JPH08283886A - Electrolytic copper foil for flexible wiring board - Google Patents

Electrolytic copper foil for flexible wiring board

Info

Publication number
JPH08283886A
JPH08283886A JP10709895A JP10709895A JPH08283886A JP H08283886 A JPH08283886 A JP H08283886A JP 10709895 A JP10709895 A JP 10709895A JP 10709895 A JP10709895 A JP 10709895A JP H08283886 A JPH08283886 A JP H08283886A
Authority
JP
Japan
Prior art keywords
copper foil
copper
electrolytic
foil
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10709895A
Other languages
Japanese (ja)
Other versions
JP3608840B2 (en
Inventor
Akitoshi Suzuki
昭利 鈴木
Hideo Otsuka
英雄 大塚
Shin Fukuda
福田  伸
Tsutomu Saito
勤 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Circuit Foil Co Ltd
Original Assignee
Furukawa Circuit Foil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Circuit Foil Co Ltd filed Critical Furukawa Circuit Foil Co Ltd
Priority to JP10709895A priority Critical patent/JP3608840B2/en
Publication of JPH08283886A publication Critical patent/JPH08283886A/en
Application granted granted Critical
Publication of JP3608840B2 publication Critical patent/JP3608840B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

PURPOSE: To produce copper foil which has excellent elongatability and flexing resistance at ordinary and elevated temps. and is recrystallizable at a low temp. by suppressing the carbon content in the copper foil produced by an electrolytic method to a specific value or below and heat treating the copper foil at a specific temp. CONSTITUTION: A Ti drum-shaped cathode 2 is arranged in a concentrical Pb anode 1 on the outer side. An electrolyte 3 contg. proper amts. of copper, sulfuric acid, chlorine ions and org. matter, such as hydrolyzed glue is put into an electrolytic cell in which the anode is formed. While the drum-shaped cathode 2 is kept rotated, current is supplied between the anode 1 and the cathode 2 to electrolytically deposit copper on the surface of the drum-shaped cathode 2. The copper is taken up as the copper foil 4. In such a case, the carbon content in the copper foil 4 is confined to <=18ppm by controlling the amt. of the glue as the org. matter in the electrolyte 3. The resulted copper foil 4 is heat treated at 100 to 300 deg.C in a gaseous nitrogen atmosphere. The copper foil which is recrystallizable at a low temp. of about 120 deg.C, has the excellent performance compared with the conventional rolled copper foil and has the broad width hardly producible from the rolled copper foil is thus stably and inexpensively produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、フレキシブル配線板
(以下FPCと略す)用電解銅箔に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic copper foil for flexible wiring boards (hereinafter abbreviated as FPC).

【0002】[0002]

【従来の技術】FPCは、ポリイミド、ポリエステル等
の絶縁性フィルムに銅箔を接着剤で張り付け、エッチン
グ処理してパターンを施したものである。最近ではこの
他に、接着剤を使用しないFPCも使用されはじめてい
る。主な用途は、カメラ、AV機器、パソコン、コンピ
ューター端末機器、HDD、FDD等のOA機器、携帯
電話、カーエレクトロニクス機器等の内部配線に使用さ
れている。
2. Description of the Related Art The FPC is a pattern in which a copper foil is attached to an insulating film such as polyimide or polyester with an adhesive, and an etching treatment is applied. Recently, in addition to this, FPCs that do not use an adhesive have begun to be used. It is mainly used for internal wiring of cameras, AV equipments, personal computers, computer terminal equipments, OA equipments such as HDDs and FDDs, mobile phones and car electronics equipments.

【0003】FPC用銅箔には大きく分けて2種類があ
る。一つは鋳造により製造した銅の鋳塊に圧延加工を施
して箔状とした圧延銅箔である。もう一つは、硫酸銅を
主成分とする溶液を電解して、回転する陰極上に銅を箔
状に析出させ、これを連続的に引き剥して製造する電解
銅箔である。
There are roughly two types of copper foil for FPC. One is a rolled copper foil that is formed into a foil by subjecting a copper ingot produced by casting to a rolling process. The other is an electrolytic copper foil produced by electrolyzing a solution containing copper sulfate as a main component, depositing copper in a foil shape on a rotating cathode and continuously peeling it off.

【0004】FPC用銅箔には屈曲性が要求されるた
め、多くは圧延銅箔が使用されてきた。圧延銅箔はFP
C製造時の接着剤の硬化工程で加熱されると、120〜
160℃という比較的低温で焼鈍されて軟化が起こり、
屈曲性や伸びが大きくなるという特徴を有するからであ
る。しかし圧延銅箔は高価であり、また圧延で製造され
る銅箔の幅は通常60cm程度であり、FPC製造時の能
率が悪いという欠点があった。
Since copper foil for FPC is required to have flexibility, rolled copper foil has been used in many cases. Rolled copper foil is FP
When heated in the curing process of the adhesive at the time of C production, 120-
It is annealed at a relatively low temperature of 160 ° C and softens,
This is because it has the characteristics of increased flexibility and elongation. However, the rolled copper foil is expensive, and the width of the copper foil produced by rolling is usually about 60 cm, which is a disadvantage in that the efficiency of FPC production is poor.

【0005】これに対して、電解銅箔は圧延銅箔に比べ
て安価であり、通常100cm以上の幅の銅箔を製造する
ことが可能であるが、従来の製造方法による電解銅箔
は、200℃以上に加熱しても焼鈍、軟化せず、屈曲性
が悪いため、FPCには限られた用途でしか使用されな
かった。
On the other hand, the electrolytic copper foil is cheaper than the rolled copper foil, and it is possible to produce a copper foil having a width of 100 cm or more, but the electrolytic copper foil produced by the conventional production method is Even when heated to 200 ° C. or higher, it was not annealed or softened, and had poor flexibility, so it was used only for FPC in a limited number of applications.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記従来の
電解銅箔の課題を解決し得るFPC用の電解銅箔を提供
することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an electrolytic copper foil for FPC which can solve the above problems of the conventional electrolytic copper foil.

【0007】[0007]

【課題を解決するための手段】従来、電解銅箔の製造に
使用する電解液としては、銅、硫酸を主成分とし、これ
にゼラチンまたはニカワのような有機物質を微量添加
し、塩酸または塩化ナトリウムのような塩素イオンを少
量含むものが用いられている。
[Means for Solving the Problems] Conventionally, as an electrolytic solution used for producing an electrolytic copper foil, copper and sulfuric acid are main components, to which a trace amount of an organic substance such as gelatin or glue is added, and hydrochloric acid or chloride is added. Those containing a small amount of chlorine ions such as sodium are used.

【0008】電解液中に微量の有機物質を添加する理由
は、有機添加剤には電解銅箔の表面の粗度を調節する働
きがあり、引っ張り強度を高めたり、また電解時に銅箔
表面にこぶが発生するのを抑える働きがあるからであ
る。一方、塩素イオンは、有機添加剤の働きを高める作
用をする。
The reason for adding a trace amount of an organic substance to the electrolytic solution is that the organic additive has the function of adjusting the surface roughness of the electrolytic copper foil, increasing the tensile strength, and the surface of the copper foil during electrolysis. This is because it has the function of suppressing the occurrence of bumps. On the other hand, chloride ion acts to enhance the function of the organic additive.

【0009】ところで、この有機添加剤の添加は、一方
で銅箔の常温及び高温時の伸び、耐屈曲性を低くする方
向に働き、加熱したとき再結晶するのを妨げる。これ
は、微量ではあるが、電解銅箔中に電解液中の有機添加
剤が取り込まれるためである。
On the other hand, the addition of this organic additive acts to reduce the elongation and flex resistance of the copper foil at room temperature and high temperature, and prevents recrystallization when heated. This is because the organic additive in the electrolytic solution is incorporated into the electrolytic copper foil, although the amount is small.

【0010】有機不純物は、通常電解銅箔の結晶粒界に
集まる。これら不純物原子が多い場合には、粒界の移動
は不純物の拡散速度に支配されてしまう。従って粒界の
移動のエネルギーは、純金属の場合にくらべて、不純物
を多く含む金属の場合には大きくなる。つまり、ある一
定量以上の有機物を含む電解銅箔は、より純粋な銅箔に
比べ再結晶温度が高くなる。
Organic impurities usually gather at the grain boundaries of the electrolytic copper foil. When the number of these impurity atoms is large, the movement of grain boundaries is governed by the diffusion rate of impurities. Therefore, the energy of movement of the grain boundaries is larger in the case of a metal containing a large amount of impurities, as compared with the case of a pure metal. That is, the electrolytic copper foil containing a certain amount or more of organic matter has a higher recrystallization temperature than a pure copper foil.

【0011】本発明者らは、この現象に着目してさらに
研究した結果、電解銅箔中に含まれる有機物の量を一定
量以下に抑えることによって常温及び高温時の伸び、耐
屈曲性が飛躍的に改良され、再結晶温度を200℃未満
に低下させることができることを見いだした。
As a result of further research focusing on this phenomenon, the inventors of the present invention have achieved a remarkable increase in elongation and bending resistance at room temperature and high temperature by suppressing the amount of organic substances contained in the electro-deposited copper foil below a certain amount. It has been found that the recrystallization temperature can be lowered to less than 200 ° C.

【0012】更には、上記の方法により得られた銅箔
を、100℃以上で加熱処理することにより、常温及び
高温時の伸び、耐屈曲性がさらに優れ、120℃前後の
低温度で再結晶させることができる従来の圧延銅箔と同
等あるいはそれ以上の性能の銅箔を開発した。
Furthermore, by heat-treating the copper foil obtained by the above method at 100 ° C. or higher, elongation and bending resistance at room temperature and high temperature are further excellent, and recrystallization at a low temperature of about 120 ° C. We have developed a copper foil with the same or better performance than the conventional rolled copper foil.

【0013】すなわち、本発明の銅箔は、未処理銅箔中
のカーボン量が18ppm 以下であることを特徴とする。
That is, the copper foil of the present invention is characterized in that the amount of carbon in the untreated copper foil is 18 ppm or less.

【0014】通常、電解銅箔は、電解製箔装置により製
箔された銅箔に、表面処理装置により密着性向上のため
の粗化処理、防錆処理を行って製造されるが、未処理銅
箔とは、図1に示す電解製箔装置と呼ばれる回転するド
ラム上の陰極(SUS又はTi製):2と、陰極に対し
て同心円状の陽極(Pb又はDSA製):1を配置した
装置に電解液:3を通し、両極間に電流を流して、所定
の厚さに銅を析出させた後はぎ取り、得られた銅箔:4
をいう。
Usually, an electrolytic copper foil is produced by subjecting a copper foil produced by an electrolytic foil producing apparatus to a roughening treatment for improving adhesion and a rust-preventing treatment by a surface treatment apparatus. The copper foil means a cathode (made of SUS or Ti): 2 on a rotating drum called an electrolytic foil making apparatus shown in FIG. 1, and a concentric anode (made of Pb or DSA): 1 with respect to the cathode. An electrolytic solution: 3 was passed through the apparatus, an electric current was passed between both electrodes to deposit copper to a predetermined thickness and then stripped off, resulting in a copper foil: 4
Say.

【0015】この後、銅張積層板に必要とされる性能を
付与するため、図2に示すような表面処理装置に未処理
銅箔:4を通し、電気化学的あるいは化学的な表面処理
を連続的に行う。この表面処理を施した後のものが、表
面処理銅箔:8と呼ばれ、銅張積層板に使用されるが、
電解銅箔の機械的な性能を決めるものはあくまでも未処
理銅箔:4の性能である。この場合未処理銅箔中の有機
体カーボン含有量が少なくなるほど、常温及び高温時の
伸びが大きくなり、耐屈曲性が良く、200℃未満の低
温度で再結晶するようになる。有機体カーボン含有量は
18ppm 以下であることが好ましく、さらに15ppm 以
下であることが好ましい。
After that, in order to impart the required performance to the copper clad laminate, an untreated copper foil: 4 is passed through a surface treatment device as shown in FIG. 2 to carry out an electrochemical or chemical surface treatment. Do it continuously. The one after this surface treatment is called surface treated copper foil: 8 and is used for a copper clad laminate.
It is the performance of untreated copper foil: 4 that determines the mechanical performance of electrolytic copper foil. In this case, as the content of the organic carbon in the untreated copper foil decreases, the elongation at room temperature and high temperature increases, the bending resistance is good, and the recrystallization occurs at a low temperature of less than 200 ° C. The organic carbon content is preferably 18 ppm or less, more preferably 15 ppm or less.

【0016】有機添加剤が電解銅箔中に取り込まれる量
については、通常銅箔中のC及びSを定量することによ
って知ることが出来る。これは、有機添加剤は有機物で
あるのでCが主成分であるのは当然であるが、通常Sを
含む有機物を添加剤に使用する例が多いためである。但
しSについては、有機添加剤だけから取り込まれるので
はなく、電解液の主成分に硫酸を使用していることか
ら、電解液からも取り込まれる。事実、Sを含まない有
機添加剤を使用しても、電解銅箔中からSが検出され
る。従って電解銅箔中へ取り込まれる有機添加剤の定量
には、Cを分析することが最も適している。尚、通常の
電解銅箔には、無機体のカーボンが取り込まれることは
ないが、例え取り込まれたとしても、常温及び高温の伸
び並びに耐屈曲性や再結晶温度の低温化に影響を与えな
い。
The amount of the organic additive incorporated into the electrolytic copper foil can be known by quantifying C and S in the copper foil. This is because it is natural that C is a main component because the organic additive is an organic substance, but in many cases, an organic substance containing S is usually used as the additive. However, S is not incorporated only from the organic additive, but is incorporated also from the electrolyte because sulfuric acid is used as the main component of the electrolyte. In fact, S is detected in the electro-deposited copper foil even when an organic additive containing no S is used. Therefore, C is most suitable for the quantitative determination of the organic additive incorporated in the electrolytic copper foil. In addition, although carbon of an inorganic substance is not taken in to the usual electrolytic copper foil, even if taken in, it does not affect the elongation at room temperature and high temperature, the bending resistance, and the lowering of the recrystallization temperature. .

【0017】更に、前記の電解銅箔を、100℃〜30
0℃の温度で加熱処理すると常温及び高温時の伸び、耐
屈曲性が前記の電解銅箔よりさらに優れ、120℃前後
の低温度で再結晶させることができる。尚、従来箔を1
00℃以上で加熱処理しても本発明箔のような機械的性
能を示さない。加熱処理温度が、100℃より低い温度
ではこのような効果がなく、一方、300℃より高い温
度になると、この加熱処理の時点で完全に焼鈍され、再
結晶が起こった箔になってしまう。また、300℃以上
の温度では熱収縮によって箔に伸びやしわが発生して好
ましくない。
Furthermore, the above-mentioned electrolytic copper foil is placed at 100 ° C. to 30 ° C.
When heat-treated at a temperature of 0 ° C., the elongation and bending resistance at room temperature and high temperature are more excellent than those of the above-mentioned electrolytic copper foil, and recrystallization can be performed at a low temperature of around 120 ° C. The conventional foil is 1
Even when heat-treated at a temperature of 00 ° C. or higher, it does not exhibit the mechanical performance of the foil of the present invention. If the heat treatment temperature is lower than 100 ° C., such an effect does not occur. On the other hand, if the heat treatment temperature is higher than 300 ° C., the foil is completely annealed and recrystallized at the time of this heat treatment. Further, at a temperature of 300 ° C. or higher, heat shrinkage causes stretching and wrinkling of the foil, which is not preferable.

【0018】尚、常温及び高温時の伸び、耐屈曲性をさ
らに向上させるための加熱処理は、加熱温度が低いほど
長時間要し、高いほど短時間でよい。例えば120℃だ
と24時間位要し、260℃だと10秒程度で良い。従
って、加熱温度が低い場合は、コイル状の銅箔を炉中に
保持して加熱処理を行ういわゆるバッチ加熱による方法
が適している。加熱温度が高い場合には加熱炉中を銅箔
を走行させて加熱する連続加熱方式による方法が好適で
ある。
The heat treatment for further improving the elongation and bending resistance at room temperature and high temperature requires a longer time as the heating temperature is lower, and a shorter time as the heating temperature is higher. For example, it takes about 24 hours at 120 ° C. and about 10 seconds at 260 ° C. Therefore, when the heating temperature is low, a so-called batch heating method in which the coil-shaped copper foil is held in a furnace for heat treatment is suitable. When the heating temperature is high, a continuous heating method in which a copper foil is run in a heating furnace and heated is suitable.

【0019】[0019]

【実施例】【Example】

実施例1 回転するドラム状の陰極(Ti製):2と、陰極に対し
て同心円状の陽極(DSA製):1を配置した装置に電
解液:3を通し、両極間に電流を流して銅箔:4を製造
した。電解液は、銅90g/l 、硫酸100g/l 、塩素イ
オン20ppm 、加水分解したニカワ68ppm を添加した
ものである。液温度は55℃、電流密度は55A/dm2
条件で行った。この後、表面処理装置を通して、通常の
方法により密着性向上のための粗化処理、防錆処理を行
って、35μ銅箔を得た。本実施例の未処理銅箔中のカ
ーボン量を実施例2〜4及び比較例1のそれと共に表1
に示した。
Example 1 An electrolytic solution: 3 was passed through a device in which a rotating drum cathode (made of Ti): 2 and a concentric anode (made of DSA): 1 were arranged with respect to the cathode, and an electric current was passed between both electrodes. Copper foil: 4 was produced. The electrolytic solution contains 90 g / l of copper, 100 g / l of sulfuric acid, 20 ppm of chlorine ions, and 68 ppm of hydrolyzed glue. The liquid temperature was 55 ° C. and the current density was 55 A / dm 2 . After that, a roughening treatment for improving adhesion and a rustproofing treatment were carried out by a usual method through a surface treatment device to obtain a 35 μ copper foil. The amount of carbon in the untreated copper foil of this example is shown in Table 1 together with those of Examples 2 to 4 and Comparative Example 1.
It was shown to.

【0020】未処理銅箔中に取り込まれる有機物量を一
定量以下に抑えるためには、使用する添加剤の種類、分
子量とともに、液中の有機添加剤量もある一定以下の濃
度に抑える必要がある。銅箔中のカーボン含有量を18
ppm 以下にするためには、通常の電解銅箔を製造する液
温、電流密度では、加水分解したニカワの場合、0〜2
50ppm 位の範囲であることが必要である。
In order to keep the amount of organic substances taken into the untreated copper foil below a certain amount, it is necessary to keep the concentration of the organic additive in the liquid below a certain amount as well as the type and molecular weight of the additive used. is there. Increase the carbon content in copper foil to 18
In order to reduce the concentration to ppm or less, in the case of hydrolyzed glue, the solution temperature and the current density for producing ordinary electrolytic copper foil are 0-2.
It is necessary to be in the range of about 50 ppm.

【0021】実施例2 実施例1の条件で製造した銅箔を、N2 雰囲気で、炉内
の条件を温度260℃に制御した6m加熱炉中を、12
m/分で走行させて加熱処理(炉内滞留時間:30秒)
した。
Example 2 The copper foil produced under the conditions of Example 1 was placed in a 6 m heating furnace in which the conditions inside the furnace were controlled at a temperature of 260 ° C. in a N 2 atmosphere.
Heat treatment by running at m / min (residence time in furnace: 30 seconds)
did.

【0022】実施例3 実施例1の条件で製造した銅箔を、N2 雰囲気で120
℃の温度にコントロールしたバッチ炉中に24時間保持
した。
Example 3 The copper foil produced under the conditions of Example 1 was subjected to 120 N 2 atmosphere.
It was kept in a batch furnace controlled at a temperature of ° C for 24 hours.

【0023】実施例4 加水分解したニカワに代え加水分解したハイドロキシエ
チルセルロース(HEC)81ppm と加水分解前のHE
C:2ppm を用いた以外、実施例1と同様の処理をして
35μ銅箔を得た。
Example 4 Hydrolyzed Hydroxyethyl Cellulose (HEC) 81 ppm in place of hydrolyzed glue and HE before hydrolysis
The same treatment as in Example 1 was carried out except that C: 2 ppm was used to obtain a 35 μ copper foil.

【0024】比較例1 電解液として、銅90g/l 、硫酸100g/l 、塩素イオ
ン20ppm 、加水分解したニカワ3002ppm を含む電
解液に更に加水分解前のニカワを2ppm 添加したものを
使用した。液温度55℃、電流密度は55a/dm2 の条件
で電解し、銅箔を製造した。この後、通常の方法により
密着性向上のための粗化処理、防錆処理を行って、35
μ銅箔を得た。
Comparative Example 1 An electrolytic solution containing 90 g / l of copper, 100 g / l of sulfuric acid, 20 ppm of chlorine ions and 3002 ppm of hydrolyzed glue was further added with 2 ppm of glue before hydrolysis. Electrolysis was performed under the conditions of a liquid temperature of 55 ° C. and a current density of 55 a / dm 2 to produce a copper foil. After that, a roughening treatment and an anticorrosion treatment for improving adhesion are performed by a usual method,
A μ copper foil was obtained.

【0025】比較例2 市販の圧延銅箔(タフピッチ銅、アズロール箔)を準備
した。
Comparative Example 2 A commercially available rolled copper foil (tough pitch copper, azuroll foil) was prepared.

【0026】[0026]

【表1】 [Table 1]

【0027】試験結果 実施例1〜3、比較例1〜2の銅箔を、FPCの接着剤
塗布、硬化工程を模して製造した銅箔の性能測定結果
(実施例4を除き全ての例に120〜180℃で1時間
加熱処理を施した)を表2に示した。
Test Results Performance measurement results of copper foils produced by simulating the FPC adhesive application and curing processes for the copper foils of Examples 1 to 3 and Comparative Examples 1 and 2 (all examples except Example 4). Was heat-treated at 120 to 180 ° C. for 1 hour) is shown in Table 2.

【0028】[0028]

【表2】 [Table 2]

【0029】なお、本発明の実施例1により得た電解銅
箔について、180℃で1時間処理後の金属組織の断面
を図3に、実施例2及び3で得られた電解銅箔につい
て、120℃で1時間処理後の金属組織の断面を図4
(実施例2)及び図5(実施例3)にそれぞれ示した。
Regarding the electrolytic copper foil obtained in Example 1 of the present invention, a cross section of the metal structure after treatment at 180 ° C. for 1 hour is shown in FIG. 3, and the electrolytic copper foils obtained in Examples 2 and 3 are Fig. 4 shows a cross section of the metallographic structure after treatment at 120 ° C for 1 hour.
(Example 2) and FIG. 5 (Example 3), respectively.

【0030】実施例1〜3の本発明による銅箔は、表1
に示すように、未処理銅箔中のカ−ボン量は6.8ppm
である。
The copper foils of Examples 1 to 3 according to the present invention are shown in Table 1.
As shown in, the amount of carbon in the untreated copper foil is 6.8 ppm.
Is.

【0031】実施例1の銅箔は160〜180℃×1H
rで再結晶が起こり、機械性能の点でも、上記の温度条
件で熱処理後の銅箔は常温時の伸びが大きく、MIT耐
折性の値も大きくなっている。また、高温の伸びも大き
く、図3の結晶組織でも180℃×1Hrで完全に再結
晶しているのがわかる。
The copper foil of Example 1 is 160 to 180 ° C. × 1H
Recrystallization occurs at r, and in terms of mechanical performance, the copper foil after heat treatment under the above temperature conditions has a large elongation at room temperature and a high MIT folding endurance value. Further, the elongation at high temperature is large, and it can be seen that the crystal structure of FIG. 3 is completely recrystallized at 180 ° C. × 1 Hr.

【0032】実施例2及び3の銅箔の場合は既に常態で
常温及び高温の伸びが大きく、120〜180℃×1H
rの熱処理後の機械性能に常態と比較して変化は見られ
ないが、結晶組織の点では、図4及び図5に示したよう
に120℃で完全に再結晶しているのがわかる。
In the case of the copper foils of Examples 2 and 3, the elongation at room temperature and high temperature was already large in the normal state, and the temperature was 120 to 180 ° C. × 1H.
Although there is no change in the mechanical performance of r after heat treatment compared with the normal state, it can be seen from the crystal structure point that it is completely recrystallized at 120 ° C. as shown in FIGS. 4 and 5.

【0033】実施例4の銅箔は、表1に示すように、未
処理銅箔中のカ−ボン量は14.0ppm である。機械性
能では、常温時及び高温時の伸びが大きく、MIT耐折
性の値も大きくなっている。但しこの場合は120〜1
80℃×1Hrの加熱処理により再結晶は進むが、実施
例1〜3の銅箔のように、完全に再結晶はしない。
As shown in Table 1, in the copper foil of Example 4, the amount of carbon in the untreated copper foil is 14.0 ppm. In terms of mechanical performance, the elongation at room temperature and high temperature is large, and the value of MIT folding endurance is also large. However, in this case 120-1
Although recrystallization proceeds by heat treatment at 80 ° C. × 1 Hr, it does not completely recrystallize like the copper foils of Examples 1 to 3.

【0034】これに対して、比較例1の従来の電解銅箔
は、表1に示すように未処理銅箔中のカ−ボン量として
23.0ppm 含んでおり、120〜180℃×1Hrで
加熱しても再結晶は起こらず、表2に示すように常温及
び高温の伸び率ともに小さく、MIT耐折性も小さい。
図6の結晶組織からも180℃×1Hrでは再結晶は起
こっていないことがわかる。
On the other hand, the conventional electrolytic copper foil of Comparative Example 1 contains 23.0 ppm of carbon in the untreated copper foil, as shown in Table 1, at 120 to 180 ° C. × 1 Hr. Recrystallization does not occur even when heated, as shown in Table 2, both the elongation at room temperature and the temperature are small, and the MIT folding endurance is also small.
It can be seen from the crystal structure of FIG. 6 that recrystallization did not occur at 180 ° C. × 1 Hr.

【0035】また、比較例2に示した圧延銅箔の場合
は、図7及び図8に示すように、140℃位で再結晶が
起こり、表2に示すように常温時の伸びが大きくなる。
しかし、常温の伸び、高温の伸び、MIT耐折性ともに
その絶対値は本発明の電解銅箔に比較して劣るものであ
る。
In the case of the rolled copper foil shown in Comparative Example 2, recrystallization occurs at about 140 ° C. as shown in FIGS. 7 and 8, and the elongation at room temperature increases as shown in Table 2. .
However, the absolute values of room temperature elongation, high temperature elongation, and MIT folding endurance are inferior to those of the electrolytic copper foil of the present invention.

【0036】[0036]

【発明の効果】本発明による電解銅箔は、従来の電解銅
箔に比べて、200℃未満の低い温度で再結晶化が起こ
り、耐屈曲性や常温及び高温時の伸びが優れ、圧延銅箔
と同等あるいはそれ以上の性能を有する。さらに、圧延
銅箔に比較して安価であり、広幅の箔を製造することが
できるので生産性も向上する。
INDUSTRIAL APPLICABILITY The electrolytic copper foil according to the present invention is recrystallized at a low temperature of less than 200 ° C. as compared with the conventional electrolytic copper foil, and is excellent in bending resistance and elongation at room temperature and high temperature. Has performance equivalent to or better than foil. Further, it is cheaper than the rolled copper foil and a wide foil can be manufactured, so that the productivity is also improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】電解製箔装置の構成を模式的に示した図であ
る。
FIG. 1 is a diagram schematically showing a configuration of an electrolytic foil-making apparatus.

【図2】表面処理装置の構成を模式的に示した図であ
る。
FIG. 2 is a diagram schematically showing a configuration of a surface treatment device.

【図3】実施例1により製造された電解銅箔(常態及び
加熱処理:180℃×1Hr後)の金属組織を示す写真
である。
FIG. 3 is a photograph showing a metallographic structure of an electrolytic copper foil (normal state and heat treatment: after 180 ° C. × 1 Hr) manufactured according to Example 1.

【図4】実施例2により製造された電解銅箔(常態及び
加熱処理:120℃×1Hr後)の金属組織を示す写真
である。
FIG. 4 is a photograph showing a metallographic structure of an electrolytic copper foil (normal state and heat treatment: after 120 ° C. × 1 Hr) manufactured according to Example 2.

【図5】実施例3により製造された電解銅箔(常態及び
加熱処理:120℃×1Hr後)の金属組織を示す写真
である。
FIG. 5 is a photograph showing a metallographic structure of an electrolytic copper foil (normal state and heat treatment: after 120 ° C. × 1 Hr) manufactured according to Example 3.

【図6】比較例1により製造された電解銅箔(常態及び
加熱処理:180℃×1Hr後)の金属組織を示す写真
である。
FIG. 6 is a photograph showing a metallographic structure of an electrolytic copper foil (normal state and heat treatment: after 180 ° C. × 1 Hr) manufactured according to Comparative Example 1.

【図7】比較例2の圧延銅箔(常態及び加熱処理:12
0℃×1Hr後)の金属組織を示す写真である。
FIG. 7: Rolled copper foil of Comparative Example 2 (normal state and heat treatment: 12
It is a photograph showing a metallographic structure at 0 ° C x 1 hr).

【図8】比較例2の圧延銅箔(加熱処理:140℃,1
80℃×各1Hr後)の金属組織を示す写真である。
FIG. 8: Rolled copper foil of Comparative Example 2 (heat treatment: 140 ° C., 1
It is a photograph showing a metallographic structure at 80 ° C x 1 hour after each).

【符号の説明】[Explanation of symbols]

1 電解製箔装置の陽極 2 電解製箔装置の陰極 3 電解製箔装置の電解液 4 未処理銅箔 5 表面処理装置の電解液 6 表面処理装置の電解液 7 表面処理装置の陽極 8 表面処理銅箔 1 Anode of electrolytic foil making apparatus 2 Cathode of electrolytic foil making apparatus 3 Electrolyte of electrolytic foil making apparatus 4 Untreated copper foil 5 Electrolyte of surface treatment equipment 6 Electrolyte of surface treatment equipment 7 Anode of surface treatment equipment 8 Surface treatment Copper foil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斎藤 勤 栃木県今市市荊沢601番地の2 古河サー キットフォイル株式会社今市事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tsutomu Saito 2 601 Ojizawa, Imaichi City, Tochigi Prefecture Furukawa Sir Kitfoil Co., Ltd. Imaichi Plant

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 未処理銅箔中のカーボン量が18ppm 以
下であることを特徴とするフレキシブル配線板用電解銅
箔。
1. An electrolytic copper foil for a flexible wiring board, wherein the amount of carbon in the untreated copper foil is 18 ppm or less.
【請求項2】 100℃〜300℃の温度で加熱処理さ
れたものである請求項1に記載の電解銅箔。
2. The electrolytic copper foil according to claim 1, which is heat-treated at a temperature of 100 ° C. to 300 ° C.
JP10709895A 1995-04-07 1995-04-07 Electrolytic copper foil for flexible wiring boards Expired - Fee Related JP3608840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10709895A JP3608840B2 (en) 1995-04-07 1995-04-07 Electrolytic copper foil for flexible wiring boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10709895A JP3608840B2 (en) 1995-04-07 1995-04-07 Electrolytic copper foil for flexible wiring boards

Publications (2)

Publication Number Publication Date
JPH08283886A true JPH08283886A (en) 1996-10-29
JP3608840B2 JP3608840B2 (en) 2005-01-12

Family

ID=14450415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10709895A Expired - Fee Related JP3608840B2 (en) 1995-04-07 1995-04-07 Electrolytic copper foil for flexible wiring boards

Country Status (1)

Country Link
JP (1) JP3608840B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001049903A1 (en) * 2000-01-06 2001-07-12 Mitsui Mining & Smelting Co., Ltd. Electrolytic copper foil and method for inspecting physical property thereof, and copper clad laminate using the electrolytic copper foil
JP2004190073A (en) * 2002-12-10 2004-07-08 Toppan Printing Co Ltd Copper foil with gradient structure, production method therefor, etching method, copper foil pattern, and preserving method
JP2008091431A (en) * 2006-09-29 2008-04-17 Nippon Steel Chem Co Ltd Method for manufacturing flexible copper clad laminated plate
JP2008098613A (en) * 2006-09-12 2008-04-24 Sumitomo Bakelite Co Ltd Flexible print circuit board
CN103074646A (en) * 2013-01-11 2013-05-01 安徽铜冠铜箔有限公司 Rolling way of copper foil on surface of titanium roller
KR101280486B1 (en) * 2005-02-21 2013-07-01 후루카와 덴키 고교 가부시키가이샤 Copper foil and method for manufacturing the same, and flexible printed circuit board
WO2013150640A1 (en) * 2012-04-06 2013-10-10 Jx日鉱日石金属株式会社 Electrolytic copper foil and method for manufacturing same
KR20150003854A (en) 2012-04-24 2015-01-09 스미토모 긴조쿠 고잔 가부시키가이샤 Two-layered flexible wiring substrate, flexible wiring board, and methods for producing same
JP2015081376A (en) * 2013-10-23 2015-04-27 住友金属鉱山株式会社 Two-layer flexible wiring board and production method thereof
JP2018080384A (en) * 2016-11-15 2018-05-24 エル エス エムトロン リミテッドLS Mtron Ltd. Production method of electrolytic copper foil with minimized curl, electrode including the same, secondary battery including the same, and method of producing the same
CN108505076A (en) * 2017-02-24 2018-09-07 南亚塑胶工业股份有限公司 Electrolytic solution, electrolytic copper foil and method for producing same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001049903A1 (en) * 2000-01-06 2001-07-12 Mitsui Mining & Smelting Co., Ltd. Electrolytic copper foil and method for inspecting physical property thereof, and copper clad laminate using the electrolytic copper foil
JP2004190073A (en) * 2002-12-10 2004-07-08 Toppan Printing Co Ltd Copper foil with gradient structure, production method therefor, etching method, copper foil pattern, and preserving method
KR101280486B1 (en) * 2005-02-21 2013-07-01 후루카와 덴키 고교 가부시키가이샤 Copper foil and method for manufacturing the same, and flexible printed circuit board
JP2008098613A (en) * 2006-09-12 2008-04-24 Sumitomo Bakelite Co Ltd Flexible print circuit board
JP2008091431A (en) * 2006-09-29 2008-04-17 Nippon Steel Chem Co Ltd Method for manufacturing flexible copper clad laminated plate
WO2013150640A1 (en) * 2012-04-06 2013-10-10 Jx日鉱日石金属株式会社 Electrolytic copper foil and method for manufacturing same
KR20150003854A (en) 2012-04-24 2015-01-09 스미토모 긴조쿠 고잔 가부시키가이샤 Two-layered flexible wiring substrate, flexible wiring board, and methods for producing same
CN103074646A (en) * 2013-01-11 2013-05-01 安徽铜冠铜箔有限公司 Rolling way of copper foil on surface of titanium roller
JP2015081376A (en) * 2013-10-23 2015-04-27 住友金属鉱山株式会社 Two-layer flexible wiring board and production method thereof
JP2018080384A (en) * 2016-11-15 2018-05-24 エル エス エムトロン リミテッドLS Mtron Ltd. Production method of electrolytic copper foil with minimized curl, electrode including the same, secondary battery including the same, and method of producing the same
CN108505076A (en) * 2017-02-24 2018-09-07 南亚塑胶工业股份有限公司 Electrolytic solution, electrolytic copper foil and method for producing same
JP2018141230A (en) * 2017-02-24 2018-09-13 南亞塑膠工業股▲分▼有限公司 Electrolyte, electrolytic copper foil and production method thereof
CN108505076B (en) * 2017-02-24 2020-04-28 南亚塑胶工业股份有限公司 Electrolytic solution, electrolytic copper foil and method for producing same

Also Published As

Publication number Publication date
JP3608840B2 (en) 2005-01-12

Similar Documents

Publication Publication Date Title
US6132887A (en) High fatigue ductility electrodeposited copper foil
JP3058445B2 (en) Characterized electrodeposited foils for printed circuit boards and methods for producing the same and electrolytic cell solutions
JP6595548B2 (en) Electrolytic copper foil, method for producing electrolytic copper foil, battery current collector, and circuit board
JP4583149B2 (en) Electrolytic copper foil and method for producing the same
JP3608840B2 (en) Electrolytic copper foil for flexible wiring boards
JP2007107037A (en) Copper or copper-alloy foil for circuit
US20020015833A1 (en) Manufacturing method of electrodeposited copper foil and electrodeposited copper foil
TWI588273B (en) Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board and electronic equipment
CN109392242B (en) Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
US11118279B2 (en) Electrolytic copper foil for secondary battery and method for producing the same
JP5532706B2 (en) Method for producing flexible copper-clad laminate
JP2001011685A (en) Electrolytic copper foil and its production
JPS63310990A (en) Electrolytic copper foil and production thereof
KR20190089732A (en) Copper foil for flexible printed circuit, and copper clad laminate, flexible printed circuit and electronic device using copper foil
CN1834302B (en) Copper foil and producing method thereof, flexible printed wiring board
JP3943214B2 (en) Electrolytic copper foil containing silver
JPH0610181A (en) Electrolytic copper foil
CN114901873A (en) Electrolytic copper foil
JPH01319641A (en) Soft rolled copper foil and flexible printed board
KR100992959B1 (en) A High Flexuous Copper Foil And Method For Producing The Same
US20220112618A1 (en) Electrolytic copper foil and method for producing same
JPH0432155B2 (en)
CN116555847A (en) Electrolytic copper foil and method for producing same
KR100958976B1 (en) A High Flexuous Copper Foil And Method For Producing The Same
JPH10110298A (en) Purifying method of electrolyte

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041012

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees