WO2013150640A1 - Electrolytic copper foil and method for manufacturing same - Google Patents

Electrolytic copper foil and method for manufacturing same Download PDF

Info

Publication number
WO2013150640A1
WO2013150640A1 PCT/JP2012/059442 JP2012059442W WO2013150640A1 WO 2013150640 A1 WO2013150640 A1 WO 2013150640A1 JP 2012059442 W JP2012059442 W JP 2012059442W WO 2013150640 A1 WO2013150640 A1 WO 2013150640A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
electrolytic copper
treatment
electrolytic
treated
Prior art date
Application number
PCT/JP2012/059442
Other languages
French (fr)
Japanese (ja)
Inventor
洋一 皆川
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to PCT/JP2012/059442 priority Critical patent/WO2013150640A1/en
Publication of WO2013150640A1 publication Critical patent/WO2013150640A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/565Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/58Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolytic copper foil with reduced warpage due to a thermal load and a method for producing the same, and more particularly to an electrolytic copper foil useful for a secondary battery negative electrode current collector.
  • Electrolytic copper foil produced by electroplating greatly contributes to the development of electrical and electronic industries, and is indispensable as a printed circuit material and secondary battery negative electrode current collector.
  • the manufacturing history of the electrolytic copper foil is old (see Patent Document 1 and Patent Document 2), but recently its usefulness as a secondary battery negative electrode current collector has been reconfirmed.
  • An example of producing an electrolytic copper foil is as follows. For example, in an electrolytic cell, a titanium or stainless steel rotating drum having a diameter of about 3000 mm and a width of about 2500 mm and an electrode distance of about 5 mm around the drum are arranged. Deploy. Copper, sulfuric acid, and glue are introduced into this electrolytic cell to form an electrolytic solution. Then, the linear velocity, the electrolyte solution temperature, and the current density are adjusted, copper is deposited on the surface of the rotating drum, the copper deposited on the surface of the rotating drum is peeled off, and a copper foil is continuously produced.
  • This electrolytic copper foil manufacturing method can reduce the manufacturing cost, and can manufacture from an extremely thin layer thickness of about several ⁇ m to a thick copper foil of about 70 ⁇ m, and one side of the electrolytic copper foil is moderate. Therefore, it has many advantages such as high adhesive strength with the resin.
  • electrolytic copper foil has been used as a copper foil for negative electrode materials for in-vehicle batteries (lithium ion batteries).
  • the drum surface and the deposited surface may have the same roughness and shape. It is desirable.
  • the battery characteristics, particularly the cycle characteristics in charge and discharge were poor and could not be used. It has been found that the above-described problem is caused because a large unevenness is formed on one main surface of the electrolytic copper foil, and the difference in surface roughness between both main surfaces of the electrolytic copper foil is too large.
  • electrolytic copper foil has been mainly used for printed circuit boards and flexible substrates.
  • the main surface of the electrolytic copper foil has large irregularities. Was forming. Therefore, when this electrolytic metal foil is used as a current collector of a non-aqueous electrolyte secondary battery, deformation along the active material surface does not occur sufficiently, the contact between the active material and the current collector is poor, and the capacity Deterioration and cycle characteristics were reduced (see Patent Document 3).
  • an additive was added to make an electrolytic copper foil.
  • the internal stress of the copper layer increases immediately after the foil production, but the crystal structure of the copper layer is stabilized by releasing the internal stress.
  • a stress difference occurs between the two surfaces, causing a problem of warping to the precipitation surface side.
  • the production process of the negative electrode current collector is a process in which a slurry-like active material is applied to both sides of copper foil, dried, and then crimped by a roll press.
  • the copper foil warps to the deposition surface (M surface) side, in the active material coating process, the gap between the equipments is narrow, so that a problem arises that the copper foil comes into contact with the equipment to cause a problem.
  • the conventional copper foil has a tendency to warp the M-plane, and has included a problem.
  • the present invention investigates the cause of warping of copper foil that occurs when conventional electrolytic copper foil is used, and electrolytic copper foil, particularly secondary battery negative electrode, in which warpage due to thermal load is reduced to solve this cause It is an object of the present invention to provide an electrolytic copper foil useful for a current collector and a method for producing the same.
  • the electrolytic copper foil wherein the difference in Vickers hardness (Hv) between the front and back surfaces of the electrolytic copper foil or the treated electrolytic copper foil is 10 or less. 2) The amount of warp of the electrolytic copper foil or the treated electrolytic copper foil is 1 mm or less, 3) The electrolytic copper foil according to the above 1), wherein the tensile strength of the electrolytic copper foil or the treated electrolytic copper foil is 30- The electrolytic copper foil according to the above 1) or 2), characterized in that it is 40 kg / mm 2. 4) The elongation of the electrolytic copper foil or the electrolytic copper foil after treatment is 10 to 15%. 4) The electrolytic copper foil according to any one of 1) to 4) above, which is a copper foil for a secondary battery negative electrode current collector. Foil
  • Electrolytic copper foil or treated electrolytic copper foil is heated in an oven at 130 to 155 ° C. to remove the distortion of the electrolytic copper foil or the treated electrolytic copper foil.
  • Method. 7) The method for producing an electrolytic copper foil according to 6) above, wherein the difference in Vickers hardness (Hv) between the front and back surfaces of the electrolytic copper foil or the treated electrolytic copper foil is 10 or less by removing strain.
  • Hv Vickers hardness
  • the electrolytic copper foil after treatment is 1 mm or less by removing strain Any of 6) to 8) above, wherein the tensile strength of the electrolytic copper foil after heat load at 130 to 155 ° C. or the electrolytic copper foil after treatment is 30 to 40 kg / mm 2.
  • the present invention investigates the cause of warping of the copper foil that occurs when the electrolytic copper foil is used, and as a solution to this, by reducing the difference in hardness between both sides of the electrolytic copper foil, It is possible to obtain a reduced electrolytic copper foil, and in particular, it has an excellent effect of providing an electrolytic copper foil useful for a secondary battery negative electrode current collector.
  • the present invention provides an electrolytic copper foil in which the difference in Vickers hardness (Hv) between the front and back surfaces of the electrolytic copper foil or the treated electrolytic copper foil is 10 or less, as described above.
  • the main cause of warping of copper foil a phenomenon of warping on the deposition surface (M surface) side of the electrolytic copper foil) that occurs when using copper is largely due to a large difference in hardness (Vickers hardness) on both surfaces of the electrolytic copper foil. it is conceivable that.
  • the electrolytic copper foil can be heated to a predetermined temperature to reduce the difference between the front and back of the Vickers hardness of the electrolytic copper foil. Is possible. However, even when the treatment is not performed, and even when the drying process by the oven is not attached after the treatment, the same purpose can be achieved by performing the heat treatment by the same oven on the electrolytic copper foil itself.
  • the warp amount of the electrolytic copper foil or the electrolytic copper foil after treatment is 1 mm or less even if there is a subsequent heat load of 130 to 155 ° C. it can.
  • This amount of warpage is a problem in the negative electrode current collector preparation process, that is, a process in which a slurry-like active material is applied to both sides of a copper foil, dried, and then crimped by a roll press (in the active material application process, the spacing of equipment Therefore, there is no problem that the copper foil comes into contact with the equipment to cause a problem.
  • the tensile strength of the electrolytic copper foil after heat load at 130 to 155 ° C. or the electrolytic copper foil after treatment (thickness 12 ⁇ m) can be maintained at 30 to 40 kg / mm 2. . It should be understood that the tensile strength of the electrolytic copper foil is not limited to this value because it changes depending on the electrolytic conditions and the thickness of the copper foil.
  • the elongation of the electrolytic copper foil after a heat load of 130 to 155 ° C. or the electrolytic copper foil after treatment (12 ⁇ m thickness) can be made 10 to 15%.
  • the preferred elongation to be performed is in the range of 12-14%.
  • the elongation of the electrolytic copper foil is not limited to this value because it changes depending on the electrolytic conditions and the thickness of the copper foil. From the above, electrolysis useful for the secondary battery negative electrode current collector can be obtained.
  • the electrolytic copper foil or the treated electrolytic copper foil is heat-treated in an oven at 130 to 155 ° C. for about 5 to 15 seconds. Can be obtained.
  • the temperature is less than 130 ° C., the difference in Vickers hardness (Hv) between the front and back surfaces of the electrolytic copper foil or the treated copper foil cannot be reduced to 10 or less.
  • the amount of warpage of the electrolytic copper foil or the electrolytic copper foil after treatment cannot be 1 mm or less.
  • the difference in Vickers hardness (Hv) between the front and back surfaces of the electrolytic copper foil can be made 10 or less, but when the surface of the electrolytic copper foil is oxidized and discolored, Since there is a possibility that the inside of the copper foil is recrystallized, it cannot be said that it is preferable, and the heat treatment temperature and the heat treatment time are also limited. Therefore, it can be said that the above range is desirable.
  • the above heat treatment removes the strain, the tensile strength of the electrolytic copper foil after heat load at 130 to 155 ° C. or the electrolytic copper foil after treatment (12 ⁇ m thickness) is 30 to 40 kg / mm 2 , and the elongation is 10 Can be maintained at ⁇ 15%.
  • the electrolytic copper foil of the present invention can be produced by an electrolytic method using a sulfuric acid-based copper electrolyte using an electrolytic copper foil production apparatus as shown in FIG.
  • the present invention relates to a conventional electrolytic copper in which, for example, a rotating drum made of titanium or stainless steel having a diameter of about 3000 mm and a width of about 2500 mm and an electrode is disposed around the drum with an inter-electrode distance of about 5 mm. It can manufacture using a foil manufacturing apparatus.
  • the example of this apparatus is an example and there is no restriction
  • Treating and roughening treatments can be applied to the surface or back surface of this electrolysis, or both surfaces as necessary.
  • the treatment process is normally performed, but may be omitted if necessary.
  • the average surface roughness Ra can be set to 0.04 to 0.20 ⁇ m. In this case, the reason why the lower limit of the average surface roughness Ra is 0.04 ⁇ m is to form fine particles and improve the adhesion.
  • the reason for setting the upper limit to 0.20 ⁇ m is to reduce variation in weight thickness. Thereby, for example, the charge / discharge characteristics of the secondary battery can be improved.
  • These surface roughnesses show an example and can be appropriately adjusted according to the use of the electrolytic copper foil.
  • the average diameter of the roughened particles on the roughened surface be 0.1 to 0.4 ⁇ m. It is desired that the roughened particles are fine particles and the fine particles are more uniform. Similarly to the above, this is a preferable mode for improving the adhesion of the battery active material and applying as much active material as possible to increase the electric capacity of the battery.
  • the maximum height of the roughened layer in the copper foil for the negative electrode current collector for the secondary battery is 0.2 ⁇ m or less. This is also a preferable mode for reducing the thickness variation of the roughening treatment layer, improving the adhesion of the battery active material, and increasing the electric capacity of the battery by applying as much active material as possible.
  • the present invention can be managed and achieved based on an index that makes the thickness of the roughened particles 0.2 ⁇ m or less.
  • the copper foil for a negative electrode current collector for a secondary battery can form one type of plating of copper, cobalt, nickel or two or more types of alloy plating as roughening particles. Usually, roughened particles are formed by three-part alloy plating of copper, cobalt, and nickel. Furthermore, the copper foil for the negative electrode current collector for the secondary battery has a cobalt-nickel alloy plating layer on the roughened surface on both the front and back sides of the rolled copper alloy foil in order to improve heat resistance and weather resistance (corrosion resistance). It is a desirable element to form one or more rust-proofing layers or heat-resistant layers and / or silane coupling layers selected from zinc-nickel alloy plating layers and chromate layers.
  • the copper foil for a negative electrode current collector for a secondary battery of the present invention can reduce the thickness variation in the copper foil width direction of the rolled copper alloy foil after the front and back surface roughening treatment to 0.5% or less.
  • An excellent copper foil for a negative electrode current collector for a secondary battery can be provided.
  • the roughening treatment on the copper foil for the secondary battery negative electrode current collector of the present invention can be performed, for example, copper roughening treatment or copper-cobalt-nickel alloy plating treatment.
  • the copper roughening treatment is as follows. Copper roughening treatment Cu: 10 to 25 g / L H 2 SO 4 : 20 to 100 g / L Temperature: 20-40 ° C Dk: 30 to 70 A / dm 2 Time: 1-5 seconds
  • the roughening treatment by the copper-cobalt-nickel alloy plating treatment is as follows.
  • electrolytic plating the amount of deposition is carried out to form a ternary alloy layer such that 15 ⁇ 40mg / dm 2 of copper -100 ⁇ 3000 ⁇ g / dm 2 of cobalt -100 ⁇ 500 ⁇ g / dm 2 of nickel.
  • This ternary alloy layer also has heat resistance.
  • the general bath and plating conditions for forming such ternary copper-cobalt-nickel alloy plating are as follows. (Copper-cobalt-nickel alloy plating) Cu: 10 to 20 g / liter Co: 1 to 10 g / liter Ni: 1 to 10 g / liter pH: 1 to 4 Temperature: 30-50 ° C Current density D k : 20 to 50 A / dm 2 Time: 1-5 seconds
  • a cobalt-nickel alloy plating layer can be formed on the roughened surface.
  • the cobalt-nickel alloy plating layer has a cobalt adhesion amount of 200 to 3000 ⁇ g / dm 2 and a cobalt ratio of 60 to 70 mass%.
  • This treatment can be regarded as a kind of rust prevention treatment in a broad sense.
  • the conditions for the cobalt-nickel alloy plating are as follows. (Cobalt-nickel alloy plating) Co: 1-20 g / liter Ni: 1-20 g / liter pH: 1.5-3.5 Temperature: 30-80 ° C Current density D k : 1.0 to 20.0 A / dm 2 Time: 0.5-4 seconds
  • a zinc-nickel alloy plating layer can be further formed on the cobalt-nickel alloy plating.
  • the total amount of the zinc-nickel alloy plating layer is 150 to 500 ⁇ g / dm 2 and the nickel ratio is 16 to 40% by mass. This has the role of a heat and rust preventive layer.
  • the conditions for zinc-nickel alloy plating are as follows. (Zinc-nickel alloy plating) Zn: 0-30 g / liter Ni: 0-25 g / liter pH: 3-4 Temperature: 40-50 ° C Current density D k : 0.5 to 5 A / dm 2 Time: 1 to 3 seconds
  • a preferable antirust treatment is a coating treatment of chromium oxide alone or a mixture coating treatment of chromium oxide and zinc / zinc oxide.
  • Chromium oxide and zinc / zinc oxide mixture film treatment means zinc or zinc oxide comprising zinc oxide and chromium oxide by electroplating using a plating bath containing zinc salt or zinc oxide and chromate. It is the process which coat
  • the plating bath typically, at least one kind of dichromate such as K 2 Cr 2 O 7 and Na 2 Cr 2 O 7 and CrO 3 and a water-soluble zinc salt such as ZnO 4 and ZnSO 4 ⁇ 7H are used.
  • a mixed aqueous solution of at least one kind such as 2 O and an alkali hydroxide is used.
  • a typical plating bath composition and electrolysis conditions are as follows. The copper foil thus obtained has excellent heat resistance peel strength, oxidation resistance and hydrochloric acid resistance.
  • Chromium rust prevention treatment K 2 Cr 2 O 7 (Na 2 Cr 2 O 7 or CrO 3 ): 2 to 10 g / liter NaOH or KOH: 10 to 50 g / liter ZnO or ZnSO 4 ⁇ 7H 2 O: 0.05 to 10 g / liter pH: 3-13 Bath temperature: 20-80 ° C Current density D k : 0.05 to 5 A / dm 2 Time: 5-30 seconds Anode: Pt—Ti plate, stainless steel plate, etc. Chromium oxide requires a coating amount of 15 ⁇ g / dm 2 or more, and zinc requires a coating amount of 30 ⁇ g / dm 2 or more.
  • silane treatment is performed by applying a silane coupling agent to at least the roughened surface on the rust preventive layer, mainly for the purpose of improving the adhesion between the copper foil and the resin substrate.
  • a silane coupling agent used for the silane treatment include olefin silane, epoxy silane, acrylic silane, amino silane, and mercapto silane, and these can be appropriately selected and used. .
  • Application method may be any of spraying a silane coupling agent solution by spraying, coating with a coater, dipping, pouring and the like.
  • Japanese Patent Publication No. 60-15654 describes that the adhesion between a copper foil and a resin substrate is improved by subjecting the rough surface of the copper foil to a chromate treatment followed by a silane coupling agent treatment. . Refer to this for details. Thereafter, if necessary, an annealing treatment may be performed for the purpose of improving the ductility of the copper foil.
  • an additional surface treatment layer to the electrolytic copper foil of the present invention which is mainly applied to the negative electrode current collector for secondary batteries, has been described, but these are arbitrarily selected according to the use of the electrolytic copper foil. Needless to say, it can be applied.
  • the present invention includes all of these.
  • a titanium rotating drum having a diameter of about 3133 mm and a width of 2476.5 mm and an electrode distance of about 5 mm were arranged around the drum.
  • the electrolytic solution was 85 g / L copper, 75 g / L sulfuric acid, 60 mg / L chloride ion, 3-10 ppm bis- (3-sulfopropyl) -disulfide sodium salt, and 2-20 ppm nitride-containing organic compound.
  • the electrolyte temperature was 57 ° C.
  • the electrolyte linear velocity was 1.0 m / min
  • the current density was 50 A / dm 2 .
  • Copper was deposited on the surface of the rotating drum, and the copper deposited on the surface of the rotating drum was peeled off to continuously produce a copper foil.
  • the foil thickness of the electrolytic copper foil was 9.5 to 12.5 ⁇ m.
  • Example 1 The copper foil was subjected to a surface oxidation preventing treatment so that the chromium adhesion amount was in the range of 2.6 to 4.0 mg / m 2 and dried in an oven.
  • Example 1, Example 2, Comparative Example 1, Comparative Example 2, and Comparative Example 3 shown below are the same except for the processing differences shown in Table 1.
  • the heating time in the oven is about 10 seconds in all cases.
  • Example 1 In Example 1, the heat treatment temperature of the electrolytic copper foil treated by the oven is 140 ° C. There was no surface discoloration due to oxidation after a heat load of 140 ° C.
  • the Vickers hardness (Hv) on the drum surface side of the electrolytic copper foil was 94, and the Vickers hardness (Hv) of the precipitation surface on the opposite side was 85, the difference being 9, which satisfied the conditions of the present invention.
  • the amount of warpage was 0.7 mm, and the amount of warpage was small, achieving the object of the present invention.
  • Table 1 The results are shown in Table 1 above.
  • the tensile strength of Example 1 was 34.8 kgf / mm 2 and the elongation was 13.3%. These also achieved the object of the present invention.
  • the results are shown in Table 2.
  • Comparative Example 1 In Comparative Example 1, the treatment was not performed. Since no rust prevention treatment was applied, the surface was discolored due to oxidation.
  • the Vickers hardness (Hv) on the drum surface side of the electrolytic copper foil was 105, and the Vickers hardness (Hv) of the precipitation surface on the opposite side was 79, the difference being 26, which did not satisfy the conditions of the present invention.
  • the amount of warpage was 1.5 mm, the amount of warpage was large, and the object of the present invention was not satisfied.
  • Table 1 The results are similarly shown in Table 1 above. Further, the tensile strength of Comparative Example 1 was 35.5 kgf / mm 2 and the elongation was 13.3%, which were within the range of the conditions of the present invention. The results are shown in Table 2.
  • Example 2 The heat treatment temperature of the electrolytic copper foil treated with the oven of Example 2 is 150 ° C. There was no surface discoloration due to oxidation after a heat load of 150 ° C.
  • the Vickers hardness (Hv) on the drum surface side of the electrolytic copper foil was 92, and the Vickers hardness (Hv) of the precipitation surface on the opposite side was 83, and the difference was 9, which satisfied the conditions of the present invention.
  • the amount of warpage was 0.4 mm, the amount of warpage was small, and the object of the present invention was achieved.
  • Table 1 The results are shown in Table 1 above.
  • the tensile strength of Example 2 was 34.6 kgf / mm ⁇ 2 >, and elongation was 13.6%, These also achieved the objective of this invention.
  • the results are shown in Table 2.
  • Comparative Example 3 is a case where the treated electrolytic copper foil was heat-treated at 160 ° C. in an oven. As a result, after heat load at 160 ° C., discoloration of the surface due to oxidation was observed.
  • the Vickers hardness (Hv) on the drum surface side of the electrolytic copper foil is 92, and the Vickers hardness (Hv) of the precipitation surface on the opposite side is 85, the difference being 7, which satisfies the conditions of the present invention, and the amount of warpage Was 0.5 mm, and the amount of warpage was small, satisfying the object of the present invention.
  • the heat treatment was as high as 160 ° C., discoloration occurred, which was not preferable.
  • heat treatment is performed at 130 to 155 ° C. in an oven, so that the amount of heat is larger than that of normal drying.
  • the amount of heat is not high enough to recrystallize, and there is no significant difference between high tension and elongation.
  • the conditions of the invention were met.
  • the present invention investigates the cause of warping of the copper foil that occurs when the electrolytic copper foil is used, and as a solution to this, by reducing the difference in hardness between both sides of the electrolytic copper foil, It is possible to obtain a reduced electrolytic copper foil, and it is possible to provide an electrolytic copper foil that is particularly useful for a secondary battery negative electrode current collector.

Abstract

An electrolytic copper foil characterized in that the difference in Vickers hardness (Hv) between the front and back of the electrolytic copper foil or the treated electrolytic copper foil is 10 or less. The electrolytic copper foil, characterized in that the amount of curvature of the electrolytic copper foil or the treated electrolytic copper foil is 1 mm or less. A method for manufacturing an electrolytic copper foil, characterized in comprising heating an electrolytic copper foil or a treated electrolytic copper foil at 130-155°C in an oven to remove distortion of the electrolytic copper foil or the treated electrolytic copper foil. The present invention relates to an electrolytic copper foil in which curvature due to thermal load is reduced, and to a method for manufacturing the same, and particularly addresses the problem of providing an electrolytic copper foil useful in a negative electrode collector for a secondary cell.

Description

電解銅箔及びその製造方法Electrolytic copper foil and method for producing the same
 本発明は、熱負荷による反りを低減させた電解銅箔及びその製造方法に関し、特に二次電池負極集電体に有用である電解銅箔に関する。 The present invention relates to an electrolytic copper foil with reduced warpage due to a thermal load and a method for producing the same, and more particularly to an electrolytic copper foil useful for a secondary battery negative electrode current collector.
 電気めっきによって製造される電解銅箔は、電気・電子関連産業の発展に大きく寄与しており、印刷回路材や二次電池負極集電体として不可欠の存在となっている。電解銅箔の製造の歴史は古い(特許文献1及び特許文献2参照)が、最近は二次電池負極集電体としてその有用性が再確認されている。 Electrolytic copper foil produced by electroplating greatly contributes to the development of electrical and electronic industries, and is indispensable as a printed circuit material and secondary battery negative electrode current collector. The manufacturing history of the electrolytic copper foil is old (see Patent Document 1 and Patent Document 2), but recently its usefulness as a secondary battery negative electrode current collector has been reconfirmed.
 電解銅箔の製造例を示すと、例えば電解槽の中に、直径約3000mm、幅約2500mmのチタン製又はステンレス製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置する。
 この電解槽の中に、銅、硫酸、にかわを導入して電解液とする。そして、線速、電解液温、電流密度を調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造している。
An example of producing an electrolytic copper foil is as follows. For example, in an electrolytic cell, a titanium or stainless steel rotating drum having a diameter of about 3000 mm and a width of about 2500 mm and an electrode distance of about 5 mm around the drum are arranged. Deploy.
Copper, sulfuric acid, and glue are introduced into this electrolytic cell to form an electrolytic solution. Then, the linear velocity, the electrolyte solution temperature, and the current density are adjusted, copper is deposited on the surface of the rotating drum, the copper deposited on the surface of the rotating drum is peeled off, and a copper foil is continuously produced.
 この電解銅箔製造方法は製造コストの低減化を図ることができ、数μm程度の極めて薄い層厚から70μm程度の厚い銅箔まで製造することが可能であり、また電解銅箔の片面が適度な粗度を有するので、樹脂との接着強度が高いという、多くの利点を有している。 This electrolytic copper foil manufacturing method can reduce the manufacturing cost, and can manufacture from an extremely thin layer thickness of about several μm to a thick copper foil of about 70 μm, and one side of the electrolytic copper foil is moderate. Therefore, it has many advantages such as high adhesive strength with the resin.
 近年、車載用電池(リチウムイオン電池)負極材用銅箔として電解銅箔が使用されるが、両面に活物質を塗布するため、ドラム面と析出面が同程度の粗さや形状にすることが望ましいとされている。
 市販の電解銅箔を負極集電体に使用したリチウムイオン二次電池においては、電池特性、特に充放電でのサイクル特性が悪く、使用することができなかった。上述した問題は、電解銅箔の一方の主面に大きな凹凸が形成されて、電解銅箔の両主面の表面粗さの差が大きすぎるために生じていることがわかった。
In recent years, electrolytic copper foil has been used as a copper foil for negative electrode materials for in-vehicle batteries (lithium ion batteries). However, since the active material is applied on both sides, the drum surface and the deposited surface may have the same roughness and shape. It is desirable.
In a lithium ion secondary battery using a commercially available electrolytic copper foil as a negative electrode current collector, the battery characteristics, particularly the cycle characteristics in charge and discharge, were poor and could not be used. It has been found that the above-described problem is caused because a large unevenness is formed on one main surface of the electrolytic copper foil, and the difference in surface roughness between both main surfaces of the electrolytic copper foil is too large.
 これまで電解銅箔は、一般にその用途が、主にプリント基板、フレキシブル基板であり、プラスチックとの密着性を良くするために( アンカー効果をねらうために)、電解銅箔の主面に大きな凹凸を形成していた。そのため、この電解金属箔を非水電解液二次電池の集電体に用いた場合には、活物質表面に沿った変形が十分に起こらず、活物質と集電体の接触が悪く、容量の劣化やサイクル特性の低下が生じていた(特許文献3参照)。 Until now, electrolytic copper foil has been mainly used for printed circuit boards and flexible substrates. In order to improve the adhesion to plastics (to achieve the anchor effect), the main surface of the electrolytic copper foil has large irregularities. Was forming. Therefore, when this electrolytic metal foil is used as a current collector of a non-aqueous electrolyte secondary battery, deformation along the active material surface does not occur sufficiently, the contact between the active material and the current collector is poor, and the capacity Deterioration and cycle characteristics were reduced (see Patent Document 3).
 そこで、析出面の粗さを抑えた低粗度銅箔を作製するため、添加剤を加えて電解銅箔を製箔した。しかし、添加剤の影響により、製箔直後では銅層内部応力が高くなるが、この内部応力開放により銅層の結晶構造が安定する。しかしながら、内部応力の開放により、両面での応力差が発生し、析出面側に反るという問題が生じる。 Therefore, in order to produce a low-roughness copper foil in which the roughness of the precipitation surface was suppressed, an additive was added to make an electrolytic copper foil. However, due to the influence of the additive, the internal stress of the copper layer increases immediately after the foil production, but the crystal structure of the copper layer is stabilized by releasing the internal stress. However, due to the release of the internal stress, a stress difference occurs between the two surfaces, causing a problem of warping to the precipitation surface side.
 負極集電体の作製工程は、銅箔にスラリー状の活物質を両面に塗布、乾燥後、ロールプレスで圧着するプロセスである。当該銅箔が析出面(M面)側に反ると、活物質塗布工程では、設備の間隔が狭いために、銅箔が設備に接触して不具合が生じるという問題を生じた。従来の当該銅箔は、M面に反る傾向があり、問題を内包していた。 The production process of the negative electrode current collector is a process in which a slurry-like active material is applied to both sides of copper foil, dried, and then crimped by a roll press. When the copper foil warps to the deposition surface (M surface) side, in the active material coating process, the gap between the equipments is narrow, so that a problem arises that the copper foil comes into contact with the equipment to cause a problem. The conventional copper foil has a tendency to warp the M-plane, and has included a problem.
特開平7-188969号公報Japanese Patent Laid-Open No. 7-188969 特開2004-107786号公報JP 2004-107786 A 特許第3742144号公報Japanese Patent No. 3742144
 本発明は、従来の電解銅箔を使用した場合に発生する銅箔の反りの原因を究明すると共に、これを解決するための熱負荷による反りを低減させた電解銅箔、特に二次電池負極集電体に有用である電解銅箔及びその製造方法を提供することを課題とする。 The present invention investigates the cause of warping of copper foil that occurs when conventional electrolytic copper foil is used, and electrolytic copper foil, particularly secondary battery negative electrode, in which warpage due to thermal load is reduced to solve this cause It is an object of the present invention to provide an electrolytic copper foil useful for a current collector and a method for producing the same.
 電解銅箔を使用した場合に発生する銅箔の反りの主因は、電解銅箔の両面における硬度(ビッカース硬度)の差が大きいことが要因であることが分かった。この知見から、本発明は、以下の発明を提供するものである。 It has been found that the main cause of warping of the copper foil that occurs when the electrolytic copper foil is used is that the difference in hardness (Vickers hardness) on both sides of the electrolytic copper foil is large. From this knowledge, the present invention provides the following inventions.
1)電解銅箔又はトリート後の電解銅箔の表裏のビッカース硬度(Hv)の差が10以下であることを特徴とする電解銅箔。
2)電解銅箔又はトリート後の電解銅箔の反り量が1mm以下であることを特徴とする上記1)記載の電解銅箔
3)電解銅箔又はトリート後の電解銅箔の抗張力が30~40kg/mmであることを特徴とする上記1)又は2)記載の電解銅箔
4)電解銅箔又はトリート後の電解銅箔の伸びが10~15%であることを特徴とする上記1)~3)のいずれか一項に記載の電解銅箔
5)二次電池負極集電体用銅箔であることを特徴とする上記1)~4)のいずれか一項に記載の電解銅箔
1) The electrolytic copper foil, wherein the difference in Vickers hardness (Hv) between the front and back surfaces of the electrolytic copper foil or the treated electrolytic copper foil is 10 or less.
2) The amount of warp of the electrolytic copper foil or the treated electrolytic copper foil is 1 mm or less, 3) The electrolytic copper foil according to the above 1), wherein the tensile strength of the electrolytic copper foil or the treated electrolytic copper foil is 30- The electrolytic copper foil according to the above 1) or 2), characterized in that it is 40 kg / mm 2. 4) The elongation of the electrolytic copper foil or the electrolytic copper foil after treatment is 10 to 15%. 4) The electrolytic copper foil according to any one of 1) to 4) above, which is a copper foil for a secondary battery negative electrode current collector. Foil
6)電解銅箔又はトリート後の電解銅箔を、オーブンで130~155℃で加熱処理し、電解銅箔又はトリート後の電解銅箔の歪みを除去することを特徴とする電解銅箔の製造方法。
7)歪みを除去することにより、電解銅箔又はトリート後の電解銅箔の表裏のビッカース硬度(Hv)の差を10以下とすることを特徴とする上記6)記載の電解銅箔の製造方法
8)歪みを除去することにより、130~155℃の熱負荷後の電解銅箔又はトリート後の電解銅箔の反り量を1mm以下とすることを特徴とする上記6)又は7)記載の電解銅箔の製造方法
9)130~155℃の熱負荷後の電解銅箔又はトリート後の電解銅箔の抗張力を30~40kg/mmとすることを特徴とする上記6)~8)のいずれか一項記載の電解銅箔の製造方法
10)130~155℃の熱負荷後の伸びを10~15%とすることを特徴とする上記6)~9)のいずれか一項に記載の電解銅箔の製造方法
6) Electrolytic copper foil or treated electrolytic copper foil is heated in an oven at 130 to 155 ° C. to remove the distortion of the electrolytic copper foil or the treated electrolytic copper foil. Method.
7) The method for producing an electrolytic copper foil according to 6) above, wherein the difference in Vickers hardness (Hv) between the front and back surfaces of the electrolytic copper foil or the treated electrolytic copper foil is 10 or less by removing strain. 8) The electrolysis according to 6) or 7) above, wherein the warping amount of the electrolytic copper foil after heat load at 130 to 155 ° C. or the electrolytic copper foil after treatment is 1 mm or less by removing strain Any of 6) to 8) above, wherein the tensile strength of the electrolytic copper foil after heat load at 130 to 155 ° C. or the electrolytic copper foil after treatment is 30 to 40 kg / mm 2. 10) The electrolytic copper foil production method according to any one of 6) to 9) above, wherein the elongation after a heat load at 130 to 155 ° C. is 10 to 15%. Copper foil manufacturing method
 本発明は、電解銅箔を使用した場合に発生する銅箔の反りの原因を究明することによって、その解決手段として、電解銅箔の両面の硬度差を少なくすることにより、熱負荷による反りを低減させた電解銅箔を得ることが可能となり、特に二次電池負極集電体に有用である電解銅箔を提供できる優れた効果を有している。 The present invention investigates the cause of warping of the copper foil that occurs when the electrolytic copper foil is used, and as a solution to this, by reducing the difference in hardness between both sides of the electrolytic copper foil, It is possible to obtain a reduced electrolytic copper foil, and in particular, it has an excellent effect of providing an electrolytic copper foil useful for a secondary battery negative electrode current collector.
電解銅箔を製造する代表的な製造装置の概略説明図である。It is a schematic explanatory drawing of the typical manufacturing apparatus which manufactures an electrolytic copper foil.
 本発明は、第1に電解銅箔又はトリート後の電解銅箔の表裏のビッカース硬度(Hv)の差が10以下である電解銅箔を提供するものであるが、上記の通り、電解銅箔を使用した場合に発生する銅箔の反り(電解銅箔の析出面(M面)側に反る現象)の主因は、電解銅箔の両面における硬度(ビッカース硬度)の差が大きいことが主因と考えられる。
 この差を縮めるため、トリート処理で行われるオーブンの乾燥工程で、オーブン温度を上げ、熱付加を増やすことにより電解銅箔の両面硬度差を縮めることが可能となった。これは、加熱により銅箔内部の歪みが開放された結果であり、これにより反り量を大きく低減することが可能となった。
The present invention provides an electrolytic copper foil in which the difference in Vickers hardness (Hv) between the front and back surfaces of the electrolytic copper foil or the treated electrolytic copper foil is 10 or less, as described above. The main cause of warping of copper foil (a phenomenon of warping on the deposition surface (M surface) side of the electrolytic copper foil) that occurs when using copper is largely due to a large difference in hardness (Vickers hardness) on both surfaces of the electrolytic copper foil. it is conceivable that.
In order to reduce this difference, it became possible to reduce the difference in both-side hardness of the electrolytic copper foil by increasing the oven temperature and increasing the heat application in the oven drying process performed in the treatment process. This is the result of the release of the strain inside the copper foil by heating, which makes it possible to greatly reduce the amount of warpage.
 上記のように、トリート処理後にオーブンによる乾燥工程があるが、この乾燥工程を利用して、電解銅箔を所定の温度に加熱し、電解銅箔のビッカース硬度の表裏の差を低減することが可能である。しかしながら、トリート処理を行わない場合、またトリート処理後にオーブンによる乾燥工程が付属しない場合でも、電解銅箔そのものに同様のオーブンによる熱処理を行うことにより、同じ目的を達成することができる。 As mentioned above, there is a drying process in the oven after the treatment. By using this drying process, the electrolytic copper foil can be heated to a predetermined temperature to reduce the difference between the front and back of the Vickers hardness of the electrolytic copper foil. Is possible. However, even when the treatment is not performed, and even when the drying process by the oven is not attached after the treatment, the same purpose can be achieved by performing the heat treatment by the same oven on the electrolytic copper foil itself.
 本発明の電解銅箔のビッカース硬度の表裏の差を低減することにより、その後に130~155℃の熱負荷があっても、電解銅箔又はトリート後の電解銅箔の反り量1mm以下を達成できる。この程度の反り量は、負極集電体の作製工程、すなわち銅箔にスラリー状の活物質を両面に塗布、乾燥後、ロールプレスで圧着するプロセスで支障(活物質塗布工程では、設備の間隔が狭いために、銅箔が設備に接触して不具合が生じるという問題)が発生することはない。 By reducing the difference between the front and back of the Vickers hardness of the electrolytic copper foil of the present invention, the warp amount of the electrolytic copper foil or the electrolytic copper foil after treatment is 1 mm or less even if there is a subsequent heat load of 130 to 155 ° C. it can. This amount of warpage is a problem in the negative electrode current collector preparation process, that is, a process in which a slurry-like active material is applied to both sides of a copper foil, dried, and then crimped by a roll press (in the active material application process, the spacing of equipment Therefore, there is no problem that the copper foil comes into contact with the equipment to cause a problem.
 また、このような加熱処理によっても、130~155℃の熱負荷後の電解銅箔又はトリート後の電解銅箔(12μm厚)の抗張力を30~40kg/mmに維持することが可能である。この電解銅箔の抗張力は、電解条件、銅箔の厚みによっても変化するものであるから、この数値に制限されることがないことは、理解されるべきことである。 Also, by such heat treatment, the tensile strength of the electrolytic copper foil after heat load at 130 to 155 ° C. or the electrolytic copper foil after treatment (thickness 12 μm) can be maintained at 30 to 40 kg / mm 2. . It should be understood that the tensile strength of the electrolytic copper foil is not limited to this value because it changes depending on the electrolytic conditions and the thickness of the copper foil.
 また、上記加熱処理によって、130~155℃の熱負荷後の電解銅箔又はトリート後の電解銅箔(12μm厚)の伸びを10~15%とすることが可能である。通常、実施する好ましい伸びは、12~14%の範囲である。これも同様に、電解銅箔の伸びは、電解条件、銅箔の厚みによっても変化するものであるから、この数値に制限されることがないことは、理解されるべきことである。
 以上から、二次電池負極集電体用として有用な電解を得ることができる。
Further, by the above heat treatment, the elongation of the electrolytic copper foil after a heat load of 130 to 155 ° C. or the electrolytic copper foil after treatment (12 μm thickness) can be made 10 to 15%. Usually, the preferred elongation to be performed is in the range of 12-14%. Similarly, it is to be understood that the elongation of the electrolytic copper foil is not limited to this value because it changes depending on the electrolytic conditions and the thickness of the copper foil.
From the above, electrolysis useful for the secondary battery negative electrode current collector can be obtained.
 電解銅箔又はトリート後の電解銅箔の歪みを除去する具体的な方法としては、電解銅箔又はトリート後の電解銅箔を、オーブンで、130~155℃で約5-15秒間加熱処理することにより得られる。130℃未満の温度では、電解銅箔又はトリート後の電解銅箔の表裏のビッカース硬度(Hv)の差を10以下とすることができず、結果として歪みを除去するができず、熱負荷後の電解銅箔又はトリート後の電解銅箔の反り量を1mm以下とすることができない。 As a specific method for removing the distortion of the electrolytic copper foil or the treated electrolytic copper foil, the electrolytic copper foil or the treated electrolytic copper foil is heat-treated in an oven at 130 to 155 ° C. for about 5 to 15 seconds. Can be obtained. When the temperature is less than 130 ° C., the difference in Vickers hardness (Hv) between the front and back surfaces of the electrolytic copper foil or the treated copper foil cannot be reduced to 10 or less. The amount of warpage of the electrolytic copper foil or the electrolytic copper foil after treatment cannot be 1 mm or less.
 155℃を超える温度で加熱処理すると、電解銅箔の表裏のビッカース硬度(Hv)の差を10以下とすることができるが、電解銅箔の表面が酸化変色するほか、長時間加熱処理すると、銅箔内部の再結晶する可能性があるので、好ましいとは言えず、加熱処理温度と加熱処理時間にも制限がある。したがって、上記の範囲とすることが望ましいと言える。 When heat treatment is performed at a temperature exceeding 155 ° C., the difference in Vickers hardness (Hv) between the front and back surfaces of the electrolytic copper foil can be made 10 or less, but when the surface of the electrolytic copper foil is oxidized and discolored, Since there is a possibility that the inside of the copper foil is recrystallized, it cannot be said that it is preferable, and the heat treatment temperature and the heat treatment time are also limited. Therefore, it can be said that the above range is desirable.
 また、上記加熱処理により、歪みを除去し、130~155℃の熱負荷後の電解銅箔又はトリート後の電解銅箔(12μm厚)の抗張力を30~40kg/mmに、さらに伸びを10~15%に維持することができる。 Further, the above heat treatment removes the strain, the tensile strength of the electrolytic copper foil after heat load at 130 to 155 ° C. or the electrolytic copper foil after treatment (12 μm thickness) is 30 to 40 kg / mm 2 , and the elongation is 10 Can be maintained at ~ 15%.
 本願発明の電解銅箔は、図1に示すような電解銅箔製造装置を用いて、硫酸系銅電解液を用いた電解法により電解銅箔を製造することができる。本願発明は、電解槽の中に、例えば直径約3000mm、幅約2500mmのチタン製又はステンレス製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置した従来の電解銅箔製造装置を用いて、製造することができる。この装置の例は一例であり、装置の仕様に特に制限はない。 The electrolytic copper foil of the present invention can be produced by an electrolytic method using a sulfuric acid-based copper electrolyte using an electrolytic copper foil production apparatus as shown in FIG. The present invention relates to a conventional electrolytic copper in which, for example, a rotating drum made of titanium or stainless steel having a diameter of about 3000 mm and a width of about 2500 mm and an electrode is disposed around the drum with an inter-electrode distance of about 5 mm. It can manufacture using a foil manufacturing apparatus. The example of this apparatus is an example and there is no restriction | limiting in particular in the specification of an apparatus.
 この電解槽の中に、銅濃度:80~110g/L、硫酸濃度:70~110g/L、にかわ濃度:2.0~10.0ppm、適宜添加材を導入して電解液とする。
 そして、線速:1.5~5.0m/s、電解液温:60℃~65℃、電流密度:60~120A/dmに調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造する。
 通常、電解液温度を60~65℃とし、電流密度を60~120A/dmとして電解する。上記の特性を有する電解銅箔を得る好適な条件である。しかし、この条件に固定(制限)される必要はないが、電解液温の調整は重要である。詳細は、実施例及び比較例で説明する。
In this electrolytic cell, copper concentration: 80 to 110 g / L, sulfuric acid concentration: 70 to 110 g / L, glue concentration: 2.0 to 10.0 ppm, and appropriate additives are introduced to obtain an electrolytic solution.
Then, the linear velocity was adjusted to 1.5 to 5.0 m / s, the electrolyte temperature was adjusted to 60 to 65 ° C., and the current density was adjusted to 60 to 120 A / dm 2 to deposit copper on the surface of the rotating drum. The copper deposited on the surface of the film is peeled off to continuously produce a copper foil.
Usually, electrolysis is performed at an electrolyte temperature of 60 to 65 ° C. and a current density of 60 to 120 A / dm 2 . This is a suitable condition for obtaining an electrolytic copper foil having the above characteristics. However, it is not necessary to be fixed (restricted) to this condition, but adjustment of the electrolyte temperature is important. Details will be described in Examples and Comparative Examples.
 この電解の表面又は裏面、さらには両面に、必要に応じてトリート処理、粗化処理を施すことができる。通常トリート処理が行われているが、必要に応じて、省略することもできる。
 粗化処理については、例えば、平均の表面粗さRaを0.04~0.20μmとすることができる。この場合、平均の表面粗さRaの下限を0.04μmとする理由は、微細な粒子を形成し、密着性を良好にするためである。
Treating and roughening treatments can be applied to the surface or back surface of this electrolysis, or both surfaces as necessary. The treatment process is normally performed, but may be omitted if necessary.
For the roughening treatment, for example, the average surface roughness Ra can be set to 0.04 to 0.20 μm. In this case, the reason why the lower limit of the average surface roughness Ra is 0.04 μm is to form fine particles and improve the adhesion.
 これによって、例えば二次電池の活物質を極力多く塗布することが可能となり、電池の電気容量を高めることができる。他方、上限を0.20μmとする理由は、重量厚みのばらつきを少なくするためである。これによって、例えば二次電池の充放電特性を向上させることができる。これらの表面粗さは一例を示すものであり、電解銅箔の用途に応じて適宜調節できる。 This makes it possible, for example, to apply as much active material as possible for the secondary battery and increase the electric capacity of the battery. On the other hand, the reason for setting the upper limit to 0.20 μm is to reduce variation in weight thickness. Thereby, for example, the charge / discharge characteristics of the secondary battery can be improved. These surface roughnesses show an example and can be appropriately adjusted according to the use of the electrolytic copper foil.
 また、二次電池用負極集電体用銅箔を例に挙げると、粗化処理面の粗化粒子の平均直径を0.1~0.4μmとすることが望ましい。粗化粒子は、微細な粒子であると共に、その微細粒子がより均一であることが望まれる。これも、上記と同様に、電池活物質の密着性を向上させ、活物質を極力多く塗布して電池の電気容量を高めるために好ましい形態である。 Further, taking the copper foil for a negative electrode current collector for a secondary battery as an example, it is desirable that the average diameter of the roughened particles on the roughened surface be 0.1 to 0.4 μm. It is desired that the roughened particles are fine particles and the fine particles are more uniform. Similarly to the above, this is a preferable mode for improving the adhesion of the battery active material and applying as much active material as possible to increase the electric capacity of the battery.
 また、二次電池用負極集電体用銅箔は、粗化処理層の最大高さを0.2μm以下とすることが望ましい。これも粗化処理層の厚みばらつきを低減させ、電池活物質の密着性を向上させ、活物質を極力多く塗布して電池の電気容量を高めるために好ましい形態である。本願発明は、この粗化粒子の厚みを0.2μm以下とする指標を基に、管理し、これを達成することが可能である。 Moreover, it is desirable that the maximum height of the roughened layer in the copper foil for the negative electrode current collector for the secondary battery is 0.2 μm or less. This is also a preferable mode for reducing the thickness variation of the roughening treatment layer, improving the adhesion of the battery active material, and increasing the electric capacity of the battery by applying as much active material as possible. The present invention can be managed and achieved based on an index that makes the thickness of the roughened particles 0.2 μm or less.
 二次電池用負極集電体用銅箔は、粗化粒子として、銅、コバルト、ニッケルの1種のめっき又はこれらの2種以上の合金めっきを形成することができる。通常、銅、コバルト、ニッケルの3者の合金めっきにより、粗化粒子を形成する。さらに、二次電池用負極集電体用銅箔は、耐熱性及び耐候(耐食)性を向上させるために、圧延銅合金箔の表裏両面の粗化処理面上に、コバルト-ニッケル合金めっき層、亜鉛-ニッケル合金めっき層、クロメート層から選択した一種以上の防錆処理層又は耐熱層及び/又はシランカップリング層を形成することが望ましい形態の要素である。 The copper foil for a negative electrode current collector for a secondary battery can form one type of plating of copper, cobalt, nickel or two or more types of alloy plating as roughening particles. Usually, roughened particles are formed by three-part alloy plating of copper, cobalt, and nickel. Furthermore, the copper foil for the negative electrode current collector for the secondary battery has a cobalt-nickel alloy plating layer on the roughened surface on both the front and back sides of the rolled copper alloy foil in order to improve heat resistance and weather resistance (corrosion resistance). It is a desirable element to form one or more rust-proofing layers or heat-resistant layers and / or silane coupling layers selected from zinc-nickel alloy plating layers and chromate layers.
 以上により、本発明の二次電池用負極集電体用銅箔は、表裏両面粗化処理後の圧延銅合金箔の銅箔幅方向の重量厚みばらつきを0.5%以下とすることができ、優れた二次電池用負極集電体用銅箔を提供することができる。 As described above, the copper foil for a negative electrode current collector for a secondary battery of the present invention can reduce the thickness variation in the copper foil width direction of the rolled copper alloy foil after the front and back surface roughening treatment to 0.5% or less. An excellent copper foil for a negative electrode current collector for a secondary battery can be provided.
 本発明の二次電池用負極集電体用銅箔上の粗化処理を、例えば銅の粗化処理又は銅-コバルト-ニッケル合金めっき処理を施すことができる。
 例えば、銅の粗化処理は、次の通りである。
 銅粗化処理
 Cu:     10~25g/L
 HSO:   20~100g/L
 温度:     20~40℃
 Dk:     30~70A/dm
 時間:     1~5秒
The roughening treatment on the copper foil for the secondary battery negative electrode current collector of the present invention can be performed, for example, copper roughening treatment or copper-cobalt-nickel alloy plating treatment.
For example, the copper roughening treatment is as follows.
Copper roughening treatment Cu: 10 to 25 g / L
H 2 SO 4 : 20 to 100 g / L
Temperature: 20-40 ° C
Dk: 30 to 70 A / dm 2
Time: 1-5 seconds
 また、銅-コバルト-ニッケル合金めっき処理による粗化処理は、次の通りである。電解めっきにより、付着量が15~40mg/dm銅-100~3000μg/dmコバルト-100~500μg/dmニッケルであるような3元系合金層を形成するように実施する。この3元系合金層は耐熱性も備えている。 The roughening treatment by the copper-cobalt-nickel alloy plating treatment is as follows. By electrolytic plating, the amount of deposition is carried out to form a ternary alloy layer such that 15 ~ 40mg / dm 2 of copper -100 ~ 3000μg / dm 2 of cobalt -100 ~ 500μg / dm 2 of nickel. This ternary alloy layer also has heat resistance.
 こうした3元系銅-コバルト-ニッケル合金めっきを形成するための一般的浴及びめっき条件は次の通りである。
(銅-コバルト-ニッケル合金めっき)
Cu:10~20g/リットル
 Co:1~10g/リットル
 Ni:1~10g/リットル
 pH:1~4
 温度:30~50℃
 電流密度Dk :20~50A/dm2
 時間:1~5秒
The general bath and plating conditions for forming such ternary copper-cobalt-nickel alloy plating are as follows.
(Copper-cobalt-nickel alloy plating)
Cu: 10 to 20 g / liter Co: 1 to 10 g / liter Ni: 1 to 10 g / liter pH: 1 to 4
Temperature: 30-50 ° C
Current density D k : 20 to 50 A / dm 2
Time: 1-5 seconds
 粗化処理後、粗化面上にコバルト-ニッケル合金めっき層を形成することができる。このコバルト-ニッケル合金めっき層は、コバルトの付着量が200~3000μg/dmであり、かつコバルトの比率が60~70質量%とする。この処理は広い意味で一種の防錆処理とみることができる。 After the roughening treatment, a cobalt-nickel alloy plating layer can be formed on the roughened surface. The cobalt-nickel alloy plating layer has a cobalt adhesion amount of 200 to 3000 μg / dm 2 and a cobalt ratio of 60 to 70 mass%. This treatment can be regarded as a kind of rust prevention treatment in a broad sense.
 コバルト-ニッケル合金めっきの条件は次の通りである。
(コバルト-ニッケル合金めっき)
Co:1~20g/リットル
  Ni:1~20g/リットル
  pH:1.5~3.5
  温度:30~80℃
  電流密度Dk :1.0~20.0A/dm
  時間:0.5~4秒
The conditions for the cobalt-nickel alloy plating are as follows.
(Cobalt-nickel alloy plating)
Co: 1-20 g / liter Ni: 1-20 g / liter pH: 1.5-3.5
Temperature: 30-80 ° C
Current density D k : 1.0 to 20.0 A / dm 2
Time: 0.5-4 seconds
 コバルト-ニッケル合金めっき上に更に、亜鉛-ニッケル合金めっき層を形成することができる。亜鉛-ニッケル合金めっき層の総量を150~500μg/dmとし、かつニッケルの比率を16~40質量%とする。これは、耐熱防錆層という役割を有する。 A zinc-nickel alloy plating layer can be further formed on the cobalt-nickel alloy plating. The total amount of the zinc-nickel alloy plating layer is 150 to 500 μg / dm 2 and the nickel ratio is 16 to 40% by mass. This has the role of a heat and rust preventive layer.
 亜鉛-ニッケル合金めっきの条件は、次の通りである。
(亜鉛-ニッケル合金めっき)
Zn:0~30g/リットル
  Ni:0~25g/リットル
  pH:3~4
  温度:40~50℃
  電流密度Dk :0.5~5A/dm
  時間:1~3秒
The conditions for zinc-nickel alloy plating are as follows.
(Zinc-nickel alloy plating)
Zn: 0-30 g / liter Ni: 0-25 g / liter pH: 3-4
Temperature: 40-50 ° C
Current density D k : 0.5 to 5 A / dm 2
Time: 1 to 3 seconds
 この後、必要に応じ、次の防錆処理を行うこともできる。好ましい防錆処理は、クロム酸化物単独の皮膜処理或いはクロム酸化物と亜鉛/亜鉛酸化物との混合物皮膜処理である。クロム酸化物と亜鉛/亜鉛酸化物との混合物皮膜処理とは、亜鉛塩または酸化亜鉛とクロム酸塩とを含むめっき浴を用いて電気めっきにより亜鉛または酸化亜鉛とクロム酸化物とより成る亜鉛-クロム基混合物の防錆層を被覆する処理である。 After this, if necessary, the following rust prevention treatment can be performed. A preferable antirust treatment is a coating treatment of chromium oxide alone or a mixture coating treatment of chromium oxide and zinc / zinc oxide. Chromium oxide and zinc / zinc oxide mixture film treatment means zinc or zinc oxide comprising zinc oxide and chromium oxide by electroplating using a plating bath containing zinc salt or zinc oxide and chromate. It is the process which coat | covers the antirust layer of a chromium group mixture.
 めっき浴としては、代表的には、KCr、NaCr等の重クロム酸塩やCrO等の少なくとも一種と、水溶性亜鉛塩、例えばZnO 、ZnSO・7HOなど少なくとも一種と、水酸化アルカリとの混合水溶液が用いられる。代表的なめっき浴組成と電解条件例は次の通りである。こうして得られた銅箔は、優れた耐熱性剥離強度、耐酸化性及び耐塩酸性を有する。 As the plating bath, typically, at least one kind of dichromate such as K 2 Cr 2 O 7 and Na 2 Cr 2 O 7 and CrO 3 and a water-soluble zinc salt such as ZnO 4 and ZnSO 4 · 7H are used. A mixed aqueous solution of at least one kind such as 2 O and an alkali hydroxide is used. A typical plating bath composition and electrolysis conditions are as follows. The copper foil thus obtained has excellent heat resistance peel strength, oxidation resistance and hydrochloric acid resistance.
(クロム防錆処理)
 KCr(NaCr或いはCrO):2~10g/リットル
 NaOH或いはKOH :10~50g/リットル
 ZnO 或いはZnSO・7HO:0.05~10g/リットル
 pH:3~13
 浴温:20~80℃
 電流密度Dk :0.05~5A/dm
 時間:5~30秒
 アノード:Pt-Ti 板、ステンレス鋼板等
 クロム酸化物はクロム量として15μg/dm以上、亜鉛は30μg/dm以上の被覆量が要求される。
(Chromium rust prevention treatment)
K 2 Cr 2 O 7 (Na 2 Cr 2 O 7 or CrO 3 ): 2 to 10 g / liter NaOH or KOH: 10 to 50 g / liter ZnO or ZnSO 4 · 7H 2 O: 0.05 to 10 g / liter pH: 3-13
Bath temperature: 20-80 ° C
Current density D k : 0.05 to 5 A / dm 2
Time: 5-30 seconds Anode: Pt—Ti plate, stainless steel plate, etc. Chromium oxide requires a coating amount of 15 μg / dm 2 or more, and zinc requires a coating amount of 30 μg / dm 2 or more.
 最後に、必要に応じ、銅箔と樹脂基板との接着力の改善を主目的として、防錆層上の少なくとも粗化面にシランカップリング剤を塗布するシラン処理が施される。このシラン処理に使用するシランカップリング剤としては、オレフィン系シラン、エポキシ系シラン、アクリル系シラン、アミノ系シラン、メルカプト系シランを挙げることができるが、これらを適宜選択して使用することができる。 Finally, if necessary, silane treatment is performed by applying a silane coupling agent to at least the roughened surface on the rust preventive layer, mainly for the purpose of improving the adhesion between the copper foil and the resin substrate. Examples of the silane coupling agent used for the silane treatment include olefin silane, epoxy silane, acrylic silane, amino silane, and mercapto silane, and these can be appropriately selected and used. .
 塗布方法は、シランカップリング剤溶液のスプレーによる吹付け、コーターでの塗布、浸漬、流しかけ等いずれでもよい。例えば、特公昭60-15654号は、銅箔の粗面側にクロメート処理を施した後シランカップリング剤処理を行なうことによって銅箔と樹脂基板との接着力を改善することを記載している。詳細はこれを参照されたい。この後、必要なら、銅箔の延性を改善する目的で焼鈍処理を施すこともある。 Application method may be any of spraying a silane coupling agent solution by spraying, coating with a coater, dipping, pouring and the like. For example, Japanese Patent Publication No. 60-15654 describes that the adhesion between a copper foil and a resin substrate is improved by subjecting the rough surface of the copper foil to a chromate treatment followed by a silane coupling agent treatment. . Refer to this for details. Thereafter, if necessary, an annealing treatment may be performed for the purpose of improving the ductility of the copper foil.
 上記については、主として二次電池用負極集電体に適用する本願発明の電解銅箔への付加的な表面処理層について説明したが、電解銅箔の用途に応じて、これらを任意に選択し、適用できることは言うまでもない。本発明はこれらを全て包含するものである。 As for the above, an additional surface treatment layer to the electrolytic copper foil of the present invention, which is mainly applied to the negative electrode current collector for secondary batteries, has been described, but these are arbitrarily selected according to the use of the electrolytic copper foil. Needless to say, it can be applied. The present invention includes all of these.
 以下、実施例及び比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例のみに制限されるものではない。すなわち、本発明に含まれる他の態様または変形を包含するものである。 Hereinafter, description will be made based on examples and comparative examples. In addition, a present Example is an example to the last, and is not restrict | limited only to this example. That is, it includes other aspects or modifications included in the present invention.
 電解槽の中に、直径約3133mm、幅2476.5mmのチタン製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置した。
 電解液は、銅85g/L、硫酸75g/L、塩化物イオン60mg/L、ビス-(3-スルホプロピル)-ジスルフィドナトリウム塩3-10ppm、窒化含有有機化合物2-20ppmとした。
 また、電解液の液温57℃、電解液線速度1.0m/分、電流密度50A/dmとした。回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造した。電解銅箔の箔厚は、9.5~12.5μmであった。
In the electrolytic cell, a titanium rotating drum having a diameter of about 3133 mm and a width of 2476.5 mm and an electrode distance of about 5 mm were arranged around the drum.
The electrolytic solution was 85 g / L copper, 75 g / L sulfuric acid, 60 mg / L chloride ion, 3-10 ppm bis- (3-sulfopropyl) -disulfide sodium salt, and 2-20 ppm nitride-containing organic compound.
The electrolyte temperature was 57 ° C., the electrolyte linear velocity was 1.0 m / min, and the current density was 50 A / dm 2 . Copper was deposited on the surface of the rotating drum, and the copper deposited on the surface of the rotating drum was peeled off to continuously produce a copper foil. The foil thickness of the electrolytic copper foil was 9.5 to 12.5 μm.
 この銅箔をクロム付着量が2.6~4.0mg/mの範囲となるように表面酸化防止処理を施し、オーブンにより乾燥させた。以下に示す、実施例1、実施例2、比較例1、比較例2、比較例3は、表1に示す処理の差だけで、他の条件は同一である。オーブンによる加熱時間は、いずれも約10秒である。 The copper foil was subjected to a surface oxidation preventing treatment so that the chromium adhesion amount was in the range of 2.6 to 4.0 mg / m 2 and dried in an oven. Example 1, Example 2, Comparative Example 1, Comparative Example 2, and Comparative Example 3 shown below are the same except for the processing differences shown in Table 1. The heating time in the oven is about 10 seconds in all cases.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例1)
 実施例1については、オーブンによるトリート処理した電解銅箔の加熱処理温度を140℃とした場合である。140℃の熱負荷後、酸化による表面の変色はなかった。電解銅箔のドラム面側のビッカース硬度(Hv)は94、反対側である析出面のビッカース硬度(Hv)は85であり、その差は9であり、本願発明の条件を満たしていた。また、反り量は0.7mmであり、反り量は小さく、本願発明の目的を達成していた。この結果を、上記表1に示す。
 また、実施例1の抗張力は34.8kgf/mm、伸びは13.3%であり、これらについても、本願発明の目的を達成していた。この結果を、表2に示す。
Example 1
In Example 1, the heat treatment temperature of the electrolytic copper foil treated by the oven is 140 ° C. There was no surface discoloration due to oxidation after a heat load of 140 ° C. The Vickers hardness (Hv) on the drum surface side of the electrolytic copper foil was 94, and the Vickers hardness (Hv) of the precipitation surface on the opposite side was 85, the difference being 9, which satisfied the conditions of the present invention. Further, the amount of warpage was 0.7 mm, and the amount of warpage was small, achieving the object of the present invention. The results are shown in Table 1 above.
The tensile strength of Example 1 was 34.8 kgf / mm 2 and the elongation was 13.3%. These also achieved the object of the present invention. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(比較例1)
 比較例1については、トリート処理しなかった場合である。防錆処理を施していないため、酸化による表面の変色あった。電解銅箔のドラム面側のビッカース硬度(Hv)は105、反対側である析出面のビッカース硬度(Hv)は79であり、その差は26となり、本願発明の条件を満たしていなかった。また、反り量は1.5mmであり、反り量は大きく、本願発明の目的を満たしていなかった。この結果を同様に、上記表1に示す。また、比較例1の抗張力は35.5kgf/mm、伸びは13.3%であり、これらについては、本願発明の条件の範囲にあった。この結果を、表2に示す。
(Comparative Example 1)
In Comparative Example 1, the treatment was not performed. Since no rust prevention treatment was applied, the surface was discolored due to oxidation. The Vickers hardness (Hv) on the drum surface side of the electrolytic copper foil was 105, and the Vickers hardness (Hv) of the precipitation surface on the opposite side was 79, the difference being 26, which did not satisfy the conditions of the present invention. Further, the amount of warpage was 1.5 mm, the amount of warpage was large, and the object of the present invention was not satisfied. The results are similarly shown in Table 1 above. Further, the tensile strength of Comparative Example 1 was 35.5 kgf / mm 2 and the elongation was 13.3%, which were within the range of the conditions of the present invention. The results are shown in Table 2.
(実施例2)
 実施例2のオーブンによるトリート処理した電解銅箔の加熱処理温度は、150℃である。150℃の熱負荷後、酸化による表面の変色はなかった。電解銅箔のドラム面側のビッカース硬度(Hv)は92、反対側である析出面のビッカース硬度(Hv)は83であり、その差は9であり、本願発明の条件を満たしていた。また、反り量は0.4mmであり、反り量は小さく、本願発明の目的を達成していた。
 この結果を、上記表1に示す。また、実施例2の抗張力は34.6kgf/mm、伸びは13.6%であり、これらについても、本願発明の目的を達成していた。この結果を、表2に示す。
(Example 2)
The heat treatment temperature of the electrolytic copper foil treated with the oven of Example 2 is 150 ° C. There was no surface discoloration due to oxidation after a heat load of 150 ° C. The Vickers hardness (Hv) on the drum surface side of the electrolytic copper foil was 92, and the Vickers hardness (Hv) of the precipitation surface on the opposite side was 83, and the difference was 9, which satisfied the conditions of the present invention. Moreover, the amount of warpage was 0.4 mm, the amount of warpage was small, and the object of the present invention was achieved.
The results are shown in Table 1 above. Moreover, the tensile strength of Example 2 was 34.6 kgf / mm < 2 >, and elongation was 13.6%, These also achieved the objective of this invention. The results are shown in Table 2.
(比較例2)
 比較例2については、トリート処理した電解銅箔を、オーブン中120℃で加熱処理した場合である。この結果、120℃の熱負荷後、酸化による表面の変色はなかった。電解銅箔のドラム面側のビッカース硬度(Hv)は103、反対側である析出面のビッカース硬度(Hv)は80であり、その差は23となり、本願発明の条件を満たしていなかった。また、反り量は1.5mmであり、反り量は大きく、本願発明の目的を満たしていなかった。これは、加熱処理が120℃と低かったためと考えられた。
 この結果を同様に、上記表1に示す。また、比較例2の抗張力は35.5kgf/mm、伸びは13.4%であり、これらについては、本願発明の条件の範囲にあった。この結果を、表2に示す。
(Comparative Example 2)
About the comparative example 2, it is a case where the treated electrolytic copper foil is heat-processed at 120 degreeC in oven. As a result, there was no surface discoloration due to oxidation after 120 ° C. heat load. The Vickers hardness (Hv) on the drum surface side of the electrolytic copper foil was 103, and the Vickers hardness (Hv) of the precipitation surface on the opposite side was 80. The difference was 23, which did not satisfy the conditions of the present invention. Further, the amount of warpage was 1.5 mm, the amount of warpage was large, and the object of the present invention was not satisfied. This was considered because the heat treatment was as low as 120 ° C.
The results are similarly shown in Table 1 above. Moreover, the tensile strength of the comparative example 2 was 35.5 kgf / mm < 2 >, and elongation was 13.4%, and these were in the range of the conditions of this invention. The results are shown in Table 2.
(比較例3)
 比較例3については、トリート処理した電解銅箔を、オーブン中160℃で加熱処理した場合である。この結果、160℃の熱負荷後、酸化による表面の変色が見られた。電解銅箔のドラム面側のビッカース硬度(Hv)は92、反対側である析出面のビッカース硬度(Hv)は85であり、その差は7となり、本願発明の条件を満たしており、反り量は0.5mmであり、反り量は小さく、本願発明の目的を満たしていた。しかし、加熱処理が160℃と高いため、変色が生じ、好ましくなかった。
 この結果を同様に、上記表1に示す。また、比較例2の抗張力は34.7kgf/mm、伸びは13.2%であり、これらについては、本願発明の条件の範囲にあった。この結果を、表2に示す。
(Comparative Example 3)
Comparative Example 3 is a case where the treated electrolytic copper foil was heat-treated at 160 ° C. in an oven. As a result, after heat load at 160 ° C., discoloration of the surface due to oxidation was observed. The Vickers hardness (Hv) on the drum surface side of the electrolytic copper foil is 92, and the Vickers hardness (Hv) of the precipitation surface on the opposite side is 85, the difference being 7, which satisfies the conditions of the present invention, and the amount of warpage Was 0.5 mm, and the amount of warpage was small, satisfying the object of the present invention. However, since the heat treatment was as high as 160 ° C., discoloration occurred, which was not preferable.
The results are similarly shown in Table 1 above. Moreover, the tensile strength of the comparative example 2 was 34.7 kgf / mm < 2 >, and elongation was 13.2%, About these, it was in the range of the conditions of this invention. The results are shown in Table 2.
 以上の結果、全ての条件でビッカース硬度は、ドラム面の方が高い。その理由として、ドラム面は応力開放が抑制されており、結晶サイズが析出面と比べて小さいため、硬度にも差が生じると考えられる。しかしながら、電解銅箔又はトリート後の電解銅箔を、オーブンで130~155℃で加熱処理することにより、電解銅箔のドラム面側と、反対側である析出面との、ビッカース硬度(Hv)の差を低減することができ、反り量を小さくできる効果的な条件と言える。電解銅箔の厚みを変えた場合においても、上記実施例、比較例と同様の結果を得ることができた。 As a result, Vickers hardness is higher on the drum surface under all conditions. The reason is that stress release on the drum surface is suppressed, and the crystal size is smaller than that of the precipitation surface, so that it is considered that there is a difference in hardness. However, when the electrolytic copper foil or the treated electrolytic copper foil is heat-treated in an oven at 130 to 155 ° C., the Vickers hardness (Hv) between the drum surface side of the electrolytic copper foil and the opposite deposition surface is obtained. This can be said to be an effective condition that can reduce the difference between the two and reduce the amount of warpage. Even when the thickness of the electrolytic copper foil was changed, the same results as in the above Examples and Comparative Examples could be obtained.
 上記の通り、オーブンで130~155℃で加熱処理することにより、通常の乾燥よりも熱量を多くしているが、再結晶するほどの熱量ではなく、高張力と伸びに大きな差異はなく、本願発明の条件を満たしていた。 As described above, heat treatment is performed at 130 to 155 ° C. in an oven, so that the amount of heat is larger than that of normal drying. However, the amount of heat is not high enough to recrystallize, and there is no significant difference between high tension and elongation. The conditions of the invention were met.
 本発明は、電解銅箔を使用した場合に発生する銅箔の反りの原因を究明することによって、その解決手段として、電解銅箔の両面の硬度差を少なくすることにより、熱負荷による反りを低減させた電解銅箔得ることが可能となり、特に二次電池負極集電体に有用である電解銅箔を提供できる。 The present invention investigates the cause of warping of the copper foil that occurs when the electrolytic copper foil is used, and as a solution to this, by reducing the difference in hardness between both sides of the electrolytic copper foil, It is possible to obtain a reduced electrolytic copper foil, and it is possible to provide an electrolytic copper foil that is particularly useful for a secondary battery negative electrode current collector.

Claims (10)

  1.  電解銅箔又はトリート後の電解銅箔の表裏のビッカース硬度(Hv)の差が10以下であることを特徴とする電解銅箔。 An electrolytic copper foil characterized in that the difference in Vickers hardness (Hv) between the front and back surfaces of the electrolytic copper foil or the treated electrolytic copper foil is 10 or less.
  2.  電解銅箔又はトリート後の電解銅箔の反り量が1mm以下であることを特徴とする請求項1記載の電解銅箔。 2. The electrolytic copper foil according to claim 1, wherein the amount of warpage of the electrolytic copper foil or the electrolytic copper foil after treatment is 1 mm or less.
  3.  電解銅箔又はトリート後の電解銅箔の抗張力が30~40kg/mmであることを特徴とする請求項1又は2記載の電解銅箔。 3. The electrolytic copper foil according to claim 1, wherein the electrolytic copper foil or the electrolytic copper foil after treatment has a tensile strength of 30 to 40 kg / mm 2 .
  4.  電解銅箔又はトリート後の電解銅箔の伸びが10~15%であることを特徴とする請求項1~3のいずれか一項に記載の電解銅箔。 The electrolytic copper foil according to any one of claims 1 to 3, wherein an elongation of the electrolytic copper foil or the electrolytic copper foil after treatment is 10 to 15%.
  5.  二次電池負極集電体用銅箔であることを特徴とする請求項1~4のいずれか一項に記載の電解銅箔。 The electrolytic copper foil according to any one of claims 1 to 4, which is a copper foil for a secondary battery negative electrode current collector.
  6.  電解銅箔又はトリート後の電解銅箔を、オーブンで130~155℃で加熱処理し、電解銅箔又はトリート後の電解銅箔の歪みを除去することを特徴とする電解銅箔の製造方法。 An electrolytic copper foil or a treated electrolytic copper foil is heated in an oven at 130 to 155 ° C. to remove distortion of the electrolytic copper foil or the treated electrolytic copper foil.
  7.  歪みを除去することにより、電解銅箔又はトリート後の電解銅箔の表裏のビッカース硬度(Hv)の差を10以下とすることを特徴とする請求項6記載の電解銅箔の製造方法。 The method for producing an electrolytic copper foil according to claim 6, wherein the difference in Vickers hardness (Hv) between the front and back surfaces of the electrolytic copper foil or the treated electrolytic copper foil is 10 or less by removing the strain.
  8.  歪みを除去することにより、130~155℃の熱負荷後の電解銅箔又はトリート後の電解銅箔の反り量を1mm以下とすることを特徴とする請求項6又は7記載の電解銅箔の製造方法。 The electrolytic copper foil according to claim 6 or 7, wherein the warping amount of the electrolytic copper foil after heat load at 130 to 155 ° C or the electrolytic copper foil after treatment is 1 mm or less by removing strain. Production method.
  9.  130~155℃の熱負荷後の電解銅箔又はトリート後の電解銅箔の抗張力を30~40kg/mmとすることを特徴とする請求項6~8のいずれか一項記載の電解銅箔の製造方法。 The electrolytic copper foil according to any one of claims 6 to 8, wherein the tensile strength of the electrolytic copper foil after heat load at 130 to 155 ° C or the electrolytic copper foil after treatment is set to 30 to 40 kg / mm 2. Manufacturing method.
  10.  130~155℃の熱負荷後の伸びを10~15%とすることを特徴とする請求項6~9のいずれか一項に記載の電解銅箔の製造方法。 The method for producing an electrolytic copper foil according to any one of claims 6 to 9, wherein the elongation after a heat load of 130 to 155 ° C is 10 to 15%.
PCT/JP2012/059442 2012-04-06 2012-04-06 Electrolytic copper foil and method for manufacturing same WO2013150640A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/059442 WO2013150640A1 (en) 2012-04-06 2012-04-06 Electrolytic copper foil and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/059442 WO2013150640A1 (en) 2012-04-06 2012-04-06 Electrolytic copper foil and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2013150640A1 true WO2013150640A1 (en) 2013-10-10

Family

ID=49300162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059442 WO2013150640A1 (en) 2012-04-06 2012-04-06 Electrolytic copper foil and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2013150640A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018522378A (en) * 2015-07-24 2018-08-09 エル エス エムトロン リミテッドLS Mtron Ltd. Electrolytic copper foil for lithium secondary battery and lithium secondary battery including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07231152A (en) * 1993-12-24 1995-08-29 Mitsui Mining & Smelting Co Ltd Copper foil for printed circuit inner layer and its manufacture
JPH08283886A (en) * 1995-04-07 1996-10-29 Furukawa Circuit Foil Kk Electrolytic copper foil for flexible wiring board
JP2001181886A (en) * 1999-12-28 2001-07-03 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil
JP2007146289A (en) * 2005-10-31 2007-06-14 Mitsui Mining & Smelting Co Ltd Method for manufacture of electrolytic copper foil, electrolytic copper foil manufactured by the method, surface-treated copper foil manufactured using the electrolytic copper foil, and copper-clad laminate manufactured using the electrolytic copper foil or surface-treated copper foil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07231152A (en) * 1993-12-24 1995-08-29 Mitsui Mining & Smelting Co Ltd Copper foil for printed circuit inner layer and its manufacture
JPH08283886A (en) * 1995-04-07 1996-10-29 Furukawa Circuit Foil Kk Electrolytic copper foil for flexible wiring board
JP2001181886A (en) * 1999-12-28 2001-07-03 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil
JP2007146289A (en) * 2005-10-31 2007-06-14 Mitsui Mining & Smelting Co Ltd Method for manufacture of electrolytic copper foil, electrolytic copper foil manufactured by the method, surface-treated copper foil manufactured using the electrolytic copper foil, and copper-clad laminate manufactured using the electrolytic copper foil or surface-treated copper foil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018522378A (en) * 2015-07-24 2018-08-09 エル エス エムトロン リミテッドLS Mtron Ltd. Electrolytic copper foil for lithium secondary battery and lithium secondary battery including the same

Similar Documents

Publication Publication Date Title
JP2012172198A (en) Electrolytic copper foil and method for manufacturing the same
JP5417458B2 (en) Copper foil for secondary battery negative electrode current collector
JP5074611B2 (en) Electrolytic copper foil for secondary battery negative electrode current collector and method for producing the same
KR101482898B1 (en) Surface treated copper foil
US9060431B2 (en) Liquid crystal polymer copper-clad laminate and copper foil used for said laminate
KR101967022B1 (en) Electrolytic copper foil and method for producing electrolytic copper foil
EP2544282A1 (en) Surface treatment method for copper foil, surface treated copper foil and copper foil for negative electrode collector of lithium ion secondary battery
TWI518210B (en) Electrolytic copper foil and method for manufacturing the same and surface-treated copper foil using the electrolytic copper foil
JP5941959B2 (en) Electrolytic copper foil and method for producing the same
JP5822928B2 (en) Electrolytic copper foil having high strength and low warpage and method for producing the same
JP5416037B2 (en) Rolled copper foil for lithium battery current collector
JP5752301B2 (en) Electrolytic copper foil and method for producing the electrolytic copper foil
WO2014112619A1 (en) Copper foil, anode for lithium ion battery, and lithium ion secondary battery
KR20140097208A (en) Electrolysis copper alloy foil and electrolysis copper alloy foil with carrier foil
JP2013095972A (en) Electrolytic copper foil, and wiring board and battery using electrolytic copper foil
TW201524277A (en) Copper foil for a printed wiring board
WO2013150640A1 (en) Electrolytic copper foil and method for manufacturing same
JP5019654B2 (en) Copper (alloy) foil for negative electrode current collector of lithium ion secondary battery, manufacturing method thereof, negative electrode of lithium ion secondary battery, manufacturing method thereof
JP2014152343A (en) Composite copper foil and production method thereof
JP2014152344A (en) Composite copper foil and production method thereof
WO2012121020A1 (en) Electrolytic copper foil having high strength and less projections due to abnormal electrodeposition and method for manufacturing same
TWI415742B (en) A method for manufacturing fine grain copper foil with high peel strength and environmental protection for printed circuit board tool
TW201341594A (en) Electro-deposited copper foil and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12873546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP