JP2007107037A - Copper or copper-alloy foil for circuit - Google Patents

Copper or copper-alloy foil for circuit Download PDF

Info

Publication number
JP2007107037A
JP2007107037A JP2005298087A JP2005298087A JP2007107037A JP 2007107037 A JP2007107037 A JP 2007107037A JP 2005298087 A JP2005298087 A JP 2005298087A JP 2005298087 A JP2005298087 A JP 2005298087A JP 2007107037 A JP2007107037 A JP 2007107037A
Authority
JP
Japan
Prior art keywords
copper
foil
alloy foil
etching
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005298087A
Other languages
Japanese (ja)
Other versions
JP4916154B2 (en
Inventor
Tomohiro Senkawa
智洋 洗川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP2005298087A priority Critical patent/JP4916154B2/en
Publication of JP2007107037A publication Critical patent/JP2007107037A/en
Application granted granted Critical
Publication of JP4916154B2 publication Critical patent/JP4916154B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide copper or copper-alloy foil by which smooth surface can be obtained when half etching is applied. <P>SOLUTION: The copper or copper-alloy foil is characterized in that, when a cross section perpendicular to a sheet thickness direction is observed, grain size and the diameter of structures having the same orientation are made to ≤5 μm at the maximum, respectively. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は電気・電子回路用の銅又は銅合金箔に関する。とりわけ、本発明は高密度実装用途に好適な電気・電子回路用銅又は銅合金箔に関する。   The present invention relates to a copper or copper alloy foil for electric / electronic circuits. In particular, the present invention relates to a copper or copper alloy foil for electric / electronic circuits suitable for high-density mounting applications.

昨今の電子機器の軽薄短小化及び多機能化の流れから、電子機器に搭載されるプリント配線板の高密度実装化、例えば多層化やファインピッチ化が求められている。多層化を進めるためには、導体に関して言えば層間の厚みを薄くするために、導体の厚みを薄くすることが必要である。一方、ファインピッチ化を進めるためには導体の幅及び導体間隔を狭める回路パターンの形成方法の開発や回路形成に有利な導体の開発が必要となる。   In recent years, electronic devices are becoming lighter, thinner, and more multifunctional, and printed wiring boards mounted on electronic devices are required to be mounted with high density, for example, with multiple layers and fine pitches. In order to increase the number of layers, it is necessary to reduce the thickness of the conductor in order to reduce the thickness between the layers in terms of the conductor. On the other hand, in order to advance the fine pitch, it is necessary to develop a circuit pattern forming method for narrowing the conductor width and conductor spacing and to develop a conductor advantageous for circuit formation.

樹脂基材表面に回路パターンを形成する方法としては、代表的なものとして、樹脂基材と銅箔を張り合わせた後にエッチングレジストを塗布し、その後エッチングによって回路パターンを形成するサブトラクティブ法と、樹脂基材に銅箔膜などのシード層を作り、めっきレジストを形成して銅めっきで回路パターンを作製した後、めっきレジストとシード層を除去するセミアディティブ法、樹脂基材を触媒化した後にめっきレジストでパターンを形成し、無電解銅めっきで回路パターンを形成するアディティブ法がある。   As a typical method for forming a circuit pattern on the surface of a resin substrate, a subtractive method in which an etching resist is applied after bonding a resin substrate and a copper foil, and then a circuit pattern is formed by etching, and a resin After forming a seed layer such as a copper foil film on the base material, forming a plating resist and making a circuit pattern by copper plating, semi-additive method to remove the plating resist and seed layer, plating after catalyzing the resin base material There is an additive method in which a pattern is formed with a resist and a circuit pattern is formed with electroless copper plating.

ファインピッチ化に適しているのはセミアディティブ法やアディティブ法であるが、これらの方法はサブトラクティブ法と比較して樹脂との密着性が低いという問題がある。また、銅箔の選択自由度は狭まり、製造コストも増加する。一方、サブトラクティブ法で配線をファインピッチ化するためには銅箔の厚みを薄くする必要があるため、ハンドリング性や製造性の観点から銅箔と樹脂とを張り合わせて銅張積層板とした後にエッチングで銅箔を薄くするハーフエッチング(「減肉エッチング」ともいう。)という手法が用いられる。例えば、銅箔の厚みが9μmの銅張積層板は、まず厚みが18μm又は12μmの銅箔を用いた銅張積層板を製造し、その後に酸化性の酸を用いたエッチングにより銅箔の厚みを9μmに減肉するといった方法により製造されることが多い。   The semi-additive method and the additive method are suitable for fine pitch formation, but these methods have a problem that adhesion to the resin is lower than that of the subtractive method. In addition, the degree of freedom in selecting the copper foil is narrowed and the manufacturing cost is increased. On the other hand, since it is necessary to reduce the thickness of the copper foil in order to make the wiring fine pitch by the subtractive method, after bonding the copper foil and the resin from the viewpoint of handleability and manufacturability to make a copper clad laminate, A technique called half etching (also referred to as “thinning etching”) in which the copper foil is thinned by etching is used. For example, for a copper clad laminate having a thickness of 9 μm, a copper clad laminate using a copper foil having a thickness of 18 μm or 12 μm is first manufactured, and then the thickness of the copper foil is etched by etching using an oxidizing acid. Is often manufactured by a method of reducing the thickness to 9 μm.

しかしながら、従来使用されていた銅箔ではハーフエッチング面の凹凸が大きくなり、レジストパターンの形成時に気泡が混入し易くなるという問題があった。また、パソコンや移動体通信などの電子機器では電気信号が高周波化しているが、電気信号の周波数が1GHz以上になると、電流が導体の表面にだけ流れる表皮効果の影響が顕著になり、表面の凹凸で電流伝送経路が変化してインピーダンスが増加する影響が無視できなくなる。この点からもハーフエッチング面の表面の凹凸は小さいことが望まれる。   However, the copper foil that has been used conventionally has a problem that the unevenness of the half-etched surface becomes large, and bubbles are easily mixed during formation of the resist pattern. In addition, in electronic devices such as personal computers and mobile communications, electrical signals have become higher in frequency. However, when the frequency of electrical signals exceeds 1 GHz, the effect of the skin effect in which current flows only on the surface of the conductor becomes significant. The influence that the current transmission path changes due to the unevenness and the impedance increases cannot be ignored. Also from this point, it is desirable that the unevenness of the surface of the half-etched surface is small.

これに対し、特開2003−193211号公報(特許文献1)は(200)面への結晶配向性を高くすることでハーフエッチング後の表面を平滑とする技術を開示している。具体的には、20μm以下の厚さを有する圧延銅箔の圧延面をX線回折することにより求めた(200)面の回折強度(I)が、微粉末銅を前記圧延銅箔と同一条件下でX線回折することにより求めた(200)面の回折強度(I0)に対し、I/I0>50であることを特徴とする均一エッチング減肉性に優れた再結晶調質圧延銅箔を開示している。
また、特許文献1では更に、圧延面に(100)面((200)面と等価)が配向していても、結晶が圧延面放線を中心に回転している場合があり、このような回転が生じると結晶粒界における原子配列の乱れが大きくなり、粒界が粒内に対して選択的にエッチングされ粒界溝ができると指摘している。
そのため、特許文献1ではこの回転を抑制するために、結晶の〔100〕方向と圧延方向が成す角度を規定している。具体的には、全結晶個数に対して〔100〕方向と圧延方向とが成す角度が10°以内(θ≦10°)の結晶の個数割合を60%以上(α≧60%)にすることで結晶粒界の段差が小さくなり、80%以上(α≧80%)にすることで結晶粒界の段差はほとんど認められなくなることが記載されている。
また、銅を冷間圧延したときに、表面に生成する亀裂状のくぼみを腐食の起点に利用して平滑なエッチング面を得るために、小さいくぼみを高頻度で均一に分散させることが記載されている。
On the other hand, Japanese Patent Application Laid-Open No. 2003-193221 (Patent Document 1) discloses a technique for smoothening the surface after half-etching by increasing the crystal orientation toward the (200) plane. Specifically, the diffraction intensity (I) of the (200) plane obtained by X-ray diffraction of the rolled surface of a rolled copper foil having a thickness of 20 μm or less is the same condition as that for the rolled copper foil. Recrystallization temper rolling excellent in uniform etching thinning, characterized in that I / I 0 > 50 with respect to diffraction intensity (I 0 ) of (200) plane obtained by X-ray diffraction below A copper foil is disclosed.
Further, in Patent Document 1, even if the (100) plane (equivalent to the (200) plane) is oriented on the rolling surface, the crystal may rotate around the rolling surface ray, and such rotation It has been pointed out that when this occurs, the disorder of the atomic arrangement at the crystal grain boundary becomes large, and the grain boundary is selectively etched with respect to the inside of the grain to form a grain boundary groove.
Therefore, in Patent Document 1, in order to suppress this rotation, an angle formed by the [100] direction of the crystal and the rolling direction is defined. Specifically, the ratio of the number of crystals having an angle between the [100] direction and the rolling direction within 10 ° (θ ≦ 10 °) with respect to the total number of crystals is set to 60% or more (α ≧ 60%). It is described that the step of the crystal grain boundary becomes small and the step of the crystal grain boundary is hardly recognized by setting it to 80% or more (α ≧ 80%).
In addition, when copper is cold-rolled, it is described that small indentations are uniformly dispersed with high frequency in order to obtain a smooth etching surface by using a crack-like indentation generated on the surface as a starting point of corrosion. ing.

特開2003−193211号公報Japanese Patent Laid-Open No. 2003-19311

特許文献1に記載の技術によってハーフエッチング面の表面形状の改善を図ることはできたが、充分に満足の行く表面形状とまではならなかった。より平滑なハーフエッチング面を得ることのできる技術が開発されればプリント配線板の高密度実装化に資することになろう。
そこで、本発明の一課題は、ハーフエッチングを施した時に平滑な表面が得られる銅又は銅合金箔を提供することである。
また、本発明の別の一課題は、上記銅又は銅合金箔を用いた銅張積層板を提供することである。
本発明の更に別の一課題は、上記銅張積層板を用いたプリント配線板を提供することである。
本発明の更に別の一課題は、上記プリント配線板を用いたプリント回路板を提供することである。
Although the surface shape of the half-etched surface could be improved by the technique described in Patent Document 1, the surface shape was not sufficiently satisfactory. If a technology capable of obtaining a smoother half-etched surface is developed, it will contribute to high-density mounting of printed wiring boards.
Then, one subject of this invention is providing the copper or copper alloy foil from which a smooth surface is obtained when half-etching is performed.
Another object of the present invention is to provide a copper clad laminate using the copper or copper alloy foil.
Still another object of the present invention is to provide a printed wiring board using the copper clad laminate.
Still another object of the present invention is to provide a printed circuit board using the printed wiring board.

本発明者は特許文献1に記載の技術では満足の行く表面形状を得られなかった原因を鋭意研究したところ、以下の知見を得た。
(1)圧延銅箔や電解銅箔からスパッタで作製された銅箔に至るまで、金属は規則的な配列を持った原子格子の集合体であるセル組織や結晶粒から成っており、それらの持つ結晶方位によりエッチング速度が変化するため、結晶方位の異なる組織単位で段差が生じる。
(2)同一方位を持つ組織や結晶粒の径が大きいと、それほど大きくない方位差であってもハーフエッチング後に有意な段差を生じさせる要因となる。逆に、同一方位を持つ組織や結晶粒の径が小さいと、周囲と異なる結晶方位だった場合でも、ハーフエッチング後に生じる段差を小さくすることができる。
(3)大きな析出物(母材と異なる相)や不純物(混入異物)があると、これらは母材とのエッチング速度が異なるため、これらのあった部分が溶け残って凸部となったり、逆に先に溶けて凹部となったりする。
(4)ハーフエッチング前の銅箔表面が平滑であるほど、ハーフエッチング後の表面は平滑になる。そして銅箔表面の平滑度合いは所定のパラメータを使用して評価することが望ましい。
The inventor earnestly researched the cause of failure to obtain a satisfactory surface shape with the technique described in Patent Document 1, and obtained the following knowledge.
(1) From rolled copper foil and electrolytic copper foil to sputtered copper foil, metals consist of cell structures and crystal grains that are aggregates of atomic lattices with a regular arrangement. Since the etching rate varies depending on the crystal orientation, the level difference occurs in the structural units having different crystal orientations.
(2) If the structure having the same orientation or the diameter of the crystal grains is large, even if the orientation difference is not so large, it causes a significant step after half etching. On the other hand, when the structure having the same orientation or the diameter of the crystal grains is small, the step generated after the half etching can be reduced even when the crystal orientation is different from the surrounding.
(3) If there are large precipitates (phases different from the base material) and impurities (contaminating foreign matter), these have different etching rates with the base material, so these portions remain undissolved and become convex portions, Conversely, it melts first and becomes a recess.
(4) The smoother the surface of the copper foil before half etching, the smoother the surface after half etching. And it is desirable to evaluate the smoothness degree of the copper foil surface using a predetermined parameter.

従って、(1)に対しては銅箔を構成する結晶粒、又は同一方位を有する組織をそれぞれある特定の方位に配向させることが有効である。(2)に対しては結晶粒径を小さくし、更には同一方位を有する組織であったとしてもその径を小さくすることが有効である。(3)に対しては大きな析出物の生成や不純物の混入を防止することが有効である。そして、(4)に対してはハーフエッチング前の銅箔表面を平滑にし、しかも所定のパラメータで平滑度合いを評価しておくことが有効である。   Therefore, for (1), it is effective to orient the crystal grains constituting the copper foil or the structure having the same orientation in a specific orientation. For (2), it is effective to reduce the crystal grain size, and even to reduce the diameter even if the structure has the same orientation. For (3), it is effective to prevent the formation of large precipitates and the mixing of impurities. For (4), it is effective to smooth the copper foil surface before half-etching and to evaluate the smoothness with predetermined parameters.

以上のような知見を基礎として完成した本発明は一側面において、板厚方向に直角な断面(図1参照)を観察した際に、結晶粒径及び同一方位を持つ組織の径が最大で5μm以下である回路用銅又は銅合金箔である。   In one aspect of the present invention completed based on the above knowledge, when a cross section perpendicular to the plate thickness direction (see FIG. 1) is observed, the diameter of the structure having the crystal grain size and the same orientation is 5 μm at the maximum. It is the following copper for circuit or copper alloy foil.

本発明は別の一側面において、箔表面に対してX線回折で111面、200面、220面、及び311面の回折強度の積分値を測定した時に、これらの何れかの方位への配向率が90%以上である回路用銅又は銅合金箔である。
配向率(%)=I(hkl)/ΣI(hkl)×100
但し、I(hkl):各面の回折強度積分値
In another aspect of the present invention, when the integral value of the diffraction intensity of the 111, 200, 220, and 311 planes is measured by X-ray diffraction with respect to the foil surface, the orientation in any one of these directions is achieved. A copper or copper alloy foil for a circuit having a rate of 90% or more.
Orientation rate (%) = I (hkl) / ΣI (hkl) × 100
Where I (hkl): integrated value of diffraction intensity of each surface

また、本発明は更に別の一側面において、板厚方向に直角な断面観察した際に、析出物及び不純物の大きさが本質的に1μm以下であり、かつ前記大きさの算術平均と1000μm2当たりの析出物又は不純物の個数の和との積が10個・μm2以下である回路用銅又は銅合金箔である。 Further, according to another aspect of the present invention, when a cross-section perpendicular to the thickness direction is observed, the size of the precipitate and the impurity is essentially 1 μm or less, and the arithmetic average of the size is 1000 μm 2. It is a copper or copper alloy foil for a circuit whose product of the sum of the number of hit deposits or impurities is 10 袖 m 2 or less.

また、本発明は更に別の一側面において、箔表面の投影面積をSm、表面積をSaとした時、ハーフエッチング前にSa/Sm−1≦0.005である回路用銅又は銅合金箔である。   In addition, in another aspect of the present invention, when the projected area of the foil surface is Sm and the surface area is Sa, the circuit copper or copper alloy foil is Sa / Sm-1 ≦ 0.005 before half etching. is there.

また、本発明は更に別の一側面において、箔表面の投影面積をSm、表面積をSaとした時、ハーフエッチング後にSa/Sm−1≦0.01である回路用銅又は銅合金箔である。   In addition, in another aspect of the present invention, when the projected area of the foil surface is Sm and the surface area is Sa, the circuit copper or copper alloy foil is Sa / Sm-1 ≦ 0.01 after half etching. .

また、本発明は更に別の一側面において、圧延仕上がりの回路用銅又は銅合金箔である。   Moreover, this invention is the copper or copper alloy foil for rolling finishing in another one side surface.

また、本発明は更に別の一側面において、再結晶組織に調質された回路用銅又は銅合金箔である。   Moreover, this invention is copper or copper alloy foil for circuits refined by the recrystallized structure in another one side.

また、本発明は更に別の一側面において、本発明に係る銅又は銅合金箔を材料とした銅張積層板である。   Moreover, this invention is another one side. WHEREIN: It is the copper clad laminated board which used the copper or copper alloy foil which concerns on this invention as a material.

更に、本発明は別の一側面において、前記銅張積層板を材料とし、ハーフエッチングを施す工程を経て製造したプリント配線板である。   Furthermore, this invention is another one side. WHEREIN: It is the printed wiring board manufactured through the process of using the said copper clad laminated board as a material and performing a half etching.

更に、本発明は別の一側面において、上記プリント配線板に電子部品類を搭載したプリント回路板である。   Furthermore, in another aspect, the present invention is a printed circuit board in which electronic components are mounted on the printed wiring board.

本発明に係る銅又は銅合金箔はハーフエッチングを施した時に平滑な表面が得られる。   The copper or copper alloy foil according to the present invention has a smooth surface when half-etched.

<銅箔の種類>
本発明に用いることのできる銅又は銅合金箔に特に制限はないが、典型的には圧延銅箔や電解銅箔の形態で用いることができる。一般的には、電解銅箔は硫酸銅めっき浴からチタンやステンレスのドラム上に銅を電解析出して製造され、圧延銅箔は圧延ロールによる塑性加工と熱処理を繰り返して製造される。
銅箔の材料としてはプリント配線板の導体パターンとして通常使用されるタフピッチ銅や無酸素銅といった高純度の銅の他、例えばSn入り銅、Ag入り銅、Cr、Zr又はMg等を添加した銅合金、Ni及びSi等を添加したコルソン系銅合金のような銅合金も使用可能である。なお、本明細書において用語「銅箔」を単独で用いたときには銅合金箔も含むものとする。
<Types of copper foil>
Although there is no restriction | limiting in particular in the copper or copper alloy foil which can be used for this invention, Typically, it can use with the form of a rolled copper foil or an electrolytic copper foil. In general, the electrolytic copper foil is produced by electrolytic deposition of copper from a copper sulfate plating bath onto a drum of titanium or stainless steel, and the rolled copper foil is produced by repeating plastic working and heat treatment with a rolling roll.
In addition to high-purity copper, such as tough pitch copper and oxygen-free copper, which are usually used as conductor patterns for printed wiring boards, copper foil materials such as copper containing Sn, copper containing Ag, copper added with Cr, Zr or Mg, etc. A copper alloy such as an alloy, a Corson copper alloy to which Ni, Si and the like are added can also be used. In addition, when the term “copper foil” is used alone in this specification, a copper alloy foil is also included.

但し、特性(例:強度)向上等の目的で銅に加えられる添加元素も本発明で必要とされる特性に影響を与えることに留意すべきである。そのため、本発明においては所望の特性の作り込み易さから好ましくはSn入り銅が用いられる。   However, it should be noted that additive elements added to copper for the purpose of improving characteristics (eg, strength) also affect the characteristics required in the present invention. For this reason, Sn-containing copper is preferably used in the present invention because of the ease with which desired characteristics can be formed.

また、本発明では銅又は銅合金を圧延銅箔として使用する場合、これらは圧延仕上がりの硬質状態であってもよく、又はこれを更に焼鈍して再結晶組織に調質した軟質状態であってもよい。当然にこれら以外の状態であってもよい。但し、銅又は銅合金箔を軟質状態とすることで屈曲性が上昇することから、軟質状態の銅又は銅合金箔は特にフレキシブルプリント配線板(FPC)に用いるときに好適である。
再結晶組織への調質は、限定的ではないが、FPCの製造性の観点から硬質状態で粗化めっきして裁断した後に焼鈍して行うか、樹脂基板と接着する際の加熱と兼ねて行うのが通常である。
In the present invention, when copper or a copper alloy is used as a rolled copper foil, these may be in a hard state after rolling, or in a soft state in which this is further annealed and tempered into a recrystallized structure. Also good. Of course, other states may be used. However, since the flexibility increases when the copper or copper alloy foil is in a soft state, the soft copper or copper alloy foil is particularly suitable when used for a flexible printed wiring board (FPC).
The recrystallization structure is not limited, but from the viewpoint of FPC manufacturability, it is hardened by rough plating and cutting and then annealed or combined with heating when bonded to a resin substrate. It is normal to do.

樹脂基板との接着の際に再結晶組織へ調質する具体例を挙げると、例えば、三層FPCではエポキシ等の熱硬化性樹脂からなる接着剤を用いて、銅箔とポリイミド等の樹脂フィルムを貼り合わせる。この接着剤を硬化させるために、130〜170℃の温度で数時間から数十時間の加熱処理を行う。この熱処理により銅箔を再結晶組織に調質することができる。また、二層FPCの製造方法の一つであるキャスティング法では、ポリイミド樹脂の前駆体であるポリアミック酸を含むワニスを、銅箔上に塗布して加熱硬化させ、銅箔上にポリイミド被膜を形成する。この加熱硬化処理では、300℃程度の温度で数十分から数時間加熱するが、この熱処理により銅箔を再結晶組織に調質することができる。   Specific examples of tempering into a recrystallized structure upon bonding to a resin substrate include, for example, a three-layer FPC using an adhesive made of a thermosetting resin such as epoxy, and a resin film such as copper foil and polyimide. Paste together. In order to cure the adhesive, heat treatment is performed at a temperature of 130 to 170 ° C. for several hours to several tens of hours. By this heat treatment, the copper foil can be tempered to a recrystallized structure. Moreover, in the casting method which is one of the manufacturing methods of the two-layer FPC, a varnish containing polyamic acid which is a precursor of a polyimide resin is applied on a copper foil and cured by heating to form a polyimide film on the copper foil. To do. In this heat curing treatment, heating is performed at a temperature of about 300 ° C. for several tens of minutes to several hours, and the copper foil can be tempered to a recrystallized structure by this heat treatment.

なお、焼鈍工程や樹脂との加熱圧着工程の際に銅箔の特性が変化する場合があるが、これらの熱処理の前に本発明が規定する特性を銅箔が満足していれば、該銅箔はこれらの熱処理後にも本発明が規定する特性を満足させることが容易である。但し、熱処理によっては特性に悪影響を与える恐れがあるので、例えば、結晶粒や析出物が成長し過ぎて結晶粒径や析出物が規定範囲を超えないように留意する必要がある。従って、使用する銅又は銅合金の組成に応じて(再結晶温度も考慮しながら)加熱温度や加熱時間などを調整し、結晶粒や析出物の成長を適宜制御することが好ましい。一般には加熱温度が高く、加熱時間が長いほど結晶粒及び析出物が成長する。この際、SnやMgなどの添加元素は結晶粒の成長を抑制する作用もある。   In addition, the characteristics of the copper foil may change during the annealing process or the thermocompression bonding process with the resin, but if the copper foil satisfies the characteristics defined by the present invention before these heat treatments, the copper foil The foil can easily satisfy the characteristics defined by the present invention even after these heat treatments. However, since there is a risk of adversely affecting the characteristics depending on the heat treatment, for example, it is necessary to take care that the crystal grains and precipitates grow too much and the crystal grain diameter and precipitates do not exceed the specified range. Therefore, it is preferable to appropriately control the growth of crystal grains and precipitates by adjusting the heating temperature and heating time according to the composition of the copper or copper alloy used (in consideration of the recrystallization temperature). In general, as the heating temperature is higher and the heating time is longer, crystal grains and precipitates grow. At this time, additive elements such as Sn and Mg also have an effect of suppressing the growth of crystal grains.

<結晶配向>
銅箔は結晶方位が揃っているほど場所毎のエッチング速度差が小さくなり、ハーフエッチングした銅箔表面は平滑になる。箔表面(圧延銅箔の場合は圧延面に相当。)に対してX線回折で111面、200面、220面、及び311面の回折強度の積分値を測定した時に、これらの面の何れかの方位への配向率が90%以上であることが均一なエッチング速度を与えるために必要であり、好ましくは95%以上である。通常は220面への配向率が高い。各方位の回折強度の積分値をI(hkl)、各方位の回折強度の積分値和をΣI(hkl)とすると、各方位の配向率(%)は次式で表される。
配向率(%)=I(hkl)/ΣI(hkl)×100
<Crystal orientation>
As the crystal orientation of the copper foil is aligned, the etching rate difference at each location becomes smaller, and the half-etched copper foil surface becomes smooth. When the integral value of the diffraction intensity of the 111, 200, 220, and 311 surfaces is measured by X-ray diffraction with respect to the foil surface (in the case of a rolled copper foil, it corresponds to the rolled surface) In order to give a uniform etching rate, it is necessary that the orientation rate in such an orientation is 90% or more, and preferably 95% or more. Usually, the orientation ratio to the 220 plane is high. When the integrated value of the diffraction intensity in each direction is I (hkl) and the sum of the integrated values of the diffraction intensities in each direction is ΣI (hkl), the orientation rate (%) in each direction is expressed by the following equation.
Orientation rate (%) = I (hkl) / ΣI (hkl) × 100

結晶方位を揃える方法としては、当業者に知られた任意の方法を使用できるが、例えば圧延銅箔では最終冷間圧延時の加工度を高く(例えば90%以上、更には99%以上)すること、最終焼鈍前の結晶粒径を小さくすること等が挙げられる。電解銅箔では表面を特定の方位に揃えておいた電解ドラムや下地金属の上に電析させる方法が挙げられる。   As a method for aligning the crystal orientation, any method known to those skilled in the art can be used. For example, in the case of a rolled copper foil, the workability at the time of final cold rolling is increased (for example, 90% or more, further 99% or more). And reducing the crystal grain size before final annealing. For the electrolytic copper foil, a method of electrodepositing on an electrolytic drum or base metal whose surface is aligned in a specific orientation can be used.

<結晶粒経及び同一方位を持つ組織の径>
上で説明した結晶配向の規定は、結晶方位を揃えることにより、エッチング速度差を小さくして銅箔表面を平滑にするというものであるが、工業的には結晶全部を同一方位に揃えることは困難である。そのため、例えば111面に配向している銅箔の中に別の結晶方位を持つ結晶粒や組織があると、その部分はハーフエッチング後に凸部や凹部となる。
しかしながら、それらの径が小さい場合はエッチング速度差によって生じた凹凸の量は少なくなるので、銅箔表面の平滑性は保たれる。従って、板厚方向に均一なエッチングを行うために、結晶粒経及び同一方位を持つ組織の径を最大で5μm以下、好ましくは3μm以下、より好ましくは1μm以下とすることが有効である。但し、結晶や同一方向を持つ組織をあまり小さくすると材料が硬くなり柔軟性が損なわれるため、0.01μm以上が好ましい。
<Grain diameter and diameter of structure with the same orientation>
The regulation of the crystal orientation described above is to smooth the copper foil surface by reducing the etching rate difference by aligning the crystal orientation, but industrially, all the crystals are aligned in the same orientation. Have difficulty. Therefore, for example, if there is a crystal grain or structure having another crystal orientation in the copper foil oriented in the 111 plane, the portion becomes a convex portion or a concave portion after half etching.
However, when the diameters are small, the amount of unevenness caused by the difference in etching rate is reduced, so that the smoothness of the copper foil surface is maintained. Therefore, in order to perform uniform etching in the plate thickness direction, it is effective that the diameter of the structure having the crystal grain size and the same orientation is 5 μm or less, preferably 3 μm or less, more preferably 1 μm or less. However, if the crystal and the structure having the same direction are made too small, the material becomes hard and flexibility is impaired, so 0.01 μm or more is preferable.

結晶粒径の制御方法としては、当業者に知られた任意の方法を使用できるが、例えば圧延銅箔の場合は結晶粒の成長を抑制する元素の添加や最終焼鈍後の結晶粒径の制御といった方法がある。また、本発明で規定する5μm以下のセル組織(同一方位を持つ組織)を得るには最終焼鈍後の冷間圧延加工度を高く、例えば90%以上、好ましくは95%以上にすればよい。電解銅箔の結晶粒径制御方法としては、チオ尿素、デンプン、ニカワ等の添加剤をめっき液に添加する方法や電流密度の制御による方法が挙げられる。   As a method for controlling the crystal grain size, any method known to those skilled in the art can be used. For example, in the case of a rolled copper foil, the addition of an element that suppresses the growth of crystal grains and the control of the crystal grain size after final annealing. There is a method. In order to obtain a cell structure (structure having the same orientation) of 5 μm or less as defined in the present invention, the cold rolling degree after the final annealing is high, for example, 90% or more, preferably 95% or more. Examples of the method for controlling the crystal grain size of the electrolytic copper foil include a method of adding additives such as thiourea, starch, and glue to the plating solution and a method of controlling the current density.

本明細書にて「結晶粒径」とは銅又は銅合金箔を板厚方向に直角な断面から観察したときの個々の結晶の板厚方向の径を指す。本明細書にて「同一方位を持つ組織」とは銅又は銅合金箔を板厚方向に直角な断面から観察したときに粒界角度が15度未満の小傾角粒界で囲まれた集合を指す。そして、本明細書にて「同一方位を持つ組織の径」とは銅又は銅合金箔を板厚方向に直角な断面から観察したときの同一方向を持つ組織ごとの板厚方向の径を指す。   In the present specification, the “crystal grain size” refers to the diameter in the plate thickness direction of each crystal when the copper or copper alloy foil is observed from a cross section perpendicular to the plate thickness direction. In this specification, “structure having the same orientation” means a set surrounded by small-angle grain boundaries having a grain boundary angle of less than 15 degrees when a copper or copper alloy foil is observed from a cross section perpendicular to the plate thickness direction. Point to. In this specification, “the diameter of the structure having the same orientation” refers to the diameter in the thickness direction of each structure having the same direction when the copper or copper alloy foil is observed from a cross section perpendicular to the thickness direction. .

<析出物及び不純物の大きさ>
銅箔中に母材と組成が異なる析出物や不純物が存在すると、結晶方位の異なる結晶粒や組織よりも大きなエッチング速度差を生じ易い。析出物は銅箔の特性(例えば強度)向上のために意図的に添加され、不純物は不可避的に銅箔に混入するものであるから全く存在しないようにすることは難しいが、その大きさが1μm以下であれば板厚方向に均一なエッチングを行う際にほとんど障害とならない。但し、1μm以下でもその個数が多ければ表面の凹凸に有意に悪影響を与えるため、析出物及び不純物の大きさの算術平均と1000μm2当たりの個数の積が10個・μm2以下であることが望ましく、5個・μm2以下であることがより望ましい。
<Size of precipitates and impurities>
If precipitates and impurities having a composition different from that of the base material are present in the copper foil, a larger etching rate difference is likely to occur than crystal grains and structures having different crystal orientations. Precipitates are intentionally added to improve the properties (for example, strength) of the copper foil, and impurities are inevitably mixed in the copper foil, so it is difficult to prevent them from being present at all. If it is 1 μm or less, it hardly becomes an obstacle when performing uniform etching in the thickness direction. However, even if the number is 1 μm or less, if the number is large, the surface irregularities are significantly adversely affected. Therefore, the product of the arithmetic average of the size of precipitates and impurities and the number per 1000 μm 2 is 10 · μm 2 or less. Desirably, it is more desirable that it is 5 · μm 2 or less.

本明細書にて「析出物」とは銅箔の特性(例えば強度)向上のために意図的に添加される当業者によって知られた各種元素の析出したものを主として指し、例えばNi、Si、Cr、Zr、Be、Fe、Ti、Co、Mg、Ag及びPなどの析出物である。また、本明細書にて「不純物」とは銅箔の製造過程で不可避的に混入する微量元素、炉材、溶解時に溶湯に巻き込まれる耐火物、圧延時に材料表面に押し込まれる異物などを主として指す。但し、本発明では「析出物」と「不純物」の区別やこれらの厳密な定義は問題ではなく、これらは銅母相と異なる相全般を指すものとして一体的に介在物として理解すれば足りる。   In the present specification, the “precipitate” mainly refers to a precipitate of various elements known by those skilled in the art that are intentionally added to improve the properties (for example, strength) of the copper foil, such as Ni, Si, These are precipitates such as Cr, Zr, Be, Fe, Ti, Co, Mg, Ag, and P. Further, in this specification, “impurities” mainly refer to trace elements inevitably mixed in the manufacturing process of copper foil, furnace materials, refractories that are caught in molten metal when melting, foreign matters that are pushed into the material surface during rolling, and the like. . However, in the present invention, the distinction between “precipitates” and “impurities” and their strict definitions are not a problem, and it is sufficient to understand them as inclusions as they generally indicate phases different from the copper matrix.

本明細書にて「析出物及び不純物の大きさ」とは、銅又は銅合金箔を板厚方向に直角な断面から観察したときの個々の析出物及び不純物の板厚方向の径を指す。   In the present specification, the “size of precipitates and impurities” refers to the diameters of individual precipitates and impurities in the plate thickness direction when the copper or copper alloy foil is observed from a cross section perpendicular to the plate thickness direction.

析出物の大きさを制御する方法としては、当業者に知られた任意の方法を使用することができるが、例えば溶解鋳造の時の添加元素の投入タイミングや溶体化処理時の温度や時間の調整、時効処理の温度や時間の調整、冷間加工時の加工度などを適宜調整することで制御することができる。   As a method for controlling the size of the precipitate, any method known to those skilled in the art can be used.For example, the timing of adding the additive element during melting casting, the temperature and time during solution treatment, and the like. It can be controlled by appropriately adjusting the adjustment, the temperature and time of the aging treatment, the degree of processing during cold working, and the like.

<ハーフエッチング前の銅箔表面の平滑さ>
これまで説明してきた本発明に係る銅又は銅合金箔の特性は、主としてエッチング速度差を小さくするためものであるから、ハーフエッチングを行う前の表面形状の影響は避けられない。ハーフエッチング前の表面形状が悪いとハーフエッチング後の表面形状も悪くなるため、エッチング前の銅箔表面が平滑であることが求められる。平滑性を評価する際には、以下のパラメータを用いることが面の平滑性を評価を行う上でより有利である。すなわち、本発明では銅箔表面のハーフエッチング前の投影面積をSm、表面積をSaとした時、Sa/Sm−1≦0.005とすることが望ましく、Sa/Sm−1≦0.004がより望ましい。
<Smoothness of copper foil surface before half etching>
Since the characteristics of the copper or copper alloy foil according to the present invention described so far are mainly for reducing the etching rate difference, the influence of the surface shape before half etching is inevitable. If the surface shape before half etching is poor, the surface shape after half etching also deteriorates, so the copper foil surface before etching is required to be smooth. When evaluating the smoothness, it is more advantageous to use the following parameters to evaluate the smoothness of the surface. That is, in the present invention, when the projected area of the copper foil surface before half etching is Sm and the surface area is Sa, it is desirable to satisfy Sa / Sm-1 ≦ 0.005, and Sa / Sm-1 ≦ 0.004. More desirable.

ハーフエッチング前の銅箔表面の平滑さは当業者に知られた任意の方法を用いて制御することができ、例えば圧延銅箔では圧延時のパス毎の加工度、通板速度、圧延油の種類、圧延油の粘度、圧延ロールの直径、圧延ロール表面の粗さ、及び圧下率(一回の圧延で潰す板厚)などを適宜変化させることによって調節することができる。電解銅箔ではS面が平滑であるが、S面は主にドラムの表面の平滑性に左右されるので該表面を平滑することで制御できる。より良好な平滑性を得るために銅箔に対して電解研磨を行うこともできる。   The smoothness of the copper foil surface before half-etching can be controlled using any method known to those skilled in the art. For example, in rolled copper foil, the degree of processing for each pass during rolling, sheet feeding speed, rolling oil It can be adjusted by appropriately changing the type, the viscosity of the rolling oil, the diameter of the rolling roll, the roughness of the rolling roll surface, the rolling reduction (the thickness of the sheet to be crushed by one rolling), and the like. In the electrolytic copper foil, the S surface is smooth. However, since the S surface depends mainly on the smoothness of the surface of the drum, it can be controlled by smoothing the surface. In order to obtain better smoothness, electrolytic polishing can also be performed on the copper foil.

なお、ハーフエッチングは銅張積層板とした後の銅箔の外側表面、すなわち基板と接着する側とは反対側の表面に対してのみ行われるのが通常であるから、本発明に係る銅又は銅合金箔の箔表面は少なくとも片面が上記平滑性を有していればよい。   In addition, since half etching is usually performed only on the outer surface of the copper foil after the copper clad laminate is formed, that is, the surface opposite to the side bonded to the substrate, the copper or copper according to the present invention is used. The foil surface of copper alloy foil should just have the said smoothness at least one side.

本発明の一実施形態によれば、ハーフエッチング後に得られる銅箔表面はSa/Sm−1≦0.01を満たし、好ましくはSa/Sm−1≦0.008を満たし、より好ましくはSa/Sm−1≦0.007を満たす。   According to one embodiment of the present invention, the copper foil surface obtained after half-etching satisfies Sa / Sm-1 ≦ 0.01, preferably Sa / Sm-1 ≦ 0.008, more preferably Sa /. Sm-1 ≦ 0.007 is satisfied.

<厚み>
本発明に係る銅又は銅合金箔の厚みは特に制限されるものではないが、主として回路をファインピッチ化する目的で行われるハーフエッチングによる銅箔の薄肉化を企図していることや、ハーフエッチングする厚みが厚いと長いエッチング時間を要して生産性が低下することに鑑みれば、ハーフエッチング前の厚さは通常は50μm以下であり、例えば10μm〜30μmであり、典型的には12μmや18μm程度である。また、銅箔の厚みを薄くすると、屈曲の際の曲げ部外周に生じるひずみが減少して屈曲性が向上するため、FPCへの適用を考える上でも上記程度の厚さが好ましい。
回路形成のためのエッチングはハーフエッチング後に施されるのが通常であるが、ハーフエッチング後の銅箔の厚みが20μmを超えるとエッチングファクタが有意に低下してファインピッチ化に悪影響を与えるため、ハーフエッチング後の銅箔表面の厚さは20μm以下であり、好ましくは10μm以下であることが望ましい。
<Thickness>
Although the thickness of the copper or copper alloy foil according to the present invention is not particularly limited, it is intended to reduce the thickness of the copper foil by half-etching mainly for the purpose of making the circuit fine pitch, or half-etching In view of the fact that if the thickness is too thick, a long etching time is required and productivity is lowered, the thickness before half etching is usually 50 μm or less, for example, 10 μm to 30 μm, and typically 12 μm or 18 μm. Degree. Further, when the thickness of the copper foil is reduced, the strain generated on the outer periphery of the bent portion at the time of bending is reduced and the flexibility is improved. Therefore, the thickness of the above level is preferable in consideration of application to FPC.
Etching for circuit formation is usually performed after half-etching, but if the thickness of the copper foil after half-etching exceeds 20 μm, the etching factor is significantly reduced and adversely affects fine pitching. The thickness of the copper foil surface after half etching is 20 μm or less, preferably 10 μm or less.

本発明に係る銅又は銅合金箔を用いて、常法に従って銅張積層板、更にはプリント配線板を製造することができる。本発明に係る銅又は銅合金箔はハーフエッチングを施した時に平滑な表面が得られることを特徴とするものであるから、該銅張積層板からプリント配線板を製造する過程においてハーフエッチングを施す工程が含まれる場合に特に好適に用いることができる。本発明に係る銅又は銅合金箔を用いてハーフエッチングすることにより、極薄(例えば10μm以下)の平滑なエッチング面を得ることができるため、レジストパターン形成時も気泡の混入が少なく、プリント配線板の高密度実装化(例えば多層化やファインピッチ化)、及び高周波化などに貢献することができる。限定的ではないが、典型的には厚み5〜10μm程度、幅15〜50μm程度の回路パターンを形成する際に使用されることが期待される。   Using the copper or copper alloy foil according to the present invention, a copper-clad laminate and further a printed wiring board can be produced according to a conventional method. Since the copper or copper alloy foil according to the present invention is characterized in that a smooth surface is obtained when half-etching is performed, half-etching is performed in the process of manufacturing a printed wiring board from the copper-clad laminate. It can be particularly preferably used when a process is included. By half-etching using the copper or copper alloy foil according to the present invention, a very thin (for example, 10 μm or less) smooth etching surface can be obtained. This contributes to high-density mounting of boards (for example, multilayering and fine pitching) and high frequency. Although it is not limited, it is typically expected to be used when forming a circuit pattern having a thickness of about 5 to 10 μm and a width of about 15 to 50 μm.

本明細書にて「ハーフエッチング」とは銅又は銅合金箔の厚みを減少させるために施されるエッチングのことを指し、減肉エッチングと交換可能に使用され、厚みを半分にすることに限定されるものではない。ハーフエッチングの方法としては当業者に公知の任意の方法を使用でき、例えば、ソフトエッチング液(過硫酸アンモニウム、過硫酸ナトリウム、硫酸+過酸化水素など)を用いて浸漬やスプレーなどの方法によって施すことができる。   In this specification, “half etching” refers to etching performed to reduce the thickness of copper or copper alloy foil, used interchangeably with thinning etching, and limited to halving the thickness. Is not to be done. Any method known to those skilled in the art can be used as the half-etching method. For example, a soft etching solution (ammonium persulfate, sodium persulfate, sulfuric acid + hydrogen peroxide, etc.) is used by immersion or spraying. Can do.

本発明に係る銅又は銅合金箔を用いて各種のプリント配線板(PWB)を製造することが可能であり、限定的ではないが、例えば、導体パターンの層数の観点からは片面PWB、両面PWB、多層PWB(3層以上)を製造可能であり、絶縁基板材料の種類の観点からはリジッドPWB、フレキシブルPWB(FPC)、リジッド・フレックスPWBを製造可能である。なお、箔の厚みを薄くすることができるため、電子機器への高密度実装が可能なFPCにより好適である。これらのPWBに種々の電子部品類を半田付けなどによって搭載してプリント回路板を製造することができる。   Various printed wiring boards (PWB) can be manufactured using the copper or copper alloy foil according to the present invention, and are not limited. For example, from the viewpoint of the number of layers of the conductor pattern, single-sided PWB, double-sided PWB and multilayer PWB (three or more layers) can be manufactured, and rigid PWB, flexible PWB (FPC), and rigid flex PWB can be manufactured from the viewpoint of the type of insulating substrate material. Note that since the thickness of the foil can be reduced, an FPC capable of high-density mounting on an electronic device is preferable. A printed circuit board can be manufactured by mounting various electronic components on these PWBs by soldering or the like.

次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these.

<発明例1〜5、比較例1〜4>
無酸素銅(ASTM H 170 Grade2)に、Snを試料に応じて0.10〜0.20質量%となるように添加し、厚さ200mmの銅インゴットを真空誘導加熱炉により溶製した。このインゴットを900℃から熱間圧延し、厚さ10mmの板を得た。その後、冷間圧延と焼鈍を繰り返し、最後に冷間圧延で厚さ18μmの銅箔に加工した。最終冷間圧延では加工度及び使用した圧延ロールの粗さを種々変更した。
<Invention Examples 1-5, Comparative Examples 1-4>
Sn was added to oxygen-free copper (ASTM H 170 Grade 2) so as to be 0.10 to 0.20 mass% depending on the sample, and a 200 mm thick copper ingot was melted by a vacuum induction heating furnace. This ingot was hot-rolled from 900 ° C. to obtain a plate having a thickness of 10 mm. Thereafter, cold rolling and annealing were repeated, and finally, a copper foil having a thickness of 18 μm was processed by cold rolling. In the final cold rolling, the degree of work and the roughness of the rolling roll used were variously changed.

圧延加工度(R)は次式で定義する。
R=(t0−t)/t0×100 (t0:圧延前の厚み、t:圧延後の厚み)
以上のように作製した銅箔について、以下の評価を行った。
The rolling degree (R) is defined by the following formula.
R = (t 0 −t) / t 0 × 100 (t 0 : thickness before rolling, t: thickness after rolling)
The following evaluation was performed about the copper foil produced as mentioned above.

圧延ロールの表面粗さは算術平均粗さRaで規定した。
JIS B0601に従い、株式会社ミツトヨ製型式SJ−301を用いて表面粗さ(Ra)を求めた。基準長さを0.25mmとし、ロール幅方向に測定した。Raの測定は場所を変えて3回行い、その平均値を求めた。
The surface roughness of the rolling roll was defined by the arithmetic average roughness Ra.
According to JIS B0601, the surface roughness (Ra) was calculated | required using Mitutoyo Corporation model SJ-301. The reference length was set to 0.25 mm and measured in the roll width direction. Ra was measured three times at different locations, and the average value was obtained.

(1)X線回折:銅箔表面における111面、200面、220面、311面の回折強度の積分値(I)を株式会社リガク製型式RINT2500を用いて、箔の幅方向へ等間隔に3箇所を測定した。そして、各方位の配向率(%)=I(hkl)/ΣI(hkl)×100を求めた。なおピーク強度の積分値の測定はCo管球を用い、111面は48°≦2θ≦53°、200面は57°≦2θ≦62°、220面は86°≦2θ≦91°、311面は108°≦2θ≦113°(θは回折角度)の範囲で行った。
(2)結晶粒経及び同一方位を持つ組織の径:銅箔を樹脂に埋め込んで研磨した後、断面をりん酸中で電解研磨し、測定用サンプルを作製した。その後、TSL社製のOIM(Orientation Imaging Micrograph)を用い、図2に示す100μm×10μmの面積を0.5μmの間隔で3視野分を測定し、測定した表面の中で最大の結晶粒経又は同一方位を持つ組織の径を測定した。
(3)析出物及び不純物の大きさと個数:銅箔を樹脂に埋め込んで研磨した後、断面をりん酸中で電解研磨し、測定用サンプルを作製した。その後、Philips社製のFESEM(Field Emission Scanning Electron Microscope)型式XL30SFEGので図2に示す100μm×10μmの面積を反射電子像で任意に3箇所観察し、介在物の大きさの算術平均と個数を計測した。
(4)銅箔表面の平滑さ:ELIONIX社製型式ERA−8000の電子線三次元粗さ測定装置を用いて試料表面の中心付近の投影面積Sm=4.3×104μm2の範囲の表面積Saを測定し、表面の平滑さSa/Sm−1を求めた。
(5)ハーフエッチング:ハーフエッチングは片面のみを露出させた銅箔を硫酸100g/L、過酸化水素30g/Lのソフトエッチング液で浸漬により板厚が半分(9μm)になるまで行った。
(1) X-ray diffraction: The integral value (I) of diffraction intensity of 111, 200, 220, and 311 surfaces on the copper foil surface is equally spaced in the foil width direction using Rigaku Corporation RINT2500. Three locations were measured. Then, the orientation ratio (%) in each direction = I (hkl) / ΣI (hkl) × 100 was obtained. The measurement of the integrated value of the peak intensity was performed using a Co tube. The 111 plane was 48 ° ≦ 2θ ≦ 53 °, the 200 plane was 57 ° ≦ 2θ ≦ 62 °, the 220 plane was 86 ° ≦ 2θ ≦ 91 °, and the 311 plane. Was performed in the range of 108 ° ≦ 2θ ≦ 113 ° (θ is the diffraction angle).
(2) Diameter of structure having crystal grain size and same orientation: After embedding a copper foil in a resin and polishing it, the cross section was electropolished in phosphoric acid to prepare a measurement sample. Then, using OIM (Orientation Imaging Micrograph) manufactured by TSL, the area of 100 μm × 10 μm shown in FIG. 2 was measured for 3 fields at intervals of 0.5 μm, and the largest crystal grain diameter or The diameter of the tissue with the same orientation was measured.
(3) Size and number of precipitates and impurities: After embedding a copper foil in a resin and polishing it, the cross section was electropolished in phosphoric acid to prepare a measurement sample. After that, the FESEM (Field Emission Scanning Microscope) model XL30SFEG manufactured by Philips was observed at any three locations of the 100 μm × 10 μm area shown in FIG. 2, and the arithmetic mean and number of inclusions were measured. did.
(4) Smoothness of the surface of the copper foil: using an electron beam three-dimensional roughness measuring device manufactured by ELIONIX, model ERA-8000, the projected area near the center of the sample surface Sm = 4.3 × 10 4 μm 2 The surface area Sa was measured to determine the surface smoothness Sa / Sm-1.
(5) Half-etching: Half-etching was performed until the plate thickness was reduced to half (9 μm) by dipping a copper foil with only one side exposed with a soft etching solution of sulfuric acid 100 g / L and hydrogen peroxide 30 g / L.

表1に作製したサンプルの各測定結果を示す。No.1、2、4はハーフエッチング前の表面平滑さSa/Sm−1は0.005以下であったものの220面に90%以上配向せず、ハーフエッチング面は十分な平滑さを得られなかった。一方No.3、5、6、7はハーフエッチング前の表面平滑さはSa/Sm−1は0.005以下で220面に90%以上配向しており、ハーフエッチング面は十分な平滑さを得た。No.8は220面に90%以上配向していたが、ハーフエッチング前の表面平滑さSa/Sm−1が0.005を越えていたため、ハーフエッチング面が十分な平滑さを得られなかった。最終冷間圧延における加工度、添加したSn及び圧延ロールの粗さの影響を反映したものと考えられる。   Table 1 shows the measurement results of the prepared samples. No. 1, 2 and 4 had surface smoothness Sa / Sm-1 before half-etching of 0.005 or less, but 90% or more were not oriented on the 220 plane, and the half-etched surface could not obtain sufficient smoothness. . On the other hand, no. In 3, 5, 6, and 7, the surface smoothness before half etching was Sa / Sm-1 of 0.005 or less and 90% or more was oriented on the 220 plane, and the half etching surface obtained sufficient smoothness. No. 8 was oriented 90% or more on the 220 plane, but since the surface smoothness Sa / Sm-1 before half etching exceeded 0.005, the half etched surface could not obtain sufficient smoothness. This is considered to reflect the influence of the degree of work in the final cold rolling, the added Sn, and the roughness of the rolling roll.

続いてNo.7のサンプルを樹脂との張り合わせを想定した熱処理(350℃で10分間、Ar雰囲気中)を施し、No.9のサンプルを作製した。特性の評価結果を表2に示す。熱処理を施しても220面の配向は変わらず、ハーフエッチング面は十分な平滑さが得られた。   Subsequently, no. The sample No. 7 was subjected to a heat treatment (350 ° C. for 10 minutes in an Ar atmosphere) assuming that it was bonded to the resin. Nine samples were prepared. Table 2 shows the evaluation results of the characteristics. Even if heat treatment was performed, the orientation of the 220 plane did not change, and the half-etched surface was sufficiently smooth.

<発明例6、比較例5>
次に、電気銅(JIS H2121−61)に、3.0質量%Ni、0.65質量%Si、0.15質量%Mgとなるように各元素を添加し、木炭被覆して大気溶解することで厚さ200mmの銅インゴットを溶製した。その後、800℃で1時間焼鈍したものと900℃で1時間焼鈍したものを作製し、各々熱間圧延で10mmまで圧延した後、500℃で3時間の時効処理を施し、面削で表面酸化物を除去してから圧延と焼鈍を繰り返し、最終冷間圧延の加工度を99%として厚み18μmの銅箔に加工した。以上のように作製した銅箔について前記同様の評価を行った。
<Invention Example 6, Comparative Example 5>
Next, each element is added to electrolytic copper (JIS H2121-61) so as to be 3.0% by mass Ni, 0.65% by mass Si, and 0.15% by mass Mg. Thus, a copper ingot having a thickness of 200 mm was melted. Then, what was annealed at 800 ° C. for 1 hour and that annealed at 900 ° C. for 1 hour were each rolled to 10 mm by hot rolling, then subjected to aging treatment at 500 ° C. for 3 hours, and surface oxidation by face milling After removing the material, rolling and annealing were repeated, and the final cold rolling was processed into a copper foil having a thickness of 18 μm with a working degree of 99%. The copper foil produced as described above was evaluated in the same manner as described above.

表3に作製したサンプルの各測定結果を示す。No.10は鋳造後の焼鈍温度が低かったために、Ni−Siの粗大な析出物が生成し、ハーフエッチング時に溶け残って凹凸を生じてしまった。一方No.11は鋳造後の焼鈍温度が高かったのでNi−Siの析出物は小さく、ハーフエッチングしても十分な平滑さが得られた。   Table 3 shows the measurement results of the prepared samples. No. In No. 10, since the annealing temperature after casting was low, a coarse precipitate of Ni—Si was generated and remained undissolved during half etching, resulting in unevenness. On the other hand, no. Since No. 11 had a high annealing temperature after casting, the Ni—Si precipitate was small, and sufficient smoothness was obtained even after half-etching.

<発明例7、比較例7〜9>
硫酸銅五水和物280〜320g/L、硫酸100〜110g/Lのめっき液を建浴し、活性炭フィルターを通して清浄処理を行った。その後、結晶粒微細化のための添加剤としてチオ尿素0.2mg/L、デンプン1.0〜1.2mg/L、ニカワ0.3〜0.4mg/Lを添加しためっき液と、添加剤を入れなかっためっき液を用い、アノードに白金電極、カソードにステンレス板を用いて電流密度50〜100A/dm2、液温50〜60℃の条件で18μmの電解銅箔を作製した。
<Invention Example 7, Comparative Examples 7-9>
A plating solution of 280 to 320 g / L of copper sulfate pentahydrate and 100 to 110 g / L of sulfuric acid was erected and cleaned through an activated carbon filter. Thereafter, a plating solution to which 0.2 mg / L of thiourea, 1.0 to 1.2 mg / L of starch, and 0.3 to 0.4 mg / L of glue were added as additives for crystal grain refinement, and the additive An electrolytic copper foil with a thickness of 18 μm was prepared using a plating solution not containing silver, a platinum electrode as an anode, and a stainless steel plate as a cathode under conditions of a current density of 50 to 100 A / dm 2 and a liquid temperature of 50 to 60 ° C.

以上のように作製した銅箔について前記同様の評価を行った結果を表4に示す。添加剤の有無が結晶粒径の差に表れている。しかしながら、No.12、13共にハーフエッチング前の表面が粗く、ハーフエッチング面は十分な平滑さを得られなかった。   Table 4 shows the results of the same evaluation as described above for the copper foil produced as described above. The presence or absence of an additive appears in the difference in crystal grain size. However, no. Both 12 and 13 had rough surfaces before half-etching, and the half-etched surface was not sufficiently smooth.

次にNo.12とNo.13と同じ方法で20μmの電解銅箔を作製し、表面を平滑にするためにりん酸で電解研磨を行って18μmの電解銅箔を製造した。このように作製した銅箔について前記同様の評価を行った結果を表5に示す。No.14、15共にハーフエッチング前平滑さは規定範囲内であったがNo.14は結晶粒が大きく、ハーフエッチングすると結晶方位の異なる部分と凹凸を生じ、ハーフエッチング面は十分な平滑さを得られなかった。一方、No.15は結晶粒径が小さいため、ハーフエッチングしても十分な平滑さを得ることができた。   Next, no. 12 and no. An electrolytic copper foil of 20 μm was prepared by the same method as in No. 13, and electrolytic polishing was performed with phosphoric acid to smooth the surface, thereby producing an 18 μm electrolytic copper foil. Table 5 shows the results of the same evaluation as described above for the copper foil thus produced. No. The smoothness before half etching was within the specified range for both Nos. 14 and 15. No. 14 had large crystal grains, and when half-etched, it produced irregularities and irregularities with different crystal orientations, and the half-etched surface could not obtain sufficient smoothness. On the other hand, no. Since No. 15 had a small crystal grain size, sufficient smoothness could be obtained even after half-etching.

板厚方向に直角な断面を示す模式図である。It is a schematic diagram which shows a cross section orthogonal to a plate | board thickness direction. 実施例で用いた試験片の観察面を示す図である。It is a figure which shows the observation surface of the test piece used in the Example.

Claims (10)

板厚方向に直角な断面を観察した際に、結晶粒径及び同一方位を持つ組織の径が最大で5μm以下である回路用銅又は銅合金箔。   A copper or copper alloy foil for a circuit having a maximum grain size of 5 μm or less when the cross section perpendicular to the thickness direction is observed. 箔表面に対してX線回折で111面、200面、220面、及び311面の回折強度の積分値を測定した時に、これらの何れかの方位への配向率が90%以上である請求項1に記載の回路用銅又は銅合金箔。
配向率(%)=I(hkl)/ΣI(hkl)×100
但し、I(hkl):各面の回折強度積分値
The orientation ratio in any one of these directions is 90% or more when an integral value of diffraction intensities of the 111, 200, 220, and 311 planes is measured by X-ray diffraction with respect to the foil surface. The copper or copper alloy foil for circuit according to 1.
Orientation rate (%) = I (hkl) / ΣI (hkl) × 100
Where I (hkl): integrated value of diffraction intensity of each surface
板厚方向に直角な断面を観察した際に、析出物及び不純物の大きさが本質的に1μm以下であり、かつ前記大きさの算術平均と1000μm2当たりの析出物又は不純物の個数の和との積が10個・μm2以下である請求項1又は2に記載の回路用銅又は銅合金箔。 When the cross section perpendicular to the plate thickness direction is observed, the size of precipitates and impurities is essentially 1 μm or less, and the arithmetic average of the sizes and the sum of the number of precipitates or impurities per 1000 μm 2 The circuit copper or copper alloy foil according to claim 1, wherein the product of is 10 pieces / μm 2 or less. 箔表面の投影面積をSm、表面積をSaとした時、ハーフエッチング前にSa/Sm−1≦0.005である請求項1〜3の何れか一項に記載の回路用銅又は銅合金箔。   The copper or copper alloy foil for a circuit according to any one of claims 1 to 3, wherein Sa / Sm-1≤0.005 before half etching when the projected area of the foil surface is Sm and the surface area is Sa. . 箔表面の投影面積をSm、表面積をSaとした時、ハーフエッチング後にSa/Sm−1≦0.01である請求項1〜4の何れか一項に記載の回路用銅又は銅合金箔。   The copper or copper alloy foil for a circuit according to any one of claims 1 to 4, wherein Sa / Sm-1≤0.01 after half etching when the projected area of the foil surface is Sm and the surface area is Sa. 圧延仕上がりの硬質状態である請求項1〜5の何れか一項に記載の回路用銅又は銅合金箔。   The copper or copper alloy foil for a circuit according to any one of claims 1 to 5, which is in a hard state after rolling. 再結晶組織に調質された軟質状態である請求項1〜5の何れか一項に記載の回路用銅又は銅合金箔。   The circuit copper or copper alloy foil according to any one of claims 1 to 5, which is in a soft state conditioned to a recrystallized structure. 請求項1〜7の何れか一項に記載の銅又は銅合金箔を材料とした銅張積層板。   The copper clad laminated board which used the copper or copper alloy foil as described in any one of Claims 1-7 as a material. 請求項8に記載の銅張積層板を材料とし、ハーフエッチングを施す工程を経て製造したプリント配線板。   A printed wiring board produced by a half-etching process using the copper-clad laminate according to claim 8 as a material. 請求項9に記載のプリント配線板を用いて製造したプリント回路板。   A printed circuit board manufactured using the printed wiring board according to claim 9.
JP2005298087A 2005-10-12 2005-10-12 Copper or copper alloy foil for circuit Active JP4916154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005298087A JP4916154B2 (en) 2005-10-12 2005-10-12 Copper or copper alloy foil for circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005298087A JP4916154B2 (en) 2005-10-12 2005-10-12 Copper or copper alloy foil for circuit

Publications (2)

Publication Number Publication Date
JP2007107037A true JP2007107037A (en) 2007-04-26
JP4916154B2 JP4916154B2 (en) 2012-04-11

Family

ID=38033132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005298087A Active JP4916154B2 (en) 2005-10-12 2005-10-12 Copper or copper alloy foil for circuit

Country Status (1)

Country Link
JP (1) JP4916154B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004370A (en) * 2007-05-23 2009-01-08 Sony Corp Collector, negative electrode, and secondary battery
JP2009242847A (en) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd Copper alloy foil for flexible printed circuit board excellent in etching properties and flexible printed circuit board using the same
JP2012001781A (en) * 2010-06-18 2012-01-05 Hitachi Cable Ltd Copper alloy material for electric/electronic component, and method of manufacturing the same
JP2012246556A (en) * 2011-05-30 2012-12-13 Jx Nippon Mining & Metals Corp Rolled copper foil, copper-clad laminate, flexible printed wiring board, and electronic equipment
JP2013018245A (en) * 2011-07-13 2013-01-31 Sumitomo Metal Mining Co Ltd Metallized polyimide film and printed circuit board
JP2013089910A (en) * 2011-10-21 2013-05-13 Fujikura Ltd Flexible printed board and manufacturing method of the same
WO2013161351A1 (en) * 2012-04-24 2013-10-31 Jx日鉱日石金属株式会社 Cu-Ni-Si TYPE COPPER ALLOY
JP2014077182A (en) * 2012-10-12 2014-05-01 Sh Copper Products Corp Rolled copper foil
JP2014210950A (en) * 2013-04-18 2014-11-13 株式会社Shカッパープロダクツ Rolled copper foil with copper plated layer
WO2015041348A1 (en) * 2013-09-20 2015-03-26 Jx日鉱日石金属株式会社 Copper alloy foil
WO2016088884A1 (en) * 2014-12-05 2016-06-09 三井金属鉱業株式会社 Surface-treated copper foil for forming high frequency signal transmission circuit, copper clad laminate board and printed wiring board
JP2016135927A (en) * 2015-01-09 2016-07-28 Jx金属株式会社 Metal base material with plating material
JP2016138337A (en) * 2015-01-09 2016-08-04 Jx金属株式会社 Metal base with plating
JP2017179390A (en) * 2016-03-28 2017-10-05 Jx金属株式会社 Copper foil for flexible printed wiring board, and copper clad laminate, flexible printed wiring board and electronic device using the same
JP2018026546A (en) * 2016-08-11 2018-02-15 エル エス エムトロン リミテッドLS Mtron Ltd. Soft copper foil laminate film and manufacturing method therefor, capable of preventing circuit disconnection/short circuit
US10704129B2 (en) 2015-03-30 2020-07-07 Jx Nippon Mining & Metals Corporation Cu—Ni—Si based rolled copper alloy and production method thereof
KR20210045950A (en) * 2019-10-17 2021-04-27 롬 앤드 하스 일렉트로닉 머트어리얼즈 엘엘씨 Method of enhancing copper electroplating
CN115728194A (en) * 2022-11-21 2023-03-03 山东大学 Method for detecting crystal grain morphology of copper foil section

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641660A (en) * 1992-07-28 1994-02-15 Mitsubishi Shindoh Co Ltd Cu alloy steel having fine structure for electric and electronic parts
JPH0790430A (en) * 1993-09-14 1995-04-04 Hitachi Cable Ltd Copper wire for extra fine wire and its production
JPH11323463A (en) * 1998-05-14 1999-11-26 Kobe Steel Ltd Copper alloy for electrical and electronic parts
JP2002167632A (en) * 2000-11-29 2002-06-11 Nippon Mining & Metals Co Ltd Rolled copper foil for flexible printed circuit board and its production method
JP2002294364A (en) * 2001-03-30 2002-10-09 Kobe Steel Ltd Copper alloy sheet or bar for electronic and electrical parts and production method therefor
JP2003193211A (en) * 2001-12-27 2003-07-09 Nippon Mining & Metals Co Ltd Rolled copper foil for copper-clad laminate
JP2004027257A (en) * 2002-06-21 2004-01-29 Nippon Mining & Metals Co Ltd Copper alloy with excellent bendability, and its manufacturing method
JP2004256879A (en) * 2003-02-27 2004-09-16 Nikko Metal Manufacturing Co Ltd Rolled copper foil having high elongation
JP2005005413A (en) * 2003-06-11 2005-01-06 Ibiden Co Ltd Flexible-rigid wiring board
JP2005113180A (en) * 2003-10-06 2005-04-28 Furukawa Electric Co Ltd:The Copper alloy for electronic equipment, and its production method
JP2005211948A (en) * 2004-01-30 2005-08-11 Nikko Metal Manufacturing Co Ltd Rolled copper foil and method for manufacturing the same and laminated substrate

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641660A (en) * 1992-07-28 1994-02-15 Mitsubishi Shindoh Co Ltd Cu alloy steel having fine structure for electric and electronic parts
JPH0790430A (en) * 1993-09-14 1995-04-04 Hitachi Cable Ltd Copper wire for extra fine wire and its production
JPH11323463A (en) * 1998-05-14 1999-11-26 Kobe Steel Ltd Copper alloy for electrical and electronic parts
JP2002167632A (en) * 2000-11-29 2002-06-11 Nippon Mining & Metals Co Ltd Rolled copper foil for flexible printed circuit board and its production method
JP2002294364A (en) * 2001-03-30 2002-10-09 Kobe Steel Ltd Copper alloy sheet or bar for electronic and electrical parts and production method therefor
JP2003193211A (en) * 2001-12-27 2003-07-09 Nippon Mining & Metals Co Ltd Rolled copper foil for copper-clad laminate
JP2004027257A (en) * 2002-06-21 2004-01-29 Nippon Mining & Metals Co Ltd Copper alloy with excellent bendability, and its manufacturing method
JP2004256879A (en) * 2003-02-27 2004-09-16 Nikko Metal Manufacturing Co Ltd Rolled copper foil having high elongation
JP2005005413A (en) * 2003-06-11 2005-01-06 Ibiden Co Ltd Flexible-rigid wiring board
JP2005113180A (en) * 2003-10-06 2005-04-28 Furukawa Electric Co Ltd:The Copper alloy for electronic equipment, and its production method
JP2005211948A (en) * 2004-01-30 2005-08-11 Nikko Metal Manufacturing Co Ltd Rolled copper foil and method for manufacturing the same and laminated substrate

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8932744B2 (en) 2007-05-23 2015-01-13 Sony Corporation Current collector, anode, and battery
JP2009004370A (en) * 2007-05-23 2009-01-08 Sony Corp Collector, negative electrode, and secondary battery
JP2009242847A (en) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd Copper alloy foil for flexible printed circuit board excellent in etching properties and flexible printed circuit board using the same
JP2012001781A (en) * 2010-06-18 2012-01-05 Hitachi Cable Ltd Copper alloy material for electric/electronic component, and method of manufacturing the same
JP2012246556A (en) * 2011-05-30 2012-12-13 Jx Nippon Mining & Metals Corp Rolled copper foil, copper-clad laminate, flexible printed wiring board, and electronic equipment
JP2013018245A (en) * 2011-07-13 2013-01-31 Sumitomo Metal Mining Co Ltd Metallized polyimide film and printed circuit board
JP2013089910A (en) * 2011-10-21 2013-05-13 Fujikura Ltd Flexible printed board and manufacturing method of the same
WO2013161351A1 (en) * 2012-04-24 2013-10-31 Jx日鉱日石金属株式会社 Cu-Ni-Si TYPE COPPER ALLOY
JP2013227600A (en) * 2012-04-24 2013-11-07 Jx Nippon Mining & Metals Corp Cu-Ni-Si BASED COPPER ALLOY
US9859031B2 (en) 2012-04-24 2018-01-02 Jx Nippon Mining & Metals Corporation Cu—Ni—Si based copper alloy
JP2014077182A (en) * 2012-10-12 2014-05-01 Sh Copper Products Corp Rolled copper foil
JP2014210950A (en) * 2013-04-18 2014-11-13 株式会社Shカッパープロダクツ Rolled copper foil with copper plated layer
WO2015041348A1 (en) * 2013-09-20 2015-03-26 Jx日鉱日石金属株式会社 Copper alloy foil
JP2015059266A (en) * 2013-09-20 2015-03-30 Jx日鉱日石金属株式会社 Copper alloy foil
WO2016088884A1 (en) * 2014-12-05 2016-06-09 三井金属鉱業株式会社 Surface-treated copper foil for forming high frequency signal transmission circuit, copper clad laminate board and printed wiring board
KR101931895B1 (en) * 2014-12-05 2018-12-21 미쓰이금속광업주식회사 Surface-treated copper foil for forming high frequency signal transmission circuit, copper clad laminate board and printed wiring board
JPWO2016088884A1 (en) * 2014-12-05 2017-04-27 三井金属鉱業株式会社 Surface-treated copper foil, copper-clad laminate and printed wiring board for high-frequency signal transmission circuit formation
KR20170078798A (en) * 2014-12-05 2017-07-07 미쓰이금속광업주식회사 Surface-treated copper foil for forming high frequency signal transmission circuit, copper clad laminate board and printed wiring board
JP2016135927A (en) * 2015-01-09 2016-07-28 Jx金属株式会社 Metal base material with plating material
JP2016138337A (en) * 2015-01-09 2016-08-04 Jx金属株式会社 Metal base with plating
US10704129B2 (en) 2015-03-30 2020-07-07 Jx Nippon Mining & Metals Corporation Cu—Ni—Si based rolled copper alloy and production method thereof
JP2017179390A (en) * 2016-03-28 2017-10-05 Jx金属株式会社 Copper foil for flexible printed wiring board, and copper clad laminate, flexible printed wiring board and electronic device using the same
JP2018026546A (en) * 2016-08-11 2018-02-15 エル エス エムトロン リミテッドLS Mtron Ltd. Soft copper foil laminate film and manufacturing method therefor, capable of preventing circuit disconnection/short circuit
CN107734863A (en) * 2016-08-11 2018-02-23 Ls美创有限公司 The pliability copper-clad base plate and its manufacture method of open circuit/short circuit can be prevented
KR20210045950A (en) * 2019-10-17 2021-04-27 롬 앤드 하스 일렉트로닉 머트어리얼즈 엘엘씨 Method of enhancing copper electroplating
JP2021066956A (en) * 2019-10-17 2021-04-30 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC Method of enhancing copper plating
KR102468093B1 (en) 2019-10-17 2022-11-16 롬 앤드 하스 일렉트로닉 머트어리얼즈 엘엘씨 Method of enhancing copper electroplating
JP7287933B2 (en) 2019-10-17 2023-06-06 ローム アンド ハース エレクトロニック マテリアルズ エルエルシー Strengthening method of copper plating
CN115728194A (en) * 2022-11-21 2023-03-03 山东大学 Method for detecting crystal grain morphology of copper foil section

Also Published As

Publication number Publication date
JP4916154B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP4916154B2 (en) Copper or copper alloy foil for circuit
JP4662834B2 (en) Copper or copper alloy foil for circuit
JP3346774B2 (en) High tensile strength electrolytic copper foil and method for producing the same
JP5255229B2 (en) Electrolytic copper foil, surface-treated copper foil using the electrolytic copper foil, copper-clad laminate using the surface-treated copper foil, and method for producing the electrolytic copper foil
JP2003193211A (en) Rolled copper foil for copper-clad laminate
WO2007125994A1 (en) Electrolytic copper foil, surface treated copper foil using the electrolytic copper foil, copper-clad laminated plate using the surface treated copper foil, and method for manufacturing the electrolytic copper foil
JP2009111203A (en) Rolled copper foil, and flexible printed wiring board
JP3962291B2 (en) Rolled copper foil for copper clad laminate and method for producing the same
JP2007107036A (en) Rolled copper alloy foil to be bent
TWI633196B (en) Rolled copper foil with copper plating
JP5298225B1 (en) Rolled copper foil, method for producing the same, and laminate
JP2014100903A (en) Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board and method producing printed wiring board
JP2009242846A (en) Copper alloy foil
JP5532706B2 (en) Method for producing flexible copper-clad laminate
JP2006179537A (en) Roughened rolling copper foil for high frequency circuit and its production process
JP5261595B1 (en) Rolled copper foil, method for producing the same, and laminate
JP2006016690A (en) Metallic material for printed circuited board
JP3911173B2 (en) Rolled copper foil for copper clad laminate and method for producing the same (2)
JP5778460B2 (en) Rolled copper foil, method for producing the same, and copper-clad laminate
JP5329491B2 (en) Copper foil for flexible printed wiring board and method for producing the same
JP2015079780A (en) Copper foil, copper-clad laminate, and flexible printed wiring board
JP2006283146A (en) Rolled copper foil and method for producing the same
JP2008308749A (en) Copper plating method
JP2014011451A (en) Rolled copper foil, process of manufacturing the same, and laminate sheet
JP6774457B2 (en) Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080922

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080922

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4916154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250