JP2007052997A - Plated steel sheet for battery case, battery case using plated steel sheet for battery case, and battery using battery case - Google Patents

Plated steel sheet for battery case, battery case using plated steel sheet for battery case, and battery using battery case Download PDF

Info

Publication number
JP2007052997A
JP2007052997A JP2005236995A JP2005236995A JP2007052997A JP 2007052997 A JP2007052997 A JP 2007052997A JP 2005236995 A JP2005236995 A JP 2005236995A JP 2005236995 A JP2005236995 A JP 2005236995A JP 2007052997 A JP2007052997 A JP 2007052997A
Authority
JP
Japan
Prior art keywords
steel sheet
nickel
battery
cobalt
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005236995A
Other languages
Japanese (ja)
Inventor
Hitoshi Omura
等 大村
Tatsuo Tomomori
龍夫 友森
Yoshitaka Honda
義孝 本田
Eiji Yamane
栄治 山根
Eiji Okamatsu
栄次 岡松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP2005236995A priority Critical patent/JP2007052997A/en
Publication of JP2007052997A publication Critical patent/JP2007052997A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plated steel sheet for a battery case preventing increase in contact resistance by keeping sufficient adhesion between the inner surface of a battery case and a positive mix even after storage of a battery for a long time, and obtaining excellent high rate discharge characteristics by enhancing conductivity in an alkaline electrolyte. <P>SOLUTION: The plated steel sheet for the battery case is obtained in such a way that nickel plating is applied to the side functioning as the inner surface of the battery case of a steel sheet or heat treatment is applied in a nonoxidative atmosphere after nickel plating, cobalt-tungsten alloy plating or nickel-cobalt-tungsten alloy plating is applied, or after nickel plating is applied, cobalt-tungsten alloy plating or nickel-cobalt-tungsten alloy plating is continuously applied, and then heat treatment is applied in the nonoxidative atmosphere to obtain the plated steel sheet for the battery case, and the plated steel sheet is worked in the battery case and used in a battery. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電池容器用めっき鋼板、その電池容器用めっき鋼板を用いた電池容器およびその電池容器を用いた電池に関する。   The present invention relates to a plated steel sheet for battery containers, a battery container using the plated steel sheet for battery containers, and a battery using the battery container.

近年、デジタルカメラ、CDプレーヤー、MDプレーヤー、液晶テレビ、ゲーム機器など、携帯用AV機器や携帯電話の発展とともに、重負荷の作動電源として一次電池であるアルカリ電池、二次電池であるニッケル水素電池、リチウムイオン電池などが多用されている。これらの電池においては、高出力化および長寿命化など、高性能化が求められており、正極および負極活物質を充填する電池容器も電池の重要な構成要素としての性能の向上が求められている。従来、これらの電池容器材料としては、強アルカリ性の電解液に対する耐食性と、電池容器内表面と正極合剤との界面における低接触抵抗の保持を可能とするため、予め冷延鋼板にニッケルめっきを施したニッケルめっき鋼板を電池容器に成形加工したもの、もしくは冷延鋼板を電池容器に成形加工した後、電池容器内外表面をバレルめっき法によりニッケルめっきしたものが用いられている。またニッケルめっき鋼板としては、ニッケルめっき層と鋼素地との密着性を向上し、成形加工時の鉄露出を抑制するため、ニッケルめっき後に、熱処理を施して鋼素地とニッケルめっき層の間に鉄−ニッケル合金層(拡散層)を設けた熱拡散処理の方法がが提案されている(例えば特許文献1参照)。また本発明者らは、ニッケル層または鉄−ニッケル合金層(拡散層)の上に、ニッケル−錫合金層を生成させた鋼板を用いることにより、電池容器に成形加工する際に細かいひび割れを生じさせて電池容器内面に凹凸面を構成し、正極合剤や導電性被膜との接触面積を大きくして電池の内部抵抗を減少させる方法(例えば特許文献2参照)や、電池容器内面にコバルトまたはコバルト化合物を被覆することにより接触抵抗を低下させて放電性能を向上させる方法も提案されている(例えば特許文献3参照)。   In recent years, with the development of portable AV equipment and mobile phones such as digital cameras, CD players, MD players, liquid crystal televisions, game machines, etc., alkaline batteries as primary batteries and nickel metal hydride batteries as secondary batteries as heavy load operating power sources Lithium ion batteries are often used. These batteries are required to have higher performance such as higher output and longer life, and battery containers filled with positive and negative electrode active materials are also required to improve performance as important components of the battery. Yes. Conventionally, as these battery container materials, in order to make it possible to maintain corrosion resistance against a strong alkaline electrolyte and low contact resistance at the interface between the inner surface of the battery container and the positive electrode mixture, nickel plating is applied to the cold-rolled steel sheet in advance. A formed nickel-plated steel sheet is formed into a battery container, or a cold-rolled steel sheet is formed into a battery container, and then the inner and outer surfaces of the battery container are nickel-plated by barrel plating. In addition, for nickel-plated steel sheets, in order to improve the adhesion between the nickel-plated layer and the steel substrate, and to suppress the exposure of iron during the forming process, heat treatment is performed after the nickel plating, and iron is interposed between the steel substrate and the nickel-plated layer. -A method of thermal diffusion treatment provided with a nickel alloy layer (diffusion layer) has been proposed (see, for example, Patent Document 1). In addition, the present inventors use a steel plate in which a nickel-tin alloy layer is formed on a nickel layer or an iron-nickel alloy layer (diffusion layer), thereby causing fine cracks when forming the battery container. And forming a concavo-convex surface on the inner surface of the battery container to increase the contact area with the positive electrode mixture or the conductive coating to reduce the internal resistance of the battery (for example, see Patent Document 2), A method for improving the discharge performance by reducing the contact resistance by coating a cobalt compound has also been proposed (see, for example, Patent Document 3).

しかし、特許文献1による方法おいては、アルカリ電解液中においてニッケル層に不働態皮膜が生成して接触抵抗を十分に低下させることが困難であり、近年需要が高まってきている高率放電特性(ハイレート特性)が要求される電池用途には十分に対応することが困難である。また、特許文献2の技術については、電池容器内面に用いる鋼板面に形成させたニッケル−錫合金層のような硬質層を形成させることにより、絞り加工や絞りしごき加工などのプレス加工を施して容器に成形加工する際に微小クラックを生成させて、アルカリ電池の正極合剤との密着性を高めることによって優れた電池性能が得られるという特徴を有するが、ニッケル−錫合金層の最表面はアルカリ電解液中で不働態皮膜に覆われるようになり、接触抵抗が増大して電池の内部抵抗が高くなる。このため、これら合金層形成に起因する正極合剤との密着性向上によって得られる優れた放電性能を十分に発揮できない欠点を有している。また、特許文献3のコバルトまたはニッケル層上にコバルトめっきを施した後、熱処理して得られるコバルト化合物を被覆する方法においては、コバルトの導電性の向上に一定の効果はあるものの、電池保存後においては、正極合剤もしくは電池容器内面に塗布する導電剤との接触が緩み接触抵抗が高くなり、電池保存後のハイレート放電性能が求められる電池用途には十分に対応することが困難である。   However, in the method according to Patent Document 1, it is difficult to sufficiently reduce the contact resistance due to the formation of a passive film on the nickel layer in the alkaline electrolyte. It is difficult to adequately cope with battery applications that require (high-rate characteristics). Moreover, about the technique of patent document 2, press processing, such as a drawing process and a drawing ironing process, is performed by forming a hard layer like the nickel-tin alloy layer formed in the steel plate surface used for a battery container inner surface. It has the feature that excellent battery performance is obtained by generating minute cracks when molding into a container and enhancing the adhesion with the positive electrode mixture of the alkaline battery, but the outermost surface of the nickel-tin alloy layer is It is covered with a passive film in an alkaline electrolyte, increasing the contact resistance and increasing the internal resistance of the battery. For this reason, there exists a fault which cannot fully exhibit the outstanding discharge performance obtained by the adhesive improvement with the positive mix resulting from these alloy layer formation. In addition, in the method of coating a cobalt compound obtained by applying cobalt plating on a cobalt or nickel layer of Patent Document 3 and then heat-treating, although there is a certain effect in improving the conductivity of cobalt, In this case, the contact with the positive electrode mixture or the conductive agent applied to the inner surface of the battery container is loosened and the contact resistance is increased, and it is difficult to sufficiently cope with battery applications requiring high-rate discharge performance after battery storage.

本出願に関する先行技術文献情報として次のものがある。
特許第2810257号公報 特許第2877957号公報 特公平07−070320号公報
Prior art document information relating to the present application includes the following.
Japanese Patent No. 2810257 Japanese Patent No. 2877957 Japanese Patent Publication No. 07-070320

本発明においては、長期電池保存後においても電池容器内面と正極合剤との十分な密着性が得られて接触抵抗が増大することがなく、かつアルカリ電解液中での伝導性を向上させることにより、高率放電特性が得られる電池容器用めっき鋼板を提供することを目的とする。    In the present invention, sufficient adhesion between the inner surface of the battery container and the positive electrode mixture is obtained even after long-term battery storage, so that contact resistance does not increase and conductivity in an alkaline electrolyte is improved. Accordingly, an object of the present invention is to provide a plated steel sheet for battery containers that can obtain high rate discharge characteristics.

本発明の目的を達成するため、本発明の電池容器用めっき鋼板は、鋼板の電池容器内面となる側の鋼板上に、下からニッケル層、コバルトとタングステンを含む合金層が形成されてなることを特徴とする電池容器用めっき鋼板(請求項1)、または
鋼板の電池容器内面となる側の鋼板上に、下から順に鉄−ニッケル合金層、ニッケル層、コバルトとタングステンを含む合金層が形成されてなることを特徴とする電池容器用めっき鋼板(請求項2)、または
鋼板の電池容器内面となる側の鋼板上に、下から順に鉄−ニッケル合金層、コバルトとタングステンを含む合金層が形成されてなることを特徴とする電池容器用めっき鋼板(請求項3)、であり
上記(請求項1〜3)の電池容器用めっき鋼板において、前記コバルトとタングステンを含む合金層がコバルト−タングステン合金層であること(請求項4)、または
前記コバルトとタングステンを含む合金層がニッケル−コバルト−タングステン合金層であること(請求項5)を特徴とする。
また本発明の電池容器は、上記(請求項1〜5)のいずれかの電池容器用めっき鋼板を有底の筒型形状に成形加工してなる電池容器(請求項6)であり。
また本発明の電池は、上記(請求項6)の電池容器を用いてなる電池(請求項7)である。
In order to achieve the object of the present invention, the plated steel sheet for battery containers according to the present invention has a nickel layer and an alloy layer containing cobalt and tungsten formed from the bottom on the steel sheet side of the steel sheet. An iron-nickel alloy layer, a nickel layer, and an alloy layer containing cobalt and tungsten are formed in this order from the bottom on the plated steel sheet for battery containers (Claim 1), or on the steel sheet on the side that becomes the inner surface of the battery container. An iron-nickel alloy layer and an alloy layer containing cobalt and tungsten are arranged in this order from the bottom on the plated steel sheet for battery containers (Claim 2), or on the steel sheet on the battery container inner surface side. A plated steel sheet for battery containers (Claim 3), wherein the plated steel sheet for battery containers according to (Claims 1 to 3) includes the cobalt and tungsten. Alloy layer of cobalt - be tungsten alloy layer (claim 4), or an alloy layer including the cobalt and tungsten nickel - cobalt -, wherein it is a tungsten alloy layer (claim 5).
Moreover, the battery container of this invention is a battery container (Claim 6) formed by shape | molding the plated steel plate for battery containers in any one of the said (Claims 1-5) in a bottomed cylindrical shape.
The battery of the present invention is a battery (Claim 7) using the battery container of the above (Claim 6).

本発明の電池容器用めっき鋼板は、鋼板の電池容器内面となる側にニッケルめっきを施した後、またはニッケルめっき後に非酸化性雰囲気中で熱処理した後、コバルト−タングステン合金めっきまたはニッケル−コバルト−タングステン合金めっきを施すか、もしくはニッケルめっきを施した後、引き続いてコバルト−タングステン合金めっきまたはニッケル−コバルト−タングステン合金めっきを施した後、非酸化性雰囲気中で熱処理することにより得られる。このようにして得られる電池容器用めっき鋼板を電池容器に成形加工すると、電池容器内面においては生成した硬くて脆いタングステンを含む合金に微細なクラックが生じて表面が凹凸化することにより、正極合剤との密着性が向上して低接触抵抗が減少し、優れた電池特性が得られる。また、合金中に含有されるコバルトの存在によりアルカリ電解液中における優れた導電性を保持することができるので、ニッケルの不働態皮膜による導電性をカバーすることができる。そのため、本発明の電池容器用めっき鋼板を電池容器に成形し、この電池容器を用いた電池においては、高率な放電特性が得られる。   The plated steel sheet for battery containers of the present invention is obtained by applying nickel plating to the side of the steel sheet which is the inner surface of the battery container, or after heat-treating in a non-oxidizing atmosphere after nickel plating, followed by cobalt-tungsten alloy plating or nickel-cobalt- It is obtained by performing tungsten alloy plating or nickel plating, followed by cobalt-tungsten alloy plating or nickel-cobalt-tungsten alloy plating, followed by heat treatment in a non-oxidizing atmosphere. When the plated steel sheet for a battery container thus obtained is formed into a battery container, a fine crack is generated in the alloy containing hard and brittle tungsten formed on the inner surface of the battery container, and the surface becomes uneven. Adhesiveness with the agent is improved, low contact resistance is reduced, and excellent battery characteristics are obtained. Moreover, since the electroconductivity excellent in an alkaline electrolyte can be hold | maintained by presence of cobalt contained in an alloy, the electroconductivity by the passive film of nickel can be covered. Therefore, the plated steel sheet for battery containers of the present invention is formed into a battery container, and a battery using this battery container can obtain a high rate of discharge characteristics.

以下、本発明の内容を説明する。本発明の電池容器用めっき鋼板の基板となる鋼板としては、絞り加工用の低炭素アルミキルド鋼(炭素量0.01〜0.15重量%)、またはニオブやチタンを添加した深絞り加工用の非時効性の極低炭素アルミキルド鋼(炭素量0.01重量%未満)を用いる。これらの鋼の熱間圧延板を酸洗して表面のスケールを除去した後、常法により冷間圧延し、次いで電解洗浄、焼鈍、調質圧延したものを基板として用いる。あるいは、冷間圧延し、次いで電解洗浄した後の未焼鈍材を基板として用いることもできる。   The contents of the present invention will be described below. As a steel plate used as the substrate of the plated steel plate for battery containers of the present invention, low carbon aluminum killed steel for drawing (carbon content 0.01 to 0.15% by weight), or deep drawing for adding niobium or titanium. Non-aging ultra-low carbon aluminum killed steel (carbon content less than 0.01% by weight) is used. These steel hot-rolled plates are pickled to remove surface scales, then cold-rolled by a conventional method, and then subjected to electrolytic cleaning, annealing, and temper rolling as a substrate. Alternatively, an unannealed material after cold rolling and then electrolytically cleaning can be used as a substrate.

まず、めっき基板となる鋼板の両面に、無光沢ニッケルめっきを施すか、またはワット浴に有機添加剤を加えためっき浴を用いて半光沢ニッケルめっきを施す。ニッケルめっきの付着量は2g/m以上とすることが好ましい。2g/m未満ではピンホールが生じやすく、また電池容器に成形加工する際に生じる疵などにより、鋼素地が過度に露出するようになり、鉄イオンのアルカリ電解液中への溶解量が増加し、溶解した鉄イオンが負極亜鉛に移行し、亜鉛との電気化学反応によるガス発生を増大させる恐れがある。ニッケルめっき付着量の上限は経済性により適宜定めることができるが、25g/m以下とすることが好ましい。 First, the matte nickel plating is performed on both surfaces of the steel plate to be the plating substrate, or the semibright nickel plating is performed using a plating bath in which an organic additive is added to a watt bath. The adhesion amount of nickel plating is preferably 2 g / m 2 or more. If it is less than 2 g / m 2 , pinholes are likely to occur, and the steel substrate will be exposed excessively due to wrinkles generated when forming into a battery container, increasing the amount of iron ions dissolved in the alkaline electrolyte. Then, the dissolved iron ions may migrate to the negative electrode zinc and increase gas generation due to an electrochemical reaction with zinc. The upper limit of the nickel plating adhesion amount can be appropriately determined depending on economy, but is preferably 25 g / m 2 or less.

上記のようにしてニッケルめっきを施した後、コバルト−タングステン合金めっきまたはニッケル−コバルト−タングステン合金めっきを施す。または、ニッケルめっきを施した後に鋼素地の鉄とニッケル層を合金化するための熱処理(拡散熱処理)を施した後、これらのいずれかの合金めっきを施す。熱処理を施す場合は、非酸化性保護ガス雰囲気下で箱型焼鈍法、もしくは連続焼鈍法を用いて行う。箱型焼鈍法の場合は加熱温度450〜650℃、好ましくは500〜600℃の温度範囲で1〜6時間の金熱加熱を施すことが好ましい。連続焼鈍法を用いる場合は加熱温度600〜850℃、加熱時間10秒〜5分の範囲とすることが好ましい。これらの条件下で熱処理することにより、ニッケルめっき層のニッケルの全てまたは一部が熱拡散して合金化する。また、冷間圧延した未焼鈍材にニッケルめっきを施した後、連続焼鈍法を用いて熱処理を施すことにより、未焼鈍材の焼鈍と拡散熱処理を1度の熱処理で行なうこともできる。これらの熱処理を施した後に、0.5〜2%程度の圧延率で調質圧延を施し、機械的性質の調整(ストレッチャーストレインの発生防止)や適宜な表面粗さの付与を行うことが好ましい。   After nickel plating as described above, cobalt-tungsten alloy plating or nickel-cobalt-tungsten alloy plating is applied. Or after giving nickel plating, after giving the heat processing (diffusion heat treatment) for alloying the iron and nickel layer of a steel base, any one of these alloy plating is given. When heat treatment is performed, a box-type annealing method or a continuous annealing method is performed in a non-oxidizing protective gas atmosphere. In the case of the box-type annealing method, it is preferable to perform gold-heat heating for 1 to 6 hours at a heating temperature of 450 to 650 ° C, preferably 500 to 600 ° C. When using the continuous annealing method, it is preferable to set the heating temperature to 600 to 850 ° C. and the heating time to 10 seconds to 5 minutes. By heat-treating under these conditions, all or part of the nickel in the nickel plating layer is thermally diffused and alloyed. In addition, after the cold-rolled unannealed material is nickel-plated and then subjected to a heat treatment using a continuous annealing method, the unannealed material can be annealed and diffused by a single heat treatment. After performing these heat treatments, temper rolling is performed at a rolling rate of about 0.5 to 2%, and adjustment of mechanical properties (preventing the occurrence of stretcher strain) and appropriate surface roughness are imparted. preferable.

上記のようにしてニッケルめっきを施した後、またはニッケルめっきを施し、次いで熱処理を施した後に、コバルト−タングステン合金めっきまたはニッケル−コバルト−タングステン合金めっきを施す。コバルト−タングステン合金めっき浴としては、硫酸コバルト、タングステン酸アルカリ金属塩またはタングステン酸アンモニウム塩、および有機酸のアルカリ塩などの錯化剤からなる公知のめっき浴を用いることが好ましい。コバルト−タングステン合金めっきのめっき付着量は0.5〜5g/mの範囲であることが好ましい。0.5g/m未満では電池容器に成形加工する際に硬質のコバルト−タングステン合金層に生じるクラックの深さが小さく、充填する正極合剤との十分な密着性が得られない。一方、5g/mを超えるとコバルト−タングステン合金層に深いクラックが生じて鋼素地に達するようになり、鋼素地がアルカリ電解液と接触して溶解し、ガス発生を生じるおそれが大きくなる。 After nickel plating as described above, or after nickel plating and then heat treatment, cobalt-tungsten alloy plating or nickel-cobalt-tungsten alloy plating is performed. As the cobalt-tungsten alloy plating bath, a known plating bath made of a complexing agent such as cobalt sulfate, alkali metal tungstate or ammonium tungstate, and alkali salt of organic acid is preferably used. The plating adhesion amount of the cobalt-tungsten alloy plating is preferably in the range of 0.5 to 5 g / m 2 . If it is less than 0.5 g / m 2 , the crack depth generated in the hard cobalt-tungsten alloy layer is small when being molded into a battery container, and sufficient adhesion with the positive electrode mixture to be filled cannot be obtained. On the other hand, if it exceeds 5 g / m 2 , deep cracks are generated in the cobalt-tungsten alloy layer to reach the steel substrate, and the steel substrate comes into contact with the alkaline electrolyte and dissolves, thereby increasing the possibility of generating gas.

コバルト−タングステン合金皮膜中のタングステン含有率(W×100/(Co+W))は5〜30%の範囲であることが好ましい。タングステン含有量が5%未満ではコバルト−タングステン合金皮膜の硬さが小さく、電池容器に成形加工する際に生じるクラックの発生密度が小さく、充填する正極合剤との十分な密着性が得られない。タングステン含有量が30%を超えるようにめっき浴や電解条件を調整することが困難となる。   The tungsten content (W × 100 / (Co + W)) in the cobalt-tungsten alloy film is preferably in the range of 5 to 30%. If the tungsten content is less than 5%, the hardness of the cobalt-tungsten alloy film is small, the density of cracks generated when forming into a battery container is small, and sufficient adhesion with the positive electrode mixture to be filled cannot be obtained. . It becomes difficult to adjust the plating bath and electrolysis conditions so that the tungsten content exceeds 30%.

ニッケル−コバルト−タングステン合金めっき浴としては、上記のコバルト−タングステン合金めっき浴に硫酸ニッケルを添加した浴を用いる。ニッケル−コバルト−タングステン合金めっきのめっき付着量は、コバルト−タングステン合金めっきの場合と同様の理由で0.5〜5g/mの範囲であることが好ましい。ニッケル−コバルト−タングステン合金皮膜中のタングステン含有率(W×100/(Ni+Co+W))およびはコバルト含有率(Co×100/(Ni+Co+W))は、それぞれ5〜30%の範囲であることが好ましい。タングステン含有率の好適範囲はコバルト−タングステン合金皮膜の場合と同様である。コバルト含有率については、5%未満では電池を長期保存した際のコバルトによる導電性低減を抑制する効果に乏しい。コバルト含有量を30%を超えるようにめっき浴や電解条件を調整することが困難となる。 As the nickel-cobalt-tungsten alloy plating bath, a bath obtained by adding nickel sulfate to the above cobalt-tungsten alloy plating bath is used. The amount of nickel-cobalt-tungsten alloy plating is preferably in the range of 0.5 to 5 g / m 2 for the same reason as in the case of cobalt-tungsten alloy plating. The tungsten content (W × 100 / (Ni + Co + W)) and the cobalt content (Co × 100 / (Ni + Co + W)) in the nickel-cobalt-tungsten alloy film are each preferably in the range of 5 to 30%. The preferable range of the tungsten content is the same as that of the cobalt-tungsten alloy film. When the cobalt content is less than 5%, the effect of suppressing the decrease in conductivity due to cobalt when the battery is stored for a long time is poor. It becomes difficult to adjust the plating bath and electrolysis conditions so that the cobalt content exceeds 30%.

本発明においては、冷間圧延後に焼鈍を施した鋼板、または冷間圧延後に未焼鈍の鋼板にニッケルめっきを施し、引き続いて上記のコバルト−タングステン合金めっきまたはニッケル−コバルト−タングステン合金めっきを施した後に熱処理(拡散熱処理)を施してもよい。焼鈍を施した鋼板にめっきを施し、次いで箱型焼鈍法を用いて熱処理する場合は、鋼素地の再結晶組織が再度の熱処理により粗大化しないように、700℃未満の温度で加熱することが好ましい。低炭素アルミキルド鋼の未焼鈍の鋼板にめっきを施しためっき鋼板に熱処理を施す場合は、連続焼鈍法を用いて、加熱温度600〜700℃、過熱時間10秒から3分の条件で鋼素地の再結晶焼鈍とめっき層の鋼素地への拡散熱処理を、1度の熱処理で同時に行なうことができる。同様に、極低炭素アルミキルド鋼の未焼鈍の鋼板にめっきを施しためっき鋼板に熱処理を施す場合も、連続焼鈍法を用いて、加熱温度750〜800℃、過熱時間10秒から3分の条件で鋼素地の再結晶焼鈍とめっき層の鋼素地への拡散熱処理を、1度の熱処理で同時に行なうことができる。これらの熱処理を施した後に、0.5〜2%程度の圧延率で調質圧延を施し、機械的性質の調整(ストレッチャーストレインの発生防止)や適宜な表面粗さの付与を行うことが好ましい。   In the present invention, nickel plating is applied to a steel sheet that has been annealed after cold rolling, or a steel sheet that has not been annealed after cold rolling, and then the above cobalt-tungsten alloy plating or nickel-cobalt-tungsten alloy plating is applied. A heat treatment (diffusion heat treatment) may be performed later. When plating is performed on a steel sheet that has been annealed and then heat-treated using a box-type annealing method, heating may be performed at a temperature of less than 700 ° C. so that the recrystallized structure of the steel substrate does not become coarse due to the second heat treatment. preferable. When heat treatment is applied to a plated steel sheet obtained by plating an unannealed steel sheet of low-carbon aluminum killed steel, a continuous annealing method is used to heat the steel substrate under conditions of a heating temperature of 600 to 700 ° C. and an overheating time of 10 seconds to 3 minutes. The recrystallization annealing and the diffusion heat treatment to the steel substrate of the plating layer can be performed simultaneously by one heat treatment. Similarly, when heat treatment is performed on a plated steel sheet obtained by plating an unannealed steel sheet of ultra-low carbon aluminum killed steel, the heating temperature is 750 to 800 ° C. and the heating time is 10 seconds to 3 minutes using the continuous annealing method. Thus, the recrystallization annealing of the steel substrate and the diffusion heat treatment of the plating layer to the steel substrate can be performed simultaneously by one heat treatment. After performing these heat treatments, temper rolling is performed at a rolling rate of about 0.5 to 2%, and adjustment of mechanical properties (preventing the occurrence of stretcher strain) and appropriate surface roughness are imparted. preferable.

本発明の電池容器は、上記の電池容器用めっき鋼板を、絞り加工法、絞りしごき加工法(DI加工法)、絞りストレッチ加工法(DTR加工法)、または絞り加工後ストレッチ加工としごき加工を併用する加工法を用いて、有底の筒型形状に成形加工して得られる。筒型形状としては、底面が円、楕円、または長方形や正方形などの多角形の形状であり、用途に応じて側壁の高さを適宜選択した筒型形状に成形加工する。このようにして得られる電池容器に正極合剤、負極活物質等を充填して電池とする。   The battery container of the present invention is obtained by subjecting the above-described plated steel sheet for a battery container to a drawing process, a drawing ironing process (DI processing method), a drawing stretch processing method (DTR processing method), or a drawing process as a stretching process. It is obtained by forming into a bottomed cylindrical shape using the processing method used in combination. As the cylindrical shape, the bottom surface is a circle, an ellipse, or a polygonal shape such as a rectangle or a square, and is molded into a cylindrical shape with the side wall height appropriately selected according to the application. The battery container thus obtained is filled with a positive electrode mixture, a negative electrode active material, and the like to obtain a battery.

以下、実施例にて本発明を詳細に説明する。
[電池容器用めっき鋼板の作成]
めっき基板として、表1に化学組成を示す熱間圧延済みの低炭素アルミキルド鋼(I)または極低炭素アルミキルド鋼(II)を用いた。
Hereinafter, the present invention will be described in detail with reference to examples.
[Creation of plated steel sheets for battery containers]
As the plating substrate, hot-rolled low carbon aluminum killed steel (I) or extremely low carbon aluminum killed steel (II) whose chemical composition is shown in Table 1 was used.

Figure 2007052997
Figure 2007052997

上記のIまたはIIの鋼種の熱間圧延板に、常法により冷間圧延、電解洗浄を施して0.25mmの板厚を有する冷間圧延板とした後、鋼種Iの一部については、箱型焼鈍法を用いて均熱温度640〜680℃で加熱時間8時間の熱処理を行った。また鋼種Iの他の一部については、電解洗浄後の未焼鈍板に下記のめっきを施した後、箱型焼鈍法を用いて金熱温度500〜580℃で加熱時間6〜8時間、または連続焼鈍法を用いて均熱温度650℃で加熱時間2分間の熱処理を行った。鋼種IIについては、冷間圧延、電解洗浄を施した後に下記のめっきを施した後、連続焼鈍法を用いて均熱温度780℃で加熱時間2分間の熱処理を行った。上記のようにして作成しためっき冷延鋼板を用いて、下記のイ)〜ヌ)に示す工程を経て電池容器用めっき鋼板を作成した。
イ)低炭素アルミキルド鋼(I)→冷間圧延→電解洗浄→焼鈍(箱型焼鈍炉)→調質圧延→ニッケルめっき(内、外面側)→コバルト−タングステン合金めっき(内面側)
ロ)低炭素アルミキルド鋼(I)→冷間圧延→電解洗浄→焼鈍(箱型焼鈍炉)→調質圧延→ニッケルめっき(内、外面側)→ニッケル−コバルト−タングステン合金めっき(内面側)
ハ)低炭素アルミキルド鋼(I)→冷間圧延→電解洗浄→ニッケルめっき(内、外面側)→熱処理(箱型焼鈍炉)→調質圧延→コバルト−タングステン合金めっき(内面側)
ニ)低炭素アルミキルド鋼(I)→冷間圧延→電解洗浄→ニッケルめっき(内、外面側)→熱処理(箱型焼鈍炉)→調質圧延→ニッケル−コバルト−タングステン合金めっき(内面側)
ホ)極低炭素アルミキルド鋼(II)→冷間圧延→電解洗浄→ニッケルめっき(内、外面側)→コバルト−タングステン合金めっき(内面側)→熱処理(連続焼鈍炉)→調質圧延
ヘ)極低炭素アルミキルド鋼(II)→冷間圧延→電解洗浄→ニッケルめっき(内、外面側)→ニッケル−コバルト−タングステン合金めっき(内面側)→熱処理(連続焼鈍炉)→調質圧延
ト)低炭素アルミキルド鋼(I)→冷間圧延→電解洗浄→ニッケルめっき(内、外面側)→熱処理(連続焼鈍炉)→コバルト−タングステン合金めっき(内面側)→調質圧延
チ)低炭素アルミキルド鋼(I)→冷間圧延→電解洗浄→ニッケルめっき(内、外面側)→熱処理(連続焼鈍炉)→ニッケル−コバルト−タングステン合金めっき(内面側)→調質圧延
リ)低炭素アルミキルド鋼(I)→冷間圧延→電解洗浄→焼鈍(箱型焼鈍炉)→調質圧延→ニッケルめっき(内、外面側)
ヌ)極低炭素アルミキルド鋼(II)→冷間圧延→電解洗浄→ニッケルめっき(内、外面側)→熱処理(連続焼鈍法)→調質圧延
上記イ)〜ヌ)の工程における各めっき処理は以下に示す条件で行なった。
After hot rolling plate of the above steel type I or II, cold rolling and electrolytic cleaning by a conventional method to obtain a cold rolled plate having a plate thickness of 0.25 mm, about a part of steel type I, Heat treatment was performed for 8 hours at a soaking temperature of 640 to 680 ° C. using a box annealing method. Moreover, about other one part of the steel type I, after giving the following plating to the unannealed board after electrolytic cleaning, the heating time is 6 to 8 hours at a metal heat temperature of 500 to 580 ° C. using a box annealing method, or Heat treatment was performed for 2 minutes at a soaking temperature of 650 ° C. using a continuous annealing method. For Steel Type II, after cold rolling and electrolytic cleaning, the following plating was performed, followed by heat treatment at a soaking temperature of 780 ° C. for 2 minutes using a continuous annealing method. Using the plated cold-rolled steel sheet prepared as described above, a plated steel sheet for battery containers was prepared through the steps shown in the following a) to n).
B) Low-carbon aluminum killed steel (I) → Cold rolling → Electrolytic cleaning → Annealing (box annealing furnace) → Temper rolling → Nickel plating (inside and outside) → Cobalt-tungsten alloy plating (inside)
B) Low carbon aluminum killed steel (I) → Cold rolling → Electrolytic cleaning → Annealing (box annealing furnace) → Temper rolling → Nickel plating (inside and outside) → Nickel-cobalt-tungsten alloy plating (inside)
C) Low carbon aluminum killed steel (I) → Cold rolling → Electrolytic cleaning → Nickel plating (inside and outside) → Heat treatment (box annealing furnace) → Temper rolling → Cobalt-tungsten alloy plating (inside)
D) Low carbon aluminum killed steel (I) → Cold rolling → Electrolytic cleaning → Nickel plating (inside and outside) → Heat treatment (box annealing furnace) → Temper rolling → Nickel-cobalt-tungsten alloy plating (inside)
E) Extremely low carbon aluminum killed steel (II)-> cold rolling-> electrolytic cleaning-> nickel plating (inner and outer side)-> cobalt-tungsten alloy plating (inner side)-> heat treatment (continuous annealing furnace)-> temper rolling Low carbon aluminum killed steel (II) → Cold rolling → Electrolytic cleaning → Nickel plating (inner and outer surfaces) → Nickel-cobalt-tungsten alloy plating (inner surfaces) → Heat treatment (continuous annealing furnace) → Temper rolling Aluminum killed steel (I) → Cold rolling → Electrolytic cleaning → Nickel plating (inner and outer surfaces) → Heat treatment (continuous annealing furnace) → Cobalt-tungsten alloy plating (inner surfaces) → Tempered rolling h) Low carbon aluminum killed steel (I ) → Cold rolling → Electrolytic cleaning → Nickel plating (inner and outer side) → Heat treatment (continuous annealing furnace) → Nickel-cobalt-tungsten alloy plating (inner side) → Temperature rolling Lumikilled steel (I) → cold rolling → electrolytic cleaning → annealing (box annealing furnace) → temper rolling → nickel plating (inside and outside)
N) Extremely low carbon aluminum killed steel (II) → cold rolling → electrolytic cleaning → nickel plating (inner and outer surface side) → heat treatment (continuous annealing method) → temper rolling It carried out on the conditions shown below.

<ニッケルめっき>
浴組成 硫酸ニッケル 300g/L
塩化ニッケル 35g/L
ホウ酸 40g/L
ピット抑制剤(ラウリル硫酸ナトリウム) 0.4mL/L
陽極 ニッケルペレット(チタンバスケットにINCO(株)製Sペレットを充填 しポリプロピレン製アノードバッグを装着)
攪拌 空気撹拝
pH 4.0〜4.6
浴温 55〜60℃
電流密度 15A/dm
<Nickel plating>
Bath composition Nickel sulfate 300g / L
Nickel chloride 35g / L
Boric acid 40g / L
Pit inhibitor (sodium lauryl sulfate) 0.4mL / L
Anode Nickel Pellets (Titanium basket filled with S pellets from INCO Corporation and equipped with polypropylene anode bag)
Stirring air stirring
pH 4.0-4.6
Bath temperature 55-60 ° C
Current density 15A / dm 2

<コバルト−タングステン合金めっき>
浴組成 硫酸コバルト 40g/L
タングステン酸ナトリウム 50g/L
クエン酸ナトリウム 80g/L
ホウ酸 10g/L
陽極 チタン板に白金めっきした板状アノード
攪拌 めっき液の循環
pH 2.5〜3.0
浴温 45〜50℃
電流密度 10〜15A/dm
<Cobalt-tungsten alloy plating>
Bath composition Cobalt sulfate 40 g / L
Sodium tungstate 50g / L
Sodium citrate 80g / L
Boric acid 10g / L
Anode Plate-like anode with platinum plating on titanium plate Stirring Plating solution circulation
pH 2.5-3.0
Bath temperature 45-50 ° C
Current density 10-15A / dm 2

<ニッケル−コバルト−タングステン合金めっき>
浴組成 硫酸ニッケル 80g/L
硫酸コバルト 15g/L
タングステン酸ナトリウム 50g/L
クエン酸ナトリウム 90g/L
ホウ酸 10g/L
陽極 ニッケルペレット(チタンバスケットにINCO(株)製Sペレットを充填 しポリプロピレン製アノードバッグを装着)
攪拌 空気撹拝
pH 2.5〜3.0
浴温 45〜50℃
電流密度 10〜15A/dm
<Nickel-cobalt-tungsten alloy plating>
Bath composition Nickel sulfate 80g / L
Cobalt sulfate 15g / L
Sodium tungstate 50g / L
Sodium citrate 90g / L
Boric acid 10g / L
Anode Nickel Pellets (Titanium basket filled with S pellets from INCO Corporation and equipped with polypropylene anode bag)
Stirring air stirring
pH 2.5-3.0
Bath temperature 45-50 ° C
Current density 10-15A / dm 2

上記のめっきを施し、次いで熱処理を施した後に圧延率1.2%で調質圧延を行い、表2に示す電池容器用めっき鋼板の試料(試料番号1〜10)を作成した。   After performing the above plating and then heat treatment, temper rolling was performed at a rolling rate of 1.2%, and samples of the plated steel sheets for battery containers (sample numbers 1 to 10) shown in Table 2 were prepared.

[電池の作成]
この電池容器を用いて、以下のようにしてアルカリマンガン電池を作成した。二酸化マンガンと黒鉛を10:1の比率で採取し、水酸化カリウム(10モル)を添加混合して正極合剤を作成した。次いでこの正極合剤を金型中で加圧して所定寸法のドーナツ形状の正極合剤ペレットに成形した。次いで、電池容器内面に黒鉛粉末を主剤とした導電物質を塗布し、先に作成した正極合剤ペレットを圧挿入した。次に、負極集電棒をスポット溶接した負極板を電池容器に装着した。次いで、電池容器に圧挿入した正極合剤ペレットの内周に沿うようにしてビニロン製織布からなるセパレータを挿入し、亜鉛粒と酸化亜鉛を飽和させた水酸化カリウムからなる負極ゲルを電池容器内に充填した。さらに、負極板に絶縁体のガスケットを装着して電池容器内に挿入した後、カシメ加工してアルカリマンガン電池を作成した。
[Create battery]
Using this battery container, an alkaline manganese battery was prepared as follows. Manganese dioxide and graphite were collected at a ratio of 10: 1, and potassium hydroxide (10 mol) was added and mixed to prepare a positive electrode mixture. Next, this positive electrode mixture was pressed in a mold to form a donut-shaped positive electrode mixture pellet having a predetermined size. Next, a conductive material containing graphite powder as a main ingredient was applied to the inner surface of the battery container, and the positive electrode mixture pellet prepared earlier was press-inserted. Next, the negative electrode plate spot-welded with the negative electrode current collector rod was attached to the battery container. Next, a separator made of vinylon woven cloth is inserted along the inner circumference of the positive electrode mixture pellet press-inserted into the battery container, and the negative electrode gel made of potassium hydroxide saturated with zinc particles and zinc oxide is put into the battery container. Filled in. Further, an insulating gasket was attached to the negative electrode plate and inserted into the battery container, followed by caulking to prepare an alkaline manganese battery.

[特性評価]
以上のようにして試料番号1〜10の試料から作成した電池容器を用いて作成した電池の特性を、以下のようにして評価した。
[Characteristic evaluation]
The characteristics of the batteries prepared using the battery containers prepared from the samples Nos. 1 to 10 as described above were evaluated as follows.

<短絡電流>
電池を80℃で3日間放置した後、電池に電流計を接続して閉回路を設けて電流値を測定し、これを短絡電流とした。短絡電流が大であるほど特性が良好であることを示す。
<Short-circuit current>
After leaving the battery at 80 ° C. for 3 days, an ammeter was connected to the battery, a closed circuit was provided, and the current value was measured, which was defined as a short-circuit current. It shows that a characteristic is so favorable that a short circuit current is large.

<放電特性>
重負荷連続放電の評価として、電池を80℃で3日間放置した後、作製した電池を1.5Aの一定電流に放電し、終止電圧0.9Vに到達するまでの時間を放電時間として測定した。放電時間が長いほど放電特性が良好であることを示す。
<Discharge characteristics>
As an evaluation of heavy load continuous discharge, after leaving the battery at 80 ° C. for 3 days, the produced battery was discharged to a constant current of 1.5 A, and the time until the final voltage of 0.9 V was reached was measured as the discharge time. . The longer the discharge time, the better the discharge characteristics.

<間歇放電特性>
重負荷間歌放電の評価として、2Aで0.5秒放電した後に0.25Aで29.5秒放電する操作を1サイクルとして、間歇放電を繰り返し、終始電圧が1.0Vに到達するまでのサイクル数を測定した。サイクル数が多いほど間歌放電特性が良好であることを示す。これらの評価結果を表3に示す。
<Intermittent discharge characteristics>
As an evaluation of the heavy load inter-single discharge, an operation of discharging at 2A for 0.5 seconds and then discharging at 0.25A at 29.5 seconds is one cycle, and intermittent discharge is repeated until the voltage reaches 1.0V throughout. The number of cycles was measured. The larger the number of cycles, the better the intercussion discharge characteristics. These evaluation results are shown in Table 3.

Figure 2007052997
Figure 2007052997

Figure 2007052997
Figure 2007052997

表3に示すように、電池容器の内面となる側にニッケルめっきを施した後、またはニッケルめっきを施し次いで熱処理を施した後、その上にコバルト−タングステン合金めっきまたはニッケル−コバルト−タングステン合金めっきを施すか、もしくはニッケルめっきを施し、引き続いてコバルト−タングステン合金めっきまたはニッケル−コバルト−タングステン合金めっきを施し次いで熱処理を施してなる本発明の電池容器用めっき鋼板を用いて電池容器に成形加工した場合は、コバルト−タングステン合金めっきまたはニッケル−コバルト−タングステン合金めっきを施さない電池容器用めっき鋼板を用いた場合に比較して、電池保存後の短絡電流、重負荷連続放電特性、重負荷簡間歇放電特性のいずれもが向上することが認められる。   As shown in Table 3, after nickel plating is applied to the inner surface of the battery container, or after nickel plating and then heat treatment, cobalt-tungsten alloy plating or nickel-cobalt-tungsten alloy plating is formed thereon. Or nickel plating, followed by cobalt-tungsten alloy plating or nickel-cobalt-tungsten alloy plating, followed by heat treatment, and formed into a battery container using the plated steel sheet for battery containers of the present invention. Compared to the case of using a plated steel sheet for battery containers that is not plated with cobalt-tungsten alloy or nickel-cobalt-tungsten alloy, the short-circuit current after storage, heavy load continuous discharge characteristics, It can be seen that all of the discharge characteristics are improved.

鋼板の電池容器内面となる側にニッケルめっきを施した後、またはニッケルめっき後に非酸化性雰囲気中で熱処理した後、コバルト−タングステン合金めっきまたはニッケル−コバルト−タングステン合金めっきを施すか、もしくニッケルめっきを施した後、引き続いてコバルト−タングステン合金めっきまたはニッケル−コバルト−タングステン合金めっきを施した後、非酸化性雰囲気中で熱処理することにより得られる本発明の電池容器用めっき鋼板を電池容器に成形加工すると、電池容器内面においては生成した硬くて脆いタングステンを含む合金に微細なクラックが生じて表面が凹凸化することにより、正極合剤との密着性が向上して低接触抵抗が減少し、優れた電池特性が得られる。また、合金中のコバルトの存在によりアルカリ電解液中における優れた導電性を保持することができるので、ニッケルの不働態皮膜による導電性をカバーすることができる。そのため、本発明の電池容器用めっき鋼板を電池容器に成形し、この電池容器を用いた電池においては、高率な放電特性が得られる。
After nickel plating is applied to the battery vessel inner surface of the steel sheet, or after heat treatment in a non-oxidizing atmosphere after nickel plating, cobalt-tungsten alloy plating or nickel-cobalt-tungsten alloy plating is applied, or nickel After the plating, the cobalt-tungsten alloy plating or the nickel-cobalt-tungsten alloy plating is subsequently applied, and then the plated steel sheet for battery containers of the present invention obtained by heat treatment in a non-oxidizing atmosphere is used as the battery container. When the molding process is carried out, fine cracks are generated in the alloy containing hard and brittle tungsten formed on the inner surface of the battery container, and the surface becomes uneven, thereby improving the adhesion with the positive electrode mixture and reducing the low contact resistance. Excellent battery characteristics can be obtained. Further, since the excellent conductivity in the alkaline electrolyte can be maintained due to the presence of cobalt in the alloy, the conductivity due to the passive film of nickel can be covered. Therefore, the plated steel sheet for battery containers of the present invention is formed into a battery container, and a battery using this battery container can obtain a high rate of discharge characteristics.

Claims (7)

鋼板の電池容器内面となる側の鋼板上に、下からニッケル層、コバルトとタングステンを含む合金層が形成されてなることを特徴とする電池容器用めっき鋼板。 A plated steel sheet for a battery container, wherein a nickel layer and an alloy layer containing cobalt and tungsten are formed from the bottom on a steel sheet on the side that is the battery container inner surface of the steel sheet. 鋼板の電池容器内面となる側の鋼板上に、下から順に鉄−ニッケル合金層、ニッケル層、コバルトとタングステンを含む合金層が形成されてなることを特徴とする電池容器用めっき鋼板。 A plated steel sheet for a battery container, wherein an iron-nickel alloy layer, a nickel layer, and an alloy layer containing cobalt and tungsten are formed in order from the bottom on a steel sheet on the side that is the battery container inner surface of the steel sheet. 鋼板の電池容器内面となる側の鋼板上に、下から順に鉄−ニッケル合金層、コバルトとタングステンを含む合金層が形成されてなることを特徴とする電池容器用めっき鋼板。 A plated steel sheet for battery containers, wherein an iron-nickel alloy layer and an alloy layer containing cobalt and tungsten are formed in this order from the bottom on a steel sheet on the side that is the battery container inner surface of the steel sheet. 前記コバルトとタングステンを含む合金層がコバルト−タングステン合金層であることを特徴とする、請求項1〜3のいずれか1項に記載の電池容器用めっき鋼板。 The plated steel sheet for a battery container according to any one of claims 1 to 3, wherein the alloy layer containing cobalt and tungsten is a cobalt-tungsten alloy layer. 前記コバルトとタングステンを含む合金層がニッケル−コバルト−タングステン合金層であることを特徴とする、請求項1〜3のいずれか1項に記載の電池容器用めっき鋼板。 The plated steel sheet for battery containers according to any one of claims 1 to 3, wherein the alloy layer containing cobalt and tungsten is a nickel-cobalt-tungsten alloy layer. 請求項1〜5のいずれか1項に記載の電池容器用めっき鋼板を有底の筒型形状に成形加工してなる電池容器。 The battery container formed by shape | molding the plated steel plate for battery containers of any one of Claims 1-5 in a bottomed cylindrical shape. 請求項6に記載の電池容器を用いてなる電池。
A battery comprising the battery container according to claim 6.
JP2005236995A 2005-08-17 2005-08-17 Plated steel sheet for battery case, battery case using plated steel sheet for battery case, and battery using battery case Withdrawn JP2007052997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005236995A JP2007052997A (en) 2005-08-17 2005-08-17 Plated steel sheet for battery case, battery case using plated steel sheet for battery case, and battery using battery case

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005236995A JP2007052997A (en) 2005-08-17 2005-08-17 Plated steel sheet for battery case, battery case using plated steel sheet for battery case, and battery using battery case

Publications (1)

Publication Number Publication Date
JP2007052997A true JP2007052997A (en) 2007-03-01

Family

ID=37917295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005236995A Withdrawn JP2007052997A (en) 2005-08-17 2005-08-17 Plated steel sheet for battery case, battery case using plated steel sheet for battery case, and battery using battery case

Country Status (1)

Country Link
JP (1) JP2007052997A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072058A1 (en) * 2013-11-15 2015-05-21 パナソニックIpマネジメント株式会社 Alkaline dry cell
JP2017057484A (en) * 2015-09-18 2017-03-23 石原ケミカル株式会社 Method for forming conductive coating on transparent conductive film
JP2020155202A (en) * 2019-03-18 2020-09-24 Fdk株式会社 Steel sheet for alkaline battery can, battery can for alkaline battery, alkaline battery, and method for producing steel sheet for alkaline battery can
JP7063432B1 (en) * 2020-12-03 2022-05-09 日本製鉄株式会社 Surface-treated steel sheet
WO2022118770A1 (en) * 2020-12-03 2022-06-09 日本製鉄株式会社 Surface-treated steel sheet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072058A1 (en) * 2013-11-15 2015-05-21 パナソニックIpマネジメント株式会社 Alkaline dry cell
JPWO2015072058A1 (en) * 2013-11-15 2017-03-16 パナソニックIpマネジメント株式会社 Alkaline battery
JP2017057484A (en) * 2015-09-18 2017-03-23 石原ケミカル株式会社 Method for forming conductive coating on transparent conductive film
JP2020155202A (en) * 2019-03-18 2020-09-24 Fdk株式会社 Steel sheet for alkaline battery can, battery can for alkaline battery, alkaline battery, and method for producing steel sheet for alkaline battery can
JP7063432B1 (en) * 2020-12-03 2022-05-09 日本製鉄株式会社 Surface-treated steel sheet
WO2022118770A1 (en) * 2020-12-03 2022-06-09 日本製鉄株式会社 Surface-treated steel sheet
CN116568868A (en) * 2020-12-03 2023-08-08 日本制铁株式会社 Surface-treated steel sheet
CN116568868B (en) * 2020-12-03 2024-05-31 日本制铁株式会社 Surface-treated steel sheet

Similar Documents

Publication Publication Date Title
JP5083931B2 (en) Battery container manufacturing method, battery container manufactured by the battery container manufacturing method, and battery using the battery container
JPWO2012147843A1 (en) Surface-treated steel sheet for battery container, battery container and battery
JP2006093096A (en) Plated steel sheet for battery container, battery container using same, and battery using its battery container
JP4824961B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP5102945B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and alkaline battery using the battery container
JP2007052997A (en) Plated steel sheet for battery case, battery case using plated steel sheet for battery case, and battery using battery case
JP4748665B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2007051325A (en) Plated steel plate for battery case, battery case using the steel plate for battery case and battery using the battery case
JP2006190648A (en) Plated sheet steel for battery case, battery case using the plated sheet steel for battery case, and battery using the battery case
JP2007051324A (en) Plated steel plate for battery case, battery case using the steel plate for battery case and battery using the battery case
JP4675707B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2006348362A (en) Plated steel sheet for battery receptacle, battery receptacle using the plated steel sheet, and battery using the battery receptacle
JP2007059087A (en) Plated steel sheet for battery case, battery case using same, and battery using the battery case
JP4817724B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2006093097A (en) Plated steel sheet for battery container, battery container using same, and battery using its battery container
JP2006351432A (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2007005157A (en) Plated steel plate for battery case, battery case using it, battery using it and manufacturing method of plated steel plate for battery case
JPH06179936A (en) Negative electrode material for aluminum battery
JP4911952B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2006307321A (en) Plated steel sheet for battery vessel, battery vessel using the plated steel sheet for battery vessel, and battery using the battery vessel
JP2006294353A (en) Plated steel sheet for battery container, battery container using plated steel sheet for battery container, and battery using battery container
JP4968877B2 (en) Plated steel sheet for battery container, method for producing the same, battery container using the plated steel sheet for battery container, and battery using the battery container
JP3840430B2 (en) Surface-treated steel sheet for battery case and battery case
JP2004076117A (en) Surface treated steel sheet for battery case, and battery case using the same
JP4798953B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081104