WO2014112619A1 - Copper foil, anode for lithium ion battery, and lithium ion secondary battery - Google Patents

Copper foil, anode for lithium ion battery, and lithium ion secondary battery Download PDF

Info

Publication number
WO2014112619A1
WO2014112619A1 PCT/JP2014/050942 JP2014050942W WO2014112619A1 WO 2014112619 A1 WO2014112619 A1 WO 2014112619A1 JP 2014050942 W JP2014050942 W JP 2014050942W WO 2014112619 A1 WO2014112619 A1 WO 2014112619A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
copper
copper layer
lithium ion
tensile strength
Prior art date
Application number
PCT/JP2014/050942
Other languages
French (fr)
Japanese (ja)
Inventor
健作 篠崎
鈴木 昭利
季実子 藤澤
健 繪面
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2014526317A priority Critical patent/JPWO2014112619A1/en
Publication of WO2014112619A1 publication Critical patent/WO2014112619A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a copper foil, a negative electrode for a lithium ion secondary battery using the copper foil, and a lithium ion secondary battery using the copper foil, and in particular, mechanical strength (tensile strength) suitable for a negative electrode for a lithium ion secondary battery. And a copper foil having hardness, a negative electrode for a lithium ion secondary battery using the same, and a lithium ion secondary battery using the same.
  • next-generation negative electrode active materials having charge / discharge capacities far exceeding the theoretical capacity of carbon materials has been promoted as negative electrode active materials for lithium ion secondary batteries.
  • a material containing a metal that can be alloyed with lithium (Li) such as silicon (Si), germanium (Ge), or tin (Sn) is expected.
  • these materials when Si, Sn, or the like is used as an active material, these materials have a large volume change due to insertion / extraction of Li during charge / discharge, and thus maintain a good adhesion state between the current collector and the active material It is difficult.
  • these materials have a very large volume change rate due to Li insertion and desorption, and are repeatedly expanded and contracted by the charge / discharge cycle, so that the active material particles are pulverized or desorbed. Has the disadvantage of being very large.
  • Patent Document 1 has a rough surface with a rough surface roughness Rz of 2.0 ⁇ m or less and a uniform low roughness as an optimal copper foil for a negative electrode current collector for a secondary battery, at 180 ° C.
  • a low rough surface electrolytic copper foil having an elongation of 10.0% or more is described.
  • the above-mentioned electrolytic copper foil is obtained by using a sulfuric acid-copper sulfate aqueous solution as an electrolytic solution and adding polyethyleneimine or a derivative thereof, a sulfonate salt of an active organic sulfur compound, and chloride ions.
  • the rough surface roughness Rz of the electrolytic copper foil is 2.5 ⁇ m or less, and the tensile strength at 25 ° C. measured within 20 minutes from the completion of electrodeposition is 820 MPa or more.
  • An electrolytic copper foil is described in which the rate of decrease in tensile strength at 25 ° C. measured after 300 minutes from the completion of electrodeposition with respect to tensile strength at 25 ° C. measured within 20 minutes from the completion time is 10% or less. .
  • the electrolytic copper foil is obtained by adding hydroxyethyl cellulose, polyethyleneimine, sulfonic acid salt of active organic sulfur compound, acetylene glycol, and chloride ion using sulfuric acid-copper sulfate aqueous solution as an electrolytic solution.
  • Patent Document 3 discloses an electrodeposited copper foil having a grain structure having no columnar grains and twin boundaries and having an average grain size of up to 10 ⁇ m, and the grain structure is substantially uniform and randomly.
  • a controlled low profile electrodeposited copper foil is described which is an oriented grain structure.
  • This electrodeposited copper foil has a maximum tensile strength at 23 ° C. of 87,000 to 120,000 psi (600 MPa to 827 MPa) and a maximum tensile strength at 180 ° C. of 25,000 to 35,000 psi (172 MPa to 172 MPa). 241 MPa).
  • Patent Documents 1 to 3 have a high mechanical strength in a normal state, and the mechanical strength hardly changes even when heated at around 180 ° C.
  • a foil is heated at about 300 ° C., it is annealed and recrystallization proceeds, so that it softens rapidly and the mechanical strength decreases.
  • Patent Documents 4 and 5 describe a method of producing an electrolytic copper foil with an electrolytic solution in which W is added to a sulfuric acid-copper sulfate electrolytic solution, and further glue and chlorine ions are added. It is described that it is possible to manufacture a copper foil having a hot elongation rate of 3% or more, a rough surface having a large roughness, and less pinholes.
  • the copper foil produced by adding the above W has a high mechanical strength (tensile strength) at room temperature (RT), but the mechanical strength cannot be maintained when heat-treated at 300 ° C. for 1 hour. As a result of analyzing this copper foil, it was found that W was not co-deposited in the electrodeposited copper.
  • Patent Document 6 describes a current collector having a surface layer portion that is easily plastically deformed on the surface of the current collector. Among them, it is described that the surface layer portion preferably has a Vickers hardness of 200 or less, preferably 160 or less. In Patent Document 6, it is described as a current collector having a surface layer portion that is easily plastically deformed on the surface of the current collector, but in reality, the plastic deformation of the surface is not sufficient, and the shape of the active material is limited. Need arises. In Patent Document 6, the above problem is solved by increasing the roughness of the surface layer of the current collector, forming the active material layer into columnar particles, and providing voids between the active materials. Of course, the battery capacity can be reduced by providing a gap between the active materials, but when current flows locally, stress is concentrated on a part of the active material and the current collector, resulting in deterioration of cycle characteristics. A problem occurs.
  • the negative electrode current collector of a lithium ion secondary battery is made using the above-mentioned conventional copper foil, if the mechanical strength (tensile strength) of the copper foil is low, press working in the electrode forming process of the lithium ion secondary battery There are disadvantages that can easily lead to wrinkles. Moreover, when the mechanical strength (tensile strength) of the copper foil is low, there is a disadvantage that wrinkles easily occur as the secondary battery is repeatedly charged and discharged. In addition, when the hardness of the copper foil is high, for example, a carbon-based or Si-based negative electrode active material is difficult to bite into the copper foil, the adhesion between the active material and the copper foil tends to be low, and the battery capacity and cycle characteristics are reduced.
  • Japanese Patent No. 4120806 Japanese Patent No. 4273309 Japanese Patent No. 3,270,637 Japanese Patent No. 3238278 JP-A-9-67693 JP 2008-98157 A
  • the object of the present invention is to provide mechanical strength (tensile strength) and surface hardness that are difficult to cause wrinkles and deformation during pressing and charging / discharging and that can maintain high adhesion between the negative electrode active material and the copper foil. It is intended to provide a copper foil having a negative electrode for a lithium ion secondary battery excellent in cycle characteristics using the copper foil and a lithium ion secondary battery using the same.
  • the present inventor has mechanical strength (see FIG. 5) that is resistant to wrinkles even during press working and charge / discharge, and that can maintain high adhesion between a carbon-based and Si-based negative electrode active material and copper foil ( We have succeeded in developing a copper foil having tensile strength and surface hardness.
  • the copper foil according to the present invention includes a first copper layer having a tensile strength of 550 MPa or more at room temperature, and a second copper layer having a lower hardness than the first copper layer on at least one surface of the first copper layer.
  • the copper foil of the present invention preferably has a total thickness of 7 to 12 ⁇ m including the first copper layer and the second copper layer.
  • the thickness of the second copper layer is preferably 0.3 to 3 ⁇ m.
  • the thickness of the first copper layer is equal to or greater than the thickness of the second copper layer.
  • the copper foil of the present invention preferably has a Young's modulus at room temperature of the first copper layer of 75 to 130 GPa.
  • the copper foil of the present invention preferably has a tensile strength at room temperature of 500 MPa or more.
  • the copper foil of the present invention preferably has a Young's modulus at room temperature of 70 to 120 GPa.
  • the copper foil of the present invention preferably has a surface hardness of 180 to 370 mgf / ⁇ m 2 at room temperature.
  • the copper foil of the present invention preferably has a tensile strength of 400 MPa or more measured at room temperature after heat treatment at 300 ° C. for 1 hour.
  • the copper foil of the present invention preferably has a Young's modulus of 65 GPa or more measured at room temperature after heat treatment at 300 ° C. for 1 hour.
  • the negative electrode for a lithium ion secondary battery of the present invention is a negative electrode using the copper foil described above as a current collector.
  • the negative electrode for a lithium ion secondary battery described above is used as the negative electrode.
  • the copper foil of the present invention by providing a second copper layer having a lower hardness than the first copper layer on at least one surface of the first copper layer having a tensile strength of 550 MPa or more at room temperature, Copper having mechanical strength (tensile strength) and surface hardness that is resistant to wrinkles even during press working and charging and discharging, and that can maintain high adhesion between carbon-based and Si-based negative electrode active materials and copper foil.
  • a foil can be provided.
  • the negative electrode for a lithium ion secondary battery of the present invention is a current collector constituting the negative electrode, and is not easily wrinkled at the time of pressing and charging / discharging, and a carbon-based and Si-based negative electrode active material and a copper foil Since the copper foil which has the mechanical strength (tensile strength) and hardness which hold
  • the lithium ion secondary battery of the present invention can provide a battery having excellent charge / discharge characteristics by using the negative electrode.
  • the copper foil according to this embodiment includes a first copper layer having a tensile strength of 550 MPa or more at room temperature, a second copper layer having a lower hardness than the first copper layer provided on at least one surface of the first copper layer, Have
  • an electrolytic copper foil including an electrolytic copper alloy foil, the same applies hereinafter
  • a rolled copper foil including a rolled copper alloy foil, the same applies hereinafter
  • the second copper layer can be formed on the surface of the first copper layer by any method such as electrolytic treatment such as electrolytic plating, electroless treatment such as sputtering or chemical vapor deposition, and lamination (cladding). it can.
  • the first copper layer is a copper layer having a tensile strength of 550 MPa or more at room temperature
  • the second copper layer is a copper layer having a lower hardness than the first copper layer.
  • the copper foil of this embodiment preferably has a smooth surface, and Ra is preferably 1.0 ⁇ m or less and Rz is preferably 4.0 ⁇ m or less (JIS B 0601: 1994). If the surface of the copper foil has large irregularities, the contact area of the active material is reduced, or the active material cannot enter the valleys of the irregularities, and the adhesion between the active material and the copper foil is likely to decrease, and the cycle characteristics are improved. It is because it falls.
  • the first copper layer is preferably made of an electrolytic copper alloy foil or a rolled copper alloy foil containing at least tungsten (W) or molybdenum (Mo).
  • a copper foil containing at least tungsten or molybdenum By using a copper foil containing at least tungsten or molybdenum, a tensile strength at room temperature of 550 MPa or more can be realized.
  • the first copper layer is not limited to the above-described electrolytic copper alloy foil containing tungsten or molybdenum, and may be used as long as the electrolytic copper foil has a tensile strength at room temperature of 550 MPa or more. It is.
  • the total thickness of the copper foil including the first copper layer and the second copper layer is preferably 7 to 12 ⁇ m. If the thickness is less than 7 ⁇ m, the handleability of the copper foil is lowered, and if it exceeds 12 ⁇ m, the energy density is lowered and it is not suitable for the negative electrode current collector for lithium ion secondary batteries.
  • other foil thicknesses can be used.
  • the thickness per one side of the second copper layer provided on the surface of the first copper layer is 0.3 to 3 ⁇ m. Is preferred. This is because if the thickness is less than 0.3 ⁇ m, the hardness of the surface of the copper foil may be inappropriate, and if it exceeds 3 ⁇ m, there is almost no effect of improving the adhesion to the active material. For this reason, the thickness of the second copper layer provided on one side of the first copper layer is practically 3 ⁇ m or less. In order to obtain the maximum effect of the present invention, the thickness of the second copper layer is preferably thinner than the thickness of the first copper layer.
  • It can be set as the structure which balanced the mechanical strength (tensile strength) and surface hardness of copper foil because the thickness of a 1st copper layer is more than the thickness of a 2nd copper layer.
  • the Young's modulus of the first copper layer at room temperature is preferably 75 to 130 GPa. This is because when the Young's modulus is less than 75 GPa, even if the breaking strength (tensile strength) of the copper foil is high, the copper foil is easily deformed by a low stress, and the cycle characteristics are liable to deteriorate when the current collector is used. Moreover, when the copper foil whose Young's modulus is higher than 130 GPa is used as a negative electrode (current collector), Breakage may occur in the current collector (copper foil) due to stress applied by expansion of the active material during charging, and the above range is preferable. Note that the Young's modulus of the copper layer in which the thickness of the first copper layer is equal to or greater than the thickness of the second copper layer greatly contributes to the Young's modulus of the first copper layer. Is desirable.
  • the tensile strength of the copper foil is preferably 500 MPa or more at room temperature.
  • the Young's modulus of the copper foil is preferably 70 to 120 GPa at room temperature.
  • the hardness of the surface layer of the copper foil at room temperature is preferably 180 to 370 mgf / ⁇ m 2 .
  • the copper foil of this embodiment has the above mechanical strength (tensile strength) and hardness, so that it is difficult for wrinkles to occur during press working when forming a negative electrode using the copper foil as a current collector. Even when charging and discharging the negative electrode, it is difficult for soot to enter, and high adhesion can be maintained between the carbon-based or Si-based negative electrode active material and the copper foil (current collector).
  • the copper foil of this embodiment preferably has a tensile strength of 400 MPa or more measured at room temperature after heat treatment at 300 ° C. for 1 hour.
  • the copper foil of the present embodiment preferably has a Young's modulus of 65 GPa or more measured at room temperature after heat treatment at 300 ° C. for 1 hour. This is because when the Young's modulus of the copper foil is lower than 65 GPa, the copper foil is deformed by stress generated by expansion of the active material during charging, and the negative electrode may be short-circuited with the positive electrode.
  • another metal layer, oxide layer, or organic layer may be appropriately interposed. It can. It is also effective to appropriately provide another metal layer, oxide layer, organic material layer, or the like on the surface of the second copper layer.
  • the 1st copper layer of the copper foil of this embodiment can be manufactured by the electroplating using the plating bath which added the below-mentioned various additives, for example in the following copper plating bath basic composition and plating conditions.
  • Copper plating bath basic composition and plating conditions for first copper foil foil Copper concentration: 50 to 100 g / l Sulfuric acid concentration: 40-100g / l Liquid temperature: 40-70 ° C Current density: 35-60 A / dm 2
  • Chlorine, tungsten (W) or molybdenum (Mo) is added to the above copper plating bath basic composition.
  • W or Mo is contained in the copper foil, and the first copper foil that becomes the first copper layer having high mechanical strength (tensile strength) can be formed.
  • the concentration of W or Mo may be added in excess of the above upper limit, but even if the concentration exceeds the upper limit, the influence on the improvement of the mechanical strength (tensile strength) of the first copper foil is small.
  • the above is preferably set as the upper limit.
  • Additive (B) Chlorine (Cl), an organic additive, and a metal (W) are added to the above copper plating bath basic composition.
  • thioureas for example, thiourea (TU), ethylenethiourea (ETU), and tetramethylthiourea (TMTU) can be used.
  • a first copper layer made of copper containing W and having high mechanical strength (tensile strength) can be formed.
  • Additive (C) Chlorine (Cl) and an organic additive are added to the above copper plating bath basic composition.
  • thioureas for example, thiourea (TU), ethylenethiourea (ETU), and tetramethylthiourea (TMTU) can be used.
  • glue may be added.
  • a rolled copper foil for example as a 1st copper layer of the copper foil which concerns on this embodiment.
  • a copper foil containing 0.03% of Zr with respect to Cu can be used.
  • a copper foil having a tensile strength of 550 MPa or more at room temperature can be appropriately used even if it is manufactured by a method other than the above.
  • the second copper layer of the copper foil according to this embodiment can be formed on at least one surface of the first copper layer by, for example, electrolytic treatment under the following copper plating bath basic composition and plating conditions.
  • Copper plating bath composition and plating conditions for the second copper foil foil Copper concentration: 50 to 100 g / l Sulfuric acid concentration: 40-100g / l Liquid temperature: 40-70 ° C Current density: 35-60 A / dm 2
  • the second copper layer formed on at least one surface of the first copper layer can be provided by, for example, electroless treatment such as sputtering or chemical vapor deposition, or lamination (cladding).
  • the thickness of the copper foil of this embodiment is 7 to 12 ⁇ m for the entire copper foil including the first copper layer and the second copper layer for the current collector of the lithium ion secondary battery.
  • the thickness of the layer is preferably 0.3 to 3 ⁇ m, and the thickness of the first copper layer is preferably equal to or greater than the thickness of the second copper layer.
  • this is not the case when used for applications such as printed wiring boards and suspensions.
  • the volume of the active material changes to three times or more due to charge / discharge.
  • the tensile strength is high, but there is a disadvantage that the elongation is small.
  • the negative electrode incorporated in the lithium ion secondary battery that is, the collector heated and pressurized after applying the active material, has a tensile strength of 400 MPa or more and can follow the volume change of the active material. It is desirable that the 0.2% proof stress is 340 MPa or more and the Young's modulus is 65 GPa or more.
  • a copper foil having a tensile strength of 650 MPa or more generally has a brittle property.
  • the present inventors for example, form a first copper layer having a tensile strength of 550 MPa or more at room temperature and a second copper layer with a thickness of 0.3 to 3 ⁇ m on at least one surface, and have a surface hardness of 180 ⁇ m.
  • the brittleness of the copper foil can be overcome, and a copper foil suitable for the negative electrode current collector of a lithium ion secondary battery using carbon-based and Si-based active materials can be produced. , And got the knowledge.
  • the second copper layer has a hardness lower than that of the first copper layer and the thickness is set to 0.3 to 3 ⁇ m, and is applied to the surface of the second copper layer and heated under pressure at 300 ° C. for 1 hour.
  • the Si-based active material to be treated can be made to penetrate into the surface of the second copper layer, and even if the hardness of the first copper layer is high, the second copper layer having a lower hardness is Si-based, etc. This is considered to be because the volume change of the active material can be followed.
  • the copper foil surface since the hardness of the copper foil surface (2nd copper layer surface) which contacts an active material is low when it press-processes in order to set it as the negative electrode of a lithium ion secondary battery, the copper foil surface is Due to the processing pressure, it deforms along the shape of the active material, improves the adhesion between the active material and the copper foil, and increases the contact area, so that a negative electrode with high conductivity can be obtained.
  • the surface of the rolled copper foil is processed to be hardened, and the second copper layer is provided as described above so that the surface hardness at room temperature is 180 to 370 mgf / ⁇ m 2 .
  • a foil can be created and the same effects as described above can be obtained.
  • the present embodiment relates to a lithium ion secondary battery.
  • the negative electrode for a lithium ion secondary battery according to this embodiment uses the copper foil of the first embodiment as a negative electrode current collector.
  • a negative electrode using the copper foil as a negative electrode current collector is a negative electrode for a lithium ion secondary battery.
  • the copper foil constituting the negative electrode is resistant to wrinkles during press working and charge / discharge, and maintains high adhesion between the negative electrode active material such as Si and the copper foil. Since it has mechanical strength (tensile strength) and hardness, it can provide a negative electrode for a lithium ion secondary battery that is particularly excellent in charge / discharge characteristics and a lithium ion secondary battery using the same.
  • first copper layer Examples 1 to 23 Using the copper plating bath having the composition shown in Table 1, the first copper layer according to Examples 1 to 9 was produced by the method of adding the additive (A). In addition, using the copper plating bath having the composition shown in Table 1, the first copper layer according to Examples 10 to 17 was prepared by the method of adding the additive (B). In addition, using the copper plating bath having the composition shown in Table 1, the first copper layer according to Examples 18 to 22 was produced by the method of adding the additive (C). Moreover, the Example using the rolled copper foil shown in Table 1 as a 1st copper layer was made into Example 23. FIG.
  • Table 1 summarizes the tensile strength (MPa), Young's modulus (GPa), hardness (nanoindenter hardness, mgf / ⁇ m 2 ), and standard deviation ( ⁇ ) thereof at room temperature for each of the above examples.
  • MPa tensile strength
  • GPa Young's modulus
  • standard deviation
  • Comparative Examples 1 to 10 Formation of Comparative Examples 1 to 10 First copper layers according to Comparative Examples 1 to 3 were produced by the method of adding the additive (A) shown in the above table. Further, first copper layers according to Comparative Examples 4 to 7 were prepared by the method of adding the additive (B) shown in the table. Moreover, the 1st copper layer which concerns on the comparative examples 8 and 9 was produced by the method of adding the additive (C) shown to a table
  • TPC tough pitch copper
  • Table 1 summarizes the tensile strength (MPa), Young's modulus (GPa), hardness (nanoindenter hardness, mgf / ⁇ m 2 ), and standard deviation ( ⁇ ) of each of the comparative examples.
  • MPa tensile strength
  • GPa Young's modulus
  • standard deviation
  • the tensile strength of the first copper foil at room temperature was 550 MPa or more, but in Comparative Examples 1 to 10, the tensile strength was less than 550 MPa.
  • second copper foil second copper layer
  • assembly of lithium ion secondary battery Examples 24 to 34 The surface of the first copper foil selected from Examples 1 to 23 is subjected to electrolytic plating according to a copper plating bath and a plating condition for the second copper foil having the following composition, or by electroless plating or a second copper by a clad method. Layers were formed as Examples 24 to 34, and mechanical characteristics and the like were measured. A lithium ion secondary battery using the copper foil as a negative electrode was assembled, and the battery characteristics were measured. Table 2 shows the thickness ( ⁇ m) of the first copper layer and the thickness ( ⁇ m) of the second copper layer.
  • Copper plating bath composition and plating conditions when forming the second copper foil by electrolytic plating Copper concentration: 50 to 100 g / l Sulfuric acid concentration: 40-100g / l Liquid temperature: 40-70 ° C Current density: 35-60 A / dm 2
  • plating was performed using a plating solution OPC-700 manufactured by Okuno Pharmaceutical Co., Ltd. until a predetermined foil thickness was obtained.
  • ⁇ Nanoindenter hardness is measured using an ultra-fine indentation hardness tester ENT-2100 manufactured by Elionix Co., Ltd. The measurement was performed at room temperature at a tensile speed of 10 mm / min. -Tensile strength and 0.2% proof stress were measured based on IPC-TM-650, and surface roughness was measured according to JIS B 0601: 1994. In general, Vickers hardness is often used for measuring the hardness of a metal material. However, as described in JIS Z2244, the minimum thickness of a sample is determined to be 1.5 times or more of the diagonal of the depression, The measurement of thin copper foil as in the present invention is not suitable because the foil is torn.
  • the copper foil of the two-layer structure is affected by the strength of the first layer (center material) as in the present invention. Since it was difficult to measure the hardness, the measurement was performed using a nanoindenter.
  • the active material adhesion in a roll press under a pressing condition of a linear pressure of 500 kg / cm and 130 to 150 ° C. and the deformation of the foil were examined.
  • the active material was continuously applied to one side of the current collector.
  • pressure is applied to the coated portion of the active material during pressing, and pressure is not applied to the uncoated portion during pressing, so that the thickness of the coated portion is reduced and deformation occurs.
  • the active material adhesion was good, and no deformation of the foil was observed.
  • the evaluation of the adhesion of the active material is performed by a 90-degree peel test, where ⁇ indicates that the active material layer is agglomerated and broken, and part of the active material layer remains on the surface of the current collector. ⁇ , and what completely peeled off at the interface was marked with ⁇ .
  • deformation of the foil after pressing is less than 1 mm (0.1%) when the deformation of the coated part is less than 1 mm (0.1%) relative to 1 m of the uncoated part. 0.3%) or more were evaluated as x, and the evaluation results are shown in Table 2.
  • Comparative examples 11-14 By using the same electrolytic plating or electroless plating as in Examples 24 to 34, the first copper foil (first copper layer) selected from Examples 1 to 23 or Comparative Examples 1 to 10 was subjected to the second copper under the conditions shown in Table 2. A layer was formed to prepare a copper foil, and Comparative Examples 11 to 14 were obtained. Here, the comparative example 11 does not form the second copper layer. About each comparative example, while measuring a mechanical characteristic etc., the lithium ion secondary battery which uses this copper foil as a negative electrode was assembled, and the battery characteristic was measured. Table 2 shows the thickness ( ⁇ m) of the first copper layer and the thickness of the second copper layer.
  • Comparative Examples 11 to 14 the active material adhesion in a roll press under a pressing condition of a linear pressure of 500 kg / cm and 130 to 150 ° C., and deformation of the foil were examined. In all of Comparative Examples 11 to 14, there was a defect in either the active material adhesion or the deformation of the foil (indicated by x in Table 2).
  • Table 2 also shows the capacity retention ratio during charging and discharging when using a Si—C-based active material.
  • the capacity maintenance rate during 50 cycles of charge and discharge was confirmed at a charge and discharge rate of 0.2 C using a hybrid active material of Si and C blended to 2500 mAh / g.
  • the electrodes were prepared by baking at 300 ° C. using a polyimide binder manufactured by Hitachi Chemical as the binder. If the capacity retention rate after 50 cycles is 70% or more, it is practical, but more preferably 80% or more.
  • the overall tensile strength of the copper foils having the first copper layer and the second copper layer of Examples 24 to 33 was 500 MPa or more at room temperature. Further, the entire Young's modulus of the copper foil having the first copper layer and the second copper layer of Examples 24 to 33 was 70 to 120 GPa at room temperature. In addition, the nanoindenter hardness of the surface of the second copper layer of the copper foil having the first copper layer and the second copper layer in Examples 24 to 34 was 180 to 370 mgf / ⁇ m 2 . Further, the overall tensile strength of the copper foils having the first copper layer and the second copper layer of Examples 24 to 34 was 400 MPa or more as measured at room temperature after heat treatment at 300 ° C. for 1 hour.
  • the total Young's modulus of the copper foils having the first copper layer and the second copper layer of Examples 24 to 34 was 65 GPa or more as measured at room temperature after heat treatment at 300 ° C. for 1 hour. Further, as shown in Table 2, the samples of Examples 24 to 34 were evaluated to have a capacity retention rate of 50% or more or 70% or more after 50 cycles. As described above, Examples 24 to 34 were copper foils having good adhesion to the active material, no wrinkles when the active material was mounted, and good battery characteristics.
  • Comparative Example 11 is a sample that does not have a second copper layer, and since the surface hardness (nanoindenter hardness) was high, the adhesion with the active material was inferior, and The discharge characteristics could not be satisfied.
  • Comparative Examples 12 to 14 have low tensile strength and Young's modulus at room temperature, low tensile strength and Young's modulus even after heat treatment at 300 ° C. for 1 hour, and the foil fills the foil when the active material is mounted and satisfies charge / discharge characteristics. I could't. Further, as shown in Table 2, the capacity retention rate after 50 cycles was evaluated to be less than 70% in all of Comparative Examples 11 to 14.
  • the active material adhesion is good and the foil is not deformed. High adhesion between the substance and the copper foil can be maintained, and a copper foil having mechanical strength (tensile strength) and hardness can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

[Problem] To provide a copper foil that does not easily wrinkle at the time of press working or at the time of charging or discharging, that is capable of maintaining a high degree of adhesion to carbon-based and Si-based anode active materials, and that has mechanical strength (tensile strength) and hardness, and to provide an anode for a lithium ion battery using the same, and a lithium ion secondary battery using the same. [Solution] A copper foil that has a first copper layer having a tensile strength of at least 550MPa and a second copper layer that is provided on at least one side of the first copper layer and that has a hardness less than that of the first copper layer. The tensile strength of the copper foil measured at room temperature after one hour of heat processing at 300ºC is at least 400MPa.

Description

銅箔、リチウムイオン電池用負極及びリチウムイオン二次電池Copper foil, negative electrode for lithium ion battery and lithium ion secondary battery
 本発明は、銅箔、それを用いたリチウムイオン二次電池用負極及びそれを用いたリチウムイオン二次電池に関し、特に、リチウムイオン二次電池用負極に適した機械的強度(引張強さ)及び硬度を有する銅箔、それを用いたリチウムイオン二次電池用負極及びそれを用いたリチウムイオン二次電池に関するものである。 The present invention relates to a copper foil, a negative electrode for a lithium ion secondary battery using the copper foil, and a lithium ion secondary battery using the copper foil, and in particular, mechanical strength (tensile strength) suitable for a negative electrode for a lithium ion secondary battery. And a copper foil having hardness, a negative electrode for a lithium ion secondary battery using the same, and a lithium ion secondary battery using the same.
 近年リチウムイオン二次電池の負極活物質として炭素材料の理論容量を大きく超える充放電容量を持つ次世代の負極活物質の開発が進められている。例えば、シリコン(Si)、ゲルマニウム(Ge)、スズ(Sn)などリチウム(Li)と合金化可能な金属を含む材料が期待されている。 In recent years, the development of next-generation negative electrode active materials having charge / discharge capacities far exceeding the theoretical capacity of carbon materials has been promoted as negative electrode active materials for lithium ion secondary batteries. For example, a material containing a metal that can be alloyed with lithium (Li) such as silicon (Si), germanium (Ge), or tin (Sn) is expected.
 特に、SiやSnなどを活物質に用いる場合、これらの材料は、充放電時のLiの吸蔵・放出に伴う体積変化が大きいため、集電体と活物質との接着状態を良好に維持することが難しい。また、これらの材料はLiの挿入、脱離に伴う体積変化率が非常に大きく、充放電サイクルによって膨張、収縮を繰り返し、活物質粒子が微粉化したり、脱離したりするため、サイクル特性の劣化が非常に大きいという欠点がある。 In particular, when Si, Sn, or the like is used as an active material, these materials have a large volume change due to insertion / extraction of Li during charge / discharge, and thus maintain a good adhesion state between the current collector and the active material It is difficult. In addition, these materials have a very large volume change rate due to Li insertion and desorption, and are repeatedly expanded and contracted by the charge / discharge cycle, so that the active material particles are pulverized or desorbed. Has the disadvantage of being very large.
 このような欠点を解消する目的で、活物質と集電体の密着性を改善するためポリイミドバインダを用いる提案がなされている。しかし、ポリイミドバインダの硬化温度が300℃程度であるため、従来の電解銅箔を集電体として使用すると、電解銅箔は300℃程度の温度で焼鈍され、再結晶が進み軟化することから、活物質の体積膨張に耐えられず、破断する恐れがある。
 そのため、300℃程度の加熱処理を行っても軟化が小さく、高い引張強さ等の機械的強度を有する電解銅箔が求められている。
 以下、機械的強度とは、引張強さ等を指す。
In order to eliminate such drawbacks, a proposal has been made to use a polyimide binder in order to improve the adhesion between the active material and the current collector. However, since the curing temperature of the polyimide binder is about 300 ° C., when the conventional electrolytic copper foil is used as a current collector, the electrolytic copper foil is annealed at a temperature of about 300 ° C., and recrystallization proceeds and softens. The active material cannot withstand volume expansion and may break.
For this reason, there is a need for an electrolytic copper foil that is less softened even when heat treatment at about 300 ° C. is performed and that has high mechanical strength such as high tensile strength.
Hereinafter, the mechanical strength refers to tensile strength and the like.
 例えば、特許文献1には、二次電池用負極集電体用に最適な銅箔として粗面粗さRzが2.0μm以下で均一に低粗度化された粗面を持ち、180℃における伸び率が10.0%以上である低粗面電解銅箔が記載されている。
 そして、硫酸-硫酸銅水溶液を電解液とし、ポリエチレンイミン又はその誘導体、活性有機イオウ化合物のスルホン酸塩及び塩素イオンを添加することで上記の電解銅箔が得られるとしている。
For example, Patent Document 1 has a rough surface with a rough surface roughness Rz of 2.0 μm or less and a uniform low roughness as an optimal copper foil for a negative electrode current collector for a secondary battery, at 180 ° C. A low rough surface electrolytic copper foil having an elongation of 10.0% or more is described.
The above-mentioned electrolytic copper foil is obtained by using a sulfuric acid-copper sulfate aqueous solution as an electrolytic solution and adding polyethyleneimine or a derivative thereof, a sulfonate salt of an active organic sulfur compound, and chloride ions.
 また、特許文献2には、電解銅箔の粗面粗さRzが2.5μm以下であり、電着完了時点から20分以内に測定した25℃における引張強さが820MPa以上であり、電着完了時点から20分以内に測定した25℃における引張強さに対する電着完了時点から300分経過時に測定した25℃における引張強さの低下率が10%以下である電解銅箔が記載されている。
 そして、硫酸-硫酸銅水溶液を電解液として、ヒドロキシエチルセルロース、ポリエチレンイミン、活性有機イオウ化合物のスルホン酸塩、アセチレングリコール、及び塩素イオンを添加することで上記の電解銅箔が得られるとしている。
Further, in Patent Document 2, the rough surface roughness Rz of the electrolytic copper foil is 2.5 μm or less, and the tensile strength at 25 ° C. measured within 20 minutes from the completion of electrodeposition is 820 MPa or more. An electrolytic copper foil is described in which the rate of decrease in tensile strength at 25 ° C. measured after 300 minutes from the completion of electrodeposition with respect to tensile strength at 25 ° C. measured within 20 minutes from the completion time is 10% or less. .
The electrolytic copper foil is obtained by adding hydroxyethyl cellulose, polyethyleneimine, sulfonic acid salt of active organic sulfur compound, acetylene glycol, and chloride ion using sulfuric acid-copper sulfate aqueous solution as an electrolytic solution.
 更に、特許文献3には、円柱状粒子および双晶境界がなく、10μmまでの平均粒子サイズを有する粒子構造を持つ電着銅箔であって、該粒子構造が実質的に一様でランダムに配向する粒子構造である、制御された低プロフィルの電着銅箔が記載されている。
 この電着銅箔は、23℃における最大引張強さが87,000~120,000psi(600MPa~827MPa)の範囲にあり、180℃における最大引張強さが25,000~35,000psi(172MPa~241MPa)である、としている。
Further, Patent Document 3 discloses an electrodeposited copper foil having a grain structure having no columnar grains and twin boundaries and having an average grain size of up to 10 μm, and the grain structure is substantially uniform and randomly. A controlled low profile electrodeposited copper foil is described which is an oriented grain structure.
This electrodeposited copper foil has a maximum tensile strength at 23 ° C. of 87,000 to 120,000 psi (600 MPa to 827 MPa) and a maximum tensile strength at 180 ° C. of 25,000 to 35,000 psi (172 MPa to 172 MPa). 241 MPa).
 上記特許文献1~3に開示されている従来の高強度電解銅箔は常態での機械的強度が大きく、180℃前後で加熱してもほとんど機械的強度は変化しない。しかし、このような箔を300℃程度で加熱すると焼鈍され、再結晶が進むため急速に軟化して機械的強度が低下する。 The conventional high-strength electrolytic copper foils disclosed in Patent Documents 1 to 3 have a high mechanical strength in a normal state, and the mechanical strength hardly changes even when heated at around 180 ° C. However, when such a foil is heated at about 300 ° C., it is annealed and recrystallization proceeds, so that it softens rapidly and the mechanical strength decreases.
 一方、例えば特許文献4及び5には、硫酸-硫酸銅電解液中にWを加え、さらにニカワと塩素イオンを加えた電解液で電解銅箔を製造する方法が記載され、その効果として180℃における熱間伸び率が3%以上であり、粗面の粗さが大きく、ピンホール発生の少ない銅箔が製造可能であると記載されている。
 しかしながら、上記のWを加えて製造された銅箔は、常温(RT)での機械的強度(引張強さ)は高いが、300℃で1時間加熱処理すると機械的強度が保持できない。
 この銅箔を分析した結果、電析銅中にWが共析していないことが判明した。
On the other hand, for example, Patent Documents 4 and 5 describe a method of producing an electrolytic copper foil with an electrolytic solution in which W is added to a sulfuric acid-copper sulfate electrolytic solution, and further glue and chlorine ions are added. It is described that it is possible to manufacture a copper foil having a hot elongation rate of 3% or more, a rough surface having a large roughness, and less pinholes.
However, the copper foil produced by adding the above W has a high mechanical strength (tensile strength) at room temperature (RT), but the mechanical strength cannot be maintained when heat-treated at 300 ° C. for 1 hour.
As a result of analyzing this copper foil, it was found that W was not co-deposited in the electrodeposited copper.
 また、特許文献6には集電体の表面に塑性変形しやすい表層部を有する集電体が記載されている。この中で表層部のビッカース硬度は200以下、好ましくは160以下である事が望ましいと記載されている。
 また、特許文献6においては、集電体の表面に塑性変形しやすい表層部を有する集電体と記載されているが実際には表面の塑性変形は十分ではなく、活物質の形状を限定する必要が生じる。特許文献6に於いては集電体の表層の粗度を大きくし尚且つ活物質層を柱状粒子状に形成させ、活物質間に空隙を持たせる事で上記課題を解決している。活物質間に空隙を持たせる事で電池容量が減少する事は勿論であるが、局所的に電流が流れる事で活物質及び集電体の一部に応力が集中し、サイクル特性が低下する問題が発生する。
Patent Document 6 describes a current collector having a surface layer portion that is easily plastically deformed on the surface of the current collector. Among them, it is described that the surface layer portion preferably has a Vickers hardness of 200 or less, preferably 160 or less.
In Patent Document 6, it is described as a current collector having a surface layer portion that is easily plastically deformed on the surface of the current collector, but in reality, the plastic deformation of the surface is not sufficient, and the shape of the active material is limited. Need arises. In Patent Document 6, the above problem is solved by increasing the roughness of the surface layer of the current collector, forming the active material layer into columnar particles, and providing voids between the active materials. Of course, the battery capacity can be reduced by providing a gap between the active materials, but when current flows locally, stress is concentrated on a part of the active material and the current collector, resulting in deterioration of cycle characteristics. A problem occurs.
 非特許文献1にはビッカース硬度(HV)とナノインデンテーションによる硬度(HIT)の相関が示されており、HV=0.0945HITの関係にあると記載されている。
 そこで、非特許文献1の相関から特許文献6のナノインデンターによる硬度を換算すると、2116mgf/μm以下、好ましくは1693mgf/μm以下の硬度が好ましいと述べていると言える。
Non-Patent Document 1 shows the correlation between Vickers hardness (HV) and hardness by nanoindentation (H IT ), and describes that there is a relationship of HV = 0.945H IT .
Therefore, when converting the hardness by nano-indenter of Patent Document 6 from the correlation of the non-patent document 1, 2116mgf / μm 2 or less, it can be said that preferably has said 1693mgf / μm 2 or less of the hardness is preferred.
 上記の従来の銅箔を用いてリチウムイオン二次電池の負極集電体とした場合、銅箔の機械的強度(引張強さ)が低いと、リチウムイオン二次電池の電極形成工程におけるプレス加工時に皺が入りやすい不利益がある。
 また、銅箔の機械的強度(引張強さ)が低いと、二次電池として充放電を繰り返すうちに皺が入りやすくなる不利益がある。
 また、銅箔の硬度が高いと、例えば炭素系やSi系の負極活物質が銅箔に食い込みにくくなり、活物質と銅箔との密着性が低くなりやすく、電池の容量とサイクル特性が低下しやすいという不利益がある。
 このため、プレス加工時と充放電時においても皺が入りにくく、かつ、Si系の負極活物質と銅箔との高い密着性を保持できる機械的強度(引張強さ)及び硬度を有する、リチウムイオン二次電池の負極集電体に適した銅箔が求められている。
When the negative electrode current collector of a lithium ion secondary battery is made using the above-mentioned conventional copper foil, if the mechanical strength (tensile strength) of the copper foil is low, press working in the electrode forming process of the lithium ion secondary battery There are disadvantages that can easily lead to wrinkles.
Moreover, when the mechanical strength (tensile strength) of the copper foil is low, there is a disadvantage that wrinkles easily occur as the secondary battery is repeatedly charged and discharged.
In addition, when the hardness of the copper foil is high, for example, a carbon-based or Si-based negative electrode active material is difficult to bite into the copper foil, the adhesion between the active material and the copper foil tends to be low, and the battery capacity and cycle characteristics are reduced. There is a disadvantage that it is easy to do.
For this reason, lithium having a mechanical strength (tensile strength) and hardness that is difficult to cause wrinkles even during press working and during charge and discharge and that can maintain high adhesion between the Si-based negative electrode active material and the copper foil. There is a need for a copper foil suitable for a negative electrode current collector of an ion secondary battery.
特許第4120806号公報Japanese Patent No. 4120806 特許第4273309号公報Japanese Patent No. 4273309 特許第3270637号公報Japanese Patent No. 3,270,637 特許第3238278号公報Japanese Patent No. 3238278 特開平9-67693号公報JP-A-9-67693 特開2008-98157号公報JP 2008-98157 A
 本発明の目的は、プレス加工時及び充放電時においても皺や変形が入りにくく、かつ、負極活物質と銅箔との高い密着性を保持できる機械的強度(引張強さ)及び表面硬度を有する銅箔、それを用いたサイクル特性に優れたリチウムイオン二次電池用負極及びそれを用いたリチウムイオン二次電池を提供することである。 The object of the present invention is to provide mechanical strength (tensile strength) and surface hardness that are difficult to cause wrinkles and deformation during pressing and charging / discharging and that can maintain high adhesion between the negative electrode active material and the copper foil. It is intended to provide a copper foil having a negative electrode for a lithium ion secondary battery excellent in cycle characteristics using the copper foil and a lithium ion secondary battery using the same.
 本発明者は、鋭意研究の結果、プレス加工時及び充放電時においても皺が入りにくく、かつ、炭素系及びSi系の負極活物質と銅箔との高い密着性を保持できる機械的強度(引張強さ)及び表面硬度を有する銅箔の開発に成功した。 As a result of diligent research, the present inventor has mechanical strength (see FIG. 5) that is resistant to wrinkles even during press working and charge / discharge, and that can maintain high adhesion between a carbon-based and Si-based negative electrode active material and copper foil ( We have succeeded in developing a copper foil having tensile strength and surface hardness.
 本発明に係る銅箔は、常温で550MPa以上の引張強さを有する第1銅層と、前記第1銅層の少なくとも片方の面に前記第1銅層より硬度が低い第2銅層とを有する。 The copper foil according to the present invention includes a first copper layer having a tensile strength of 550 MPa or more at room temperature, and a second copper layer having a lower hardness than the first copper layer on at least one surface of the first copper layer. Have.
 上記の本発明の銅箔は、好適には、前記第1銅層と前記第2銅層を合わせた銅箔全体の厚みが7~12μmである。 The copper foil of the present invention preferably has a total thickness of 7 to 12 μm including the first copper layer and the second copper layer.
 上記の本発明の銅箔は、好適には、前記第2銅層の厚みが0.3~3μmである。 In the above-described copper foil of the present invention, the thickness of the second copper layer is preferably 0.3 to 3 μm.
 上記の本発明の銅箔は、好適には、前記第1銅層の厚みが前記第2銅層の厚み以上である。 In the copper foil of the present invention, preferably, the thickness of the first copper layer is equal to or greater than the thickness of the second copper layer.
 上記の本発明の銅箔は、好適には、前記第1銅層の常温におけるヤング率が75~130GPaである。 The copper foil of the present invention preferably has a Young's modulus at room temperature of the first copper layer of 75 to 130 GPa.
 上記の本発明の銅箔は、好適には、常温における引張強さが500MPa以上である。 The copper foil of the present invention preferably has a tensile strength at room temperature of 500 MPa or more.
 上記の本発明の銅箔は、好適には、常温におけるヤング率が70~120GPaである。 The copper foil of the present invention preferably has a Young's modulus at room temperature of 70 to 120 GPa.
 上記の本発明の銅箔は、好適には、前記銅箔の常温における表面硬度が180~370mgf/μmである。 The copper foil of the present invention preferably has a surface hardness of 180 to 370 mgf / μm 2 at room temperature.
 上記の本発明の銅箔は、好適には、300℃で1時間の熱処理後に常温で測定した引張強さが400MPa以上である。 The copper foil of the present invention preferably has a tensile strength of 400 MPa or more measured at room temperature after heat treatment at 300 ° C. for 1 hour.
 上記の本発明の銅箔は、好適には、300℃で1時間の熱処理後に常温で測定したヤング率が65GPa以上である。 The copper foil of the present invention preferably has a Young's modulus of 65 GPa or more measured at room temperature after heat treatment at 300 ° C. for 1 hour.
 本発明のリチウムイオン二次電池用負極は、上記いずれかに記載の銅箔を集電体とする負極である。 The negative electrode for a lithium ion secondary battery of the present invention is a negative electrode using the copper foil described above as a current collector.
 本発明のリチウムイオン二次電池は、負極として上記に記載のリチウムイオン二次電池用負極が用いられている。 In the lithium ion secondary battery of the present invention, the negative electrode for a lithium ion secondary battery described above is used as the negative electrode.
 本発明の銅箔によれば、常温で550MPa以上の引張強さを有する第1銅層の少なくとも片方の面に第1銅層より硬度が低い第2銅層を備えた構成とすることにより、プレス加工時及び充放電時においても皺が入りにくく、かつ、炭素系及びSi系の負極活物質と銅箔との高い密着性を保持できる機械的強度(引張強さ)及び表面硬度を有する銅箔を提供することができる。 According to the copper foil of the present invention, by providing a second copper layer having a lower hardness than the first copper layer on at least one surface of the first copper layer having a tensile strength of 550 MPa or more at room temperature, Copper having mechanical strength (tensile strength) and surface hardness that is resistant to wrinkles even during press working and charging and discharging, and that can maintain high adhesion between carbon-based and Si-based negative electrode active materials and copper foil. A foil can be provided.
 本発明のリチウムイオン二次電池用負極は、負極を構成する集電体として、プレス加工時及び充放電時においても皺が入りにくく、かつ、炭素系及びSi系の負極活物質と銅箔との高い密着性を保持する機械的強度(引張強さ)及び硬度を有する銅箔を使用するので、充放電特性に優れたリチウムイオン二次電池用負極を提供することができる。 The negative electrode for a lithium ion secondary battery of the present invention is a current collector constituting the negative electrode, and is not easily wrinkled at the time of pressing and charging / discharging, and a carbon-based and Si-based negative electrode active material and a copper foil Since the copper foil which has the mechanical strength (tensile strength) and hardness which hold | maintains high adhesiveness is used, the negative electrode for lithium ion secondary batteries excellent in charging / discharging characteristics can be provided.
 本発明のリチウムイオン二次電池は、上記負極を用いることで、充放電特性に優れた電池を提供することができる。 The lithium ion secondary battery of the present invention can provide a battery having excellent charge / discharge characteristics by using the negative electrode.
 以下、本発明に係る銅箔、それを用いたリチウムイオン二次電池用負極、並びにそれを用いたリチウムイオン二次電池の実施の形態について詳細に説明する。 Hereinafter, embodiments of a copper foil according to the present invention, a negative electrode for a lithium ion secondary battery using the copper foil, and a lithium ion secondary battery using the copper foil will be described in detail.
 <第1実施形態>
 [銅箔の構成]
 本実施形態に係る銅箔は、常温で550MPa以上の引張強さを有する第1銅層と、第1銅層の少なくとも片方の面に備えた第1銅層より硬度が低い第2銅層とを有する。
 上記の第1銅層としては、例えば、電解銅箔(電解銅合金箔を含む、以下同様)あるいは圧延銅箔(圧延銅合金箔を含む、以下同様)を用いることができる。
<First Embodiment>
[Composition of copper foil]
The copper foil according to this embodiment includes a first copper layer having a tensile strength of 550 MPa or more at room temperature, a second copper layer having a lower hardness than the first copper layer provided on at least one surface of the first copper layer, Have
As the first copper layer, for example, an electrolytic copper foil (including an electrolytic copper alloy foil, the same applies hereinafter) or a rolled copper foil (including a rolled copper alloy foil, the same applies hereinafter) can be used.
 上記の第2銅層は、例えば、第1銅層の表面に電解メッキなどの電解処理、スパッタリングあるいは化学気相成長などの無電解処理、張り合わせ(クラッド)等、いずれの方法でも形成することができる。 The second copper layer can be formed on the surface of the first copper layer by any method such as electrolytic treatment such as electrolytic plating, electroless treatment such as sputtering or chemical vapor deposition, and lamination (cladding). it can.
 本実施形態の銅箔は、第1銅層は常温で550MPa以上の引張強さを有する銅層からなり、第2銅層は第1銅層より硬度が低い銅層からなっている。
 上記の本実施形態の銅箔をリチウムイオン二次電池用負極の集電体として採用することで、該銅箔がプレス加工時及び充放電時においても皺が入りにくく、かつ、炭素系及びSi系の負極活物質と銅箔(集電体)との高い密着性を保持できる機械的強度(引張強さ)及び硬度を両立することができる。
In the copper foil of this embodiment, the first copper layer is a copper layer having a tensile strength of 550 MPa or more at room temperature, and the second copper layer is a copper layer having a lower hardness than the first copper layer.
By adopting the copper foil of the present embodiment as a current collector for a negative electrode for a lithium ion secondary battery, the copper foil is less likely to be wrinkled even during press working and charge / discharge, and carbon-based and Si The mechanical strength (tensile strength) and hardness that can maintain high adhesion between the negative electrode active material and the copper foil (current collector) can be achieved.
 本実施形態の銅箔は表面が平滑な方が好ましく、Raは1.0μm以下、Rzは4.0μm以下が好ましい(JIS B 0601:1994)。銅箔の表面の凹凸が大きいと活物質の接触面積が減少する、若しくは凹凸の谷部に活物質が入り込む事が出来ずに活物質と銅箔との密着性が低下しやすく、サイクル特性が低下するためである。 The copper foil of this embodiment preferably has a smooth surface, and Ra is preferably 1.0 μm or less and Rz is preferably 4.0 μm or less (JIS B 0601: 1994). If the surface of the copper foil has large irregularities, the contact area of the active material is reduced, or the active material cannot enter the valleys of the irregularities, and the adhesion between the active material and the copper foil is likely to decrease, and the cycle characteristics are improved. It is because it falls.
 本実施形態の銅箔において、第1銅層は、少なくともタングステン(W)、またはモリブデン(Mo)を含有する電解銅合金箔もしくは圧延銅合金箔からなることが好ましい。
 少なくともタングステンまたはモリブデンを含有する銅箔を用いることで、常温での引張強さ550MPa以上を実現することができる。
 なお、第1銅層としては前記タングステン、またはモリブデンを含有する電解銅合金箔に限定するものではなく、常温での引張強さが550MPa以上の電解銅箔であれば使用可能であることは勿論である。
In the copper foil of this embodiment, the first copper layer is preferably made of an electrolytic copper alloy foil or a rolled copper alloy foil containing at least tungsten (W) or molybdenum (Mo).
By using a copper foil containing at least tungsten or molybdenum, a tensile strength at room temperature of 550 MPa or more can be realized.
The first copper layer is not limited to the above-described electrolytic copper alloy foil containing tungsten or molybdenum, and may be used as long as the electrolytic copper foil has a tensile strength at room temperature of 550 MPa or more. It is.
 本実施形態の銅箔において、リチウムイオン二次電池用の集電体として用いる場合は第1銅層と第2銅層を合わせた銅箔全体の厚みが7~12μmであることが好ましい。
 厚さが7μm未満では銅箔のハンドリング性が低くなり、12μmを超えるとエネルギー密度が低下してリチウムイオン二次電池用負極集電体に適さなくなる。但しプリント配線板やサスペンション材料等他の用途に用いる場合はこれ以外の箔厚で使用可能である。
In the copper foil of this embodiment, when used as a current collector for a lithium ion secondary battery, the total thickness of the copper foil including the first copper layer and the second copper layer is preferably 7 to 12 μm.
If the thickness is less than 7 μm, the handleability of the copper foil is lowered, and if it exceeds 12 μm, the energy density is lowered and it is not suitable for the negative electrode current collector for lithium ion secondary batteries. However, when used for other uses such as printed wiring boards and suspension materials, other foil thicknesses can be used.
 本実施形態の銅箔において、第1銅層表面に備える第2銅層の片面あたりの厚さ(両面に第2銅層を備える場合は片面の厚さ)が0.3~3μmであることが好ましい。
 厚さが0.3μm未満では銅箔の表面の硬度が不適となる場合があり、また、3μmを超えても活物質との密着性向上効果は殆どないためである。このため、第1銅層の片面に備えた第2銅層の厚さは現実的には3μm以下で充分である。本発明の効果を最大限に得るためには、第2銅層の厚さは、第1銅層の厚さより薄いことが好ましい。
In the copper foil of this embodiment, the thickness per one side of the second copper layer provided on the surface of the first copper layer (the thickness of one side when the second copper layer is provided on both sides) is 0.3 to 3 μm. Is preferred.
This is because if the thickness is less than 0.3 μm, the hardness of the surface of the copper foil may be inappropriate, and if it exceeds 3 μm, there is almost no effect of improving the adhesion to the active material. For this reason, the thickness of the second copper layer provided on one side of the first copper layer is practically 3 μm or less. In order to obtain the maximum effect of the present invention, the thickness of the second copper layer is preferably thinner than the thickness of the first copper layer.
 第1銅層の厚みが第2銅層の厚み以上であることで銅箔の機械的強度(引張強さ)と表面の硬度のバランスをとった構成とすることができる。 It can be set as the structure which balanced the mechanical strength (tensile strength) and surface hardness of copper foil because the thickness of a 1st copper layer is more than the thickness of a 2nd copper layer.
 本実施形態の銅箔において、第1銅層の常温におけるヤング率が75~130GPaであることが好ましい。ヤング率が75GPaより小さいと銅箔の破断強度(引張強さ)が高くても、低い応力で銅箔が変形し易く、集電体としたときにサイクル特性が低下し易いためである。また、ヤング率が130GPaより高い銅箔は、負極(集電体)としたとき、
充電時の活物質の膨張で加わる応力で集電体(銅箔)に破断が生じる可能性があり、上記範囲であることが好ましい。
 なお、第1銅層の厚みが第2銅層の厚み以上である銅層のヤング率は第1銅層のヤング率が大きく寄与するため、第1銅層のヤング率を上記範囲とすることが望ましい。
In the copper foil of this embodiment, the Young's modulus of the first copper layer at room temperature is preferably 75 to 130 GPa. This is because when the Young's modulus is less than 75 GPa, even if the breaking strength (tensile strength) of the copper foil is high, the copper foil is easily deformed by a low stress, and the cycle characteristics are liable to deteriorate when the current collector is used. Moreover, when the copper foil whose Young's modulus is higher than 130 GPa is used as a negative electrode (current collector),
Breakage may occur in the current collector (copper foil) due to stress applied by expansion of the active material during charging, and the above range is preferable.
Note that the Young's modulus of the copper layer in which the thickness of the first copper layer is equal to or greater than the thickness of the second copper layer greatly contributes to the Young's modulus of the first copper layer. Is desirable.
 本実施形態の第1銅層の厚みが第2銅層の厚み以上である銅箔において、銅箔の引張強さは常温で500MPa以上であることが好ましい。
 また、本実施形態の銅箔において、銅箔のヤング率が常温において70~120GPaであることが好ましい。
 また、本実施形態の銅箔において、銅箔の表層の常温における硬度が180~370mgf/μmであることが好ましい。
 本実施形態の銅箔は上記機械的強度(引張強さ)及び硬度を有することで、該銅箔を集電体とした負極を形成する際のプレス加工時に皺が入り難く、二次電池の負極とした際の充放電時においても皺が入り難く、かつ、炭素系やSi系の負極活物質と銅箔(集電体)との間で高い密着性を保持できる。
In the copper foil in which the thickness of the first copper layer of the present embodiment is equal to or greater than the thickness of the second copper layer, the tensile strength of the copper foil is preferably 500 MPa or more at room temperature.
In the copper foil of this embodiment, the Young's modulus of the copper foil is preferably 70 to 120 GPa at room temperature.
In the copper foil of this embodiment, the hardness of the surface layer of the copper foil at room temperature is preferably 180 to 370 mgf / μm 2 .
The copper foil of this embodiment has the above mechanical strength (tensile strength) and hardness, so that it is difficult for wrinkles to occur during press working when forming a negative electrode using the copper foil as a current collector. Even when charging and discharging the negative electrode, it is difficult for soot to enter, and high adhesion can be maintained between the carbon-based or Si-based negative electrode active material and the copper foil (current collector).
 本実施形態の銅箔は、300℃で1時間熱処理後に常温で測定した引張強さが400MPa以上であることが好ましい。
 また、本実施形態の銅箔は、300℃で1時間熱処理後に常温で測定したヤング率が65GPa以上であることが好ましい。
 銅箔のヤング率が上記65GPaよりも低い場合は充電時に活物質の膨張により生じる応力で銅箔に変形が生じ、負極が正極と短絡する恐れがあるためである。
The copper foil of this embodiment preferably has a tensile strength of 400 MPa or more measured at room temperature after heat treatment at 300 ° C. for 1 hour.
In addition, the copper foil of the present embodiment preferably has a Young's modulus of 65 GPa or more measured at room temperature after heat treatment at 300 ° C. for 1 hour.
This is because when the Young's modulus of the copper foil is lower than 65 GPa, the copper foil is deformed by stress generated by expansion of the active material during charging, and the negative electrode may be short-circuited with the positive electrode.
 上記の第1銅層と第2銅層の間に、局部電池や著しい抵抗増加などの不具合がなければ、他の金属層、酸化物層、あるいは有機物層などを適宜介在させる構成とすることができる。
 また、第2銅層の表面に、他の金属層、酸化物層、あるいは有機物層などを適宜備えることも有効である。
If there is no problem such as a local battery or a significant increase in resistance between the first copper layer and the second copper layer, another metal layer, oxide layer, or organic layer may be appropriately interposed. it can.
It is also effective to appropriately provide another metal layer, oxide layer, organic material layer, or the like on the surface of the second copper layer.
 本実施形態の銅箔の第1銅層は、例えば下記の銅メッキ浴基本組成及びメッキ条件において、後述の各種添加物を添加したメッキ浴を用いた電解メッキにより製造することができる。
 第一銅箔製箔用銅メッキ浴基本組成及びメッキ条件
 銅濃度:50~100g/l
 硫酸濃度:40~100g/l
 液温:40~70℃
 電流密度:35~60A/dm
The 1st copper layer of the copper foil of this embodiment can be manufactured by the electroplating using the plating bath which added the below-mentioned various additives, for example in the following copper plating bath basic composition and plating conditions.
Copper plating bath basic composition and plating conditions for first copper foil foil Copper concentration: 50 to 100 g / l
Sulfuric acid concentration: 40-100g / l
Liquid temperature: 40-70 ° C
Current density: 35-60 A / dm 2
添加物(A)
 上記の銅メッキ浴基本組成に対して、塩素、タングステン(W)またはモリブデン(Mo)を添加する。
 塩素(Cl):2ppm以下
 W濃度:20~300ppm
 Mo濃度:10~100ppm
 上記のメッキ浴を用いた電解メッキにより、WまたはMoが銅箔中に含有され、機械的強度(引張強さ)の高い第1銅層となる第一銅箔を形成することができる。
 なお、上記のWまたはMoの金属は、2種以上含有してもよい。また、その他の金属も必要に応じて適宜添加してもよい。
 上記のWまたはMoの濃度は、それぞれ上記の上限を超えて添加してもよいが、上限を超える濃度にしても第一銅箔の機械的強度(引張強さ)の向上に対する影響は小さいので、製造コストを考慮すると上記を上限とすることが好ましい。
Additive (A)
Chlorine, tungsten (W) or molybdenum (Mo) is added to the above copper plating bath basic composition.
Chlorine (Cl): 2 ppm or less W concentration: 20-300 ppm
Mo concentration: 10-100ppm
By electrolytic plating using the above plating bath, W or Mo is contained in the copper foil, and the first copper foil that becomes the first copper layer having high mechanical strength (tensile strength) can be formed.
In addition, you may contain 2 or more types of said metals of W or Mo. Moreover, you may add another metal suitably as needed.
The concentration of W or Mo may be added in excess of the above upper limit, but even if the concentration exceeds the upper limit, the influence on the improvement of the mechanical strength (tensile strength) of the first copper foil is small. In view of manufacturing costs, the above is preferably set as the upper limit.
添加物(B)
 上記の銅メッキ浴基本組成に対して、塩素(Cl)と、有機添加剤及び金属(W)を添加する。
 Cl濃度:10~60ppm
 チオ尿素類:2~20ppm
 W濃度:10~200ppm
 チオ尿素類としては、例えばチオ尿素(TU)、エチレンチオ尿素(ETU)、テトラメチルチオ尿素(TMTU)を用いることができる。
 上記のメッキ浴を用いた電解メッキにより、Wを含有する銅からなり、機械的強度(引張強さ)の高い第1銅層を形成することができる。
Additive (B)
Chlorine (Cl), an organic additive, and a metal (W) are added to the above copper plating bath basic composition.
Cl concentration: 10-60ppm
Thioureas: 2-20ppm
W concentration: 10-200ppm
As thioureas, for example, thiourea (TU), ethylenethiourea (ETU), and tetramethylthiourea (TMTU) can be used.
By electrolytic plating using the above plating bath, a first copper layer made of copper containing W and having high mechanical strength (tensile strength) can be formed.
添加剤(C)
 上記の銅メッキ浴基本組成に対して、塩素(Cl)と有機添加剤を添加する。
 Cl濃度:10~60ppm
 チオ尿素類:2~20ppm
 HEC(ヒドロキシエチルセルロース):0~20ppm
 チオ尿素類としては、例えばチオ尿素(TU)、エチレンチオ尿素(ETU)、テトラメチルチオ尿素(TMTU)を用いることができる。さらに、膠を添加してもよい。
 上記のメッキ浴を用いた電解メッキにより、Cuからなり、機械的強度(引張強さ)の高い第一銅箔(第1銅層)を形成することができる。
Additive (C)
Chlorine (Cl) and an organic additive are added to the above copper plating bath basic composition.
Cl concentration: 10-60ppm
Thioureas: 2-20ppm
HEC (hydroxyethyl cellulose): 0 to 20 ppm
As thioureas, for example, thiourea (TU), ethylenethiourea (ETU), and tetramethylthiourea (TMTU) can be used. Furthermore, glue may be added.
By electrolytic plating using the above plating bath, a first copper foil (first copper layer) made of Cu and having high mechanical strength (tensile strength) can be formed.
 また、本実施形態に係る銅箔の第1銅層として、例えば圧延銅箔を用いてもよい。
 圧延銅箔は、例えば、Cuに対して、Zrを0.03%含有する銅箔を用いることができる。
Moreover, you may use a rolled copper foil, for example as a 1st copper layer of the copper foil which concerns on this embodiment.
As the rolled copper foil, for example, a copper foil containing 0.03% of Zr with respect to Cu can be used.
 第1銅層としては、上記以外の方法で製造されたものであっても、引張強さが常温で550MPa以上の銅箔であれば適宜用いることができる。 As the first copper layer, a copper foil having a tensile strength of 550 MPa or more at room temperature can be appropriately used even if it is manufactured by a method other than the above.
 本実施形態に係る銅箔の第2銅層は、例えば下記の銅メッキ浴基本組成及びメッキ条件の電解処理により第1銅層の少なくとも片面に形成することができる。
 第二銅箔製箔用銅メッキ浴組成及びメッキ条件
 銅濃度:50~100g/l
 硫酸濃度:40~100g/l
 液温:40~70℃
 電流密度:35~60A/dm
The second copper layer of the copper foil according to this embodiment can be formed on at least one surface of the first copper layer by, for example, electrolytic treatment under the following copper plating bath basic composition and plating conditions.
Copper plating bath composition and plating conditions for the second copper foil foil Copper concentration: 50 to 100 g / l
Sulfuric acid concentration: 40-100g / l
Liquid temperature: 40-70 ° C
Current density: 35-60 A / dm 2
 また、第1銅層の少なくとも片面に形成する第2銅層は、例えば、スパッタリングあるいは化学気相成長などの無電解処理、あるいは、張り合わせ(クラッド)等により備えることも可能である。 Also, the second copper layer formed on at least one surface of the first copper layer can be provided by, for example, electroless treatment such as sputtering or chemical vapor deposition, or lamination (cladding).
 本実施形態の銅箔の厚さは、リチウムイオン二次電池の集電体用であれば、第1銅層と第2銅層を合わせた銅箔全体で7~12μmであり、第2銅層の厚みが0.3~3μmであり、第1銅層の厚みが第2銅層の厚み以上であることが好ましい。しかし、プリント配線板やサスペンション等の用途に用いる場合はこの限りではない。 The thickness of the copper foil of this embodiment is 7 to 12 μm for the entire copper foil including the first copper layer and the second copper layer for the current collector of the lithium ion secondary battery. The thickness of the layer is preferably 0.3 to 3 μm, and the thickness of the first copper layer is preferably equal to or greater than the thickness of the second copper layer. However, this is not the case when used for applications such as printed wiring boards and suspensions.
 第1銅層の常温での引張強さが550MPa以上で、第2銅層の硬度が第1銅層の硬度より低くなる構成とすることで、銅箔を負極として加工する際のプレス加工時と電池とした時の充放電時においても皺が入りにくく、かつ、炭素系及びSi系の負極活物質と銅箔との間で高い密着性を保持できる機械的強度(引張強さ)及び硬さを両立した銅箔とすることができ、このような銅箔は前記製造方法で製造することができる。 At the time of the press work at the time of processing copper foil as a negative electrode by setting it as the composition whose tensile strength in the normal temperature of the 1st copper layer is 550 MPa or more, and the hardness of the 2nd copper layer becomes lower than the hardness of the 1st copper layer And mechanical strength (tensile strength) and hardness that can keep high adhesion between the carbon-based and Si-based negative electrode active material and the copper foil, even during charging and discharging of the battery. It can be set as the copper foil which was compatible, and such a copper foil can be manufactured with the said manufacturing method.
 Si系活物質を塗布した負極は、充放電によって活物質の体積が3倍以上に変化する。この大きな変化に対し、W含有銅箔あるいはMo含有銅箔を用いた場合、引張強さは高いが、伸びが小さいという不利益がある。
 このため、リチウムイオン二次電池に組み込まれる負極、即ち、活物質を塗布した後加熱加圧された集電体に対しては、引張強さが400MPa以上、活物質の体積変化に追随できるよう、0.2%耐力が340MPa以上でヤング率が65GPa以上であることが望ましい。
In the negative electrode coated with the Si-based active material, the volume of the active material changes to three times or more due to charge / discharge. In contrast to this large change, when a W-containing copper foil or a Mo-containing copper foil is used, the tensile strength is high, but there is a disadvantage that the elongation is small.
For this reason, the negative electrode incorporated in the lithium ion secondary battery, that is, the collector heated and pressurized after applying the active material, has a tensile strength of 400 MPa or more and can follow the volume change of the active material. It is desirable that the 0.2% proof stress is 340 MPa or more and the Young's modulus is 65 GPa or more.
 ところで、引張強さが650MPa以上の銅箔は一般に脆い性質を有する。
 本発明者らは、例えば、引張強さが常温で550MPa以上の第1銅層と、その少なくとも片方の面に第2銅層を0.3~3μmの厚みで形成し、表面の硬度を180~370mgf/μmとすることで、銅箔の脆さを克服でき、炭素系及びSi系活物質を用いたリチウムイオン二次電池の負極集電体に適した銅箔を作成することができる、との知見を得た。
 これは、第2銅層を第1銅層の硬度より低い硬さとし、厚さを0.3~3μmとすることにより、該第2銅層表面に塗布され、300℃で1時間加圧加熱処理されるSi系などの活物質を、第2銅層の表面に食い込ませることができ、さらに、第1銅層の硬度が高くても、それより硬度が低い第2銅層がSi系などの活物質の体積変化に追随することができるからである、と考えられる。
By the way, a copper foil having a tensile strength of 650 MPa or more generally has a brittle property.
The present inventors, for example, form a first copper layer having a tensile strength of 550 MPa or more at room temperature and a second copper layer with a thickness of 0.3 to 3 μm on at least one surface, and have a surface hardness of 180 μm. By setting it to ˜370 mgf / μm 2 , the brittleness of the copper foil can be overcome, and a copper foil suitable for the negative electrode current collector of a lithium ion secondary battery using carbon-based and Si-based active materials can be produced. , And got the knowledge.
This is because the second copper layer has a hardness lower than that of the first copper layer and the thickness is set to 0.3 to 3 μm, and is applied to the surface of the second copper layer and heated under pressure at 300 ° C. for 1 hour. The Si-based active material to be treated can be made to penetrate into the surface of the second copper layer, and even if the hardness of the first copper layer is high, the second copper layer having a lower hardness is Si-based, etc. This is considered to be because the volume change of the active material can be followed.
 本実施形態の銅箔では、リチウムイオン二次電池の負極とするためにプレス加工する際に、活物質と接触する銅箔表面(第2銅層表面)の硬度が低いので、銅箔表面が加工圧力により活物質の形状に沿って変形し、活物質と銅箔の密着性を高め、接触面積を増加するので導電率の高い負極とすることができる。 In the copper foil of this embodiment, since the hardness of the copper foil surface (2nd copper layer surface) which contacts an active material is low when it press-processes in order to set it as the negative electrode of a lithium ion secondary battery, the copper foil surface is Due to the processing pressure, it deforms along the shape of the active material, improves the adhesion between the active material and the copper foil, and increases the contact area, so that a negative electrode with high conductivity can be obtained.
 第1銅層として圧延銅箔を用いる場合、圧延銅箔の表面を硬化する加工を行い、上記のように第2銅層を備えることで表面の常温における硬度が180~370mgf/μmの銅箔を作成することができ、上記と同様の効果を得ることができる。 When using the rolled copper foil as the first copper layer, the surface of the rolled copper foil is processed to be hardened, and the second copper layer is provided as described above so that the surface hardness at room temperature is 180 to 370 mgf / μm 2 . A foil can be created and the same effects as described above can be obtained.
 <第2実施形態>
 本実施形態は、リチウムイオン二次電池に係る。
 本実施形態に係るリチウムイオン二次電池用負極は、負極集電体として第1実施形態の銅箔を用いる。
Second Embodiment
The present embodiment relates to a lithium ion secondary battery.
The negative electrode for a lithium ion secondary battery according to this embodiment uses the copper foil of the first embodiment as a negative electrode current collector.
 また、本実施形態に係るリチウムイオン二次電池は、上記銅箔を負極集電体とした負極をリチウムイオン二次電池用負極とする。
 上記の本実施形態によれば、負極を構成する銅箔が、プレス加工時と充放電時においても皺が入りにくく、かつ、Si系などの負極活物質と銅箔との高い密着性を保持できる機械的強度(引張強さ)及び硬さを有することから、特に充放電特性に優れたリチウムイオン二次電池用負極並びにそれを用いたリチウムイオン二次電池を提供することができる。
In the lithium ion secondary battery according to the present embodiment, a negative electrode using the copper foil as a negative electrode current collector is a negative electrode for a lithium ion secondary battery.
According to the above-described embodiment, the copper foil constituting the negative electrode is resistant to wrinkles during press working and charge / discharge, and maintains high adhesion between the negative electrode active material such as Si and the copper foil. Since it has mechanical strength (tensile strength) and hardness, it can provide a negative electrode for a lithium ion secondary battery that is particularly excellent in charge / discharge characteristics and a lithium ion secondary battery using the same.
 以下、本件発明に係る銅箔の特性について実施例で更に詳細に説明する。 Hereinafter, the characteristics of the copper foil according to the present invention will be described in more detail with reference to examples.
 1.第1銅層の作製
 ・実施例1~23
 表1に示す組成の銅メッキ浴を用いて、上記の添加物(A)を添加する方法により、実施例1~9に係る第1銅層を作製した。
 また、表1に示す組成の銅メッキ浴を用いて、上記の添加物(B)を添加する方法により、実施例10~17に係る第1銅層を作製した。
 また、表1に示す組成の銅メッキ浴を用いて、上記の添加物(C)を添加する方法により、実施例18~22に係る第1銅層を作製した。
 また、第1銅層として表1に示す圧延銅箔を用いた実施例を実施例23とした。
 上記各実施例の常温における引張強さ(MPa)、ヤング率(GPa)、硬度(ナノインデンター硬度、mgf/μm)並びにその標準偏差(σ)を表1にまとめて示す。
 上記の実施例1~23をリチウムイオン二次電池の負極集電体の第1銅層として用いる場合の電極番号を表1に示すようにA~Wとした。
1. Preparation of first copper layer Examples 1 to 23
Using the copper plating bath having the composition shown in Table 1, the first copper layer according to Examples 1 to 9 was produced by the method of adding the additive (A).
In addition, using the copper plating bath having the composition shown in Table 1, the first copper layer according to Examples 10 to 17 was prepared by the method of adding the additive (B).
In addition, using the copper plating bath having the composition shown in Table 1, the first copper layer according to Examples 18 to 22 was produced by the method of adding the additive (C).
Moreover, the Example using the rolled copper foil shown in Table 1 as a 1st copper layer was made into Example 23. FIG.
Table 1 summarizes the tensile strength (MPa), Young's modulus (GPa), hardness (nanoindenter hardness, mgf / μm 2 ), and standard deviation (σ) thereof at room temperature for each of the above examples.
As shown in Table 1, A to W were used as electrode numbers when Examples 1 to 23 were used as the first copper layer of the negative electrode current collector of the lithium ion secondary battery.
 ・比較例1~10の形成
 上記の表に示す添加物(A)を添加する方法により、比較例1~3に係る第1銅層を作製した。
 また、表に示す添加物(B)を添加する方法により、比較例4~7に係る第1銅層を作製した。
 また、表に示す添加物(C)を添加する方法により、比較例8及び9に係る第1銅層を作製した。
 また、第1銅層として圧延銅箔(TPC:タフピッチ銅)を用いた例を比較例10とした。
 上記各比較例の引張強さ(MPa)、ヤング率(GPa)、硬度(ナノインデンター硬度、mgf/μm)並びにその標準偏差(σ)を表1にまとめて示す。
 上記の比較例1~10をリチウムイオン二次電池の負極集電体の第1銅層として用いる場合の電極番号を表1に示すようにa~jとした。
Formation of Comparative Examples 1 to 10 First copper layers according to Comparative Examples 1 to 3 were produced by the method of adding the additive (A) shown in the above table.
Further, first copper layers according to Comparative Examples 4 to 7 were prepared by the method of adding the additive (B) shown in the table.
Moreover, the 1st copper layer which concerns on the comparative examples 8 and 9 was produced by the method of adding the additive (C) shown to a table | surface.
Moreover, the example which used rolled copper foil (TPC: tough pitch copper) as a 1st copper layer was made into the comparative example 10.
Table 1 summarizes the tensile strength (MPa), Young's modulus (GPa), hardness (nanoindenter hardness, mgf / μm 2 ), and standard deviation (σ) of each of the comparative examples.
As shown in Table 1, the electrode numbers a to j were used when Comparative Examples 1 to 10 were used as the first copper layer of the negative electrode current collector of the lithium ion secondary battery.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~23では、第一銅箔の常温での引張強さが550MPa以上であったが、比較例1~10では引張強さが550MPa未満であった。 As shown in Table 1, in Examples 1 to 23, the tensile strength of the first copper foil at room temperature was 550 MPa or more, but in Comparative Examples 1 to 10, the tensile strength was less than 550 MPa.
 2.第二銅箔(第2銅層)の形成及びリチウムイオン二次電池の組立
 ・実施例24~34
 実施例1~23から選択した第一銅箔の表面に、以下に示す組成の第二銅箔製箔用銅メッキ浴及びメッキ条件による電解メッキで、或いは無電解メッキ、クラッド法により第2銅層を形成して実施例24~34とし、機械特性等を測定するとともに該銅箔を負極とするリチウムイオン二次電池を組立て、電池特性を測定した。
 第1銅層の厚み(μm)及び第2銅層の厚み(μm)を表2に示す。
2. Formation of second copper foil (second copper layer) and assembly of lithium ion secondary battery Examples 24 to 34
The surface of the first copper foil selected from Examples 1 to 23 is subjected to electrolytic plating according to a copper plating bath and a plating condition for the second copper foil having the following composition, or by electroless plating or a second copper by a clad method. Layers were formed as Examples 24 to 34, and mechanical characteristics and the like were measured. A lithium ion secondary battery using the copper foil as a negative electrode was assembled, and the battery characteristics were measured.
Table 2 shows the thickness (μm) of the first copper layer and the thickness (μm) of the second copper layer.
 第二銅箔を電解メッキで形成する場合の銅メッキ浴組成及びメッキ条件
 銅濃度:50~100g/l
 硫酸濃度:40~100g/l
 液温:40~70℃
 電流密度:35~60A/dm
Copper plating bath composition and plating conditions when forming the second copper foil by electrolytic plating Copper concentration: 50 to 100 g / l
Sulfuric acid concentration: 40-100g / l
Liquid temperature: 40-70 ° C
Current density: 35-60 A / dm 2
 第二銅箔を無電解メッキで形成する場合は、奥野製薬工業株式会社製のめっき液 OPC-700を用いて所定の箔厚になるまでメッキした。 When forming the second copper foil by electroless plating, plating was performed using a plating solution OPC-700 manufactured by Okuno Pharmaceutical Co., Ltd. until a predetermined foil thickness was obtained.
 第二銅箔をクラッド法で形成(積層)する場合は、一般的な圧延法を用い、脱脂・酸化皮膜を除去した後、クラッド圧延を用いた。 When forming (stacking) the second copper foil by the clad method, a general rolling method was used, and after removing the degreasing and oxide film, clad rolling was used.
 上記各実施例の機械特性として、常温(RT)での表面粗度(Rz、Ra)、引張強さ(MPa)及び0.2%耐力(MPa)、ヤング率(GPa)、及び硬度(ナノインデンター硬度、mgf/μm)並びにその標準偏差(σ)を表2にまとめて示す。なお、硬度は押し込み深さ1μmでサンプル数n=30を測定し、その平均値及び標準偏差を用いた。
 また、各実施例の300℃1時間の熱処理後に常温で測定した引張強さ(MPa)及び0.2%耐力(MPa)、ヤング率(GPa)及び硬度(ナノインデンター硬度、mgf/μm)並びにその標準偏差(σ)を表2にまとめて示す。
As mechanical properties of each of the above examples, surface roughness (Rz, Ra) at normal temperature (RT), tensile strength (MPa) and 0.2% proof stress (MPa), Young's modulus (GPa), and hardness (nano The indenter hardness, mgf / μm 2 ) and its standard deviation (σ) are summarized in Table 2. The hardness was measured by measuring the number of samples n = 30 at an indentation depth of 1 μm, and using the average value and standard deviation.
Further, the tensile strength (MPa) and 0.2% proof stress (MPa), Young's modulus (GPa) and hardness (nanoindenter hardness, mgf / μm 2 ) measured at room temperature after heat treatment at 300 ° C. for 1 hour in each example. ) And its standard deviation (σ) are summarized in Table 2.
 ここで、
・ナノインデンター硬度は、エリオニクス社製の超微小押し込み硬度試験機ENT-2100を用いて測定し、・ヤング率は島津製作所製AUTOGRAPH AG-IS (500N)を用いて標点間距離50mm、引張速度10mm/分で常温にて測定した。
・引張強さ及び0.2%耐力はIPC-TM-650に基づき測定を実施し、表面粗度はJIS B 0601:1994に準拠して測定した。
 金属材料の硬度測定には一般にビッカース硬度を用いることが多いが、ビッカース硬度はJIS Z2244に記載されている様に試料の最小厚さがくぼみの対角線の1.5倍以上と定められており、本発明の様な薄い銅箔の測定には箔が破けてしまうため適さない。また、正四角錘の圧子を押し込んで凹み量を測定するため、本発明の様に二層構造の銅箔は第一層(中心材)の強度の影響を受けてしまい銅箔の表面硬度・硬さを測定するのは困難なためナノインデンターを用いて測定を行った。
here,
・ Nanoindenter hardness is measured using an ultra-fine indentation hardness tester ENT-2100 manufactured by Elionix Co., Ltd. The measurement was performed at room temperature at a tensile speed of 10 mm / min.
-Tensile strength and 0.2% proof stress were measured based on IPC-TM-650, and surface roughness was measured according to JIS B 0601: 1994.
In general, Vickers hardness is often used for measuring the hardness of a metal material. However, as described in JIS Z2244, the minimum thickness of a sample is determined to be 1.5 times or more of the diagonal of the depression, The measurement of thin copper foil as in the present invention is not suitable because the foil is torn. Also, in order to measure the amount of dents by pressing the indenter of a regular square pyramid, the copper foil of the two-layer structure is affected by the strength of the first layer (center material) as in the present invention. Since it was difficult to measure the hardness, the measurement was performed using a nanoindenter.
 実施例24~34について、線圧500kg/cm、130~150℃のプレス条件のロールプレスでの活物質密着性と、箔の変形を調べた。本実施例において活物質は集電体の片側部に連続的に塗工した。この場合、活物質の塗工部にはプレス時に圧力がかかり、未塗工部にはプレス時に圧力がかからないため塗工部の厚みが薄くなり変形が生じる。実施例24~34はいずれも、活物質密着性が良好であり、箔の変形も見られなかった。
 なお、活物質の密着性の評価は90度の剥離試験で行い、活物質層内部で凝集破壊しているものを○、活物質層の一部が集電体の表面に残っているものを△、完全に界面で剥離しているものを×とした。また、プレス後の箔の変形は未塗工部1mに対し塗工部の変形が1mm(0.1%)未満のものを○、3mm(0.3%)未満のものを△、3mm(0.3%)以上のものを×として評価し、評価結果を表2に示した。
For Examples 24 to 34, the active material adhesion in a roll press under a pressing condition of a linear pressure of 500 kg / cm and 130 to 150 ° C. and the deformation of the foil were examined. In this example, the active material was continuously applied to one side of the current collector. In this case, pressure is applied to the coated portion of the active material during pressing, and pressure is not applied to the uncoated portion during pressing, so that the thickness of the coated portion is reduced and deformation occurs. In each of Examples 24 to 34, the active material adhesion was good, and no deformation of the foil was observed.
In addition, the evaluation of the adhesion of the active material is performed by a 90-degree peel test, where ○ indicates that the active material layer is agglomerated and broken, and part of the active material layer remains on the surface of the current collector. △, and what completely peeled off at the interface was marked with ×. In addition, deformation of the foil after pressing is less than 1 mm (0.1%) when the deformation of the coated part is less than 1 mm (0.1%) relative to 1 m of the uncoated part. 0.3%) or more were evaluated as x, and the evaluation results are shown in Table 2.
 ・比較例11~14
 実施例24~34と同じ電解メッキあるいは無電解メッキにより、実施例1~23または比較例1~10から選択した第一銅箔(第1銅層)に、表2に示す条件で第2銅層を形成し、銅箔を作製して比較例11~14とした。ここで、比較例11は第2銅層を形成していない。各比較例について、機械特性等を測定するとともに該銅箔を負極とするリチウムイオン二次電池を組立て、電池特性を測定した。
 第1銅層の厚み(μm)、第2銅層の厚みを表2に示す。
Comparative examples 11-14
By using the same electrolytic plating or electroless plating as in Examples 24 to 34, the first copper foil (first copper layer) selected from Examples 1 to 23 or Comparative Examples 1 to 10 was subjected to the second copper under the conditions shown in Table 2. A layer was formed to prepare a copper foil, and Comparative Examples 11 to 14 were obtained. Here, the comparative example 11 does not form the second copper layer. About each comparative example, while measuring a mechanical characteristic etc., the lithium ion secondary battery which uses this copper foil as a negative electrode was assembled, and the battery characteristic was measured.
Table 2 shows the thickness (μm) of the first copper layer and the thickness of the second copper layer.
 上記各比較例の機械特性として、常温(RT)での表面粗度(Rz、Ra)、引張強さ(MPa)及び0.2%耐力(MPa)、ヤング率(GPa)、及び硬度(ナノインデンター硬度、mgf/μm)並びにその標準偏差(σ)を表2にまとめて示す。なお、硬度は押し込み深さ1μmでサンプル数n=30を測定し、その平均値及び標準偏差を用いた。
 また、各比較例の300℃1時間の熱処理後に常温で測定した引張強さ(MPa)及び0.2%耐力(MPa)、ヤング率(GPa)及び硬度(ナノインデンター硬度、mgf/μm)並びにその標準偏差(σ)を表2にまとめて示す。
As mechanical characteristics of each of the above comparative examples, surface roughness (Rz, Ra) at normal temperature (RT), tensile strength (MPa) and 0.2% proof stress (MPa), Young's modulus (GPa), and hardness (nano The indenter hardness, mgf / μm 2 ) and its standard deviation (σ) are summarized in Table 2. The hardness was measured by measuring the number of samples n = 30 at an indentation depth of 1 μm, and using the average value and standard deviation.
In addition, tensile strength (MPa) and 0.2% proof stress (MPa), Young's modulus (GPa), and hardness (nanoindenter hardness, mgf / μm 2 ) measured at room temperature after heat treatment at 300 ° C. for 1 hour in each comparative example. ) And its standard deviation (σ) are summarized in Table 2.
 比較例11~14について、線圧500kg/cm、130~150℃のプレス条件のロールプレスでの活物質密着性と、箔の変形を調べた。比較例11~14はいずれも、活物質密着性と箔の変形のいずれかに不良が見られた(表2で×と表示)。 For Comparative Examples 11 to 14, the active material adhesion in a roll press under a pressing condition of a linear pressure of 500 kg / cm and 130 to 150 ° C., and deformation of the foil were examined. In all of Comparative Examples 11 to 14, there was a defect in either the active material adhesion or the deformation of the foil (indicated by x in Table 2).
 また、Si-C系の活物質を用いた際の充放電時の容量維持率についても表2に合わせて示す。
 本試験では2500mAh/gとなる様に配合したSiとCのハイブリッド活物質を用いて0.2Cの充放電レートで50サイクル充放電時の容量維持率を確認した。なお、電極はバインダとして日立化成製のポリイミドバインダを用い、300℃の焼成を行い作成した。50サイクル後の容量維持率が70%以上あれば実用可能であるがより好ましくは80%以上である。
In addition, Table 2 also shows the capacity retention ratio during charging and discharging when using a Si—C-based active material.
In this test, the capacity maintenance rate during 50 cycles of charge and discharge was confirmed at a charge and discharge rate of 0.2 C using a hybrid active material of Si and C blended to 2500 mAh / g. The electrodes were prepared by baking at 300 ° C. using a polyimide binder manufactured by Hitachi Chemical as the binder. If the capacity retention rate after 50 cycles is 70% or more, it is practical, but more preferably 80% or more.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

 表2に示すように、実施例24~33の第1銅層と第2銅層を有する銅箔の全体の引張強さが常温で500MPa以上であった。
 また、実施例24~33の第1銅層と第2銅層を有する銅箔の全体のヤング率が常温で70~120GPaであった。
 また、実施例24~34の第1銅層と第2銅層を有する銅箔の第2銅層の表面のナノインデンター硬度が180~370mgf/μmであった。
 また、実施例24~34の第1銅層と第2銅層を有する銅箔の全体の引張強さが300℃で1時間の熱処理後に常温で測定した値で400MPa以上であった。
 また、実施例24~34の第1銅層と第2銅層を有する銅箔の全体のヤング率が300℃で1時間の熱処理後に常温で測定した値で65GPa以上であった。
 また、表2に示すように、実施例24~34の試料は50サイクル後の容量維持率が80%以上または70%以上の評価が得られた。
 上述したように、実施例24~34は活物質との密着性が良好であり、活物質装着時に皺が発生せず、電池特性も良好な銅箔であった。
As shown in Table 2, the overall tensile strength of the copper foils having the first copper layer and the second copper layer of Examples 24 to 33 was 500 MPa or more at room temperature.
Further, the entire Young's modulus of the copper foil having the first copper layer and the second copper layer of Examples 24 to 33 was 70 to 120 GPa at room temperature.
In addition, the nanoindenter hardness of the surface of the second copper layer of the copper foil having the first copper layer and the second copper layer in Examples 24 to 34 was 180 to 370 mgf / μm 2 .
Further, the overall tensile strength of the copper foils having the first copper layer and the second copper layer of Examples 24 to 34 was 400 MPa or more as measured at room temperature after heat treatment at 300 ° C. for 1 hour.
The total Young's modulus of the copper foils having the first copper layer and the second copper layer of Examples 24 to 34 was 65 GPa or more as measured at room temperature after heat treatment at 300 ° C. for 1 hour.
Further, as shown in Table 2, the samples of Examples 24 to 34 were evaluated to have a capacity retention rate of 50% or more or 70% or more after 50 cycles.
As described above, Examples 24 to 34 were copper foils having good adhesion to the active material, no wrinkles when the active material was mounted, and good battery characteristics.
 上記実施例24~34との比較
 比較例11は、第2銅層を有さない試料であり、表面の硬度(ナノインデンター硬度)が硬かったために、活物質との密着性が劣り、充放電特性を満足することができなかった。
 比較例12~14は、常温での引張強さとヤング率が低く、300℃で1時間の熱処理後も引張強さとヤング率が低く、活物質装着時に箔に皺が入り充放電特性を満足することができなかった。
 また、表2に示すように、50サイクル後の容量維持率は、比較例11~14の全てで70%未満の評価であった。
Comparison with Examples 24 to 34 Comparative Example 11 is a sample that does not have a second copper layer, and since the surface hardness (nanoindenter hardness) was high, the adhesion with the active material was inferior, and The discharge characteristics could not be satisfied.
Comparative Examples 12 to 14 have low tensile strength and Young's modulus at room temperature, low tensile strength and Young's modulus even after heat treatment at 300 ° C. for 1 hour, and the foil fills the foil when the active material is mounted and satisfies charge / discharge characteristics. I couldn't.
Further, as shown in Table 2, the capacity retention rate after 50 cycles was evaluated to be less than 70% in all of Comparative Examples 11 to 14.
 上述したように本実施例によれば、活物質密着性が良好であり、箔の変形も見られないことから、プレス加工時と充放電においても皺が入りにくく、かつ、Si系の負極活物質と銅箔との高い密着性を保持でき、機械的強度(引張強さ)及び硬さを有する銅箔を提供することができる。 As described above, according to the present example, the active material adhesion is good and the foil is not deformed. High adhesion between the substance and the copper foil can be maintained, and a copper foil having mechanical strength (tensile strength) and hardness can be provided.

Claims (12)

  1.  常温での引張強さが550MPa以上である第1銅層と、前記第1銅層の少なくとも片方の面に備えた前記第1銅層より硬度が低い第2銅層とを有する銅箔。 A copper foil having a first copper layer having a tensile strength at room temperature of 550 MPa or more and a second copper layer having a lower hardness than the first copper layer provided on at least one surface of the first copper layer.
  2.  前記第1銅層と前記第2銅層を合わせた銅箔全体の厚みが7~12μmである請求項1に記載の銅箔。 2. The copper foil according to claim 1, wherein the total thickness of the copper foil including the first copper layer and the second copper layer is 7 to 12 μm.
  3.  前記第2銅層の厚みが0.3~3μmである請求項1または2に記載の銅箔。 The copper foil according to claim 1 or 2, wherein the thickness of the second copper layer is 0.3 to 3 µm.
  4.  前記第1銅層の厚みが前記第2銅層の厚み以上である請求項1~3のいずれかに記載の銅箔。 The copper foil according to any one of claims 1 to 3, wherein a thickness of the first copper layer is equal to or greater than a thickness of the second copper layer.
  5.  前記第1銅層の常温でのヤング率が75~130GPaである請求項1~4のいずれかに記載の銅箔。 The copper foil according to any one of claims 1 to 4, wherein the first copper layer has a Young's modulus at room temperature of 75 to 130 GPa.
  6.  常温での引張強さが500MPa以上である請求項1~5のいずれかに記載の銅箔。 6. The copper foil according to claim 1, having a tensile strength at room temperature of 500 MPa or more.
  7.  常温でのヤング率が70~120GPaである請求項1~6のいずれかに記載の銅箔。 The copper foil according to any one of claims 1 to 6, which has a Young's modulus at room temperature of 70 to 120 GPa.
  8.  常温での表面の硬度が180~370mgf/μmである請求項1~7のいずれかに記載の銅箔。 The copper foil according to any one of claims 1 to 7, having a surface hardness of 180 to 370 mgf / µm 2 at room temperature.
  9.  銅箔の300℃で1時間熱処理後に常温で測定した引張強さが400MPa以上である請求項1~8のいずれかに記載の銅箔。 The copper foil according to any one of claims 1 to 8, wherein the copper foil has a tensile strength of 400 MPa or more measured at room temperature after heat treatment at 300 ° C for 1 hour.
  10.  銅箔の300℃で1時間熱処理後に常温で測定したヤング率が65GPa以上である請求項1~9のいずれかに記載の銅箔。 The copper foil according to any one of claims 1 to 9, wherein the Young's modulus of the copper foil measured at room temperature after heat treatment at 300 ° C for 1 hour is 65 GPa or more.
  11.  負極集電体が請求項1~10のいずれかに記載の銅箔であるリチウムイオン二次電池用負極。 A negative electrode for a lithium ion secondary battery, wherein the negative electrode current collector is the copper foil according to any one of claims 1 to 10.
  12.  負極が請求項11に記載のリチウムイオン二次電池用負極であるリチウムイオン二次電池。 A lithium ion secondary battery, wherein the negative electrode is a negative electrode for a lithium ion secondary battery according to claim 11.
PCT/JP2014/050942 2013-01-18 2014-01-20 Copper foil, anode for lithium ion battery, and lithium ion secondary battery WO2014112619A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014526317A JPWO2014112619A1 (en) 2013-01-18 2014-01-20 Electrolytic copper foil, negative electrode for lithium ion battery, and lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013007537 2013-01-18
JP2013-007537 2013-01-18

Publications (1)

Publication Number Publication Date
WO2014112619A1 true WO2014112619A1 (en) 2014-07-24

Family

ID=51209705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050942 WO2014112619A1 (en) 2013-01-18 2014-01-20 Copper foil, anode for lithium ion battery, and lithium ion secondary battery

Country Status (3)

Country Link
JP (1) JPWO2014112619A1 (en)
TW (1) TW201448338A (en)
WO (1) WO2014112619A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108183237A (en) * 2017-11-29 2018-06-19 合肥国轩高科动力能源有限公司 A kind of silicon based anode material quantum dot Water-Based Paint copper foil and preparation method thereof
KR102040073B1 (en) * 2018-10-16 2019-11-04 장 춘 페트로케미컬 컴퍼니 리미티드 Electrolytic copper foil, electrode comprising the same, and lithium ion battery comprising the same
CN112993261A (en) * 2019-12-12 2021-06-18 陕西铭硕新能源科技有限公司 Method for processing conductive current collector of ultra-low temperature battery with high specific energy
CN114784222A (en) * 2021-03-29 2022-07-22 宁德新能源科技有限公司 Electrochemical device and electronic device
US12002964B2 (en) 2021-03-29 2024-06-04 Ningde Amperex Technology Limited Electrochemical device and electronic device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102646185B1 (en) 2017-02-27 2024-03-08 에스케이넥실리스 주식회사 Copper foil having improved adhesion, electrode comprisng the same, secondary battery comprising the same and method for manufacturing the same
CN111455414A (en) * 2020-03-09 2020-07-28 深圳市惟华电子科技有限公司 Additive for producing gradual change type electrolytic copper foil

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0967693A (en) * 1995-08-29 1997-03-11 Nikko Gould Foil Kk Production of electrolytic copper foil
JP2006016690A (en) * 2004-06-04 2006-01-19 Nikko Metal Manufacturing Co Ltd Metallic material for printed circuited board
JP2006155899A (en) * 2003-02-04 2006-06-15 Furukawa Techno Research Kk Copper alloy composite foil, its manufacturing method and ultrahigh frequency transmission circuit using the copper alloy composite foil
JP2008098157A (en) * 2006-09-14 2008-04-24 Matsushita Electric Ind Co Ltd Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP2009272086A (en) * 2008-05-02 2009-11-19 Hitachi Cable Ltd Copper foil and method of manufacturing the same, and current collecting copper foil for lithium ion secondary battery and method of manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074337A (en) * 2010-09-30 2012-04-12 Sanyo Electric Co Ltd Lithium secondary battery
JP5379928B2 (en) * 2011-06-30 2013-12-25 古河電気工業株式会社 Electrolytic copper foil, method for producing the electrolytic copper foil, and lithium ion secondary battery using the electrolytic copper foil as a current collector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0967693A (en) * 1995-08-29 1997-03-11 Nikko Gould Foil Kk Production of electrolytic copper foil
JP2006155899A (en) * 2003-02-04 2006-06-15 Furukawa Techno Research Kk Copper alloy composite foil, its manufacturing method and ultrahigh frequency transmission circuit using the copper alloy composite foil
JP2006016690A (en) * 2004-06-04 2006-01-19 Nikko Metal Manufacturing Co Ltd Metallic material for printed circuited board
JP2008098157A (en) * 2006-09-14 2008-04-24 Matsushita Electric Ind Co Ltd Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP2009272086A (en) * 2008-05-02 2009-11-19 Hitachi Cable Ltd Copper foil and method of manufacturing the same, and current collecting copper foil for lithium ion secondary battery and method of manufacturing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108183237A (en) * 2017-11-29 2018-06-19 合肥国轩高科动力能源有限公司 A kind of silicon based anode material quantum dot Water-Based Paint copper foil and preparation method thereof
CN108183237B (en) * 2017-11-29 2020-11-06 合肥国轩高科动力能源有限公司 Quantum dot water-based coating copper foil for silicon-based negative electrode material and preparation method thereof
KR102040073B1 (en) * 2018-10-16 2019-11-04 장 춘 페트로케미컬 컴퍼니 리미티드 Electrolytic copper foil, electrode comprising the same, and lithium ion battery comprising the same
JP2020064837A (en) * 2018-10-16 2020-04-23 長春石油化學股▲分▼有限公司 Electrolytic copper foil, electrode having the same, and lithium ion battery having the same
US11365486B2 (en) 2018-10-16 2022-06-21 Chang Chun Petrochemical Co., Ltd. Electrolytic copper foil, electrode comprising the same, and lithium ion battery comprising the same
CN112993261A (en) * 2019-12-12 2021-06-18 陕西铭硕新能源科技有限公司 Method for processing conductive current collector of ultra-low temperature battery with high specific energy
CN114784222A (en) * 2021-03-29 2022-07-22 宁德新能源科技有限公司 Electrochemical device and electronic device
US20220311011A1 (en) * 2021-03-29 2022-09-29 Ningde Amperex Technology Limited Electrochemical device and electronic device
EP4068419A1 (en) * 2021-03-29 2022-10-05 NingDe Amperex Technology Limited Electrochemical device and electronic device
US12002964B2 (en) 2021-03-29 2024-06-04 Ningde Amperex Technology Limited Electrochemical device and electronic device

Also Published As

Publication number Publication date
JPWO2014112619A1 (en) 2017-01-19
TW201448338A (en) 2014-12-16

Similar Documents

Publication Publication Date Title
JP5417458B2 (en) Copper foil for secondary battery negative electrode current collector
JP5074611B2 (en) Electrolytic copper foil for secondary battery negative electrode current collector and method for producing the same
WO2014112619A1 (en) Copper foil, anode for lithium ion battery, and lithium ion secondary battery
JP5916904B1 (en) Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, rigid printed wiring board and flexible printed wiring board
JP5148726B2 (en) Electrolytic copper foil and method for producing electrolytic copper foil
KR101782737B1 (en) Electrolytic copper foil, the negative electrode for a lithium ion secondary battery and a lithium ion secondary battery, printed circuit board and an electromagnetic shielding material
KR20140041804A (en) Electrolytic copper foil, method for producing electrolytic copper foil, and lithium ion secondary cell using electrolytic copper foil as collector
JP5810249B1 (en) Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, printed wiring board, and electromagnetic shielding material
JP5416037B2 (en) Rolled copper foil for lithium battery current collector
JP2006269362A (en) Negative electrode for lithium ion secondary battery
JP2012172198A (en) Electrolytic copper foil and method for manufacturing the same
JP5822928B2 (en) Electrolytic copper foil having high strength and low warpage and method for producing the same
TWI468284B (en) Surface treatment copper foil, surface treatment copper foil manufacturing method, cathode current collector and non-aqueous secondary battery cathode material
KR102378297B1 (en) Electrodeposited copper foil, current collectors for negative electrode of lithium-ion secondary batteries and lithium-ion secondary batteries
JP4438541B2 (en) Composite foil for negative electrode current collector of non-aqueous electrolyte secondary battery and manufacturing method thereof, and negative electrode current collector, non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery using the composite foil
JP5941959B2 (en) Electrolytic copper foil and method for producing the same
WO2004049476A1 (en) Negative electrode collector for nonaqueous electrolyte secondary battery and method for manufacturing same
JP2010103061A (en) Negative electrode copper alloy foil of secondary battery and manufacturing method for the same
JP6316095B2 (en) Rolled copper foil and negative electrode current collector of lithium ion secondary battery
DE112019005377T5 (en) Rolled copper foil for lithium-ion battery current collector, and lithium-ion battery
KR20190117669A (en) Rolled copper foil and lithium ion battery for lithium ion battery collectors
JP2013185228A (en) Electrolytic copper foil and negative electrode collector for secondary battery
WO2013150640A1 (en) Electrolytic copper foil and method for manufacturing same
EP1913651B1 (en) Electrode grid
WO2005057693A1 (en) Negative electrode collector for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014526317

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14740514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14740514

Country of ref document: EP

Kind code of ref document: A1