JP2006310264A - Plated steel plate for battery case, battery case using plated steel plate for battery case, and battery using battery case - Google Patents

Plated steel plate for battery case, battery case using plated steel plate for battery case, and battery using battery case Download PDF

Info

Publication number
JP2006310264A
JP2006310264A JP2006011689A JP2006011689A JP2006310264A JP 2006310264 A JP2006310264 A JP 2006310264A JP 2006011689 A JP2006011689 A JP 2006011689A JP 2006011689 A JP2006011689 A JP 2006011689A JP 2006310264 A JP2006310264 A JP 2006310264A
Authority
JP
Japan
Prior art keywords
battery
plating
layer
battery case
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006011689A
Other languages
Japanese (ja)
Inventor
Hitoshi Omura
等 大村
Tatsuo Tomomori
龍夫 友森
Yoshitaka Honda
義孝 本田
Eiji Yamane
栄治 山根
Eiji Okamatsu
栄次 岡松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP2006011689A priority Critical patent/JP2006310264A/en
Publication of JP2006310264A publication Critical patent/JP2006310264A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plated steel plate for battery case having no possibility of separation and cracks of the plate layer at forming process into battery case, superior in corrosion resistance to alkali solution, and having excellent battery characteristics, and a battery case using the plated steel plate for battery case, and a battery using the battery case. <P>SOLUTION: A plated steel plate in which bismuth plating is applied on the side of battery case inner face of steel plate and cobalt plating is applied on top of it, or a plated steel plate in which nickel plating is applied, and bismuth plating is applied on top of it, and further, cobalt plating is applied on the top, or a plated steel plate in which nickel plating is applied, then, heat treatment is applied, and bismuth plating is applied on top of it, and further, cobalt plating is applied on the top is formed to make the plated steel plate for battery case, and by forming process into battery case, it is applied to a battery. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電池容器用めっき鋼板、その電池容器用めっき鋼板を用いた電池容器およびその電池容器を用いた電池に関する。   The present invention relates to a plated steel sheet for battery containers, a battery container using the plated steel sheet for battery containers, and a battery using the battery container.

近年、デジタルカメラ、CD、MDプレーヤー、液晶テレビ、ゲーム機器など携帯用AV機器や携帯電話の発展とともに、重負荷の作動電源として一次電池であるアルカリ電池、二次電池であるニッケル水素電池、リチウムイオン電池などが多用されている。これらの電池においては、高出力化および長寿命化など、高性能化が求められており、正極および負極活物質を充填する電池容器も電池の重要な構成要素としての性能の向上が求められている。例えばアルカリ乾電池の場合、長寿命化を目的として電解液であるアルカリ溶液に対する耐食性を向上させるために、電池ケースの内面となる側にニッケル−リン合金層が形成されている電池容器用表面処理鋼板が提案されている(例えば特許文献1参照)。   In recent years, along with the development of portable AV equipment and mobile phones such as digital cameras, CDs, MD players, liquid crystal televisions, game machines, etc., alkaline batteries as primary batteries, nickel-metal hydride batteries as secondary batteries, lithium as operating power sources for heavy loads Ion batteries are often used. In these batteries, there is a demand for higher performance such as higher output and longer life, and battery containers filled with positive and negative electrode active materials are also required to have improved performance as important components of the battery. Yes. For example, in the case of an alkaline battery, a surface-treated steel sheet for a battery container in which a nickel-phosphorus alloy layer is formed on the inner surface of the battery case in order to improve the corrosion resistance against an alkaline solution that is an electrolytic solution for the purpose of extending the life. Has been proposed (see, for example, Patent Document 1).

また、電池の高容量化、および貯蔵後の重負荷特性の劣化を防止するため、缶内面になる面の圧延鋼板材にニッケル−銀合金メッキ層、またはニッケル−クロム合金メッキ層を形成し、プレス絞りしごき加工して細かいひび割れを生じさせて凹凸面を構成し、正極合剤や導電性被膜との接触面積を大きくして電池の内部抵抗を減少させる方法(例えば特許文献2参照)や、ニッケルメッキ層を形成させ、その上に銀メッキ層を形成させた後、加熱処理してニッケル−銀メッキ層を形成させてメッキの結晶を撤密化して硬度を高め、ひび割れの間隔を一層密にすることにより、正極合剤や導電性被膜との接触面積をさらに大きくして電池の内部抵抗を減少させる電池缶が提案されている(例えば特許文献3参照)。   In addition, in order to prevent the high capacity of the battery and the deterioration of heavy load characteristics after storage, a nickel-silver alloy plating layer or a nickel-chromium alloy plating layer is formed on the rolled steel plate material on the surface that becomes the inner surface of the can, A method of reducing the internal resistance of the battery by reducing the internal resistance of the battery by increasing the contact area with the positive electrode mixture or conductive film by forming fine cracks by press drawing and ironing to form fine irregularities, After a nickel plating layer is formed and a silver plating layer is formed thereon, heat treatment is performed to form a nickel-silver plating layer, thereby reducing the plating crystals and increasing the hardness, further increasing the spacing between cracks. Thus, a battery can has been proposed in which the contact area with the positive electrode mixture or the conductive coating is further increased to reduce the internal resistance of the battery (see, for example, Patent Document 3).

しかし、電池容器内面に用いる鋼板面に直接形成させるニッケル−リン合金層は硬くて脆いために、絞り加工や絞りしごき加工を施して容器に成形加工する際に、下地の鋼が露出して電解液であるアルカリ溶液に対する耐食性が低下する恐れがある。同様に、特許文献2や特許文献3に記載の電池缶においても、プレス絞り加工して細かいひび割れを生じさせると、鋼素地が露出して電解液に用いられるアルカリ溶液に対する耐食性が低下する恐れがある。   However, since the nickel-phosphorus alloy layer directly formed on the steel plate surface used for the battery container inner surface is hard and brittle, when forming into a container by drawing or drawing ironing, the underlying steel is exposed and electrolyzed. There is a possibility that the corrosion resistance to the alkaline solution which is a liquid may be lowered. Similarly, in the battery cans described in Patent Document 2 and Patent Document 3, if a fine crack is generated by press drawing, the steel base may be exposed and the corrosion resistance against the alkaline solution used for the electrolyte may be reduced. is there.

本出願に関する先行技術文献情報として次のものがある。
国際公開WO99/03161号パンフレット 特開平11−102671号公報 特開2001−325924号公報
Prior art document information relating to the present application includes the following.
International Publication WO99 / 03161 Pamphlet JP-A-11-102671 JP 2001-325924 A

本発明においては、絞り加工や絞りしごき加工を施して電池容器にプレス加工する場合に電池容器内面側のめっき層に鋼素地に達することのない微小クラックが発生し、アルカリ電池の正極合剤との密着性と接触抵抗が向上して、長期保存後に優れた電池性能を十分に発揮することが可能とする電池容器用めっき鋼板、その電池容器用めっき鋼板を用いた電池容器、およびその電池容器を用いた電池を提供することを目的とする。   In the present invention, when the battery container is pressed by drawing or squeezing and ironing, micro cracks that do not reach the steel substrate occur in the plating layer on the battery container inner surface side, and the positive electrode mixture of the alkaline battery and Improved adhesion and contact resistance of the battery container, and can sufficiently exhibit excellent battery performance after long-term storage, a battery container using the plated steel sheet for the battery container, and the battery container It aims at providing the battery using this.

本発明の目的を達成するため、本発明の電池容器用めっき鋼板は、鋼板の電池容器内面となる側の鋼板上に下から順に、ビスマス層、コバルト層が形成されてなることを特徴とする電池容器用めっき鋼板(請求項1)、または
鋼板の電池容器内面となる側の鋼板上に下から順に、ニッケル層、ビスマス層、コバルト層が形成されてなることを特徴とする電池容器用めっき鋼板(請求項2)、または
鋼板の電池容器内面となる側の鋼板上に下から順に、鉄−ニッケル合金層、ニッケル層、ビスマス層、コバルト層が形成されてなることを特徴とする電池容器用めっき鋼板(請求項3)、
鋼板の電池容器内面となる側の鋼板上に下から順に、鉄−ニッケル合金層、ビスマス層、コバルト層が形成されてなることを特徴とする電池容器用めっき鋼板(請求項4)のいずれかである。
In order to achieve the object of the present invention, the plated steel sheet for battery containers of the present invention is characterized in that a bismuth layer and a cobalt layer are formed in order from the bottom on the steel sheet on the side that is the inner surface of the battery container. A plated battery for a battery container (Claim 1), or a battery container plating, wherein a nickel layer, a bismuth layer, and a cobalt layer are formed in order from the bottom on a steel sheet on the side of the battery container that is the inner surface of the battery container. An iron-nickel alloy layer, a nickel layer, a bismuth layer, and a cobalt layer are formed in order from the bottom on a steel plate (Claim 2), or a steel plate on the side that is the inner surface of the battery case. Plated steel sheet (Claim 3),
Any one of the plated steel sheets for battery containers, wherein an iron-nickel alloy layer, a bismuth layer, and a cobalt layer are formed in order from the bottom on the steel sheet on the side that becomes the battery container inner surface of the steel sheet (Claim 4). It is.

また本発明の電池容器は、上記(請求項1〜4)のいずれかの電池容器用めっき鋼板を有底の筒型形状に成形加工してなる電池容器(請求項5)である。 そして本発明の電池は、上記(請求項5)の電池容器を用いてなる電池(請求項6)である。   Moreover, the battery container of this invention is a battery container (Claim 5) formed by shape | molding the plated steel plate for battery containers in any one of the said (Claims 1-4) to a bottomed cylindrical shape. And the battery of this invention is a battery (Claim 6) using the battery container of said (Claim 5).

本発明の電池容器用めっき鋼板は、鋼板の電池容器内面となる側にビスマスめっきを施し、次いでその上にコバルトめっきを施してなるめっき鋼板、あるいはまたニッケルめっきを施し、次いでその上にビスマスめっきを施し、引き続いてさらにその上にコバルトめっきを施してなるめっき鋼板、あるいはさらにニッケルめっきを施した後、熱処理を施し、次いでその上にビスマスめっきを施し、引き続いてさらにその上にコバルトめっきを施してなるめっき鋼板とすることにより、上記請求項1〜4に記載の電池容器用めっき鋼板を得ることができる。またその電池容器用めっき鋼板を成形加工してなる電池容器を用いることにより、電池保存後の放電性能に優れた電池を提供することが可能となる。   The plated steel sheet for battery containers of the present invention is plated with bismuth on the inner surface of the battery container, then plated with cobalt, or nickel plated, and then coated with bismuth. And then a plated steel sheet with cobalt plating on it, or further with nickel plating, followed by heat treatment, then with bismuth plating on it, and then with cobalt plating on it. The plated steel sheet for battery containers according to any one of claims 1 to 4 can be obtained. Moreover, it becomes possible to provide the battery excellent in the discharge performance after a battery preservation | save by using the battery container formed by shape | molding the plated steel plate for battery containers.

本発明の電池容器用めっき鋼板の電池容器内面となる側に形成するビスマス層またはビスマス合金層は、硬くて脆いために電池容器に成形加工する際に、電池容器内表面に微小なクラックが発生し、正極合剤と直接、あるいは電池容器内表面に塗布される導電材を介して接触する際の密着性が向上して保存経時後の接触抵抗の劣化が抑止されるとともに、微小クラックに起因する微小凹凸により接触抵抗が減少して重負荷の放電性能も向上する。また、ビスマス層の上にコバルト層を形成させることにより、導電性をさらに向上させることが可能となるとともに、電池容器に成形加工する際に、めっき表面の耐パウダリング性を向上させることも可能となる。ビスマスめっきはスマットが発生しやすいために、電池容器に成形加工する際にビスマス酸化物であるスマットが成型用金型に付着・堆積して連続成形が不能となる問題があったが、ビスマス層上にコバルト層を形成させる本発明の技術により、ビスマススマットに起因する上記問題を解決することが可能となった。またさらに、アルカリ(水酸化カリウム)電解液中においてはコバルトの導電性の経時劣化(接触抵抗の増大)が少ないために、電池容器に成形加工における脆性のビスマス層の微小割れによる正極合剤との密着性の向上と相俟って電池保存後の放電性能が向上することも、本発明により解明された。   The bismuth layer or bismuth alloy layer formed on the battery container inner surface of the plated steel sheet for battery containers of the present invention is hard and brittle, so that when the battery container is molded, minute cracks are generated on the inner surface of the battery container. In addition, the adhesion when contacting the positive electrode mixture directly or through the conductive material applied to the inner surface of the battery container is improved, and deterioration of the contact resistance after storage is suppressed, and it is caused by micro cracks. The contact resistance is reduced by the small unevenness and the heavy load discharge performance is improved. In addition, by forming a cobalt layer on the bismuth layer, it is possible to further improve the conductivity, and also improve the powdering resistance of the plating surface when forming into a battery container. It becomes. Bismuth plating is prone to smut, so when forming into a battery container, smut, which is a bismuth oxide, adheres to and accumulates on the mold, making continuous molding impossible. The technique of the present invention for forming a cobalt layer thereon can solve the above-mentioned problems caused by bismuth smut. Furthermore, in the alkaline (potassium hydroxide) electrolyte solution, since there is little deterioration of cobalt conductivity over time (increased contact resistance), the positive electrode mixture due to micro-cracking of the brittle bismuth layer in the molding process of the battery container It has also been clarified by the present invention that the discharge performance after storage of the battery is improved in combination with the improvement of the adhesion of the battery.

以下、本発明の内容を説明する。本発明の電池容器用めっき鋼板の基板となる鋼板としては、汎用の低炭素アルミキルド鋼(炭素量0.01〜0.15重量%)、またはニオブやチタンを添加した非時効性の極低炭素アルミキルド鋼(炭素量0.01重量%未満)を用いる。これらの鋼の熱間圧延板を酸洗して表面のスケールを除去した後、常法により冷間圧延し次いで電解洗浄、焼鈍、調質圧延したものを基板として用いる。あるいは、冷間圧延し次いで電解洗浄後の未焼鈍材を基板として用いることもできる。この場合はニッケルめっき処理後に、鋼素地の焼鈍を兼ねたニッケルめっき層の拡散熱処理を1回の熱処理で行なう。   The contents of the present invention will be described below. As a steel plate used as a substrate for the plated steel plate for battery containers of the present invention, general-purpose low carbon aluminum killed steel (carbon content 0.01 to 0.15 wt%), or non-aging ultra-low carbon added with niobium or titanium. Aluminum killed steel (carbon content less than 0.01% by weight) is used. These steel hot-rolled plates are pickled to remove surface scales, then cold-rolled by a conventional method, and then subjected to electrolytic cleaning, annealing, and temper rolling as a substrate. Alternatively, an unannealed material that has been cold-rolled and then subjected to electrolytic cleaning can be used as a substrate. In this case, after the nickel plating process, the diffusion heat treatment of the nickel plating layer that also serves as the annealing of the steel substrate is performed by one heat treatment.

基板である鋼板の電池容器の外面となる片面に、まずニッケルめっきを施す。ニッケルめっきは、無光沢浴、もしくはこれに有機添加剤を含有させた半光沢浴を用いることが好ましい。ニッケルめっきのめっき厚は4.5〜25g/mの皮膜量であることが好ましい。ニッケルめっき厚が4.5g/m未満では電池容器外面における耐食性が充分でなく、また25g/mを超えると耐食性は飽和に達し、不経済である。 First, nickel plating is performed on one surface, which is the outer surface of a battery container of a steel plate as a substrate. For nickel plating, it is preferable to use a matte bath or a semi-gloss bath containing an organic additive. The plating thickness of the nickel plating is preferably 4.5 to 25 g / m 2 . When the nickel plating thickness is less than 4.5 g / m 2 , the corrosion resistance on the outer surface of the battery container is insufficient, and when it exceeds 25 g / m 2 , the corrosion resistance reaches saturation, which is uneconomical.

次いで電池容器の電池容器の内面となる片面には、鋼板上に直接またはニッケルめっきを施した後にその上にビスマスめっきを施す。ビスマスめっきは電解液である高濃度の水酸化カリウム水溶液に溶解するが、ビスマスは電気化学的に貴な金属であり、正極活物質である二酸化マンガンが共存する場合はビスマスよりも二酸化マンガンの方が卑となり、鋼板上に形成しためっき皮膜のビスマスは溶解することがなく、電池構成上有害な重要因子であるガス発生をもたらすことがないことを、本発明者等は実験により見出した。鋼素地上に直接ビスマス層を形成させる場合は、皮膜量は5〜20g/mであることが好ましい。5g/m未満では電池容器に成形加工する際に微小クラックが生じる際にクラックが鋼素地に達して鋼素地を十分に被覆することができなくなり、鋼素地が露出して電解液と接触して酸化物が形成して接触抵抗が増大し、またガス発生のおそれも大きくなる。皮膜量の増加に伴って、電池容器に成形加工する際の微小クラックが鋼素地に達することがなくなり、鋼素地が露出することがなくなるが、20g/mを超えると向上効果が飽和に達して不経済となる。 Next, one side which is the inner surface of the battery container of the battery container is subjected to bismuth plating on the steel plate directly or after nickel plating. Bismuth plating dissolves in high-concentration potassium hydroxide aqueous solution, which is an electrolytic solution, but bismuth is an electrochemically noble metal, and manganese dioxide, which is a positive electrode active material, coexists with manganese dioxide rather than bismuth. The inventors have found through experiments that the bismuth of the plating film formed on the steel sheet does not dissolve and does not cause gas generation, which is an important factor harmful to the battery structure. When the bismuth layer is directly formed on the steel substrate, the coating amount is preferably 5 to 20 g / m 2 . If it is less than 5 g / m 2 , the crack reaches the steel substrate when it is formed into a battery container and cannot sufficiently cover the steel substrate, and the steel substrate is exposed and comes into contact with the electrolyte. As a result, oxides are formed to increase the contact resistance, and the risk of gas generation increases. As the amount of coating increases, micro cracks when forming into a battery container will not reach the steel substrate and the steel substrate will not be exposed. However, if it exceeds 20 g / m 2 , the improvement effect will reach saturation. It becomes uneconomical.

ビスマス合金層は硬くて脆いので、電池容器に成形加工する際の微小クラックの発生による鋼素地が露出することを抑制するために、ビスマス層の下地として鋼素地上に下層としてニッケル層または/および鉄−ニッケル合金層を形成させることがより好ましい。ニッケルめっきは5〜25g/mの皮膜量で設けることが好ましい。5g/m未満の皮膜量では鋼素地の露出抑制効果が不十分であり、皮膜量が25g/mを超えても鋼素地の露出抑制効果が飽和するとともに、経済的にも好ましくなくなる。ビスマス層の下地としてニッケル層または/および鉄−ニッケル合金層を設ける場合、ビスマスめっきは1〜10g/mの皮膜量であることが好ましい。1g/m未満では電池性能が向上せず、10g/mを超えると向上効果が飽和に達して不経済となる。 Since the bismuth alloy layer is hard and brittle, in order to suppress the exposure of the steel substrate due to the occurrence of microcracks when being molded into the battery container, the nickel layer or / and the lower layer on the steel substrate as the underlayer of the bismuth layer It is more preferable to form an iron-nickel alloy layer. The nickel plating is preferably provided with a coating amount of 5 to 25 g / m 2 . If the coating amount is less than 5 g / m 2 , the steel substrate exposure suppression effect is insufficient, and even if the coating amount exceeds 25 g / m 2 , the steel substrate exposure suppression effect is saturated and economically undesirable. When a nickel layer and / or an iron-nickel alloy layer is provided as the base of the bismuth layer, the bismuth plating is preferably a coating amount of 1 to 10 g / m 2 . If it is less than 1 g / m 2 , the battery performance is not improved, and if it exceeds 10 g / m 2 , the improvement effect reaches saturation and becomes uneconomical.

本発明においては、電池容器内面となる側の最表面にコバルト層を設けることにより、優れた電池用形成材料とすることができる。コバルトめっきの皮膜量はとしては、0.25〜5g/m2の範囲で良好な電気伝導性と低いガス発生をもたらすことが可能である。0.25g/m2未満では電池性能への向上効果が不十分であり、5g/m2を超えると向上効果は飽和に達するとともに、コバルトは高価であるので不経済である。 In this invention, it can be set as the outstanding formation material for batteries by providing a cobalt layer in the outermost surface by the side which becomes a battery container inner surface. As the coating amount of the cobalt plating, good electric conductivity and low gas generation can be brought about in the range of 0.25 to 5 g / m 2 . If it is less than 0.25 g / m 2 , the effect of improving the battery performance is insufficient, and if it exceeds 5 g / m 2 , the improvement effect reaches saturation and cobalt is expensive, which is uneconomical.

ニッケルめっき後に熱処理を施す場合は、箱型焼鈍法または連続焼鈍法のいずれかを用いて拡散熱処理を施す。熱処理は、ニッケルめっき層の一部または全部が鉄−ニッケ拡散層(合金層)への変換がもたらされる条件とする。すなわち箱型焼鈍法を用いる場合は、450℃未満の加熱ではニッケルめっき層は軟化せず、同時に鉄−ニッケル拡散層(合金層)も形成されない。一方700℃を超える温度で加熱した場合は鉄−ニッケル拡散層(合金層)は十分に形成されるものの、鋼素地が軟質化し過ぎるようになる。このため熱処理温度としては450〜650℃、好ましくは500〜600℃の範囲が好適である。加熱時間としては上記の温度範囲において1〜6時間の均熱加熱することが好ましい。連続焼鈍法を用いる場合は600〜850℃の加熱温度で1〜5分間の加熱時間とすることが好ましい。ニッケルめっき層の厚さと熱処理条件を制御することにより、図1〜図4に記載の断面構成を備えた電池容器用めっき鋼板が得られる。なお図1〜図4は、電池容器内面となる側の鋼素地から上の層構成を示したものである。電池容器外面に相当する側の層構成としては、鋼素地上にニッケル層、または鋼素地上に鉄ニッケル拡散層(合金層)または、または鋼素地上に鉄−ニッケル拡散層(合金層)とその上にニッケル層が形成される。   When heat treatment is performed after nickel plating, diffusion heat treatment is performed using either a box-type annealing method or a continuous annealing method. The heat treatment is performed under such a condition that a part or all of the nickel plating layer is converted into an iron-Nicke diffusion layer (alloy layer). That is, when the box-type annealing method is used, heating at less than 450 ° C. does not soften the nickel plating layer, and at the same time, no iron-nickel diffusion layer (alloy layer) is formed. On the other hand, when heated at a temperature exceeding 700 ° C., the iron-nickel diffusion layer (alloy layer) is sufficiently formed, but the steel substrate becomes too soft. For this reason, the heat treatment temperature is 450 to 650 ° C, preferably 500 to 600 ° C. The heating time is preferably soaking for 1 to 6 hours in the above temperature range. When using a continuous annealing method, it is preferable to set it as the heating time of 1 to 5 minutes at the heating temperature of 600-850 degreeC. By controlling the thickness of the nickel plating layer and the heat treatment conditions, a plated steel sheet for battery containers having the cross-sectional configuration shown in FIGS. 1 to 4 is obtained. In addition, FIGS. 1-4 shows the upper layer structure from the steel base of the side used as the battery container inner surface. The layer structure on the side corresponding to the outer surface of the battery container is a nickel layer on the steel base, an iron-nickel diffusion layer (alloy layer) on the steel base, or an iron-nickel diffusion layer (alloy layer) on the steel base. A nickel layer is formed thereon.

これらのめっき鋼板において、ニッケルめっき後に熱処理を施した場合は、通常1.0〜1.5%の圧延率で調質圧延し、本発明の電池容器用めっき鋼板とするが、電池容器に成形加工する際に発生するストレッチャーストレインが支障にならない場合は調質圧延を省くことが可能である。なお、鋼板の電池容器の外面となる片面に、ニッケルめっきのみのめっき層に替えて、電池容器の内面となる他の片面に施す上記と同様の各めっき層を形成させてもよい。   In these plated steel sheets, when heat treatment is performed after nickel plating, temper rolling is usually performed at a rolling rate of 1.0 to 1.5% to obtain the plated steel sheet for battery containers of the present invention. If the stretcher strain generated during processing does not hinder, temper rolling can be omitted. In addition, it may replace with the plating layer only of nickel plating on the single side | surface used as the outer surface of the battery container of a steel plate, and may form each plating layer similar to the above given to the other one side used as the inner surface of a battery container.

本発明の電池容器は、上記の電池容器用めっき鋼板を、絞り加工法、絞りしごき加工法(DI加工法)、絞りストレッチ加工法(DTR加工法)、または絞り加工後ストレッチ加工としごき加工を併用する加工法を用いて、有底の筒型形状に成形加工して得られる。筒型形状としては、底面が円、楕円、または長方形や正方形などの多角形の形状であり、用途に応じて側壁の高さを適宜選択した筒型形状に成形加工する。このようにして得られる電池容器に正極合剤、負極活物質等を充填して電池とする。   The battery container of the present invention is obtained by subjecting the above-described plated steel sheet for a battery container to a drawing process, a drawing ironing process (DI processing method), a drawing stretch processing method (DTR processing method), or a drawing process as a stretching process. It is obtained by forming into a bottomed cylindrical shape using the processing method used in combination. As the cylindrical shape, the bottom surface is a circle, an ellipse, or a polygonal shape such as a rectangle or a square, and is molded into a cylindrical shape with the side wall height appropriately selected according to the application. The battery container thus obtained is filled with a positive electrode mixture, a negative electrode active material, and the like to obtain a battery.

以下、実施例にて本発明を詳細に説明する。
[電池容器用めっき鋼板の作成]
めっき基板として、表1に化学組成を示す熱間圧延済みの低炭素アルミキルド鋼(I)または極低炭素アルミキルド鋼(II)を用い、下記のイ)〜ニ)に示す工程を経て電池容器用めっき鋼板を作成した。
イ)低炭素アルミキルド鋼(I)→冷間圧延→電解洗浄→焼鈍(箱型焼鈍または連続焼鈍)→調質圧延→ニッケルめっき(外面側)→ビスマスめっき→コバルトめっき
ロ)低炭素アルミキルド鋼(I)→冷間圧延→電解洗浄→焼鈍(箱型焼鈍または連続焼鈍)→調質圧延→ニッケルめっき→ビスマスめっき→コバルトめっき
ハ)低炭素アルミキルド鋼(I)→冷間圧延→電解洗浄→焼鈍(箱型焼鈍または連続焼鈍)→調質圧延→ニッケルめっき→拡散熱処理(箱型焼鈍または連続焼鈍)→調質圧延→ビスマスめっき→コバルトめっき
ニ)極低炭素アルミキルド鋼(II)→冷間圧延→電解洗浄→ニッケルめっき→焼鈍兼拡散熱処理(連続焼鈍)→調質圧延→ビスマスめっき→コバルトめっき
なお、イ)工程のニッケルめっきは基板の容器外面となる片面のみ、ロ)〜ニ)工程のニッケルめっきは基板の両面、ビスマスめっきとコバルトめっきは基板の容器内面となる片面のみに施した。
Hereinafter, the present invention will be described in detail with reference to examples.
[Creation of plated steel sheets for battery containers]
As the plating substrate, hot-rolled low carbon aluminum killed steel (I) or extremely low carbon aluminum killed steel (II) whose chemical composition is shown in Table 1 is used, and the battery container is subjected to the steps shown in the following a) to d). A plated steel sheet was created.
B) Low carbon aluminum killed steel (I) → Cold rolling → Electrolytic cleaning → Annealing (box annealing or continuous annealing) → Temper rolling → Nickel plating (outside) → Bismuth plating → Cobalt plating b) Low carbon aluminum killed steel ( I) → cold rolling → electrolytic cleaning → annealing (box annealing or continuous annealing) → temper rolling → nickel plating → bismuth plating → cobalt plating c) low carbon aluminum killed steel (I) → cold rolling → electrolytic cleaning → annealing (Box annealing or continuous annealing) → Temper rolling → Nickel plating → Diffusion heat treatment (Box annealing or continuous annealing) → Temper rolling → Bismuth plating → Cobalt plating d) Extremely low carbon aluminum killed steel (II) → Cold rolling → Electrolytic cleaning → Nickel plating → Annealing and diffusion heat treatment (continuous annealing) → Temper rolling → Bismuth plating → Cobalt plating b) Nickel plating in the process is outside the substrate container Only one side as a, b) is nickel plated-d) process both sides of a substrate, bismuth plating and cobalt plating was applied only to one side of the container inner surface of the substrate.

Figure 2006310264
Figure 2006310264

上記のIまたはIIの鋼種の熱間圧延板に、常法により冷間圧延、電解洗浄を施して0.25mmの板厚を有する冷間圧延板とした後、鋼種Iの場合は箱型焼鈍炉で均熱温度500〜600℃で均熱時間8時間の焼鈍を行った。次いで以下に示す条件でビスマスめっき、ニッケルめっき、およびコバルトめっきを施した。鋼種IIの場合はニッケルめっきを施した後、連続焼鈍炉で加熱温度780℃、加熱時間2分の焼鈍を行った。次いで以下に示す条件でビスマスめっきおよびコバルトめっきを施した。
<ビスマスめっき>
浴組成 LMP−ビスマス(奥野製薬(株)製) 200g/L
LMP−アシッドビスマス(奥野製薬(株)製) 100g/L
LMP−SG(奥野製薬(株)製) 10g/L
陽極 ビスマス板
攪拌 めっき浴の循環
pH 0.3〜0.7
浴温 40〜45℃
電流密度 5A/dm2
The hot rolled sheet of the above steel grade I or II is subjected to cold rolling and electrolytic cleaning by a conventional method to obtain a cold rolled sheet having a thickness of 0.25 mm, and in the case of steel grade I, box annealing. Annealing was performed in a furnace at a soaking temperature of 500 to 600 ° C. for 8 hours of soaking time. Next, bismuth plating, nickel plating, and cobalt plating were performed under the following conditions. In the case of steel type II, after nickel plating, annealing was performed in a continuous annealing furnace at a heating temperature of 780 ° C. for a heating time of 2 minutes. Next, bismuth plating and cobalt plating were performed under the following conditions.
<Bismuth plating>
Bath composition LMP-bismuth (Okuno Pharmaceutical Co., Ltd.) 200g / L
LMP-acid bismuth (Okuno Pharmaceutical Co., Ltd.) 100g / L
LMP-SG (Okuno Pharmaceutical Co., Ltd.) 10g / L
Anode Bismuth plate Stirring Circulation of plating bath pH 0.3 to 0.7
Bath temperature 40-45 ° C
Current density 5A / dm 2

<ニッケルめっき>
浴組成 硫酸ニッケル 300g/L
塩化ニッケル 35g/L
ホウ酸 40g/L
ピット抑制剤(ラウリル硫酸ナトリウム) 0.4mL/L
陽極 ニッケルペレット(チタンバスケットにINCO(株)製Sペレットを充填 しポリプロピレン製アノードバッグを装着)
攪拌 空気撹拌
pH 4.0〜4.6
浴温 55〜60℃
電流密度 10A/dm2
<Nickel plating>
Bath composition Nickel sulfate 300g / L
Nickel chloride 35g / L
Boric acid 40g / L
Pit inhibitor (sodium lauryl sulfate) 0.4mL / L
Anode Nickel Pellet (Titanium basket filled with S pellets from INCO Corporation and equipped with polypropylene anode bag)
Stirring air stirring
pH 4.0-4.6
Bath temperature 55-60 ° C
Current density 10A / dm 2

<銀めっき>
浴組成 硫酸コバルト 300g/L
塩化コバルト 30g/L
塩化ナトリウム 25g/L
ホウ酸 45g/L
陽極 チタン板に白金めっきを施した不溶性陽極
攪拌 めっき浴の循環
pH 3.7〜4.3
浴温 50℃
電流密度 2.5A/dm2
<Silver plating>
Bath composition Cobalt sulfate 300g / L
Cobalt chloride 30g / L
Sodium chloride 25g / L
Boric acid 45g / L
Anode Insoluble anode with platinum plating on titanium plate Stirring Circulation of plating bath pH 3.7 to 4.3
Bath temperature 50 ° C
Current density 2.5A / dm 2

ハ)に示した工程において、ニッケルめっき後に拡散熱処理を施す場合、箱型焼鈍法を用いた場合は、窒素−水素系保護ガス雰囲気下で均熱温度500〜650℃、均熱時間6〜8時間の熱処理を施した。また、ニ)に示した工程において、ニッケルめっき後に鋼素地の焼鈍を兼ねためっき層の拡散熱処理を1回の熱処理で行なう場合は、連続焼鈍法を用いて、加熱温度780℃、加熱時間1〜2分間の熱処理を行なった。   C) When performing diffusion heat treatment after nickel plating in the step shown in FIG. 5B, when using a box annealing method, soaking temperature is 500 to 650 ° C. and soaking time is 6 to 8 in a nitrogen-hydrogen protective gas atmosphere. Time heat treatment was applied. Further, in the process shown in d), when the diffusion heat treatment of the plating layer that also serves as the annealing of the steel substrate is performed after nickel plating in one heat treatment, a continuous annealing method is used, and the heating temperature is 780 ° C. and the heating time is 1 A heat treatment of ˜2 minutes was performed.

Figure 2006310264
Figure 2006310264

Figure 2006310264
Figure 2006310264

以上のようにして表2及び表3に示す電池容器用めっき鋼板の試料(試料番号1〜12)を作成した。また、低炭素アルミキルド鋼(I)を用い比較用にニッケルめっきを施したままの試料(試料番号13)、およびニッケルめっき後に熱拡散処理した試料(試料番号14)、およびニッケルめっきを施した後、ニッケル−リン合金めっきを施した試料(試料番号15)、さらにニッケルめっきに次いでニッケル−リン合金めっきを施した後、熱処理を行なった試料(試料番号16)を作成した。ニッケル−リン合金めっきは下記の条件で実施した。
<ニッケル−リン合金めっき>
浴組成 硫酸ニッケル 300g/L
塩化ニッケル 45g/L
ホウ酸 40g/L
亜燐酸 10g/L
陽極 ニッケルペレット(チタンバスケットにINCO(株)製Sペレットを充填 しポリプロピレン製アノードバッグを装着)
攪拌 空気撹拌
pH 1.5〜2.0
浴温 55〜60℃
電流密度 10A/dm
Samples (sample numbers 1 to 12) of the plated steel sheets for battery containers shown in Tables 2 and 3 were prepared as described above. Further, a sample (Sample No. 13) that has been subjected to nickel plating for comparison using the low carbon aluminum killed steel (I), a sample that has been subjected to thermal diffusion treatment after the nickel plating (Sample No. 14), and after the nickel plating has been performed Then, a sample (sample number 15) subjected to nickel-phosphorus alloy plating and a sample (sample number 16) subjected to heat treatment after nickel-phosphorus alloy plating following nickel plating were prepared. Nickel-phosphorus alloy plating was performed under the following conditions.
<Nickel-phosphorus alloy plating>
Bath composition Nickel sulfate 300g / L
Nickel chloride 45g / L
Boric acid 40g / L
Phosphorous acid 10g / L
Anode Nickel Pellet (Titanium basket filled with S pellets from INCO Corporation and equipped with polypropylene anode bag)
Stirring air stirring
pH 1.5-2.0
Bath temperature 55-60 ° C
Current density 10A / dm 2

[電池容器の作成]
これらの試料番号1〜16の試料から57mm径でブランクを打ち抜いた後、鉄−ニッケル合金層とニッケル層のみを設けた側が容器外面となるようにして、10段の絞り加工により、外径13.8mm、高さ49.3mmの円筒形のLR6型電池(単三型電池)容器に成形加工した。
[Create battery container]
After punching blanks with a diameter of 57 mm from the samples of Sample Nos. 1 to 16, an outer diameter of 13 was obtained by ten-stage drawing so that the side on which only the iron-nickel alloy layer and the nickel layer were provided was the outer surface of the container. It was molded into a cylindrical LR6 type battery (AA size battery) container having a height of 4 mm and a height of 49.3 mm.

[電池の作成]
この電池容器を用いて、以下のようにしてアルカリマンガン電池を作成した。二酸化マンガンと黒鉛を10:1の比率で採取し、水酸化カリウム(10モル)を添加混合して正極合剤を作成した。次いでこの正極合剤を金型中で加圧して所定寸法のドーナツ形状の正極合剤ペレットに成形し、黒鉛粉末を主剤とした導電物質を内面に塗布した電池容器に圧挿入した。次に、負極集電棒をスポット溶接した負極板を電池容器に装着した。次いで、電池容器に圧挿入した正極合剤ベレットの内周に沿うようにしてビニロン製織布からなるセパレータを挿入し、亜鉛粒と酸化亜鉛を飽和させた水酸化カリウムからなる負極ゲルを電池容器内に充填した。さらに、負極板に絶縁体のガスケットを装着して電池容器内に挿入した後、カシメ加工してアルカリマンガン電池を作成した。
[Create battery]
Using this battery container, an alkaline manganese battery was prepared as follows. Manganese dioxide and graphite were collected at a ratio of 10: 1, and potassium hydroxide (10 mol) was added and mixed to prepare a positive electrode mixture. Next, this positive electrode mixture was pressed in a mold to form a doughnut-shaped positive electrode mixture pellet having a predetermined size, and was press-inserted into a battery container having a conductive material mainly composed of graphite powder applied on the inner surface. Next, the negative electrode plate spot-welded with the negative electrode current collector rod was attached to the battery container. Next, a separator made of vinylon woven fabric is inserted along the inner periphery of the positive electrode mixture beret pressure-inserted into the battery container, and a negative electrode gel made of potassium hydroxide saturated with zinc particles and zinc oxide is inserted into the battery container. Filled in. Further, an insulating gasket was attached to the negative electrode plate and inserted into the battery container, followed by caulking to prepare an alkaline manganese battery.

[特性評価]
以上のようにして試料番号1〜16の試料から作成した電池容器を用いて作成した電池の特性を、以下のようにして評価した。
[Characteristic evaluation]
The characteristics of the batteries prepared using the battery containers prepared from the samples Nos. 1 to 16 as described above were evaluated as follows.

<短絡電流>
電池を80℃で3日間放置した後、電池に電流計を接続して閉回路を設けて電流値を測定し、これを短絡電流とした。短絡電流が大であるほど特性が良好であることを示す。
<Short-circuit current>
After leaving the battery at 80 ° C. for 3 days, an ammeter was connected to the battery, a closed circuit was provided, and the current value was measured, which was defined as a short-circuit current. It shows that a characteristic is so favorable that a short circuit current is large.

<放電特性(1.5A放電)>
電池を80℃で3日間放置した後、電池を1.5Aの一定電流に放電し、終止電圧が0.9Vに到達するまでの時間を放電時間として測定した。放電時間が長いほど放電特性が良好であることを示す。
<Discharge characteristics (1.5 A discharge)>
After the battery was left at 80 ° C. for 3 days, the battery was discharged to a constant current of 1.5 A, and the time until the end voltage reached 0.9 V was measured as the discharge time. The longer the discharge time, the better the discharge characteristics.

<間歇放電特性>
重付加間歇放電の評価として、2Aで0.5秒放電した後に0.25Aで29.5秒放電する操作を1サイクルとして、このサイクルを繰り返し、電圧が1.0Vに到達するまでのサイクル数を測定した。サイクル数が多いはど間歇放電特性が良好であることを示す。これらの評価結果を表4に示す。
<Intermittent discharge characteristics>
As an evaluation of the double-added intermittent discharge, an operation of discharging at 2A for 0.5 seconds and then discharging at 0.25A at 29.5 seconds is defined as one cycle, and this cycle is repeated until the voltage reaches 1.0V. Was measured. A high number of cycles indicates that the intermittent discharge characteristics are good. These evaluation results are shown in Table 4.

Figure 2006310264
Figure 2006310264

表4に示すように、本発明の電池容器用めっき鋼板は、ビスマス層およびコバルト層を形成させない電池容器用めっき鋼板に比べて短絡電流、放電特性(1.5A放電)、間歇放電特性のいずれにも優ている。   As shown in Table 4, the plated steel sheet for battery containers of the present invention has any of short-circuit current, discharge characteristics (1.5 A discharge), and intermittent discharge characteristics compared to plated steel sheets for battery containers that do not form a bismuth layer and a cobalt layer. Also superior to.

鋼板上にビスマス層とその上にコバルト層を形成してなるか、あるいは鋼板上に鉄−ニッケル合金層または/およびニッケル層とその上にビスマス層とさらにその上にコバルト層を形成してなる本発明の電池容器用めっき鋼板は、絞り加工や絞りしごき加工を施して容器に成形加工する際にめっき層が剥離したりひび割れが生じることがなく、また表面が耐アルカリ性および導電性に優れているので、放電特性などの電池特性に優れた高性能電池用の容器および高性能電池として好適に適用することができる。   A bismuth layer and a cobalt layer formed thereon are formed on a steel plate, or an iron-nickel alloy layer or / and a nickel layer and a bismuth layer formed thereon and a cobalt layer formed thereon. The plated steel sheet for battery containers according to the present invention is free from peeling or cracking of the plating layer when it is formed into a container by drawing or drawing ironing, and the surface is excellent in alkali resistance and conductivity. Therefore, it can be suitably applied as a container for a high-performance battery excellent in battery characteristics such as discharge characteristics and a high-performance battery.

本発明の電池用めっき鋼板の電池容器内面となる側の鋼素地から上の層構 成の一例を示す断面図。Sectional drawing which shows an example of an upper layer structure from the steel base of the side used as the battery container inner surface of the plated steel plate for batteries of this invention. 本発明の電池用めっき鋼板の電池容器内面となる側の鋼素地から上の層構 成の他の一例を示す断面図。Sectional drawing which shows another example of an upper layer structure from the steel base of the side used as the battery container inner surface of the plated steel plate for batteries of this invention. 本発明の電池用めっき鋼板の電池容器内面となる側の鋼素地から上の層構 成の他の一例を示す断面図。Sectional drawing which shows another example of an upper layer structure from the steel base of the side used as the battery container inner surface of the plated steel plate for batteries of this invention. 本発明の電池用めっき鋼板の電池容器内面となる側の鋼素地から上の層構 成の他の一例を示す断面図。Sectional drawing which shows another example of an upper layer structure from the steel base of the side used as the battery container inner surface of the plated steel plate for batteries of this invention.

Claims (6)

鋼板の電池容器内面となる側の鋼板上に下から順に、ビスマス層、コバルト層が形成されてなることを特徴とする電池容器用めっき鋼板。 A plated steel sheet for a battery container, wherein a bismuth layer and a cobalt layer are formed in order from the bottom on the steel sheet on the side of the steel container that is the inner surface of the battery container. 鋼板の電池容器内面となる側の鋼板上に下から順に、ニッケル層、ビスマス層、コバルト層が形成されてなることを特徴とする電池容器用めっき鋼板。 A plated steel sheet for a battery container, wherein a nickel layer, a bismuth layer, and a cobalt layer are formed in order from the bottom on the steel sheet on the side that is the battery container inner surface of the steel sheet. 鋼板の電池容器内面となる側の鋼板上に下から順に、鉄−ニッケル合金層、ニッケル層、ビスマス層、コバルト層が形成されてなることを特徴とする電池容器用めっき鋼板。 An iron-nickel alloy layer, a nickel layer, a bismuth layer, and a cobalt layer are formed in order from the bottom on a steel plate on the side that is the inner surface of the battery case of the steel plate. 鋼板の電池容器内面となる側の鋼板上に下から順に、鉄−ニッケル合金層、ビスマス層、コバルト層が形成されてなることを特徴とする電池容器用めっき鋼板。 An iron-nickel alloy layer, a bismuth layer, and a cobalt layer are formed in order from the bottom on a steel plate on the side that is the inner surface of the battery case of the steel plate. 請求項1〜4のいずれか1項に記載の電池容器用めっき鋼板を有底の筒型形状に成形加工してなる電池容器。 The battery container formed by shape | molding the plated steel plate for battery containers of any one of Claims 1-4 in a bottomed cylindrical shape. 請求項5に記載の電池容器を用いてなる電池。
A battery comprising the battery container according to claim 5.
JP2006011689A 2005-03-28 2006-01-19 Plated steel plate for battery case, battery case using plated steel plate for battery case, and battery using battery case Withdrawn JP2006310264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006011689A JP2006310264A (en) 2005-03-28 2006-01-19 Plated steel plate for battery case, battery case using plated steel plate for battery case, and battery using battery case

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005090325 2005-03-28
JP2006011689A JP2006310264A (en) 2005-03-28 2006-01-19 Plated steel plate for battery case, battery case using plated steel plate for battery case, and battery using battery case

Publications (1)

Publication Number Publication Date
JP2006310264A true JP2006310264A (en) 2006-11-09

Family

ID=37476893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006011689A Withdrawn JP2006310264A (en) 2005-03-28 2006-01-19 Plated steel plate for battery case, battery case using plated steel plate for battery case, and battery using battery case

Country Status (1)

Country Link
JP (1) JP2006310264A (en)

Similar Documents

Publication Publication Date Title
JP5083931B2 (en) Battery container manufacturing method, battery container manufactured by the battery container manufacturing method, and battery using the battery container
JP5102945B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and alkaline battery using the battery container
JP2006093096A (en) Plated steel sheet for battery container, battery container using same, and battery using its battery container
JP4824961B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP4748665B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2007052997A (en) Plated steel sheet for battery case, battery case using plated steel sheet for battery case, and battery using battery case
JP2007051325A (en) Plated steel plate for battery case, battery case using the steel plate for battery case and battery using the battery case
JP2006190648A (en) Plated sheet steel for battery case, battery case using the plated sheet steel for battery case, and battery using the battery case
JP4675707B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2006348362A (en) Plated steel sheet for battery receptacle, battery receptacle using the plated steel sheet, and battery using the battery receptacle
JP2006307321A (en) Plated steel sheet for battery vessel, battery vessel using the plated steel sheet for battery vessel, and battery using the battery vessel
JP2007051324A (en) Plated steel plate for battery case, battery case using the steel plate for battery case and battery using the battery case
JP2006351432A (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2007059087A (en) Plated steel sheet for battery case, battery case using same, and battery using the battery case
JP2007005157A (en) Plated steel plate for battery case, battery case using it, battery using it and manufacturing method of plated steel plate for battery case
JP4817724B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2006310264A (en) Plated steel plate for battery case, battery case using plated steel plate for battery case, and battery using battery case
JP4968877B2 (en) Plated steel sheet for battery container, method for producing the same, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2006093097A (en) Plated steel sheet for battery container, battery container using same, and battery using its battery container
JP3840430B2 (en) Surface-treated steel sheet for battery case and battery case
JP4911952B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2006294353A (en) Plated steel sheet for battery container, battery container using plated steel sheet for battery container, and battery using battery container
JP2006283185A (en) Plated steel sheet for battery vessel, battery vessel using the plated steel sheet for battery vessel, and battery using the battery vessel
JP2004076117A (en) Surface treated steel sheet for battery case, and battery case using the same
JP4798953B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070416

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090407