet for battery case
JP2002155394A (en) Surface-treated steel plate for battery case, method of manufacturing surface-treated steel plate for battery case, and battery case
JP4809059B2 (en) Surface-treated steel sheet for battery case and battery case
JP4968877B2 (en) Plated steel sheet for battery container, method for producing the same, battery container using the plated steel sheet for battery container, and battery using the battery container
JP4817724B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2007059087A (en) Plated steel sheet for battery case, battery case using same, and battery using the battery case
JP4911952B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP4798953B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2012114097A (en) Plated steel sheet for battery container, method for producing the same, battery container using the plated steel sheet for battery container and battery using the battery container
JP4798955B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2006283185A (en) Plated steel sheet for battery vessel, battery vessel using the plated steel sheet for battery vessel, and battery using the battery vessel
JP2006310264A (en) Plated steel plate for battery case, battery case using plated steel plate for battery case, and battery using battery case

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3840430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20090623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term