JP4948656B2 - Perforated roughening copper foil for secondary battery current collector, method for producing the same, and negative electrode for lithium ion secondary battery - Google Patents

Perforated roughening copper foil for secondary battery current collector, method for producing the same, and negative electrode for lithium ion secondary battery Download PDF

Info

Publication number
JP4948656B2
JP4948656B2 JP2011059166A JP2011059166A JP4948656B2 JP 4948656 B2 JP4948656 B2 JP 4948656B2 JP 2011059166 A JP2011059166 A JP 2011059166A JP 2011059166 A JP2011059166 A JP 2011059166A JP 4948656 B2 JP4948656 B2 JP 4948656B2
Authority
JP
Japan
Prior art keywords
copper
foil
copper foil
secondary battery
perforated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011059166A
Other languages
Japanese (ja)
Other versions
JP2011216478A (en
Inventor
了一 小黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2011059166A priority Critical patent/JP4948656B2/en
Publication of JP2011216478A publication Critical patent/JP2011216478A/en
Application granted granted Critical
Publication of JP4948656B2 publication Critical patent/JP4948656B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、二次電池用集電体に適した穴あき粗化処理銅箔に関するものである。
また、本発明は前記穴あき粗化処理銅箔を集電体とし、該集電体に珪素系活物質を積層してなるリチウムイオン二次電池負極電極に関するものである。
The present invention relates to a perforated roughened copper foil suitable for a current collector for a secondary battery.
The present invention also relates to a negative electrode for a lithium ion secondary battery in which the perforated roughened copper foil is used as a current collector, and a silicon-based active material is laminated on the current collector.

二次電池は、通信端末機器や携帯電話に代表されるIT(情報通信技術分野)関連分野の機器に組み込まれ、また最近ではハイブリット自動車や電気自動車に搭載される等その需要は飛躍的に拡大しつつある。このような二次電池には小型化・薄型化に加えて高性能で充放電容量や電位の高さが求められている。このような要求に対し、現在はリチウムイオン二次電池が経済性と環境特性を活かした利便性から特に注目されている。   Secondary batteries are incorporated into IT (information and communications technology field) -related devices such as communication terminal devices and mobile phones, and recently, their demand has expanded dramatically, including in hybrid and electric vehicles. I am doing. Such secondary batteries are required to have high performance, high charge / discharge capacity and high potential in addition to miniaturization and thinning. In response to such demands, lithium ion secondary batteries are currently attracting particular attention because of their convenience that takes advantage of economic efficiency and environmental characteristics.

このリチウムイオン二次電池は、特に負極の特性が二次電池としての充放電特性や高電位維持の優劣を左右する。初期のリチウムイオン二次電池の負極は集電体として銅箔を用い、結着剤(バインダー)を混ぜ合わせたカーボン(黒鉛)を活物質とし、該活物質を集電体である銅箔の両面に塗工し、加圧乾燥させて作製していた。   In this lithium ion secondary battery, the characteristics of the negative electrode particularly determine the charge / discharge characteristics as a secondary battery and the superiority or inferiority of maintaining a high potential. The negative electrode of an early lithium ion secondary battery uses a copper foil as a current collector, carbon (graphite) mixed with a binder (binder) as an active material, and the active material is made of a copper foil as a current collector. It was prepared by coating on both sides and drying under pressure.

リチウムイオン二次電池の特性をより向上させるためには負極の集電容量を向上させる必要がある。負極の集電容量を向上させる方法として前記カーボンからなる活物質を集電体に厚く積層することが考えられるが、集電体へ活物質を厚く積層すると負極電極の大きさが大きくなり、強いては電池の大きさが大きくなって実用性が乏しくなり、また、集電体(銅箔)の両面に均一な厚みでカーボンを積層させることが困難となる。そのため現在では、粒径を小さくし、カーボンの表面積を大きくして集電容量の向上を図っている。   In order to further improve the characteristics of the lithium ion secondary battery, it is necessary to improve the current collecting capacity of the negative electrode. As a method for improving the current collecting capacity of the negative electrode, it is conceivable to stack the carbon active material thickly on the current collector. However, when the active material is thickly stacked on the current collector, the size of the negative electrode increases, The size of the battery becomes large and the practicality becomes poor, and it becomes difficult to laminate carbon with a uniform thickness on both sides of the current collector (copper foil). Therefore, at present, the current collecting capacity is improved by reducing the particle size and increasing the surface area of carbon.

しかし近時、二次電池に更なる高容量の要望がなされ、活物質をカーボン系から例えば珪素系に変更し、リチウムの吸蔵量を著しく向上させる技術が進んできている。活物質をカーボン系から珪素系に変更するには、該活物質の特性を最大限に引き出す集電体の開発が必要となる。特に珪素系の活物質の採用には、該活物質の特性に追従できる集電体が求められる。珪素系の活物質はその粒径の細かさから、積層対象となる集電体はその表面が適宜な粗度を有することが必要で、所謂、活物質を沢山詰め込むことができる表面粗度が求められる。また、珪素系の活物質の採用には、集電体となる金属箔に適宜な硬度と塑性(伸び)が要求される。   Recently, however, there has been a demand for a higher capacity for secondary batteries, and a technique has been advanced in which the active material is changed from a carbon-based material to, for example, a silicon-based material, and the amount of lithium occluded is remarkably improved. In order to change the active material from carbon-based to silicon-based, it is necessary to develop a current collector that maximizes the characteristics of the active material. In particular, the adoption of a silicon-based active material requires a current collector that can follow the characteristics of the active material. Since the silicon-based active material has a fine particle size, it is necessary that the surface of the current collector to be laminated has an appropriate roughness, and the so-called surface roughness that can be filled with many active materials is sufficient. Desired. In addition, the adoption of a silicon-based active material requires an appropriate hardness and plasticity (elongation) for a metal foil serving as a current collector.

リチウムイオン二次電池の高容量化と充放電の長期寿命化を満足させる条件の一つは、負極に容量向上に期待の高い活物質と該活物質を積層する集電体として好適な金属箔の選定である。
二次電池の高容量化の要求に対し、活物質がカーボン系活物質から上述したように珪素系活物質に変更されようとしている。
しかし一方で珪素係活物質は特有の硬さと、充放電時の粒子間の膨張収縮が大きいため、この珪素系活物質の特性を最大限に発揮させ得る集電体の選定が最大の課題となってきている。かかる課題を満足する集電体としては、集電体の表裏両面の形状が均一で活物質を薄く保持することができる金属箔が必要であり、これによりリチウムイオン二次電池の高容量と充放電の長寿命が同時に達成できる。
One of the conditions for satisfying the high capacity and long charge / discharge life of a lithium ion secondary battery is an active material that is expected to improve capacity on the negative electrode and a metal foil suitable as a current collector for laminating the active material Selection.
In response to the demand for higher capacity of secondary batteries, the active material is being changed from a carbon-based active material to a silicon-based active material as described above.
On the other hand, silicon active materials have a special hardness and a large expansion / contraction between particles during charging / discharging. Therefore, selection of a current collector that can maximize the characteristics of this silicon-based active material is the biggest issue. It has become to. As a current collector that satisfies such a problem, a metal foil that has a uniform shape on both the front and back surfaces of the current collector and that can hold the active material thin is required, thereby increasing the capacity and charge of the lithium ion secondary battery. Long discharge life can be achieved at the same time.

一般に金属箔でリチウムイオン二次電池の負極集電体材料に必須な要件は、伝導性、表裏両面の表面加工の容易性、活物質との密着性、集電端子の超音波接合性に優れる特性を有することである。銅箔はこれらの必須要件のうち伝導性、集電端子の超音波接合性は兼ね備えているが、表面形状、活物質との密着性については未だ改善の余地を残している。   In general, the essential requirements for a negative electrode current collector material of a lithium ion secondary battery using metal foil are excellent in conductivity, ease of surface processing on both sides, adhesion to the active material, and ultrasonic bonding of the current collecting terminal. It has characteristics. Although copper foil has conductivity and ultrasonic bonding properties of current collecting terminals among these essential requirements, there is still room for improvement in terms of surface shape and adhesion to the active material.

二次電池負極用金属箔として、銅箔の表面積を大きくし、かつ活物質の密着性を増大するため銅箔に貫通孔を設けた集電体が特許文献1に開示されている。
また、金属箔に貫通孔を設けた集電体の提案は特許文献2、3にも開示されている。
しかし、特許文献1に開示されている集電体は貫通孔の穴の形状を細かく規定して集電体の表面積を増加させ、カーボンからなる活物質との密着性を増大させたものである。また、特許文献2はアルカリ二次電池用の集電体として、貫通孔を有する銅箔表面にアルカリ電解液による腐食を防止する目的でニッケルメッキを施す技術で、活物質として水素吸蔵合金を主体としたスラリーを使用している。また、特許文献3は集電体に設ける貫通孔の位置を規制した技術に関するもので、カーボンを主成分とする活物質を使用している。
このように、これらの特許文献に開示されている穴明き集電体はカーボン又は水素吸蔵合金を活物質として積層するために開発された技術である。したがって上記特許文献に開示されている穴明き集電体は、珪素系活物質の特徴を充分に発揮させる集電体としての機能、即ち高性能で小型化が可能で薄い二次電池を提供し得る珪素系活物質の機能を充分に引き出す集電体としての能力については追求されていない。
As a metal foil for a secondary battery negative electrode, Patent Document 1 discloses a current collector in which through holes are provided in a copper foil in order to increase the surface area of the copper foil and increase the adhesion of the active material.
Moreover, the proposal of the electrical power collector which provided the through-hole in metal foil is also disclosed by patent document 2, 3.
However, the current collector disclosed in Patent Document 1 is a material in which the shape of the through-holes is finely defined to increase the surface area of the current collector and increase the adhesion with the active material made of carbon. . Patent Document 2 is a technology for applying nickel plating to the surface of a copper foil having a through hole as a current collector for an alkaline secondary battery in order to prevent corrosion by an alkaline electrolyte, and mainly uses a hydrogen storage alloy as an active material. This slurry is used. Patent Document 3 relates to a technology that regulates the position of a through hole provided in a current collector, and uses an active material mainly composed of carbon.
Thus, the perforated current collector disclosed in these patent documents is a technique developed for laminating carbon or a hydrogen storage alloy as an active material. Therefore, the perforated current collector disclosed in the above-mentioned patent document provides a thin secondary battery that functions as a current collector that fully exhibits the characteristics of a silicon-based active material, that is, high performance and can be miniaturized. The ability as a current collector to sufficiently extract the function of a silicon-based active material that can be obtained has not been pursued.

特開2000−294250号公報JP 2000-294250 A 特開平10−112326号公報Japanese Patent Laid-Open No. 10-112326 特開平11−86869号公報JP-A-11-86869

本発明は、特に珪素系活物質の特性を充分に発揮させることができ、即ち高性能で小型化が可能で薄い二次電池を提供し得る珪素系活物質の機能を充分に引き出すことができる穴あき粗化処理銅箔(集電体)を提供することを目的とする。
また、前記集電体に珪素系活物質を均一に積層した二次電池用電極を提供することを目的とする。
In particular, the present invention can sufficiently exhibit the characteristics of a silicon-based active material, that is, can sufficiently extract the functions of a silicon-based active material that can provide a thin secondary battery with high performance and downsizing. An object is to provide a perforated roughened copper foil (current collector).
It is another object of the present invention to provide an electrode for a secondary battery in which a silicon-based active material is uniformly laminated on the current collector.

本発明のリチウムイオン二次電池集電体用穴あき粗化処理銅箔は、1つの孔の開口部分の面積が0.01mm 以下である貫通孔が穿設された未処理銅箔又は未処理銅合金箔の表面に、パルス陰極電解処理により銅又は銅合金からなる一次粗化処理層が設けられ、該一次粗化処理層の上に平滑メッキ処理により銅又は銅合金からなる二次処理層が設けられている。 The perforated roughened copper foil for a lithium ion secondary battery current collector of the present invention is an untreated copper foil or a non-treated copper foil in which a through hole having an opening area of 0.01 mm 2 or less is drilled. A primary roughening treatment layer made of copper or a copper alloy is provided on the surface of the treated copper alloy foil by pulse cathode electrolytic treatment, and a secondary treatment made of copper or a copper alloy by smooth plating treatment on the primary roughening treatment layer. A layer is provided.

本発明のリチウムイオン二次電池集電体用穴あき粗化処理銅箔は、1つの孔の開口部分の面積が0.01mm 以下である貫通孔が穿設された未処理銅箔又は未処理銅合金箔の表面に、パルス陰極電解処理により前記未処理銅又は前記未処理銅合金箔と同一の金属からなる一次粗化処理層が設けられ、該一次粗化処理層の上に平滑メッキ処理により銅又は前記銅合金箔と同一の金属からなる二次処理層が設けられている。 The perforated roughened copper foil for a lithium ion secondary battery current collector of the present invention is an untreated copper foil or a non-treated copper foil in which a through hole having an opening area of 0.01 mm 2 or less is drilled. A surface of the treated copper alloy foil is provided with a primary roughened layer made of the same metal as the untreated copper or the untreated copper alloy foil by pulse cathode electrolytic treatment, and smooth plating is performed on the primary roughened layer. A secondary treatment layer made of copper or the same metal as the copper alloy foil is provided by the treatment.

前記銅箔に穿設される貫通孔は、円形(楕円を含む)もしくは幾何学形状(多角形、不定形等)であり、1つの孔の開口部分の面積が、0.01mm以下であることが好ましい。
更に、前記貫通孔が穿設された銅箔又は銅合金箔において、前記貫通孔の開口部分の合計面積が、貫通孔穿設前の箔の表面積に対して55%以下であることが望ましい。
The through-hole drilled in the copper foil is circular (including an ellipse) or geometric shape (polygon, indeterminate shape, etc.), and the area of the opening of one hole is 0.01 mm 2 or less. It is preferable.
Furthermore, in the copper foil or copper alloy foil in which the through holes are formed, the total area of the opening portions of the through holes is preferably 55% or less with respect to the surface area of the foil before the through holes are formed.

本発明の二次電池集電体用穴あき粗化処理銅箔は、前記二次処理層の表面に防錆剤による防錆層が設けられ、該防錆層表面にカップリング剤による保護層が設けられている。   The perforated roughened copper foil for a secondary battery current collector of the present invention has a rust preventive layer provided with a rust preventive agent on the surface of the secondary treated layer, and a protective layer provided with a coupling agent on the surface of the rust preventive layer. Is provided.

本発明のリチウムイオン二次電池集電体用穴あき粗化処理銅箔の製造方法は、1つの孔の開口部分の面積が0.01mm 以下である貫通孔が穿設された未処理銅箔又は未処理銅合金箔の表面に、銅又は銅合金からなる一次粗化処理層をパルス陰極電解処理により設け、該一次粗化処理層の上に銅又は銅合金からなる二次処理層を平滑メッキ処理により設ける製造方法である。 The method for producing a perforated roughened copper foil for a current collector of a lithium ion secondary battery according to the present invention comprises an untreated copper in which a through hole having an opening area of 0.01 mm 2 or less is drilled. A primary roughening layer made of copper or a copper alloy is provided on the surface of the foil or untreated copper alloy foil by pulse cathode electrolytic treatment, and a secondary treatment layer made of copper or a copper alloy is provided on the primary roughening layer. It is a manufacturing method provided by a smooth plating process.

本発明のリチウムイオン二次電池負極集電体用銅箔の製造方法は、無酸素銅からなり、常温での伸びが、3.5%以上であり、両表面の表面素地がJIS−B−0601に規定されるRzで0.8〜2.5μmである未処理圧延銅箔の両表面にパルス陰極電解粗化処理で金属銅からなる第一粗化処理層を設け、次いで該第一粗化処理層表面に平滑銅メッキ処理により両表面の粗度がRzで3.0μm以下である第二銅メッキ層を設け、次いで前記第二銅メッキ層表面に防錆剤による第三防錆層を設け、次いで該第三防錆層表面にカップリング剤による第四保護層を設ける製造方法である
また、本発明のリチウムイオン二次電池集電体用穴あき粗化処理銅箔の製造方法は、1つの孔の開口部分の面積が0.01mm 以下である貫通孔が穿設された未処理銅箔又は未処理銅合金箔の表面に、銅又は前記銅合金箔と同一の金属からなる一次粗化処理層をパルス陰極電解処理により設け、該一次粗化処理層の上に銅又は前記銅合金箔と同一の金属からなる二次処理層を平滑メッキ処理により設ける製造方法である。
The method for producing a copper foil for a negative electrode current collector of a lithium ion secondary battery of the present invention is made of oxygen-free copper , has an elongation at room temperature of 3.5% or more, and the surface substrate on both surfaces is JIS-B- A first roughening layer made of metallic copper is provided on both surfaces of an untreated rolled copper foil having an Rz of 0.8 to 2.5 μm as defined by 0601 by pulse cathodic electrolytic roughening, and then the first roughened A smooth copper plating treatment is performed on the surface of the chemical treatment layer to provide a second copper plating layer whose roughness on both surfaces is 3.0 μm or less in Rz, and then the third rust prevention layer with a rust inhibitor on the surface of the second copper plating layer the provided, then a manufacturing method in said third anticorrosive layer surface providing a fourth protective layer with a coupling agent.
In addition, the method for producing a perforated roughened copper foil for a lithium ion secondary battery current collector according to the present invention has not yet been provided with a through hole in which the area of the opening of one hole is 0.01 mm 2 or less. On the surface of the treated copper foil or untreated copper alloy foil, a primary roughening treatment layer made of copper or the same metal as the copper alloy foil is provided by pulse cathode electrolytic treatment, and copper or the above-mentioned It is a manufacturing method which provides the secondary treatment layer which consists of the same metal as copper alloy foil by a smooth plating process.

本発明の二次電池集電体用穴あき粗化処理銅箔を使用したリチウムイオン二次電池負極電極は、前記穴あき粗化処理銅箔の表面に珪素系活物質を積層してなる電極である。   The lithium ion secondary battery negative electrode using the perforated roughened copper foil for the secondary battery current collector of the present invention is an electrode formed by laminating a silicon-based active material on the surface of the perforated roughened copper foil. It is.

本発明の穴あき粗化処理銅箔は、貫通孔が穿設された銅箔又は銅合金箔(以下銅箔と銅合金箔とを区別して表現する必要がないときは単に未処理銅箔又は銅箔と表現する)の表面に、銅又は前記銅合金箔と同一の金属をパルス陰極電解処理により析出させて微細粗化処理を施し、次いで該表面の微細化させた粗化粒子(金属コブ)を脱落させないように平滑メッキ処理を施し、必要によりその上に防錆層とカップリング剤からなる保護層とを設けている。したがって、珪素系活物質を効率よく多くの量を積層(塗工結着)させることができ、高品質のリチウムイオン二次電池用負極集電体として優れた効果を発揮するものである。
また、本発明の穴あき粗化処理銅箔を集電体とし、該集電体に珪素系活物質を積層することで、珪素系活物質の特徴が充分に機能し、高性能で小型、薄型化したリチウムイオン二次電池を提供することができる。
The perforated roughened copper foil of the present invention is a copper foil or copper alloy foil in which a through hole is formed (hereinafter simply referred to as an untreated copper foil or a copper foil when it is not necessary to distinguish between copper foil and copper alloy foil) The copper or the same metal as the copper alloy foil is deposited on the surface of the copper foil by pulse cathodic electrolysis treatment and subjected to fine roughening treatment, and then the roughened particles (metal bump) ) Is applied so that it does not fall off, and a rust prevention layer and a protective layer made of a coupling agent are provided thereon as necessary. Therefore, a large amount of silicon-based active material can be efficiently laminated (coated), and an excellent effect as a high-quality negative electrode current collector for a lithium ion secondary battery is exhibited.
In addition, by using the perforated roughened copper foil of the present invention as a current collector and laminating a silicon-based active material on the current collector, the characteristics of the silicon-based active material sufficiently function, high performance and small size, A thin lithium ion secondary battery can be provided.

穴あき銅箔の表面粗化処理工程の一例を示す工程説明図である。It is process explanatory drawing which shows an example of the surface roughening process of a perforated copper foil. 本発明実施形態による銅箔の断面形状を図解する説明図で、(A)は一次粗化処理層aの断面、(B)は二次粗化処理層bの断面である。It is explanatory drawing illustrating the cross-sectional shape of the copper foil by this invention embodiment, (A) is a cross section of the primary roughening process layer a, (B) is a cross section of the secondary roughening process layer b.

以下、本発明を詳細に説明する。
本発明の穴あき粗化処理銅箔は、珪素系活物質との密着性を強め、より多くの活物質を脱落させることなく均一に保持するために、銅箔両面に極めて低粗化で均一な銅粒子又は銅合金粒子による一次粗化処理をパルス陰極電解により施す。
次いで前記一次粗化処理が施された一次粗化処理層を健全に保つために一次粗化処理層の上に一次粗化で用いた粒子と同一成分のメッキ液で平滑にメッキ(陰極電解メッキ)を施すことで平滑な二次処理層(カプセルメッキ層)を設ける。
Hereinafter, the present invention will be described in detail.
The perforated roughened copper foil of the present invention has a very low roughened and uniform surface on both sides of the copper foil in order to strengthen the adhesion with the silicon-based active material and hold more active material without dropping off. A primary roughening treatment with various copper particles or copper alloy particles is performed by pulse cathode electrolysis.
Next, in order to keep the primary roughened layer that has been subjected to the primary roughening treatment healthy, a smooth plating (cathodic electrolytic plating) is performed on the primary roughened layer with a plating solution having the same components as the particles used in the primary roughening. ) To provide a smooth secondary treatment layer (capsule plating layer).

未処理銅箔、銅合金箔は電解銅箔、圧延銅箔どちらでも採用することができる。銅合金箔としては銅を主体とした合金であれば採用できるが、特に銅―錫合金を採用することが好ましく、錫の含有量が0.15%以下で、導電率が85%IACS以上、すなわち純銅の導電率の85%以上の銅−錫合金を採用することがより好ましい。
未処理銅箔が電解銅箔または電解銅合金箔である場合は、貫通孔を穿設する前の表裏の素地がJIS−B−0601に規定される表面粗さRzで0.8〜2.5μmの範囲にある銅箔を採用することが好ましい。
上記電解銅箔は製箔時の電析結晶粒が非常に微細粒子で、電解銅箔のマット面側の断面が細かな粒状結晶構造となっている状態が好ましい。この様な結晶構造を有する電解銅箔は、常温での伸び率が3.5%以上あり、珪素系活物質を圧着加熱積層時のプレス温度(150〜180℃程度範囲)でも、十分に熱伸縮に対し追随性を有するためである。
Untreated copper foil and copper alloy foil can be either electrolytic copper foil or rolled copper foil. As the copper alloy foil, any copper-based alloy can be used, but it is particularly preferable to use a copper-tin alloy, the tin content is 0.15% or less, and the conductivity is 85% IACS or more. That is, it is more preferable to employ a copper-tin alloy having a conductivity of 85% or more of pure copper.
When the untreated copper foil is an electrolytic copper foil or an electrolytic copper alloy foil, the surface roughness Rz defined in JIS-B-0601 is 0.8 to 2. It is preferable to employ a copper foil in the range of 5 μm.
The electrolytic copper foil is preferably in a state in which the electrodeposited crystal grains at the time of foil production are very fine particles, and the electrolytic copper foil has a granular crystal structure with a fine cross section on the mat surface side. The electrolytic copper foil having such a crystal structure has an elongation at room temperature of 3.5% or more, and is sufficiently heated even at a pressing temperature (in the range of about 150 to 180 ° C.) when the silicon-based active material is pressure-bonded and laminated. This is because it has followability to expansion and contraction.

前記穴あけ前の電解銅箔の機械的特性が、常温での伸び率が、3.5%以上であることを好ましいとする理由は、穴あけ加工された粗化処理銅箔表面に活物質を塗工し、電極として電池を組み立てた後の充放電時の珪素系活物質の膨張収縮に対して活物質との密着性が維持され、熱履歴に対する適宜な追随特性が確保されるためである。   The reason why the mechanical property of the electrolytic copper foil before drilling is preferably such that the elongation at normal temperature is 3.5% or more is that an active material is applied to the surface of the roughened copper foil that has been drilled. This is because the adhesion with the active material is maintained against the expansion and contraction of the silicon-based active material at the time of charge and discharge after the battery is assembled as an electrode, and appropriate tracking characteristics with respect to the thermal history are ensured.

未処理銅箔が圧延銅箔または圧延合金銅箔の場合は、両面共に表面粗さRzで1.5μm以下の銅箔を採用することが好ましい。なお、圧延銅箔の場合は無酸素銅又は錫を含有した銅合金インゴットを圧延した銅箔を採用することが好ましい。穴あけ前の圧延銅箔または圧延合金銅箔の特性はIPC‐TM‐650に規定される値で35〜45kN/cmの範囲(ヤング率であれば50〜65MPa)であることが好ましい。 When the untreated copper foil is a rolled copper foil or a rolled alloy copper foil, it is preferable to employ a copper foil having a surface roughness Rz of 1.5 μm or less on both sides. In the case of a rolled copper foil, it is preferable to employ a copper foil obtained by rolling a copper alloy ingot containing oxygen-free copper or tin. The properties of the rolled copper foil or rolled alloy copper foil before drilling are preferably in the range of 35 to 45 kN / cm 2 (50 to 65 MPa for Young's modulus) as defined by IPC-TM-650.

銅箔に適宜な貫通孔を穿設した銅箔の表裏両面に一次粗化によりコブ状の粒子を付着する。次いでコブ状の個々の粒子の表面に平滑メッキを施す。平滑メッキ処理により設ける二次粗化層のコブ状の微細粒子は、前記一次粗化処理層を健全な形状に維持すると共に粒子の均一性と脱落防止が達成される。該平滑メッキ処理後の粗面は、JIS−B−0601に規定される表面粗さRzで3.0μm以下、好ましくは2.5〜3.0μmの範囲とすることが好ましい。   Hump-like particles are attached by primary roughening on both the front and back surfaces of a copper foil having appropriate through holes formed in the copper foil. Next, smooth plating is applied to the surfaces of the bump-like individual particles. The bump-like fine particles of the secondary roughened layer provided by the smooth plating process maintain the primary roughened layer in a healthy shape and achieve uniformity of particles and prevention of falling off. The rough surface after the smooth plating treatment has a surface roughness Rz specified in JIS-B-0601 of 3.0 μm or less, preferably 2.5 to 3.0 μm.

次いで必要により前記二次平滑メッキ処理後の粗面の表面に防錆層を設ける。防錆層としては、クロメート防錆でも有機防錆でも良いが、クロメート防錆処理の場合のクロム付着量は、金属クロムとして0.005〜0.025mg/dmとすることが好ましい。有機防錆剤を選択した場合には、例えばBTA(ベンゾ・トリ・アゾール)系の誘導体であれば特に限定はせず、JIS−Z−2371に規定される塩水噴霧試験(塩水濃度:5%−NaCL、温度35℃)条件下で24時間までは表面が酸化銅に変色しない程度の被膜が形成されていれば良い。 Then, if necessary, a rust preventive layer is provided on the surface of the rough surface after the secondary smooth plating treatment. The rust preventive layer may be chromate rust preventive or organic rust preventive, but the chromium adhesion amount in the chromate rust preventive treatment is preferably 0.005 to 0.025 mg / dm 2 as metal chromium. When an organic rust preventive is selected, there is no particular limitation as long as it is a BTA (benzotriazole) -based derivative, for example, a salt spray test (salt water concentration: 5%) defined in JIS-Z-2371 (NaCl, temperature 35 ° C.) It is sufficient that a film is formed so that the surface does not change to copper oxide for up to 24 hours.

前記防錆層の表面にカップリング剤の単分子からなる保護層を設けることが望ましい。シランカップリング剤の場合の付着量は珪素として0.001〜0.015mg/dm2とすることが望ましく、この付着量範囲が単分子被膜量(保護層)とされている。
カップリング剤としては対象となる活物質により適宜選択することが可能である。シランカップリング剤の他にエポキシ系、アミノ系、ビニル系のカップリング剤が選択できる。
It is desirable to provide a protective layer made of a single molecule of the coupling agent on the surface of the antirust layer. The adhesion amount in the case of a silane coupling agent is desirably 0.001 to 0.015 mg / dm 2 as silicon, and this adhesion amount range is a monomolecular coating amount (protective layer).
The coupling agent can be appropriately selected depending on the target active material. In addition to silane coupling agents, epoxy, amino and vinyl coupling agents can be selected.

次に、図1により本発明の穴あき粗化処理銅箔の製造方法につきその一実施形態を説明する。
先ず銅箔の粗化処理につき説明し、銅合金箔の粗化処理については後述する。
初めに未処理銅箔にパンチング機で貫通孔を穿設する。貫通孔が穿設された未処理銅箔Aはパルス陰極電解粗化銅粒子表面を形成するための第一処理槽1に導かれる。第一処理槽1には酸化イリジウムアノード11が配置され、銅−硫酸電解液12が充填され、該一次処理槽1で銅箔Aの両面に銅粒子からなるコブ状の微細粗化粒子からなる一次粗化処理層を形成する。第一処理槽1で一次粗化処理層が形成された銅箔Bは水洗槽15で洗浄された後第二処理槽2へ導かれる。なお、図中13は遮蔽板である。
Next, one embodiment of the method for producing a perforated roughened copper foil of the present invention will be described with reference to FIG.
First, the copper foil roughening treatment will be described, and the copper alloy foil roughening treatment will be described later.
First, a through hole is formed in an untreated copper foil with a punching machine. The untreated copper foil A in which the through holes are formed is guided to the first treatment tank 1 for forming the surface of the pulsed cathode electrolytic roughened copper particles. The first treatment tank 1 is provided with an iridium oxide anode 11 and filled with a copper-sulfuric acid electrolyte solution 12. In the primary treatment tank 1, the both sides of the copper foil A are made of bump-like fine roughened particles made of copper particles. A primary roughening treatment layer is formed. The copper foil B on which the primary roughening treatment layer is formed in the first treatment tank 1 is guided to the second treatment tank 2 after being washed in the water washing tank 15. In the figure, reference numeral 13 denotes a shielding plate.

第二処理槽2には酸化イリジウムアノード21が配置され、第一処理槽と同様に銅−硫酸電解液22が充填されており、平滑銅メッキ処理が施される。該平滑メッキ処理が施された銅箔Cは水洗槽25で洗浄された後、第三処理槽3へ導かれる。
第三処理槽3にはSUSアノード31が配置され、クロメート電解液32が充填されており、クロメート防錆層が設けられる。第三処理槽3においてクロメート防錆層が設けられた銅箔Dは水洗槽35で洗浄された後、第四処理槽4へ導かれる。
The second treatment tank 2 is provided with an iridium oxide anode 21 and filled with a copper-sulfuric acid electrolyte solution 22 as in the first treatment tank, and is subjected to a smooth copper plating process. The copper foil C that has been subjected to the smooth plating process is guided to the third processing tank 3 after being washed in the water washing tank 25.
The third treatment tank 3 is provided with a SUS anode 31, filled with a chromate electrolyte 32, and provided with a chromate rust preventive layer. The copper foil D provided with the chromate rust prevention layer in the third treatment tank 3 is washed in the water washing tank 35 and then guided to the fourth treatment tank 4.

第四処理槽4にはシランカップリング液42が充填されており、銅箔Dの表面にシランカップリング剤を塗布する。第四処理槽4においてシランカップリング剤を塗布された銅箔Eは乾燥工程5を経て巻取りロール6に巻き取られる。
なお、図中7は給電コンタクトロールである。
The fourth treatment tank 4 is filled with a silane coupling liquid 42, and a silane coupling agent is applied to the surface of the copper foil D. The copper foil E coated with the silane coupling agent in the fourth treatment tank 4 is wound around the winding roll 6 through the drying step 5.
In the figure, reference numeral 7 denotes a power supply contact roll.

上記粗化処理工程は銅箔についての工程である。未処理銅箔が銅合金箔の場合は上記の処理で一次粗化処理、二次粗化処理を行ってもいいが、銅合金箔によっては銅合金と同じ合金で粗化処理することが好ましい場合もある。
未処理銅合金箔Aと同様な合金組成の粗化処理を施す場合には、第一処理槽1に銅合金箔と同一種類の金属が適宜に溶解された銅主体の硫酸電解液12が充填され、該一処理槽1で銅合金箔Aの両面に銅合金粒子からなるコブ状の微細粗化粒子からなる一次粗化処理層を形成する。
第二処理槽2には、第一処理槽と同様に銅合金箔と同一の金属が溶解された銅を主体とする電解液22が充填されており、平滑銅合金メッキ処理が施される。
この他の処理は上記銅箔の粗化処理と同様である。
The said roughening process process is a process about copper foil. When the untreated copper foil is a copper alloy foil, the primary roughening treatment and the secondary roughening treatment may be performed by the above treatment, but depending on the copper alloy foil, it is preferable to perform the roughening treatment with the same alloy as the copper alloy. In some cases.
When a roughening treatment of the same alloy composition as that of the untreated copper alloy foil A is performed, the first treatment tank 1 is filled with a copper-based sulfuric acid electrolyte solution 12 in which the same type of metal as the copper alloy foil is appropriately dissolved. Then, a primary roughening treatment layer made of bump-like fine roughening particles made of copper alloy particles is formed on both surfaces of the copper alloy foil A in the first treatment tank 1.
Similar to the first treatment tank, the second treatment tank 2 is filled with an electrolytic solution 22 mainly composed of copper in which the same metal as the copper alloy foil is dissolved, and is subjected to a smooth copper alloy plating process.
Other treatments are the same as the copper foil roughening treatment.

未処理穴あき銅箔Aとして電解銅箔を採用する場合は活物質特性、電池特性をより向上させるために柱状晶粒からなる結晶構造を有する電解銅箔より、平滑な表面形状をなす両面光沢電解銅箔の方が好ましく、電解製箔後の表裏の表面粗度がJIS−B−0601に規定される表面粗さRzで0.8以上2.5μm未満の範囲のものが好ましい。
また、未処理銅箔が圧延銅箔または圧延合金銅箔の場合は、無酸素銅材(OFC材)を用いるのが好ましい。
更に、電解、圧延、合金銅箔の区別なく、未処理銅箔の常温伸び率は3.5%以上であることが好ましい。
When electrolytic copper foil is used as the untreated perforated copper foil A, the double-sided gloss has a smoother surface shape than the electrolytic copper foil having a crystal structure composed of columnar crystal grains in order to further improve the active material characteristics and battery characteristics. Electrolytic copper foil is preferred, and the surface roughness of the front and back after electrolytic foil production is preferably in the range of 0.8 or more and less than 2.5 μm in terms of surface roughness Rz defined in JIS-B-0601.
When the untreated copper foil is a rolled copper foil or a rolled alloy copper foil, it is preferable to use an oxygen-free copper material (OFC material).
Furthermore, it is preferable that the normal temperature elongation of the untreated copper foil is 3.5% or more, regardless of whether it is electrolysis, rolling, or alloy copper foil.

本発明の表面処理銅箔は、特に活物質塗工積層乾燥工程時と二次電池に組み込まれた後の充放電時の耐熱性と塑性追随性が重視されることから、適宜な機械的特性が要求される。例えばビッカース硬度Hv(Vickers Hardness)の値は、80〜110程度の範囲が好ましく、常温での伸び率は3.5%程度以上であることが好ましい。このような穴あき銅箔であれば、開口率が最大55%を超えなければ熱履歴による著しい塑性変形から生じる活物質剥離や集電体としての銅箔の破断は起きない。
また、1つの孔の開口部分の面積が0.01mm以下であることが好ましい。1つの孔の開口部分の面積が0.01mm以下であると、粗化処理によって開口部分が塞がるが、Liイオンが通過可能な隙間は残る。これにより、集電体両面の活物質付着量に差が生じても、付着量の少ない側のLi吸蔵量に規制されることなく、活物質全体の吸蔵量を最大限に利用できる。1つの孔の開口部分の面積が0.01mmより大きいと、活物質が表裏両面でつながり集電特性には効果的であるが、一方で開口部分に脆弱な箇所があると、活物質の充放電時の膨張収縮によって銅箔開口部分の周囲に亀裂が入ることがある。
なお、開口率とは、貫通孔穿設前の未処理銅箔の面積に対する、開口部分の合計面積の比率を言う。
Since the surface-treated copper foil of the present invention emphasizes heat resistance and plastic followability particularly during active material coating lamination drying process and charging / discharging after being incorporated in a secondary battery, appropriate mechanical characteristics Is required. For example, the value of Vickers Hardness Hv (Vickers Hardness) is preferably in the range of about 80 to 110, and the elongation at normal temperature is preferably about 3.5% or more. With such a perforated copper foil, active material peeling or breakage of the copper foil as a current collector caused by significant plastic deformation due to thermal history does not occur unless the aperture ratio exceeds 55% at the maximum.
Moreover, it is preferable that the area of the opening part of one hole is 0.01 mm < 2 > or less. When the area of the opening portion of one hole is 0.01 mm 2 or less, the opening portion is blocked by the roughening treatment, but a gap through which Li ions can pass remains. Thereby, even if a difference occurs in the active material adhesion amount on both sides of the current collector, the occlusion amount of the entire active material can be utilized to the maximum without being restricted by the Li occlusion amount on the side with the smaller adhesion amount. If the area of the opening part of one hole is larger than 0.01 mm 2 , the active material is connected on both the front and back sides, which is effective for current collection characteristics. On the other hand, if there is a weak part in the opening part, Cracks may occur around the opening of the copper foil due to expansion and contraction during charging and discharging.
In addition, an aperture ratio means the ratio of the total area of an opening part with respect to the area of the untreated copper foil before a through-hole drilling.

未処理銅箔を例えば合金箔でない穴あき銅箔とした場合に、該両面に設ける一次粗化処理は第一処理槽1で砒素化合物や金属モリブデンが添加されている硫酸銅浴を用いたパルス陰極電解メッキ法により施される。
一次粗化処理は穴あき銅箔両表面に銅のコブ状の粗化粒子を形成させる。具体的には、硫酸銅を銅として20〜30g/l、硫酸濃度をHSOとして90〜110g/l、モリブデン酸ナトリウムをMoとして0.15〜0.35g/l、塩素を塩素イオン換算で0.005〜0.010g/l混入した電解液で、浴温度18.5〜28.5℃に設定し、パルス陰極電解メッキ電流密度を22〜31.5A/dmに設定し、適宜な流速と極間距離とで、健全な銅コブ粗化粒子の層を銅箔表面に形成する。
When the untreated copper foil is, for example, a perforated copper foil that is not an alloy foil, the primary roughening treatment provided on both sides is a pulse using a copper sulfate bath to which an arsenic compound or metal molybdenum is added in the first treatment tank 1. It is applied by cathodic electroplating.
In the primary roughening treatment, copper bumpy rough particles are formed on both surfaces of the perforated copper foil. Specifically, copper sulfate as copper is 20 to 30 g / l, sulfuric acid concentration is H 2 SO 4 as 90 to 110 g / l, sodium molybdate as Mo is 0.15 to 0.35 g / l, and chlorine is chloride ion. With the electrolyte mixed in 0.005-0.010 g / l in terms of conversion, the bath temperature was set to 18.5-28.5 ° C., the pulse cathode electroplating current density was set to 22-31.5 A / dm 2 , A sound layer of roughened copper bumps is formed on the copper foil surface at an appropriate flow rate and inter-electrode distance.

第一粗化処理について図面を参照して更に詳述する。
第一粗化処理槽1には、遮蔽板13を挟んで隔離された2対の酸化イリジウムアノード11の各対が圧延銅箔Aの両面に配置されている。
銅−硫酸電解液12は第一粗化処理槽1内において所定の流速で流動している。たとえば、第一粗化処理槽1には銅−硫酸電解液12が充填されており所定の流速で攪拌されている、または、銅−硫酸電解液12は第一粗化処理槽1のボトムから給液されてオーバーフローさせる循環層流状態で所定の流速(以下、「第一循環層流速度」という)で流動している。
The first roughening treatment will be further described in detail with reference to the drawings.
In the first roughening treatment tank 1, two pairs of iridium oxide anodes 11 that are separated with a shielding plate 13 interposed therebetween are arranged on both sides of the rolled copper foil A.
The copper-sulfuric acid electrolyte 12 flows in the first roughening treatment tank 1 at a predetermined flow rate. For example, the first roughening treatment tank 1 is filled with a copper-sulfuric acid electrolyte solution 12 and stirred at a predetermined flow rate, or the copper-sulfuric acid electrolyte solution 12 is fed from the bottom of the first roughening treatment tank 1. In a circulating laminar state where the liquid is supplied and overflows, the fluid flows at a predetermined flow velocity (hereinafter referred to as “first circulating laminar flow velocity”).

第一粗化処理槽1において、基材の銅箔表面に極めて低粗化に、かつ均一に、銅粒子をパルス陰極電解処理により表面処理を施す。すなわち、図2(A)に例示した、未処理・無酸素・圧延銅箔の双方の面に(ただし、図2(A)の図解は一方の面のみ示している)、たとえば、表面粗さRzで1.5〜1.6μm程度の均一なコブ状の銅粒子の層(一次粗化処理層)aを形成する。   In the first roughening treatment tank 1, the surface of the copper foil of the base material is subjected to a surface treatment by pulse cathodic electrolysis with extremely low roughness and evenness. That is, on both surfaces of the untreated, oxygen-free and rolled copper foil illustrated in FIG. 2A (however, the illustration of FIG. 2A shows only one surface), for example, surface roughness A uniform bump-shaped copper particle layer (primary roughening layer) a of about 1.5 to 1.6 μm in Rz is formed.

パルス陰極電解メッキ処理法
給電コンタクトロール7と酸化イリジウムアノード11との間にパルス状の電流を印加するパルス陰極電解メッキ処理を行う上での、オン・タイム(電流を印加する時間)とオフ・タイム(電流を印加しない期間)とを決定するには、銅濃度・硫酸濃度・平均電流密度・電解液の流速・浴温・処理時間を考慮する必要がある。これらの設定には、経験的に、直流電解メッキ処理で、健全な「ヤケメッキ」ができる条件を、パルス陰極電解メッキ処理に置き換えて、同等もしくはそれ以上に健全な処理ができることを確認しておく。
Pulse Cathodic Electroplating Treatment Method On-time (time for applying current) and off-time in performing pulse cathodic electroplating treatment in which a pulsed current is applied between the power supply contact roll 7 and the iridium oxide anode 11. In order to determine the time (period in which no current is applied), it is necessary to consider copper concentration, sulfuric acid concentration, average current density, flow rate of electrolyte, bath temperature, and treatment time. For these settings, it is empirically confirmed that the conditions for sound “burnt plating” can be replaced with pulsed cathode electrolytic plating treatment by DC electrolytic plating treatment, and that equivalent or better sound treatment can be achieved. .

パルス陰極電解メッキ処理法で重要なことは、ロール7とアノード11とに印加する電流の最大値(ピーク)である。
通常ピーク電流値は、おおよそ(オンタイムとオフタイムとの比率の合計)×平均電流値が、オンタイム時に流れる。
オンタイムとオフタイムとの比率の合計は、たとえば、オンタイム10ms、オフタイム40msのときは比率の合計は5、オンタイム10ms、オフタイム60msのときは比率の合計は7である。
What is important in the pulse cathode electrolytic plating method is the maximum value (peak) of the current applied to the roll 7 and the anode 11.
The normal peak current value is approximately (the sum of the ratios of the on time and off time) × the average current value flows during the on time.
The total ratio of the on time and the off time is, for example, 5 when the on time is 10 ms and the off time is 40 ms, and the total ratio is 7 when the on time is 10 ms and the off time is 60 ms.

この場合、銅−硫酸電解液12の流速が遅く銅イオンの供給が不十分であったり、他方、銅−硫酸電解液12の流速が速く銅イオンの供給が過剰であると、健全な「ヤケメッキ」ができない。そこで、銅−硫酸電解液12の管理容易性に富む銅濃度浴を設定して、平均電流密度・流速・浴温・処理時間を制御して処理する。   In this case, if the flow rate of the copper-sulfuric acid electrolyte 12 is slow and the supply of copper ions is insufficient, or if the flow rate of the copper-sulfuric acid electrolyte solution 12 is fast and the supply of copper ions is excessive, a healthy “burnt plating” I can't. Therefore, a copper concentration bath rich in manageability of the copper-sulfuric acid electrolyte 12 is set, and the average current density, flow velocity, bath temperature, and treatment time are controlled to perform the treatment.

平均電流密度は、上記設定浴温で健全な「ヤケメッキ」が可能となる「直流電解メッキ処理」を行った時の電流値を設定することが一般的であるのでそれを採用すると、浴温と処理時間(通電時間)も「直流電解メッキ処理」を行った時の値を用いることが好ましい。たとえば、処理時間は2.5〜5.0秒である。   The average current density is generally set to the current value when performing “DC electrolytic plating” that enables sound “burn plating” at the set bath temperature. The treatment time (energization time) is preferably a value obtained when “DC electrolytic plating treatment” is performed. For example, the processing time is 2.5 to 5.0 seconds.

銅−硫酸電解液12の流速は、健全なヤケメッキ限界電流密度に追従できる銅イオンの供給が可能であればよいので、銅箔Aの搬送速度の半分程度の速さで十分である。たとえば、搬送速度を6〜12m/分とすると、流速は3〜6m/分となる。   The flow rate of the copper-sulfuric acid electrolyte 12 only needs to be able to supply copper ions that can follow a healthy galvanization limit current density, so that it is sufficient to be about half the conveying speed of the copper foil A. For example, when the conveyance speed is 6 to 12 m / min, the flow rate is 3 to 6 m / min.

なお、パルス陰極電解メッキ処理の場合、ピーク電流時の銅イオンの供給が重要となり、理論上は、銅箔の搬送速度より速い銅−硫酸電解液12の流速を必要とする。しかしながら、オフタイム時も銅イオンは供給されるので、オンタイムの比率の合計が大きくなるに従って銅−硫酸電解液12の流速を速くする必要はなく、実用上は、銅−硫酸電解液12の流動速度は直流電解メッキ処理と同様の銅箔の搬送速度の半分程度の流速で処理が可能である。   In the case of the pulse cathode electroplating process, it is important to supply copper ions at the peak current, and theoretically, a flow rate of the copper-sulfuric acid electrolyte solution 12 faster than the copper foil transport speed is required. However, since copper ions are supplied even during the off time, it is not necessary to increase the flow rate of the copper-sulfuric acid electrolyte solution 12 as the sum of the on-time ratios increases. The flow rate can be processed at a flow rate that is about half the transfer speed of the copper foil, similar to the DC electrolytic plating process.

オンタイム・オフタイムの決定としては、実験室では、オンタイムとオフタイムとの比率、すなわち、オンタイム/オフタイムが1:4〜1:6の範囲であることが必須であることを見いだした。   In the determination of the on-time / off-time, the laboratory found that it is essential that the ratio of the on-time to the off-time, that is, the on-time / off-time is in the range of 1: 4 to 1: 6. It was.

なお、ピーク電流密度(オンタイム時の電流密度)は、オンタイム時間、オフタイム時間とパルス陰極電解平均メッキ電流密度によって決まり、特に限定はされないが、例えばオンタイムを10msとした場合には、ピーク電流密度は157.5A/dm2以下となる様に設定するのが好ましく、154〜157.5A/dm2の範囲であるとより好ましい。
なお、同一浴内で前記銅コブ粗化粒子が脱落しないように、必要により電流密度を15〜20A/dmに設定した条件で平滑銅による電解メッキを施すことも適宜可能である。
The peak current density (current density during on-time) is determined by the on-time time, off-time time, and pulse cathode electrolytic average plating current density, and is not particularly limited. For example, when the on-time is 10 ms, The peak current density is preferably set so as to be 157.5 A / dm 2 or less, and more preferably in the range of 154 to 157.5 A / dm 2 .
In addition, it is also possible to appropriately perform electrolytic plating with smooth copper under the condition that the current density is set to 15 to 20 A / dm 2 as necessary so that the copper bump roughened particles do not fall out in the same bath.

次いで一次粗化処理された銅箔Bを第二処理槽2へ移動させ、一次粗化処理で付着した微細銅粗化粒子を穴あき銅箔の表面上より脱落させないようにすることと、個々の微細銅粗化粒子の表面形状を整え表面を均一に整えることを目的として二次粗化処理を施す。この工程により粗化処理厚みの均一性の向上と銅粒子離脱による充放電への不具合やセパレーターへの不用意な付着や正極に用いられるリチウム化合物との異常電析を回避することができる。   Subsequently, the copper foil B subjected to the primary roughening treatment is moved to the second treatment tank 2 so that the fine copper roughening particles adhering in the primary roughening treatment are not dropped off from the surface of the perforated copper foil, A secondary roughening treatment is performed for the purpose of adjusting the surface shape of the fine copper roughened particles and uniformly preparing the surface. By this step, the uniformity of the roughening treatment thickness can be avoided, the problems with charging and discharging due to the removal of copper particles, the inadvertent adhesion to the separator, and the abnormal electrodeposition with the lithium compound used in the positive electrode can be avoided.

第二粗化層の形成方法について図面を参照して詳述する。
銅−硫酸電解液22は第二銅メッキ処理槽2内において所定の流速で流動している。たとえば、第二銅メッキ処理槽2には銅−硫酸電解液22が充填されており所定の流速で攪拌される、または、銅−硫酸電解液22が第二銅メッキ処理槽2のボトムから給液されてオーバーフローさせる循環層流状態で所定の流速(以下、「第二循環層流速度」という)で流動している。
第一次粗化処理により施したコブ状の銅粒子個々の表面に付着した銅粒子の層aを健全に保つために、給電コンタクトロール7と酸化イリジウムアノード21とに印加された低電流により平滑銅メッキ処理が行われ、図2(B)に例示したように、一次粗化処理層aが形成された銅箔Bの両側に銅−硫酸電解液22を介して、図2(B)に例示した、平滑な銅メッキからなるカプセル銅層を二次粗化処理bとして陰極電解メッキで付着する、平滑銅メッキ層(二次粗化処理層)bが形成される。
この平滑銅メッキ処理により、1次粗化処理によるコブ状の微細粒子の層(一次粗化処理層)aは、健全な形状を維持すると共に粒子の均一性が保たれる。
A method for forming the second roughened layer will be described in detail with reference to the drawings.
The copper-sulfuric acid electrolytic solution 22 is flowing in the second copper plating treatment tank 2 at a predetermined flow rate. For example, the copper-sulfuric acid treatment tank 2 is filled with a copper-sulfuric acid electrolytic solution 22 and stirred at a predetermined flow rate, or the copper-sulfuric acid electrolytic solution 22 is supplied from the bottom of the cupric-plating electrolytic treatment tank 2. It is flowing at a predetermined flow rate (hereinafter referred to as “second circulating laminar flow velocity”) in a circulating laminar flow state that is liquefied and overflows.
In order to keep the copper particle layer a adhering to the surface of the bump-shaped copper particles applied by the first roughening treatment in a healthy state, the copper particles are smoothed by a low current applied to the power supply contact roll 7 and the iridium oxide anode 21. A copper plating process is performed, and as illustrated in FIG. 2B, the copper-sulfuric acid electrolytic solution 22 is provided on both sides of the copper foil B on which the primary roughening treatment layer a is formed. The smooth copper plating layer (secondary roughening process layer) b which adheres the illustrated encapsulated copper layer which consists of smooth copper plating as a secondary roughening process b by cathodic electrolytic plating is formed.
By this smooth copper plating treatment, the bump-like fine particle layer (primary roughening treatment layer) a obtained by the primary roughening treatment maintains a healthy shape and maintains the uniformity of the particles.

平滑電解メッキ条件
ロール7とアノード21との間に連続的に印加する陰極電解メッキ電流密度を、たとえば、15〜20A/dm2に設定した。
第二処理槽2における電解液は具体的には、硫酸銅を銅として35〜55g/L、硫酸濃度をH2SO4として90〜110g/Lとし、浴温度35〜55℃に設定して、陰極電解メッキ電流密度を15〜20A/dm2に設定する。適宜な電解液22の流速と、適宜な酸化イリジウムアノード21の極間距離とで、平滑な銅メッキを第一粗化処理層(微細銅粗化粒子)の表面に形成する。
たとえば、銅箔の搬送速度は、第1ステップにおける搬送速度、たとえば、6〜12m/分と同じであり、第二循環層流速度は、3〜6m/分である。
電解時間は、平滑メッキなので、(電流密度×処理時間*メッキ量)で規定され、たとえば、3.75〜7.5秒程度である。
Smooth electrolytic plating conditions The cathode electrolytic plating current density applied continuously between the roll 7 and the anode 21 was set to 15 to 20 A / dm 2 , for example.
Specifically, the electrolytic solution in the second treatment tank 2 is set to 35 to 55 g / L using copper sulfate as copper, 90 to 110 g / L using sulfuric acid concentration as H 2 SO 4 , and a bath temperature of 35 to 55 ° C. The cathode electrolytic plating current density is set to 15 to 20 A / dm 2 . A smooth copper plating is formed on the surface of the first roughening treatment layer (fine copper roughening particles) with an appropriate flow rate of the electrolytic solution 22 and an appropriate distance between the electrodes of the iridium oxide anode 21.
For example, the conveyance speed of copper foil is the same as the conveyance speed in the first step, for example, 6 to 12 m / min, and the second circulating laminar flow speed is 3 to 6 m / min.
Since the electrolysis time is smooth plating, it is defined by (current density × treatment time * plating amount), and is, for example, about 3.75 to 7.5 seconds.

この場合の平滑メッキ後の最終的な粗化形状の粗度はJIS−B−0601に規定される表面粗さRzで銅箔の両面共に3.0μm以下、好ましくは、2.3〜3.0μmの範囲、さらに好ましくは、2.4〜2.5μmの範囲にすることが好ましい。   In this case, the roughness of the final roughened shape after smooth plating is the surface roughness Rz specified in JIS-B-0601, and both sides of the copper foil are 3.0 μm or less, preferably 2.3-3. The range is preferably 0 μm, more preferably 2.4 to 2.5 μm.

平滑銅メッキ処理により、表面処理銅箔Eを二次電池の集電体として用いた場合に、銅粒子離脱による充放電への不具合や、二次電池内のセパレーターへの不用意な付着、二次電池の正極に用いられるリチウム化合物との異常電析を回避することができる。   When the surface-treated copper foil E is used as a current collector for a secondary battery by smooth copper plating, problems with charging / discharging due to copper particle detachment, inadvertent adhesion to the separator in the secondary battery, Abnormal electrodeposition with the lithium compound used for the positive electrode of the secondary battery can be avoided.

次いで3.0μm以下に仕上がった二次粗化層表面に、必要によりクロメート防錆剤を浸漬処理或いは必要に応じて陰極電解処理(第三処理槽3)で設け、防錆力を高める。クロメート処理の場合の皮膜厚みは、金属クロム量として0.005〜0.025mg/dmの範囲が好ましい。この付着量範囲であればJIS−Z−2371に規定される塩水噴霧試験(塩水濃度:5%−NaCL、温度35℃)の条件下で24時間までは表面が酸化銅の色に変色しない。 Next, if necessary, a chromate rust preventive agent is provided on the surface of the secondary roughened layer finished to 3.0 μm or less by dipping treatment or, if necessary, cathodic electrolysis treatment (third treatment tank 3) to enhance rust prevention power. The film thickness in the case of chromate treatment is preferably in the range of 0.005 to 0.025 mg / dm 2 as the amount of metallic chromium. If it is this adhesion amount range, the surface will not change to the color of copper oxide until 24 hours under the conditions of the salt spray test (salt water concentration: 5% -NaCL, temperature 35 ° C.) specified in JIS-Z-2371.

防錆層の形成にはBTA(ベンゾ・トリ・アゾール)に代表される有機系防錆剤でも耐熱性に優れるものが市販されており、適宜使い分けることができる。因みに有機防錆剤であれば例えば、千代田ケミカル株式会社の品番C−143の5.0Wt%(重量パーセント)で35〜40℃に建浴された浴中に浸漬し乾燥させたものでも、クロメート処理と遜色ない防錆効果が得られる。これらの防錆処理効果は、圧延銅箔がベースであっても電解銅箔ベースでも合金金属箔ベースでも違いはないが、コストパフォーマンスに優れるのはクロメート処理である。   For the formation of the rust preventive layer, organic rust preventives represented by BTA (benzo triazole) are also commercially available and can be properly used. Incidentally, if it is an organic rust preventive agent, for example, it is chromate even if it is dipped in a bath constructed at 35-40 ° C. at 5.0 Wt% (weight percent) of product number C-143 of Chiyoda Chemical Co., Ltd. Rust prevention effect comparable to processing is obtained. These antirust treatment effects are the same regardless of whether the rolled copper foil is a base, an electrolytic copper foil base, or an alloy metal foil base, but the chromate treatment is excellent in cost performance.

更にクロメート処理の施された面には必要に応じてシランカップリング剤を適宜コーティング(保護層)する。シランカップリング剤層を設けることでリチウムイオン二次電池用の珪素系活物質に混入されるバインダーとの密着性を高めることができる。シランカップリング剤は対象となる活物質により適宜選択されるが、特に珪素系活物質との相性に優れるエポキシ系、アミノ系、ビニル系のカップリング剤を選択することが好ましく、その構造式に二重結合やアゾ基を有する該剤は、架橋反応に富み密着効果に優れるので特に好ましい。
また、本発明においては品種種類を限定しないが、少なくとも化学的に密着性を向上させるため、シランカップリング剤の付着量は珪素として0.001〜0.015mg/dmの範囲であることが好ましい。
Furthermore, a silane coupling agent is appropriately coated (protective layer) as necessary on the surface subjected to the chromate treatment. By providing the silane coupling agent layer, the adhesion with the binder mixed in the silicon-based active material for the lithium ion secondary battery can be enhanced. The silane coupling agent is appropriately selected depending on the target active material, but it is preferable to select an epoxy-based, amino-based, or vinyl-based coupling agent that is particularly excellent in compatibility with a silicon-based active material. The agent having a double bond or an azo group is particularly preferred because it is rich in crosslinking reaction and excellent in adhesion effect.
In the present invention, the kind of the product is not limited, but the adhesion amount of the silane coupling agent is in the range of 0.001 to 0.015 mg / dm 2 as silicon in order to improve the adhesion at least chemically. preferable.

電解製箔条件により液面側も鏡面に製造された厚み0.018mmの未処理電解銅箔に直径50μmで開口率55%に打ち抜き加工穴あけされた“穴あき電解銅箔”、を用意した。なお、穴あけ前の電解銅箔のマット面側(電着液面側)の形状粗度がJIS−B−0601に規定の表面粗さRzで0.8μm、光沢面側(ドラム面側)の表面粗さRzが1.2μmで、かつ常温伸び率が6.2%の銅箔(古河電気工業株式会社製造の両面光沢電解銅箔)を用いて、該箔の両面に以下の条件で粗化処理を施した。なお、この処理では槽入口からボトム側でマット面側(電着液面側)に、ボトムから槽出口側で光沢面側(ドラム剥離面側)に粗化処理を分けて、銅箔の両面に粗化処理を施した。パルス処理を二回に分けた理由は、穴あき銅箔であるために非穴あき銅箔に較べピーク電流時の発熱が大きくなるため、槽内での切断や伸び不具合を回避するためで、加えてON−OFFタイムの設定を個別に行えるようにして両面の仕上げ粗化処理による表面粗度を一致させるようにするためである。
次いで平滑銅メッキ処理を、槽入口からボトム側で両面同時に直流陰極電解メッキにより二次粗化処理を施した。
また、実施例、比較例では陰極電解条件を「パルス陰極電解」と「直流陰極電解」とに分けて記載する。
A “perforated electrolytic copper foil” was prepared by punching and punching an untreated electrolytic copper foil having a thickness of 0.018 mm and having a diameter of 50 μm and an aperture ratio of 55%, which was manufactured with a mirror surface on the liquid surface side under electrolytic foil production conditions. In addition, the shape roughness of the matte surface side (electrodeposition liquid surface side) of the electrolytic copper foil before drilling is 0.8 μm at the surface roughness Rz defined in JIS-B-0601, and the glossy surface side (drum surface side). Using a copper foil (double-sided glossy electrolytic copper foil manufactured by Furukawa Electric Co., Ltd.) having a surface roughness Rz of 1.2 μm and a normal temperature elongation of 6.2%, both surfaces of the foil were roughed under the following conditions. Was applied. In this process, the roughening process is divided into the matte side (electrodeposition liquid side) from the tank inlet to the bottom side, and the glossy side (drum peeling surface side) from the bottom to the tank outlet side. Was subjected to a roughening treatment. The reason for dividing the pulse treatment into two times is to avoid cutting and elongation problems in the tank because it is a perforated copper foil and heat generation at peak current is larger than that of a non-perforated copper foil. In addition, the ON-OFF time can be individually set so that the surface roughness by the finish roughening process on both sides is matched.
Next, a smooth copper plating treatment was performed by a secondary roughening treatment by DC cathodic electroplating on both sides simultaneously from the tank inlet to the bottom side.
In the examples and comparative examples, the cathode electrolysis conditions are described separately as “pulse cathode electrolysis” and “DC cathode electrolysis”.

[一次粗化粒子形成浴組成と処理条件]
硫酸銅・・・・・・・・・・・・・・・・金属銅として23.5g/l
硫酸・・・・・・・・・・・・・・・・・・・・・・・100g/l
モリブデン酸ナトリウム・・・・・・モリブデンとして0.25g/l
塩酸・・・・・・・・・・・・・・・塩素イオンとして0.002g/l
硫酸第二鉄・・・・・・・・・・・・・・金属鉄として0.20g/l
硫酸クロム・・・・・・・・・・・・三価クロムとして0.20g/l
浴温度:25.5℃
パルス陰極電解オンタイム・・・・・10ms
パルス陰極電解オフタイム・・・・・60ms
パルス陰極電解平均メッキ電流密度:22.5A/dm2
[Primary coarse particle formation bath composition and treatment conditions]
Copper sulfate: 23.5 g / l as metallic copper
Sulfuric acid ... 100g / l
Sodium molybdate: 0.25 g / l as molybdenum
Hydrochloric acid: 0.002 g / l as chloride ion
Ferric sulfate ... 0.20 g / l as metallic iron
Chromium sulfate: 0.20 g / l as trivalent chromium
Bath temperature: 25.5 ℃
Pulse cathodic electrolysis on time: 10 ms
Pulse cathode electrolysis off time ... 60ms
Pulse cathode electrolysis average plating current density: 22.5 A / dm2

[二次平滑メッキ処理条件]
硫酸銅・・・・・・・・・・・・・・・・・金属銅として45g/l
硫酸・・・・・・・・・・・・・・・・・・・・・・・・110g/l
浴温度:50.5℃
直流陰極電解メッキ電流密度:18.5A/dm2
[Secondary smooth plating conditions]
Copper sulfate: 45g / l as metallic copper
Sulfuric acid ... 110g / l
Bath temperature: 50.5 ℃
DC cathode electroplating current density: 18.5A / dm2

防錆処理として、CrOとして3g/Lを含むクロメート浴中に浸漬・乾燥して防錆層を形成した。その後、0.5wt%に建浴したエポキシ系のシランカップリング剤(チッソ株式会社製サイラエースS−510)をその上に薄膜塗布した。 As a rust prevention treatment, a rust prevention layer was formed by immersing and drying in a chromate bath containing 3 g / L as CrO 3 . Thereafter, an epoxy-based silane coupling agent (Silas Ace S-510, manufactured by Chisso Corporation) bathed in 0.5 wt% was applied as a thin film thereon.

粗化処理終了後の銅箔の両面の表面粗さRzをJIS−B−0601に基づき測定し表1に記載した。
更に該処理銅箔を250mm角に切断して市販のポリフェニレンエーテル(PPE)樹脂系基板(Panasonic電工製メグトロン−6プリプレグ相当)にマット面側の粗化処理面を重ね合わせて180℃で加熱プレス積層した試料により引き剥がし強度の測定値から粗化処理の均一性を評価した。また、異常粗化処理の有無は全面エッチング後の基板表面の残銅を光学顕微鏡による目視観察により評価した。
The surface roughness Rz on both surfaces of the copper foil after the roughening treatment was measured based on JIS-B-0601 and listed in Table 1.
Further, the treated copper foil is cut into a square of 250 mm, and the roughened surface on the mat surface side is overlaid on a commercially available polyphenylene ether (PPE) resin substrate (equivalent to Megtron-6 prepreg manufactured by Panasonic Electric Works) and heated at 180 ° C. The uniformity of the roughening treatment was evaluated from the measured values of the peel strength using the laminated samples. The presence or absence of abnormal roughening treatment was evaluated by visual observation of the remaining copper on the substrate surface after the entire surface etching with an optical microscope.

粗化処理の均一性評価(バラツキチャート評価)は、基材との引き剥がし密着性の測定に用いるJIS−C−6481に規定される測定方法により引き剥がし強度を測定するが、測定チャートの最大値と最小値の“差”が無く直線的にチャートブレが無く描かれて引き剥がされていれば、粗化均一性に優れるものとして評価を「◎」とし、チャートのブレが0.02kg/cm以内は、評価を「○」、0.05kg/cm以内は、評価を「△」、0.05kg/cmを超える場合は評価を「×」として密着強度の数値バラツキを変換し表1に記載した。   The uniformity evaluation (variation chart evaluation) of the roughening treatment is performed by measuring the peel strength by a measurement method defined in JIS-C-6481, which is used for measuring the peel adhesion to the base material. If there is no “difference” between the value and the minimum value and the line is drawn and peeled straight without chart shake, the evaluation is “◎” as being excellent in roughening uniformity, and chart shake is 0.02 kg / Within 1 cm, the evaluation is “◯”, within 0.05 kg / cm, the evaluation is “Δ”, and when it exceeds 0.05 kg / cm, the evaluation is “×” and the numerical value variation of the adhesion strength is converted into Table 1. Described.

残銅は、該積層基板の面をエッチング後、単位面積(0.5mm×0.5mm)当たりの残銅が全く見られない場合を◎、殆ど見られない場合を○、多少見られる場合を△、顕著に見られる場合を×として評価して表1に記載した。   The remaining copper is ◎ when there is no residual copper per unit area (0.5 mm × 0.5 mm) after etching the surface of the laminated substrate, ◯ when it is hardly seen, and when it is seen somewhat. Δ, the case of being noticeable was evaluated as x and listed in Table 1.

実施例1で用いた穴あけ前の未処理電解銅箔の光沢面側粗度が表面粗さRzで2.5μm、かつ常温伸び率が5.2%の銅箔(古河電気工業株式会社製造の両面光沢電解銅箔)を用いて、二次粗化表面処理後の両面の表面粗度がRzで3.0μm以下となるように実施例1と同様の粗化および表面処理を行い、実施例1と同様の評価測定を行った。その結果を表1に併記する。   The copper foil (made by Furukawa Electric Co., Ltd.) having a glossy surface side roughness of 2.5 μm in surface roughness Rz and a room temperature elongation of 5.2% of the untreated electrolytic copper foil before drilling used in Example 1 Using the double-sided glossy electrolytic copper foil), the same roughening and surface treatment as in Example 1 were performed so that the surface roughness of both surfaces after the secondary roughening surface treatment was 3.0 μm or less in Rz. Evaluation measurement similar to 1 was performed. The results are also shown in Table 1.

実施例1で用いた穴あけ前の未処理電解銅箔の代わりに厚さ18μmで、常温伸び率が 4.2%で、両面の表面粗度がRzで0.8μmの無酸素銅の圧延箔(古河電気工業(株)製造)を用いた以外は実施例1と同様の穴あけ加工後に粗化および表面処理を行い、実施例1と同様の評価測定を行った。その結果を表1に併記する。   Instead of the untreated electrolytic copper foil before drilling used in Example 1, a rolled foil of oxygen-free copper having a thickness of 18 μm, an elongation at room temperature of 4.2%, and a surface roughness of both surfaces of Rz of 0.8 μm Except for using (Furukawa Electric Co., Ltd.), roughening and surface treatment were performed after drilling in the same manner as in Example 1, and the same evaluation measurement as in Example 1 was performed. The results are also shown in Table 1.

厚さ18μmで常温伸び率が3.5%で錫の含有率が0.15%の銅−錫合金箔(古河電気工業(株)製造)を用い、該箔の両面に以下の条件で粗化処理を施した。なお、粗化処理工程における電解液の組成が相違する以外は実施例1と同様に、得られる処理表面の粗さRzで3.0μm以下となるように粗化処理および表面処理を行い、実施例1と同様の評価測定を行った。その結果を表1に併記する。   A copper-tin alloy foil (manufactured by Furukawa Electric Co., Ltd.) having a thickness of 18 μm, a normal temperature elongation of 3.5%, and a tin content of 0.15% was used. Was applied. In addition, except that the composition of the electrolytic solution in the roughening treatment step is different, the roughening treatment and the surface treatment are performed so that the obtained treated surface has a roughness Rz of 3.0 μm or less in the same manner as in Example 1. The same evaluation measurement as in Example 1 was performed. The results are also shown in Table 1.

[一次粗化粒子形成浴組成と処理条件]
硫酸銅・・・・・・・・・・・・・・・・金属銅として23.5g/l
硫酸・・・・・・・・・・・・・・・・・ 100g/l
モリブデン酸ナトリウム・・・・・・モリブデンとして0.25g/l
塩酸・・・・・・・・・・・・・・・塩素イオンとして0.002g/l
硫酸第一錫・・・・・・・・・・・・・・・・スズとして2.35g/l
硫酸第二鉄・・・・・・・・・・・・・・金属鉄として0.20g/l
硫酸クロム・・・・・・・・・・・・三価クロムとして0.20g/l
浴温度:25.5℃
パルス陰極電解オンタイム・・・・・10ms
パルス陰極電解オフタイム・・・・・60ms
パルス陰極電解平均メッキ電流密度:22.5A/dm2
[Primary coarse particle formation bath composition and treatment conditions]
Copper sulfate: 23.5 g / l as metallic copper
Sulfuric acid ... 100g / l
Sodium molybdate: 0.25 g / l as molybdenum
Hydrochloric acid: 0.002 g / l as chloride ion
Stannous sulfate ... 2.35g / l as tin
Ferric sulfate ... 0.20 g / l as metallic iron
Chromium sulfate: 0.20 g / l as trivalent chromium
Bath temperature: 25.5 ℃
Pulse cathodic electrolysis on time: 10 ms
Pulse cathode electrolysis off time ... 60ms
Pulse cathode electrolysis average plating current density: 22.5 A / dm2

[二次平滑メッキ処理条件] (ここの条件を再度確認して下さい。)
硫酸銅・・・・・・・・・・・・・・・・・金属銅として45g/l
硫酸第一錫・・・・・・・・・・・・・・・・・錫として4.5g/l
硫酸・・・・・・・・・・・・・・・・・・・・・・・・110g/l
浴温度:50.5℃
直流陰極電解メッキ電流密度:18.5A/dm2
[Secondary smooth plating treatment conditions] (Check the conditions here again.)
Copper sulfate: 45g / l as metallic copper
Stannous sulfate ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 4.5g / l as tin
Sulfuric acid ... 110g / l
Bath temperature: 50.5 ℃
DC cathode electroplating current density: 18.5A / dm2

比較例1Comparative Example 1

実施例1に用いた穴あき銅箔の両面に実施例1同様の浴組成でパルス処理に代えて、直流陰極電解処理を施し、得られる双方の粗化面の粗さRzで3.0μm以下となる様に処理した以外は実施例1と同じ処理を施し、実施例1と同様の評価測定を行った。その結果を表1に併記する。   Both sides of the perforated copper foil used in Example 1 were subjected to DC cathodic electrolysis instead of pulse treatment with the same bath composition as in Example 1, and the roughness Rz of both roughened surfaces obtained was 3.0 μm or less. The same processing as in Example 1 was performed except that the processing was performed, and the same evaluation measurement as in Example 1 was performed. The results are also shown in Table 1.

比較例2Comparative Example 2

実施例2に用いた穴あき銅箔の両面に、比較例1と同様な処理を施した以外は、実施例1と同様の評価測定を行った。その結果を表1に併記する。   The same evaluation measurement as in Example 1 was performed except that the same treatment as in Comparative Example 1 was performed on both surfaces of the perforated copper foil used in Example 2. The results are also shown in Table 1.

比較例3Comparative Example 3

実施例3に用いた穴あき圧延銅箔の両面に、比較例1と同様な処理を施した以外は、実施例1と同様の評価測定を行った。その結果を表1に併記する。   The same evaluation measurement as in Example 1 was performed except that the same processing as in Comparative Example 1 was performed on both surfaces of the perforated rolled copper foil used in Example 3. The results are also shown in Table 1.

比較例4Comparative Example 4

実施例4に用いた圧延合金箔の両面に、比較例1と同様な処理を施した以外は、実施例1と同様の評価測定を行った。その結果を表1に併記する。 The same evaluation measurement as in Example 1 was performed, except that both surfaces of the rolled alloy foil used in Example 4 were subjected to the same treatment as in Comparative Example 1. The results are also shown in Table 1.

比較例5Comparative Example 5

電解製箔条件により柱状結晶でIPC規格に分類されるミドルプロファイル(MP)形状に製箔されマット面側の表面粗さRzが3.8μm、光沢面側の表面粗さRzが1.8μmのMP−18μm非穴あけ銅箔に、直流電解処理により実施例1と同様の処理および評価測定を行った。その結果を表1に併記する。   Foil is made into a middle profile (MP) shape that is classified as an IPC standard by columnar crystals according to electrolytic foil-making conditions, and the surface roughness Rz on the mat surface side is 3.8 μm, and the surface roughness Rz on the gloss surface side is 1.8 μm. The same treatment and evaluation measurement as in Example 1 were performed on the MP-18 μm non-perforated copper foil by direct current electrolytic treatment. The results are also shown in Table 1.

Figure 0004948656
Figure 0004948656

表1から明らかなように、実施例1〜4の銅箔は表面粗度が表裏とも同程度で、両面の粗化特性が遜色ないものであった。
実施例と比較して比較例1〜5の銅箔は、密着強度は実施例より勝るが、密着強度のバラツキと残銅の点で実施例より劣り、負極集電体に積層する活物質を均一な厚みで結着する観点からすると、二次電池用集電体として採用する場合、充放電特性に問題を生じることになる。
なお、比較例5の汎用の電解銅箔では、未処理箔の表裏の表面粗度が大きく異なっているため、粗化処理で両面の粗化状態を近接させることができなかった。そのため、未処理銅箔の表裏の表面粗度にかなりの差がある銅箔を採用することは、粗化処理で両面の表面粗度を均一にすることが困難であり、好ましくないと判断される。
As is apparent from Table 1, the copper foils of Examples 1 to 4 had the same surface roughness on both the front and back surfaces, and the roughening characteristics on both sides were comparable.
Compared with the examples, the copper foils of Comparative Examples 1 to 5 have better adhesion strength than the examples, but are inferior to the examples in terms of variation in adhesion strength and remaining copper, and the active material laminated on the negative electrode current collector From the viewpoint of binding with a uniform thickness, when it is employed as a current collector for a secondary battery, a problem occurs in charge / discharge characteristics.
In addition, in the general-purpose electrolytic copper foil of Comparative Example 5, since the surface roughness of the front and back of the untreated foil was greatly different, the roughened state on both sides could not be brought close to each other by the roughening treatment. For this reason, it is difficult to adopt a copper foil that has a considerable difference in surface roughness between the front and back surfaces of the untreated copper foil. The

上述したように本発明のパルス陰極電解処理により粗化された穴あき銅箔は、両面を略同様な特性に製造することができるので、リチウムイオン二次電池用集電体としての銅箔として好適である。   As described above, the perforated copper foil roughened by the pulse cathodic electrolysis of the present invention can be manufactured with substantially the same characteristics on both sides, so as a copper foil as a current collector for a lithium ion secondary battery. Is preferred.

1 第一粗化処理(パルス陰極電解粗化処理)槽
2 第二銅メッキ処理(平滑メッキ処理)槽
3 第三表面処理(防錆処理)槽
4 第四表面処理(シランカップリング処理)槽
A 未処理銅箔
B 一次処理銅箔
C 二次処理銅箔
D 三次処理銅箔
E 四次処理銅箔
F 表面粗化銅箔
DESCRIPTION OF SYMBOLS 1 1st roughening process (pulse cathode electrolytic roughening process) tank 2 2nd copper plating process (smooth plating process) tank 3 3rd surface treatment (rust prevention process) tank 4 4th surface treatment (silane coupling process) tank A untreated copper foil B primary treated copper foil C secondary treated copper foil D tertiary treated copper foil E quaternary treated copper foil F surface roughened copper foil

Claims (13)

1つの孔の開口部分の面積が0.01mm 以下である貫通孔が穿設された未処理銅箔又は未処理銅合金箔の表面に、パルス陰極電解処理により銅又は銅合金からなる一次粗化処理層が設けられ、該一次粗化処理層の上に平滑メッキ処理により銅又は銅合金からなる二次処理層が設けられているリチウムイオン二次電池集電体用穴あき粗化処理銅箔。 On the surface of an untreated copper foil or an untreated copper alloy foil in which a through hole having an area of an opening portion of one hole of 0.01 mm 2 or less is formed, a primary rough comprising copper or a copper alloy by pulse cathode electrolytic treatment A perforated roughened copper for a lithium ion secondary battery current collector is provided with a secondary treatment layer made of copper or a copper alloy by a smooth plating process on the primary roughened layer. Foil. 1つの孔の開口部分の面積が0.01mm 以下である貫通孔が穿設された未処理銅箔又は未処理銅合金箔の表面に、パルス陰極電解処理により前記未処理銅又は前記未処理銅合金箔と同一の金属からなる一次粗化処理層が設けられ、該一次粗化処理層の上に平滑メッキ処理により銅又は前記銅合金箔と同一の金属からなる二次処理層が設けられているリチウムイオン二次電池集電体用穴あき粗化処理銅箔。 The surface of the untreated copper foil or untreated copper alloy foil in which a through hole having an opening portion of one hole having a diameter of 0.01 mm 2 or less is formed on the surface of the untreated copper or untreated by pulse cathode electrolytic treatment. A primary roughening treatment layer made of the same metal as the copper alloy foil is provided, and a secondary treatment layer made of copper or the same metal as the copper alloy foil is provided on the primary roughening treatment layer by smooth plating treatment. A perforated roughened copper foil for a current collector of a lithium ion secondary battery. 前記貫通孔の開口部分の合計面積が、貫通孔穿設前の未処理箔の面積に対して55%以下である請求項1又は2に記載のリチウムイオン二次電池集電体用穴あき粗化処理銅箔。 The perforated rough for a lithium ion secondary battery current collector according to claim 1 or 2, wherein the total area of the opening portions of the through holes is 55% or less with respect to the area of the untreated foil before the through holes are formed. Processed copper foil. 前記貫通孔が穿設された未処理銅箔又は未処理銅合金箔の厚みが8〜35μmであり、導電率が85%IACS以上である請求項1又は2に記載のリチウムイオン二次電池集電体用穴あき粗化処理銅箔。 The lithium ion secondary battery collection according to claim 1 or 2, wherein a thickness of the untreated copper foil or untreated copper alloy foil in which the through-holes are formed is 8 to 35 µm, and a conductivity is 85% IACS or more. Electrically perforated and roughened copper foil. 前記銅合金箔が銅と錫の合金からなる箔である請求項1又は2に記載のリチウムイオン二次電池集電体用穴あき粗化処理銅箔。 The perforated roughened copper foil for a lithium ion secondary battery current collector according to claim 1 or 2 , wherein the copper alloy foil is a foil made of an alloy of copper and tin. 前記二次処理層の表面粗度が、JIS−B−0601に規定される表面粗さRzで3.0μm以下である請求項1〜5のいずれかに記載のリチウムイオン二次電池集電体用穴あき粗化処理銅箔。 The lithium ion secondary battery current collector according to claim 1, wherein the surface roughness of the secondary treatment layer is 3.0 μm or less in terms of surface roughness Rz defined in JIS-B-0601. Perforated roughened copper foil. 前記二次処理層の表面に防錆剤による防錆層が設けられ、該防錆層表面にカップリング剤による保護層が設けられている請求項1又は2に記載のリチウムイオン二次電池集電体用穴あき粗化処理銅箔。 The lithium ion secondary battery collection according to claim 1 or 2, wherein a rust preventive layer is provided on the surface of the secondary treatment layer, and a protective layer is provided on the surface of the rust preventive layer. Electrically perforated and roughened copper foil. 前記防錆層がクロメートからなり、該クロメート防錆層のクロム付着量が、金属クロムとして0.005〜0.025mg/dmである請求項7に記載のリチウムイオン二次電池集電体用穴あき粗化処理銅箔。 8. The lithium ion secondary battery current collector according to claim 7, wherein the rust preventive layer is made of chromate, and a chromium adhesion amount of the chromate rust preventive layer is 0.005 to 0.025 mg / dm 2 as metal chromium. Perforated roughened copper foil. 前記保護層がシランカップリング剤からなり、該シランカップリング剤の付着量が、珪素として0.001〜0.015mg/dmである請求項7に記載のリチウムイオン二次電池集電体用穴あき粗化処理銅箔。 The said protective layer consists of silane coupling agents, and the adhesion amount of this silane coupling agent is 0.001-0.015 mg / dm < 2 > as silicon, For lithium ion secondary battery collectors of Claim 7 Perforated roughened copper foil. 1つの孔の開口部分の面積が0.01mm 以下である貫通孔が穿設された未処理銅箔又は未処理銅合金箔の表面に、銅又は銅合金からなる一次粗化処理層をパルス陰極電解処理により設け、該一次粗化処理層の上に銅又は銅合金からなる二次処理層を平滑メッキ処理により設けるリチウムイオン二次電池集電体用穴あき粗化処理銅箔の製造方法。 Pulse the primary roughened layer made of copper or copper alloy on the surface of the untreated copper foil or untreated copper alloy foil in which the through hole having an opening area of one hole of 0.01 mm 2 or less is drilled. A method for producing a perforated roughened copper foil for a lithium ion secondary battery current collector, which is provided by cathodic electrolysis and a secondary treatment layer made of copper or a copper alloy is provided on the primary roughening treatment layer by a smooth plating treatment . 1つの孔の開口部分の面積が0.01mm 以下である貫通孔が穿設された未処理銅箔又は未処理銅合金箔の表面に、銅又は前記銅合金箔と同一の金属からなる一次粗化処理層をパルス陰極電解処理により設け、該一次粗化処理層の上に銅又は前記銅合金箔と同一の金属からなる二次処理層を平滑メッキ処理により設けるリチウムイオン二次電池集電体用穴あき粗化処理銅箔の製造方法。 A primary made of copper or the same metal as the copper alloy foil on the surface of the untreated copper foil or untreated copper alloy foil in which a through-hole having an opening area of one hole of 0.01 mm 2 or less is formed. Lithium ion secondary battery current collector provided with a roughening treatment layer by pulse cathodic electrolysis treatment and a secondary treatment layer made of the same metal as copper or the copper alloy foil on the primary roughening treatment layer by smooth plating treatment A method for producing body-perforated roughened copper foil. 前記二次処理層の表面に防錆層を防錆剤により設け、該防錆層表面に保護層をカップリング剤により設ける請求項10又は11に記載のリチウムイオン二次電池集電体用穴あき粗化処理銅箔の製造方法。 The hole for a lithium ion secondary battery current collector according to claim 10 or 11, wherein a rust preventive layer is provided on the surface of the secondary treatment layer with a rust preventive agent, and a protective layer is provided on the surface of the rust preventive layer with a coupling agent. A method for producing a roughened copper foil. 請求項1又は2に記載の粗化処理銅箔、又は請求項10、11又は12に記載の製造方法で製造された粗化処理銅箔の表面に珪素系活物質を積層してなるリチウムイオン二次電池負極電極。   Lithium ion obtained by laminating a silicon-based active material on the surface of the roughened copper foil according to claim 1 or 2, or the surface of the roughened copper foil produced by the production method according to claim 10, 11 or 12. Secondary battery negative electrode.
JP2011059166A 2010-03-17 2011-03-17 Perforated roughening copper foil for secondary battery current collector, method for producing the same, and negative electrode for lithium ion secondary battery Active JP4948656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011059166A JP4948656B2 (en) 2010-03-17 2011-03-17 Perforated roughening copper foil for secondary battery current collector, method for producing the same, and negative electrode for lithium ion secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010060307 2010-03-17
JP2010060307 2010-03-17
JP2011059166A JP4948656B2 (en) 2010-03-17 2011-03-17 Perforated roughening copper foil for secondary battery current collector, method for producing the same, and negative electrode for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2011216478A JP2011216478A (en) 2011-10-27
JP4948656B2 true JP4948656B2 (en) 2012-06-06

Family

ID=44945974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011059166A Active JP4948656B2 (en) 2010-03-17 2011-03-17 Perforated roughening copper foil for secondary battery current collector, method for producing the same, and negative electrode for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4948656B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6346244B2 (en) * 2015-11-10 2018-06-20 Jx金属株式会社 Electrolytic copper foil, electrolytic copper foil manufacturing method, copper-clad laminate, printed wiring board, printed wiring board manufacturing method, and electronic device manufacturing method
TWI776168B (en) * 2019-06-19 2022-09-01 金居開發股份有限公司 Advanced reverse-treated electrodeposited copper foil and copper clad laminate using the same
US11332839B2 (en) 2019-06-19 2022-05-17 Co-Tech Development Corp. Advanced electrodeposited copper foil and copper clad laminate using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317597A (en) * 1986-07-10 1988-01-25 古河サーキットフォイル株式会社 Printed circuit copper foil and manufacture of the same
JPH1186869A (en) * 1997-09-01 1999-03-30 Nippon Foil Mfg Co Ltd Perforated current collecting body used for secondary battery
JP2002319408A (en) * 2001-04-23 2002-10-31 Sanyo Electric Co Ltd Lithium secondary battery electrode and lithium secondary battery
JP3644542B1 (en) * 2003-12-12 2005-04-27 三井金属鉱業株式会社 Anode current collector for non-aqueous electrolyte secondary battery
JP4460058B2 (en) * 2005-02-21 2010-05-12 古河電気工業株式会社 Copper foil for lithium secondary battery electrode and method for producing the same, electrode for lithium secondary battery and lithium secondary battery using the copper foil
JP4953583B2 (en) * 2005-03-29 2012-06-13 三洋電機株式会社 Lithium secondary battery

Also Published As

Publication number Publication date
JP2011216478A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
WO2011108467A1 (en) Surface treatment method for copper foil, surface treated copper foil and copper foil for negative electrode collector of lithium ion secondary battery
JP5466664B2 (en) Porous metal foil and method for producing the same
JP5090028B2 (en) Copper foil for negative electrode current collector of lithium secondary battery and method for producing the same
JP5400826B2 (en) Composite metal foil and manufacturing method thereof
JP4762368B2 (en) Porous metal foil and method for producing the same
JP3644542B1 (en) Anode current collector for non-aqueous electrolyte secondary battery
JP5980495B2 (en) Metal exterior material with resin film and method for producing the same
JP7085394B2 (en) Laminated electrolytic foil
JP2005353384A (en) Metal foil with carrier foil, manufacturing method of the same, and collector of nonaqueous electrolyte secondary battery using the same
JP5822928B2 (en) Electrolytic copper foil having high strength and low warpage and method for producing the same
JP4948654B2 (en) Copper foil for negative electrode current collector of lithium ion secondary battery, manufacturing method thereof, negative electrode of lithium ion secondary battery, manufacturing method thereof
JP4948656B2 (en) Perforated roughening copper foil for secondary battery current collector, method for producing the same, and negative electrode for lithium ion secondary battery
US20040108211A1 (en) Surface treatment for a wrought copper foil for use on a flexible printed circuit board (FPCB)
JP4438541B2 (en) Composite foil for negative electrode current collector of non-aqueous electrolyte secondary battery and manufacturing method thereof, and negative electrode current collector, non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery using the composite foil
JP5019654B2 (en) Copper (alloy) foil for negative electrode current collector of lithium ion secondary battery, manufacturing method thereof, negative electrode of lithium ion secondary battery, manufacturing method thereof
CN101486264A (en) Strippable ultrathin transfer carrier metal foil and method of manufacturing the same
WO2004049476A1 (en) Negative electrode collector for nonaqueous electrolyte secondary battery and method for manufacturing same
JP2013077462A (en) COPPER FOIL FOR Li BATTERY COLLECTOR, ELECTRODE FOR Li BATTERY USING THE SAME, AND Li BATTERY
CN105537312A (en) Copper-lead composite board strip and preparation method thereof
KR20190117669A (en) Rolled copper foil and lithium ion battery for lithium ion battery collectors
JP2012043747A (en) Secondary battery electrode and method of manufacturing the same
KR101318588B1 (en) Process for producing tin-plated steel plate, and tin-plated steel plate
JP2013187114A (en) Copper foil for lithium secondary battery collector, and display method thereof, negative electrode for lithium secondary battery using copper foil, and lithium secondary battery
JP2018031025A (en) CRYSTALLINE ELECTROLYTIC Al-Mn ALLOY FOIL AND MANUFACTURING METHOD THEREFOR
US20190036126A1 (en) Electrolytic copper foil having high tensile strength, electrode including the same, secondary battery including the same, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110815

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4948656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350