JP2004256879A - Rolled copper foil having high elongation - Google Patents
Rolled copper foil having high elongation Download PDFInfo
- Publication number
- JP2004256879A JP2004256879A JP2003050282A JP2003050282A JP2004256879A JP 2004256879 A JP2004256879 A JP 2004256879A JP 2003050282 A JP2003050282 A JP 2003050282A JP 2003050282 A JP2003050282 A JP 2003050282A JP 2004256879 A JP2004256879 A JP 2004256879A
- Authority
- JP
- Japan
- Prior art keywords
- copper foil
- rolling
- copper
- elongation
- foil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Parts Printed On Printed Circuit Boards (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は高い伸びを有する圧延銅箔およびその製造方法に関するものであり、フレキシブルプリント回路基板(Flexible Printed Circuit、以下FPCと表記する)および多層フレキシブルプリント回路基板等の可撓性配線部材、小型モーター用箔巻きコイル、トランス用箔巻きコイル、電線被覆材などのコイル材等に好適な高い伸びを有する圧延銅箔を提供するものである。
【0002】
【従来の技術】
電子機器の電子回路にはFPCが多用される。FPCは可撓性を持つことを特徴とし、可動部の配線に用いられる他に、電子機器内で折り曲げた状態で収納することが可能であるために、省スペース配線材料としても用いられている。FPCは、ポリイミド等の樹脂フィルムに銅箔を貼り付けた銅張積層板に、エッチング加工で銅の配線パターンを形成したものである。
【0003】
近年、電子機器の薄型化およびコンパクト化が進み、より厳しい折り曲げ変形がFPCに加えられるようになった。FPCには三層銅張積層板と二層銅張積層板の二種類がある。三層材では接着剤を使用して銅箔と樹脂フィルムとを接着するのに対し、二層材では接着剤を介さずポリイミドフィルムと銅箔が一体化される。このため,二層材は三層板よりも薄く、薄いことにより折り曲げ性に優れる。したがって、特に可撓性が要求されるFPCには二層材が用いられる傾向にある。
二層材の製造方法としては、ポリイミド樹脂の前駆体であるポリアミック酸を含むワニスを銅箔上に塗布して加熱硬化させる“キャスティング法”、銅箔をポリイミドフィルムに直接に積層する“ラミネート法”等がある。この製造プロセスでの熱履歴により銅箔は再結晶し軟化する。二層材の折曲げ性をさらに改善するために、銅張積層の構成材料である銅箔に対しても、再結晶後の伸びを高め、折り曲げ性を改善することが求められている。
【0004】
また、FPCにおける銅配線の幅と配線間隔はますます小さくなっている。このような銅配線のファインピッチ化を進めるためには、銅箔を薄くすることが不可欠である。すなわち、従来、フレキシブル基板に用いられていた銅箔の厚みは18μmまたは12μmが主流であったが、最近は9μmあるいはこれより薄い銅箔が要求されるようになった。しかし、厚さが10μm以下の圧延銅箔を工業的に安定して製造することは困難であり、また、銅張積層板の製造プロセスにおける銅箔の取り扱いも難しくなる。そこで、例えば銅回路の厚みが6μmのフレキシブル基板は、まず12μmの銅箔を用いて銅張積層板を製造し、エッチングにより銅箔の厚みを6μmに減肉するというプロセスにより製造されることが多い。このエッチング処理(以下、減肉エッチング)に対し、銅箔表面が均一にエッチングされることが要求される。その理由はエッチングが不均一に進むとエッチング後の表面に凹凸が生じるため、回路のエッチング(以下、回路エッチング)に先立ちレジストを銅箔表面に塗布する際に、銅箔とレジスト膜との間に気泡が発生し、エッチング後の回路形状が劣化するためである。
【0005】
銅箔の伸びの向上については、FPC以外の用途でも求められている。例えば、電線被覆材用として、銅箔を合成樹脂材料と重ねて張り合わせた積層材が用いられている。銅箔の伸びは厚みが薄くなるに従い減少する。軟化点以上の温度で焼鈍し伸びを高めた銅箔を用いても、ごく薄い銅箔を電線被覆材用として電線に巻きつける場合には、銅箔に亀裂が入り破断するという問題があった。
従来、上記用途の銅箔の素材は、主としてタフピッチ銅(酸素含有量100〜500mass ppm)または無酸素銅(酸素含有量10mass ppm以下)であり、このインゴットを熱間圧延し、その後冷間圧延および中間焼鈍を繰り返し、最終圧延で厚み9〜35μmの箔に加工する。この圧延上がりの銅箔を焼鈍したときにより高い伸びが得られるように、銅箔の製造工程において、中間焼鈍の条件を種々変化させたり、最終焼鈍後の圧延加工度を調整することが試みられたが、銅箔の厚みが10μm以下になると10%を超える伸びを得ることは困難であった。
【0006】
これに対して、タフピッチ銅にAgを0.05〜0.35質量%添加し、伸びを高めた銅箔が提唱されている(例えば、特許文献1参照。)。しかし、この方法により得られた銅箔においても、厚さ8μmの銅箔を焼鈍したときの伸びは10%を超えていない。
純銅を再結晶焼鈍すると立方体集合組織((100)面、[001]方位)が発達する。銅箔の製造プロセスにおいて最終圧延での加工度を高くすること、および最終圧延直前の焼鈍での結晶粒径を小さくすることで、再結晶焼鈍後に立方体集合組織がより発達する。タフピッチ銅にAgを微量添加した銅箔においても、同様の製造プロセスにより立方体集合組織が発達する傾向が認められる。立方体集合組織の発達度が高くなるにしたがって、箔の引張強さと伸びが同時に低下する。また、再結晶焼鈍後の結晶粒の形態に着目すると、立方体集合組織が発達した銅箔では、丸みを帯びて圧延方向に長く伸びた粗大な再結晶粒となる。
【0007】
【特許文献1】
特開平11−140564号公報
【0008】
【発明が解決しようとする課題】
本発明の目的は、箔を再結晶焼鈍した際に高い伸びが得られ、さらに減肉のためのエッチング処理を施したときに平滑な表面が得られる圧延銅箔を提供することである。
【0009】
【課題を解決するための手段】
本発明者らは、無酸素銅に微量の元素を添加したインゴットを素材とし、熱間圧延後に冷間圧延と中間焼鈍を行い、最後に冷間圧延で箔に仕上げる工程で、厚さ18μm以下の銅箔を製造した。このプロセスにおいて、添加元素の種類と量、圧延条件等を種々に変化させ、これら条件が再結晶焼鈍後の伸びに及ぼす影響を検討した。その結果、無酸素銅にSnを添加した銅箔では、箔を再結晶焼鈍したときに高い伸びが得られることを知見した。高い伸びが得られた銅箔では、純銅の再結晶集合組織である立方体方位の発達度が著しく低かった。
【0010】
そこで本発明者らは、再結晶焼鈍を施した圧延銅箔について、結晶方位と伸びとの関係に着目し、そのデータを蓄積し解析した。その結果、圧延面への(200)面の集合度を所定のレベルに抑制した銅箔は、従来の銅箔に対し、再結晶焼鈍後の伸びがより優れていることを見出した。いいかえれば、極薄銅箔において、伸びを改善する方策を見出したのである。
【0011】
金属結晶のヤング率は結晶方位に依存して変化するため、金属材料の弾性的変形挙動は結晶方位によって変化する。また、金属結晶は固有のすべり面とすべり方向を持つことから、金属材料の塑性的変形挙動も結晶方位によって変化する。立方体方位の発達度が材料の伸びに影響を及ぼすメカニズムの詳細は明らかでないが、金属材料の変形挙動が結晶方位に依存することと関係していると思われた。
さらに,本発明者らは(200)面の集合度を充分に抑制するためには、Snを添加するだけでは不十分であり、再結晶焼鈍前(最終圧延上がり)の結晶方位をも制御する必要があることを知見した。
【0012】
なお、本発明者らは、特願2002−50700において、銅張積層板用にSnを添加した銅箔を提案しているが、この発明は銅箔が圧延上がりの組織状態で用いられる場合に、銅箔の成分、組織などを最適化したものである。これに対し、本発明は、圧延銅箔が再結晶焼鈍を経て使用される場合に、再結晶後の伸びを高めることを主目的に、成分と組織を最適化するものである。
一方、立方体方位に配向する再結晶粒の成長速度は極めて大きいため、再結晶焼鈍時に立方体集合組織が発達する銅箔では、再結晶粒が粗大化する。したがって、立方体集合組織の発達を抑制すると結晶粒が微細化する。この結晶粒微細化により、減肉エッチングを施した際に、エッチング面が平滑になるという効果も得られた。エッチング面の凹凸は、隣接する結晶粒の方位差に起因して結晶粒単位で発生するものであり、結晶粒が微細になることにより凹凸のピッチが小さくなり、表面が平滑化するのである。
【0013】
減肉エッチング面の平滑化について、本発明者らは特願2001−395774にて、立方体集合組織を極度に発達させることを提案している。これは、隣接する結晶粒の方位差を無くすことを意図したものである。本発明によるエッチング面平滑化は、これとは異なる機構を利用したものである。
すなわち、本発明は、
(1)再結晶焼鈍を施すことにより、X線回折で求めた圧延面の(200)面の強度(I)が、微粉末銅のX線回折で求めた(200)面の強度(I0)に対し、
I(200)/I0(200)<1.0
である集合組織が発現することを特徴とする圧延銅箔、
(2)Snを0.01〜0.2mass%含有し、SnとCuの合計が99.9%以上であり、さらに、X線回折で求めた圧延面の(111)、(200)、(220)、(311)面の強度(I)が、微粉末銅のX線回折で求めたそれぞれの面の強度(I0)に対し、
0.01<I(111)/I0(111)<0.1
0.15<I(200)/I0(200)<1.0
2.5<I(220)/I0(220)<5.5
0.2<I(311)/I0(311)<0.6
であることを特徴とする圧延銅箔、
(3)厚みが20μm以下であり、再結晶焼鈍したあとに、20%以上の伸びが得られることを特徴とする請求項1、2に記載の圧延銅箔、である。
【00014】
【発明の実施の形態】
以下に本発明を構成する各要素の限定理由について説明する。
(1)再結晶焼鈍後の結晶方位
再結晶焼鈍を施した銅箔の結晶方位が、
I(200)/I0(200)<1.0
の関係にあれば、高い伸びが得られ、減肉エッチング面が平滑化する。ここで、I(hkl)およびI0(hkl)は、それぞれ銅箔の圧延面および微粉末銅(ランダム方位試料)について、X線ディフラクトメータを使用して測定した(hkl)面のX線強度の積分値である。
【0015】
(2)銅箔の素材
CuにSnを添加すると、積層欠陥エネルギーが低下して、(200)立方体集合組織の発達が抑制される。しかし、Sn濃度が0.01mass%未満では、圧延上がりの結晶方位を後述するように調整しても、再結晶焼鈍後に上記結晶方位を得ることができない。また、Snが0.2 mass%を超えると導電率が80%を下回り、高導電性が求められる用途に向かなくなる。
【0016】
一方、Snを添加するベースとなるCuには、酸素濃度が0.005mass%以下である無酸素銅と酸素濃度が0.02〜0.05mass%のタフピッチ銅の二種類がある。本発明では無酸素銅にSnを添加する。タフピッチ銅にSnを添加すると、Snと酸素が化合物を生成するため、銅箔を引張った際にこの粒子を起点にして破断が起こり、高い伸びは期待できない。なお、 JIS−H3100(1999年)により、無酸素銅C1020の組成は、Cuが99.6mass%以上と定義されている。
【0017】
(3)最終圧延上がりの結晶方位
再結晶焼鈍後に上記結晶方位を得るためには、最終圧延上がり(再結晶焼鈍前)において、銅合金の主要4面((220)、(111)、(200)、(311))の配向を、
0.01<I(111)/I0(111)<0.1
0.15<I(200)/I0(200)<1.0
2.5<I(220)/I0(220)<5.5
0.2<I(311)/I0(311)<0.6
に調整する必要がある。この範囲に調整しないと、0.01 masst%以上のSnを添加しても、再結晶焼鈍後に所望の結晶方位を得ることができない。
【0018】
(4)箔の厚み
最終圧延によって得られる箔の厚みを20μm以下としたが、より望ましくは5〜18μmである。箔の厚みが5μm未満の場合、各種部品に加工される際にしわがよったり、破れやすくなるなどハンドリングに困難が生じる。また、20μmを超えると、小型化が求められるコイル用素材や2層CCL用には採用しにくくなる。
【0019】
(5)伸び
20%以上の伸びが安定して得られれば、従来の銅箔に対して明らかに伸びが向上したと判断でき、部品の設計の変更、新たな用途への銅箔の適用などが可能となる。なお、本発明に関わるSn含有銅箔の再結晶焼鈍の温度は、概ね350〜450℃の範囲が適正である。この温度より低い条件では未再結晶領域が存在し、また、これより高い条件では結晶粒が粗大化し、いずれの場合にも所望の伸びを得ることができなくなる。
【0020】
(6)製造プロセス
上記の最終焼鈍上がりの結晶方位を得るための製造プロセスは特に限定されない。ただし、圧延上がりの強度を高めるためには、インゴットを熱間圧延した後、冷間圧延と焼鈍とを繰り返し最後に冷間圧延で箔に仕上げるプロセスにおいて、最後の冷間圧延の加工度を85%以上とし、最後の冷間圧延直前の焼鈍で得られる結晶粒径を20μm以下にすることが好ましい。なお、冷間圧延加工度(R)は、圧延前の厚さをt0、圧延後の厚さをtとし、
R=(t0−t)/t0×100(%)
で定義される。
【0021】
【実施例】
以下、本発明の様態を実施例により説明する
カーボン脱酸によりO濃度を5mass ppm以下に下げた溶銅に所定量のSnを添加し、表1に示す成分の厚さ200 mm、幅600 mmの銅インゴットを製造した。インゴットを熱間圧延した後、焼鈍と冷間圧延を繰り返し、最後に加工度90%の冷間圧延で所定の厚みの箔に仕上げた。最終圧延前の再結晶焼鈍は,結晶粒径が約15μmになる条件で行った。なお、焼鈍後の結晶粒径は、圧延方向に直角な断面において切断法で測定した。
【0022】
最終圧延上がりの結晶方位を変化させるために、圧延ロールの直径、1パスあたりの圧延加工度、圧延張力および圧延油の温度を種々変化させた。これら圧延条件と圧延後の板面方位には次のような傾向が認められた。
・圧延ロールの直径を大きくすると、(311)面の強度が低くなる。
・1パスあたりの圧延加工度を大きくすると、(200)面の強度が低くなる。
・圧延油温度を低くすると(111)面の強度が高くなる。
・圧延張力を高くすると(220)面の強度が高くなる。
最終圧延上がりの銅箔につき、まず、焼鈍時間を30分としたときの半軟化温度を求めた。そして、この半軟化温度より50℃高い温度で30分間の焼鈍を施し、銅箔を再結晶させた。ここで、半軟化温度とは、引張り強さが焼鈍前の値と完全軟化後(本実施例では500℃で30分間焼鈍したときの値を採用)の値の中間の値になるときの焼鈍温度である。
【0023】
以上の銅箔試料について、次の評価を行った。
(1)圧延上がりの板面方位
圧延上がりの銅箔の表面について、X線回折により(111)、(200)、(220)および(311)面の強度の積分値(I)求めた。この値をあらかじめ測定しておいた微粉末銅のそれぞれの面強度の積分値(I0)で割り、I/I0の値を計算した。なお、ピーク強度の積分値の測定では、Co管球を用い、2θ(θは回折角度)は以下の範囲で行なった。
(111):48〜53°
(200):57〜62°
(220):86〜91°
(200):108〜113°
同様に、再結晶焼鈍後の試料について、(200)面の積分強度比I/I0を求めた。
【0024】
(2)再結晶後の結晶粒径
再結晶焼鈍後の試料について、圧延面を鏡面研磨後に化学腐食し、切断法(JIS H 0501(1999年))に準じ、所定長さの線分により完全に切られる結晶粒数を数える方法により結晶粒径を求めた。
【0025】
(3)伸び
再結晶焼鈍後の試料について、引張試験により伸びを求めた。
引張試験片は幅12.7mm、長さ150mmの短冊片を用い、引張速度を50mm/minに固定し、破断後の伸びを実測した。伸び測定の標点距離は50mmとした。
【0026】
(3)導電率
再結晶焼鈍後の試料について、定電圧直流電位差計を用いて比抵抗を測定し、導電率(IACS%)を求めた。測定試験片は引張試験片と同じものを用いた。
【0027】
(4)エッチング試験
温度50℃、濃度100g/Lの過硫酸ナトリウム水溶液を試料表面に、2kg/cm2の圧力で噴射し、厚みが半分になるように深さ方向にエッチングした。その後、JIS B0601(1999年)に従い、接触粗さ計を用いて表面の最大高さ(Ry)を求めた。基準長さを0.8mmとし、圧延方向と平行な方向に測定した。Ryの測定は場所を変えて5回行い、5回の測定値の最大値を求めた。
【0028】
【表1】
【0029】
表1に実施例の評価結果を示す。No.1〜9は発明例であり、No.10〜22は成分または圧延上がりの板面方位が請求の範囲から外れる比較例である。比較例のうち、No.10は無酸素銅であり、No.21および22は、Snを添加する代わりにAgを添加したもので、No.21のAg濃度は0.020mass%、No.22のAg濃度は0.146mass%である。
発明例のNo1〜8は、再結晶焼鈍後における板面方位が、請求項1を満たしており、いずれも20%以上の高い伸びが得られ、また、再結晶後の結晶粒が微細なためエッチング面の粗さが小さい。
【0030】
一方、比較例のNo.10はSnを添加していないため、No.11はSn濃度が0.01mass%に満たないため、最終圧延後の結晶方位が規定を外れ、再結晶後に立方体集合組織が著しく発達している。このため伸びが20%より低く、また再結晶後の結晶粒が粗大なためエッチング面の粗さが大きい。Snの代わりにAgを添加したNo.21および22、また、Snを添加しても、最終圧延後の結晶方位が規定を満たしていないNo.13〜20についても、同様の結果になっている。
【0031】
No.12はSn濃度が0.2mass%を超えたため、伸びが高くエッチング面の粗さも小さいが、導電率が80%を下回り、高導電性が求められるコイルなどの用途には不適当である。
なお、圧延上がりの板面方位には、上述した圧延条件のほか、圧延機自体の特性(構造、剛性等)も影響を及ぼす。また、厚み、幅、機械的特性、表面粗さ等の材料要因も影響を及ぼす。したがって、圧延上がりの板面方位は、圧延条件によって、一義的に決定されるものではないが、参考までに、厚みとSn濃度が同等である発明例No.4と比較例No.16について、圧延条件を対比すると、次の通りであった。
・圧延ロールの直径(mm)… No.4:50、No.16:50。
・1パスあたりの加工度(%)… No.4:43.7、No.16:68.3。
・圧延張力(MPa)… No.4:100、No.16:150。
・圧延油の温度(℃)… No.4:30、No.16:25。
【0032】
【発明の効果】
本発明の銅箔は、再結晶焼鈍が施した際に、高い伸びを発現する。このため極細線のコイル、フレキシブルプリント回路基板、過酷な曲げ加工を必要とする微小部品等の用途として好適である。また、減肉のためのエッチング処理を施したときに平滑な表面が得られるので、ファインピッチ加工のために減肉エッチング処理を施されるフレキシブルプリント回路基板等に対しては、特に好適である。[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rolled copper foil having high elongation and a method for manufacturing the same, and a flexible printed circuit board (Flexible Printed Circuit), a flexible wiring member such as a multilayer flexible printed circuit board, and a small motor. The present invention provides a rolled copper foil having a high elongation suitable for a coil material such as a foil-wound coil for a transformer, a foil-wound coil for a transformer, and a wire covering material.
[0002]
[Prior art]
FPCs are frequently used in electronic circuits of electronic devices. FPCs are characterized by their flexibility, and are used as wiring for movable parts, and are also used as space-saving wiring materials because they can be folded and stored in electronic devices. . The FPC is obtained by forming a copper wiring pattern on a copper-clad laminate obtained by attaching a copper foil to a resin film of polyimide or the like by etching.
[0003]
In recent years, electronic devices have become thinner and more compact, and more severe bending deformation has been applied to FPCs. There are two types of FPCs, three-layer copper-clad laminates and two-layer copper-clad laminates. In a three-layer material, an adhesive is used to bond a copper foil and a resin film, whereas in a two-layer material, a polyimide film and a copper foil are integrated without using an adhesive. For this reason, the two-layered material is thinner than the three-layered plate, and is excellent in bendability by being thin. Therefore, a two-layered material tends to be used for an FPC particularly requiring flexibility.
The two-layer material is manufactured by a “casting method” in which a varnish containing a polyamic acid, which is a precursor of a polyimide resin, is applied on a copper foil and cured by heating, and a “laminating method” in which the copper foil is directly laminated on a polyimide film. And so on. The copper foil is recrystallized and softened by the heat history in this manufacturing process. In order to further improve the bendability of the two-layered material, it is required that the copper foil, which is a constituent material of the copper-clad laminate, increase the elongation after recrystallization and improve the bendability.
[0004]
In addition, the width and spacing of copper wiring in FPC are becoming smaller. In order to make such copper wiring finer, it is essential to make the copper foil thinner. That is, the thickness of the copper foil conventionally used for the flexible substrate has been mainly 18 μm or 12 μm, but recently a copper foil having a thickness of 9 μm or thinner has been required. However, it is difficult to manufacture a rolled copper foil having a thickness of 10 μm or less in an industrially stable manner, and it is also difficult to handle the copper foil in the process of manufacturing a copper-clad laminate. Therefore, for example, a flexible board having a copper circuit thickness of 6 μm may be manufactured by a process in which a copper-clad laminate is first manufactured using 12 μm copper foil, and the thickness of the copper foil is reduced to 6 μm by etching. Many. It is required that the surface of the copper foil be uniformly etched for this etching treatment (hereinafter, thinning etching). The reason for this is that if the etching proceeds unevenly, irregularities will occur on the surface after etching. Therefore, when applying a resist to the copper foil surface prior to circuit etching (hereinafter, circuit etching), the gap between the copper foil and the resist film will be lost. This is because air bubbles are generated in the liquid crystal and the circuit shape after etching deteriorates.
[0005]
Improvement of the elongation of the copper foil is required for uses other than FPC. For example, a laminated material in which a copper foil is laminated on a synthetic resin material and adhered is used for an electric wire covering material. The elongation of the copper foil decreases as the thickness decreases. Even when using copper foil annealed at a temperature equal to or higher than the softening point to increase elongation, when a very thin copper foil is wound around an electric wire as a wire covering material, there is a problem that the copper foil is cracked and breaks. .
Conventionally, the material of the copper foil for the above applications is mainly tough pitch copper (oxygen content 100 to 500 mass ppm) or oxygen-free copper (oxygen content 10 mass ppm or less), and the ingot is hot-rolled and then cold-rolled. And the intermediate annealing is repeated, and processed into a foil having a thickness of 9 to 35 μm by final rolling. In order to obtain higher elongation when annealing the rolled copper foil, in the copper foil manufacturing process, various conditions of the intermediate annealing are changed, and it is attempted to adjust the rolling degree after the final annealing. However, when the thickness of the copper foil was 10 μm or less, it was difficult to obtain an elongation exceeding 10%.
[0006]
On the other hand, a copper foil in which elongation is enhanced by adding 0.05 to 0.35% by mass of Ag to tough pitch copper has been proposed (for example, see Patent Document 1). However, even in the copper foil obtained by this method, the elongation when the copper foil having a thickness of 8 μm is annealed does not exceed 10%.
When pure copper is recrystallized and annealed, a cubic texture ((100) plane, [001] orientation) develops. By increasing the workability in the final rolling and reducing the crystal grain size in the annealing immediately before the final rolling in the copper foil manufacturing process, the cubic texture is further developed after the recrystallization annealing. Even in a copper foil obtained by adding a small amount of Ag to tough pitch copper, a tendency to develop a cubic texture by the same manufacturing process is recognized. As the degree of development of the cubic texture increases, the tensile strength and elongation of the foil simultaneously decrease. Focusing on the morphology of the crystal grains after recrystallization annealing, the copper foil in which the cubic texture has developed becomes coarse recrystallized grains that are rounded and elongated in the rolling direction.
[0007]
[Patent Document 1]
JP-A-11-140564 [0008]
[Problems to be solved by the invention]
An object of the present invention is to provide a rolled copper foil capable of obtaining a high elongation when the foil is subjected to recrystallization annealing and further obtaining a smooth surface when subjected to an etching treatment for reducing the thickness.
[0009]
[Means for Solving the Problems]
The present inventors made an ingot obtained by adding a trace element to oxygen-free copper, perform cold rolling and intermediate annealing after hot rolling, and finally finish the foil by cold rolling, and a thickness of 18 μm or less. Was produced. In this process, the types and amounts of the added elements, the rolling conditions, and the like were variously changed, and the effects of these conditions on elongation after recrystallization annealing were examined. As a result, it has been found that in a copper foil obtained by adding Sn to oxygen-free copper, high elongation is obtained when the foil is recrystallized and annealed. In the copper foil from which high elongation was obtained, the degree of development of the cube orientation, which is a recrystallization texture of pure copper, was extremely low.
[0010]
Therefore, the present inventors focused on the relationship between the crystal orientation and the elongation of the rolled copper foil subjected to the recrystallization annealing, and accumulated and analyzed the data. As a result, they found that the copper foil in which the degree of assembling of the (200) plane on the rolled surface was suppressed to a predetermined level had better elongation after recrystallization annealing than the conventional copper foil. In other words, they found a way to improve elongation in ultra-thin copper foil.
[0011]
Since the Young's modulus of a metal crystal changes depending on the crystal orientation, the elastic deformation behavior of the metal material changes depending on the crystal orientation. Further, since a metal crystal has a unique slip plane and slip direction, the plastic deformation behavior of the metal material also changes depending on the crystal orientation. Although the details of the mechanism by which the degree of cubic orientation affects the elongation of the material are not clear, it seems that the deformation behavior of the metallic material is related to the dependence on the crystal orientation.
Furthermore, the present inventors have found that it is not enough to add Sn only to sufficiently suppress the degree of aggregation of the (200) plane, and also controls the crystal orientation before recrystallization annealing (final rolling). I knew it was necessary.
[0012]
In addition, the present inventors have proposed a copper foil to which Sn is added for a copper-clad laminate in Japanese Patent Application No. 2002-50700. However, the present invention relates to a case where the copper foil is used in a rolled-up structure state. , The composition of copper foil, the structure, etc. are optimized. On the other hand, in the present invention, when the rolled copper foil is used after recrystallization annealing, the component and the structure are optimized mainly for the purpose of increasing the elongation after recrystallization.
On the other hand, since the growth rate of the recrystallized grains oriented in the cubic orientation is extremely high, the recrystallized grains become coarse in a copper foil in which a cubic texture develops during recrystallization annealing. Therefore, when the development of the cubic texture is suppressed, the crystal grains become finer. Due to the refinement of the crystal grains, the effect of smoothing the etched surface when the thinning etching was performed was also obtained. The unevenness of the etched surface is generated in units of crystal grains due to the difference in orientation between adjacent crystal grains. When the crystal grains become finer, the pitch of the unevenness is reduced, and the surface is smoothed.
[0013]
The present inventors have proposed, in Japanese Patent Application No. 2001-395774, to extremely develop a cubic texture for smoothing a thinned etched surface. This is intended to eliminate the difference in orientation between adjacent crystal grains. The etching surface smoothing according to the present invention utilizes a different mechanism.
That is, the present invention
(1) By performing recrystallization annealing, the intensity (I) of the (200) plane of the rolled surface determined by X-ray diffraction is changed to the intensity (I 0 ) of the (200) plane determined by X-ray diffraction of fine copper powder. )
I (200) / I0 (200) <1.0
Rolled copper foil, characterized by the development of a texture that is
(2) 0.01 to 0.2 mass% of Sn is contained, the sum of Sn and Cu is 99.9% or more, and (111), (200), and (200) of the rolled surface obtained by X-ray diffraction 220), the intensity (I) of the (311) plane is different from the intensity (I 0 ) of each plane obtained by X-ray diffraction of fine powder copper.
0.01 <I (111) / I0 (111) <0.1
0.15 <I (200) / I0 (200) <1.0
2.5 <I (220) / I0 (220) <5.5
0.2 <I (311) / I0 (311) <0.6
Rolled copper foil,
(3) The rolled copper foil according to claim 1 or 2, wherein the thickness is 20 µm or less, and an elongation of 20% or more is obtained after recrystallization annealing.
[00014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the reasons for limiting each element constituting the present invention will be described.
(1) Crystal orientation after recrystallization annealing The crystal orientation of the copper foil subjected to recrystallization annealing is as follows:
I (200) / I0 (200) <1.0
With this relationship, a high elongation can be obtained, and the etched thinned surface is smoothed. Here, I (hkl) and I 0 (hkl) are the X-rays of the (hkl) plane measured by using an X-ray diffractometer on the rolled surface of copper foil and fine powder copper (random orientation sample), respectively. This is the integral value of the intensity.
[0015]
(2) When Sn is added to the copper material Cu, the stacking fault energy decreases, and the development of the (200) cubic texture is suppressed. However, if the Sn concentration is less than 0.01 mass%, the above crystal orientation cannot be obtained after recrystallization annealing even if the crystal orientation after rolling is adjusted as described below. On the other hand, when Sn exceeds 0.2 mass%, the electrical conductivity is less than 80%, and it is not suitable for applications requiring high electrical conductivity.
[0016]
On the other hand, there are two types of Cu serving as a base to which Sn is added: oxygen-free copper having an oxygen concentration of 0.005 mass% or less and tough pitch copper having an oxygen concentration of 0.02 to 0.05 mass%. In the present invention, Sn is added to oxygen-free copper. When Sn is added to tough pitch copper, Sn and oxygen form a compound, so when the copper foil is pulled, breakage starts from these particles, and high elongation cannot be expected. According to JIS-H3100 (1999), the composition of oxygen-free copper C1020 is defined as Cu being 99.6 mass% or more.
[0017]
(3) Crystal orientation after final rolling In order to obtain the above crystal orientation after recrystallization annealing, in the final rolling (before recrystallization annealing), four main surfaces of the copper alloy ((220), (111) ), (200) and (311))
0.01 <I (111) / I0 (111) <0.1
0.15 <I (200) / I0 (200) <1.0
2.5 <I (220) / I0 (220) <5.5
0.2 <I (311) / I0 (311) <0.6
Need to be adjusted. Unless adjusted to this range, even if 0.01 mass% or more of Sn is added, a desired crystal orientation cannot be obtained after recrystallization annealing.
[0018]
(4) Thickness of foil The thickness of the foil obtained by final rolling was set to 20 μm or less, and more preferably 5 to 18 μm. When the thickness of the foil is less than 5 μm, handling becomes difficult such as wrinkling or tearing when processing into various parts. On the other hand, when the thickness exceeds 20 μm, it becomes difficult to adopt the material for a coil or the two-layer CCL which requires a reduction in size.
[0019]
(5) If the elongation of 20% or more is obtained stably, it can be judged that the elongation is clearly improved compared to the conventional copper foil, and the design of parts is changed, and the copper foil is applied to a new use. Becomes possible. In addition, the temperature of the recrystallization annealing of the Sn-containing copper foil according to the present invention is preferably approximately in the range of 350 to 450 ° C. If the temperature is lower than this temperature, an unrecrystallized region exists, and if the temperature is higher than this temperature, crystal grains become coarse, and in any case, a desired elongation cannot be obtained.
[0020]
(6) Manufacturing process The manufacturing process for obtaining the crystal orientation after the final annealing is not particularly limited. However, in order to increase the strength of the finished roll, after the ingot is hot-rolled, cold rolling and annealing are repeated, and finally, in a process of finishing the foil by cold rolling, the working degree of the last cold rolling is set to 85. % Or more, and the crystal grain size obtained by annealing just before the last cold rolling is preferably 20 μm or less. The cold rolling degree (R) is defined as t 0 before rolling, and t after rolling,
R = (t 0 -t) / t 0 × 100 (%)
Is defined by
[0021]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to Examples. A predetermined amount of Sn is added to molten copper whose O concentration has been reduced to 5 mass ppm or less by carbon deoxidation, and the components shown in Table 1 have a thickness of 200 mm and a width of 600 mm. Of copper ingots. After hot rolling the ingot, annealing and cold rolling were repeated, and finally, a foil having a predetermined thickness was finished by cold rolling at a working ratio of 90%. The recrystallization annealing before the final rolling was performed under the condition that the crystal grain size was about 15 μm. The crystal grain size after annealing was measured by a cutting method in a cross section perpendicular to the rolling direction.
[0022]
In order to change the crystal orientation after the final rolling, the diameter of the rolling roll, the degree of rolling per pass, the rolling tension, and the temperature of the rolling oil were variously changed. The following trends were observed in these rolling conditions and the orientation of the sheet surface after rolling.
-If the diameter of the rolling roll is increased, the strength of the (311) plane decreases.
-If the rolling degree per pass is increased, the strength of the (200) plane decreases.
-When the rolling oil temperature is lowered, the strength of the (111) plane increases.
-If the rolling tension is increased, the strength of the (220) plane increases.
First, the half-softening temperature when the annealing time was 30 minutes was determined for the copper foil after the final rolling. Then, annealing was performed at a temperature 50 ° C. higher than the half-softening temperature for 30 minutes to recrystallize the copper foil. Here, the semi-softening temperature refers to the annealing when the tensile strength is intermediate between the value before annealing and the value after complete softening (in the present embodiment, the value after annealing at 500 ° C. for 30 minutes). Temperature.
[0023]
The following evaluation was performed about the above-mentioned copper foil sample.
(1) Sheet plane orientation after rolling The integrated value (I) of the strength of the (111), (200), (220) and (311) planes was determined by X-ray diffraction on the surface of the copper foil after rolling. This value was divided by the integral value (I 0 ) of each surface strength of the fine powder copper measured in advance to calculate the value of I / I 0 . In the measurement of the integrated value of the peak intensity, a Co tube was used, and 2θ (θ was a diffraction angle) was performed in the following range.
(111): 48-53 °
(200): 57-62 °
(220): 86-91 °
(200): 108-113 °
Similarly, for the sample after recrystallization annealing, the integrated intensity ratio I / I 0 of the (200) plane was determined.
[0024]
(2) Grain size after recrystallization Regarding the sample after recrystallization annealing, the rolled surface is chemically polished after mirror polishing, and is completely formed by a line segment of a predetermined length according to a cutting method (JIS H 0501 (1999)). The crystal grain size was determined by a method of counting the number of crystal grains cut into pieces.
[0025]
(3) Elongation The elongation of the sample after recrystallization annealing was determined by a tensile test.
As a tensile test piece, a strip having a width of 12.7 mm and a length of 150 mm was used, the tensile speed was fixed at 50 mm / min, and the elongation after breaking was measured. The gauge length for elongation measurement was 50 mm.
[0026]
(3) Conductivity With respect to the sample after the recrystallization annealing, the specific resistance was measured using a constant voltage DC potentiometer, and the conductivity (IACS%) was obtained. The same test specimen as the tensile test specimen was used.
[0027]
(4) Etching test An aqueous solution of sodium persulfate having a temperature of 50 ° C. and a concentration of 100 g / L was sprayed onto the surface of the sample at a pressure of 2 kg / cm 2, and the sample was etched in the depth direction so that the thickness became half. Thereafter, the maximum height (Ry) of the surface was determined using a contact roughness meter according to JIS B0601 (1999). The reference length was 0.8 mm, and the measurement was performed in a direction parallel to the rolling direction. The measurement of Ry was performed five times at different locations, and the maximum value of the five measurements was obtained.
[0028]
[Table 1]
[0029]
Table 1 shows the evaluation results of the examples. No. Nos. 1 to 9 are invention examples. Nos. 10 to 22 are comparative examples in which the component or the plane orientation after rolling is out of the claims. Among the comparative examples, No. No. 10 is oxygen-free copper; In Nos. 21 and 22, Ag was added instead of Sn. The Ag concentration of No. 21 was 0.020 mass%. The Ag concentration of No. 22 is 0.146 mass%.
In Nos. 1 to 8 of the invention examples, the sheet plane orientation after recrystallization annealing satisfies claim 1, and all have high elongation of 20% or more, and the crystal grains after recrystallization are fine. The roughness of the etched surface is small.
[0030]
On the other hand, in Comparative Example No. No. 10 did not contain Sn, and In No. 11, since the Sn concentration was less than 0.01 mass%, the crystal orientation after final rolling was out of the specified range, and the cubic texture was remarkably developed after recrystallization. Therefore, the elongation is lower than 20%, and the roughness of the etched surface is large because the crystal grains after recrystallization are coarse. No. 3 containing Ag instead of Sn. Nos. 21 and 22, and even when Sn was added, the crystal orientation after final rolling did not satisfy the regulation. Similar results are obtained for 13 to 20.
[0031]
No. Sample No. 12 has a high elongation and a small roughness of the etched surface because the Sn concentration exceeds 0.2 mass%, but has an electric conductivity of less than 80% and is unsuitable for applications such as coils requiring high electric conductivity.
Note that, in addition to the above-described rolling conditions, the characteristics (structure, rigidity, and the like) of the rolling mill itself also affect the orientation of the sheet surface after rolling. Material factors such as thickness, width, mechanical properties, and surface roughness also have an effect. Therefore, although the sheet orientation after rolling is not uniquely determined by the rolling conditions, for reference, the invention example No. having the same thickness and Sn concentration is referred to. 4 and Comparative Example No. 4. The rolling conditions of No. 16 were as follows.
-Rolling roll diameter (mm) ... No. 4:50, no. 16:50.
-Degree of processing per pass (%) ... No. 4: 43.7, No. 16: 68.3.
-Rolling tension (MPa) ... No. 4: 100, no. 16: 150.
-Temperature of rolling oil (° C) ... 4:30, no. 16:25.
[0032]
【The invention's effect】
The copper foil of the present invention exhibits high elongation when subjected to recrystallization annealing. For this reason, it is suitable for use as a coil of a fine wire, a flexible printed circuit board, and a micro component requiring severe bending. In addition, since a smooth surface is obtained when an etching process for thinning is performed, it is particularly suitable for a flexible printed circuit board or the like that is subjected to a thinning etching process for fine pitch processing. .
Claims (3)
I(200)/I0(200)<1.0
である集合組織が発現することを特徴とする圧延銅箔By performing recrystallization annealing, the strength (I) of the (200) plane obtained by X-ray diffraction of the rolled surface is different from the intensity (I 0 ) of the (200) plane obtained by X-ray diffraction of the fine powder copper. ,
I (200) / I0 (200) <1.0
Rolled copper foil characterized by the development of texture
0.01<I(111)/I0(111)<0.1
0.15<I(200)/I0(200)<1.0
2.5<I(220)/I0(220)<5.5
0.2<I(311)/I0(311)<0.6
であることを特徴とする圧延銅箔。It contains 0.01 to 0.2 mass% of Sn, the total of Sn and Cu is 99.9% or more, and further, (111), (200), (220), The intensity (I) of the (311) plane is different from the intensity (I 0 ) of each plane obtained by X-ray diffraction of fine copper powder.
0.01 <I (111) / I0 (111) <0.1
0.15 <I (200) / I0 (200) <1.0
2.5 <I (220) / I0 (220) <5.5
0.2 <I (311) / I0 (311) <0.6
A rolled copper foil, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003050282A JP3824593B2 (en) | 2003-02-27 | 2003-02-27 | Rolled copper foil with high elongation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003050282A JP3824593B2 (en) | 2003-02-27 | 2003-02-27 | Rolled copper foil with high elongation |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004256879A true JP2004256879A (en) | 2004-09-16 |
JP3824593B2 JP3824593B2 (en) | 2006-09-20 |
Family
ID=33115736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003050282A Expired - Fee Related JP3824593B2 (en) | 2003-02-27 | 2003-02-27 | Rolled copper foil with high elongation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3824593B2 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006283078A (en) * | 2005-03-31 | 2006-10-19 | Nikko Kinzoku Kk | Rolled copper foil for copper-clad laminate, and manufacturing method therefor |
JP2007107038A (en) * | 2005-10-12 | 2007-04-26 | Nikko Kinzoku Kk | Copper or copper alloy foil for circuit |
JP2007107037A (en) * | 2005-10-12 | 2007-04-26 | Nikko Kinzoku Kk | Copper or copper-alloy foil for circuit |
JP2009004370A (en) * | 2007-05-23 | 2009-01-08 | Sony Corp | Collector, negative electrode, and secondary battery |
JP2009242847A (en) * | 2008-03-31 | 2009-10-22 | Nippon Mining & Metals Co Ltd | Copper alloy foil for flexible printed circuit board excellent in etching properties and flexible printed circuit board using the same |
JP2010238952A (en) * | 2009-03-31 | 2010-10-21 | Dowa Metaltech Kk | Metal ceramics junction substrate and method of manufacturing the same |
JP2011040371A (en) * | 2009-08-14 | 2011-02-24 | Sb Limotive Co Ltd | Electrode plate for secondary battery, and secondary battery including the same |
WO2012132713A1 (en) * | 2011-03-30 | 2012-10-04 | Jx日鉱日石金属株式会社 | Copper alloy plate having superior heat dissipation and repeated bending workability |
JP2012201964A (en) * | 2011-03-28 | 2012-10-22 | Jx Nippon Mining & Metals Corp | Rolled copper foil and secondary battery using the same |
JP2012201926A (en) * | 2011-03-25 | 2012-10-22 | Jx Nippon Mining & Metals Corp | Rolled copper foil and method for producing the same |
JP2014077182A (en) * | 2012-10-12 | 2014-05-01 | Sh Copper Products Corp | Rolled copper foil |
JPWO2012165548A1 (en) * | 2011-06-02 | 2015-02-23 | Jx日鉱日石金属株式会社 | Copper foil for producing graphene and method for producing graphene |
WO2015041348A1 (en) * | 2013-09-20 | 2015-03-26 | Jx日鉱日石金属株式会社 | Copper alloy foil |
US9457541B2 (en) | 2010-07-15 | 2016-10-04 | Ls Mtron Ltd. | Copper foil for current collector of lithium secondary battery with improved wrinkle characteristics |
JP2018204108A (en) * | 2017-06-07 | 2018-12-27 | 株式会社Shカッパープロダクツ | Oxygen-free copper plate and ceramic wiring board |
KR20190015108A (en) * | 2017-08-03 | 2019-02-13 | 제이엑스금속주식회사 | Copper foil for flexible printed circuit, copper clad laminate using the same, flexible printed circuit and electronic device |
JP2019029606A (en) * | 2017-08-03 | 2019-02-21 | Jx金属株式会社 | Copper foil for flexible printed board, copper-clad laminate arranged by use thereof, flexible printed board, and electronic device |
CN110072333A (en) * | 2018-01-22 | 2019-07-30 | 捷客斯金属株式会社 | Flexible printed board copper foil, copper clad layers stack, flexible printed board and electronic equipment using it |
JP2020142532A (en) * | 2016-04-12 | 2020-09-10 | 宇部エクシモ株式会社 | Metal laminate and metal molding |
CN117655103A (en) * | 2023-11-24 | 2024-03-08 | 中色正锐(山东)铜业有限公司 | Production method of high-deflection rolled copper foil for high-frequency high-speed communication |
-
2003
- 2003-02-27 JP JP2003050282A patent/JP3824593B2/en not_active Expired - Fee Related
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006283078A (en) * | 2005-03-31 | 2006-10-19 | Nikko Kinzoku Kk | Rolled copper foil for copper-clad laminate, and manufacturing method therefor |
JP2007107038A (en) * | 2005-10-12 | 2007-04-26 | Nikko Kinzoku Kk | Copper or copper alloy foil for circuit |
JP2007107037A (en) * | 2005-10-12 | 2007-04-26 | Nikko Kinzoku Kk | Copper or copper-alloy foil for circuit |
JP4662834B2 (en) * | 2005-10-12 | 2011-03-30 | Jx日鉱日石金属株式会社 | Copper or copper alloy foil for circuit |
JP2009004370A (en) * | 2007-05-23 | 2009-01-08 | Sony Corp | Collector, negative electrode, and secondary battery |
US8932744B2 (en) | 2007-05-23 | 2015-01-13 | Sony Corporation | Current collector, anode, and battery |
JP2009242847A (en) * | 2008-03-31 | 2009-10-22 | Nippon Mining & Metals Co Ltd | Copper alloy foil for flexible printed circuit board excellent in etching properties and flexible printed circuit board using the same |
JP2010238952A (en) * | 2009-03-31 | 2010-10-21 | Dowa Metaltech Kk | Metal ceramics junction substrate and method of manufacturing the same |
JP2011040371A (en) * | 2009-08-14 | 2011-02-24 | Sb Limotive Co Ltd | Electrode plate for secondary battery, and secondary battery including the same |
US9457541B2 (en) | 2010-07-15 | 2016-10-04 | Ls Mtron Ltd. | Copper foil for current collector of lithium secondary battery with improved wrinkle characteristics |
US10283778B2 (en) | 2010-07-15 | 2019-05-07 | Kcf Technologies Co., Ltd. | Copper foil for current collector of lithium secondary battery with improved wrinkle characteristics |
JP2012201926A (en) * | 2011-03-25 | 2012-10-22 | Jx Nippon Mining & Metals Corp | Rolled copper foil and method for producing the same |
JP2012201964A (en) * | 2011-03-28 | 2012-10-22 | Jx Nippon Mining & Metals Corp | Rolled copper foil and secondary battery using the same |
US9373425B2 (en) | 2011-03-30 | 2016-06-21 | Jx Nippon Mining & Metals Corporation | Copper alloy sheet with excellent heat dissipation and workability in repetitive bending |
CN103443307A (en) * | 2011-03-30 | 2013-12-11 | Jx日矿日石金属株式会社 | Copper alloy plate having superior heat dissipation and repeated bending workability |
WO2012132713A1 (en) * | 2011-03-30 | 2012-10-04 | Jx日鉱日石金属株式会社 | Copper alloy plate having superior heat dissipation and repeated bending workability |
KR101528998B1 (en) * | 2011-03-30 | 2015-06-15 | 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 | Copper alloy plate having superior heat dissipation and repeated bending workability |
JP2012211353A (en) * | 2011-03-30 | 2012-11-01 | Jx Nippon Mining & Metals Corp | Copper alloy plate excellent in heat radiation and processability in repeated bending |
JPWO2012165548A1 (en) * | 2011-06-02 | 2015-02-23 | Jx日鉱日石金属株式会社 | Copper foil for producing graphene and method for producing graphene |
JP2014077182A (en) * | 2012-10-12 | 2014-05-01 | Sh Copper Products Corp | Rolled copper foil |
JP2015059266A (en) * | 2013-09-20 | 2015-03-30 | Jx日鉱日石金属株式会社 | Copper alloy foil |
CN105637106A (en) * | 2013-09-20 | 2016-06-01 | Jx金属株式会社 | Copper alloy foil |
CN107828984A (en) * | 2013-09-20 | 2018-03-23 | Jx金属株式会社 | Copper alloy foil |
WO2015041348A1 (en) * | 2013-09-20 | 2015-03-26 | Jx日鉱日石金属株式会社 | Copper alloy foil |
JP2020142532A (en) * | 2016-04-12 | 2020-09-10 | 宇部エクシモ株式会社 | Metal laminate and metal molding |
JP2018204108A (en) * | 2017-06-07 | 2018-12-27 | 株式会社Shカッパープロダクツ | Oxygen-free copper plate and ceramic wiring board |
JP7094151B2 (en) | 2017-06-07 | 2022-07-01 | 株式会社Shカッパープロダクツ | Oxygen-free copper plate and ceramic wiring board |
JP2019026917A (en) * | 2017-08-03 | 2019-02-21 | Jx金属株式会社 | Copper foil for flexible printed wiring board, copper-clad laminate using the same, flexible printed wiring board and electronic device |
CN109385554A (en) * | 2017-08-03 | 2019-02-26 | 捷客斯金属株式会社 | Flexible printed board copper foil, copper clad layers stack, flexible printed board and the electronic equipment for having used the copper foil |
KR102056543B1 (en) * | 2017-08-03 | 2019-12-16 | 제이엑스금속주식회사 | Copper foil for flexible printed circuit, and copper clad laminate, and flexible printed circuit and electronic device using the same |
KR102115086B1 (en) * | 2017-08-03 | 2020-05-25 | 제이엑스금속주식회사 | Copper foil for flexible printed circuit, copper clad laminate using the same, flexible printed circuit and electronic device |
JP2019029606A (en) * | 2017-08-03 | 2019-02-21 | Jx金属株式会社 | Copper foil for flexible printed board, copper-clad laminate arranged by use thereof, flexible printed board, and electronic device |
KR20190015108A (en) * | 2017-08-03 | 2019-02-13 | 제이엑스금속주식회사 | Copper foil for flexible printed circuit, copper clad laminate using the same, flexible printed circuit and electronic device |
CN110072333A (en) * | 2018-01-22 | 2019-07-30 | 捷客斯金属株式会社 | Flexible printed board copper foil, copper clad layers stack, flexible printed board and electronic equipment using it |
JP2019127603A (en) * | 2018-01-22 | 2019-08-01 | Jx金属株式会社 | Copper foil for flexible printed circuit board, and copper clad laminate, flexible printed circuit board, and electronic apparatus including the same |
KR20200141427A (en) * | 2018-01-22 | 2020-12-18 | 제이엑스금속주식회사 | Copper foil for flexible printed circuit, and copper clad laminate, flexible printed circuit and electronic device using copper foil |
TWI730280B (en) * | 2018-01-22 | 2021-06-11 | 日商Jx金屬股份有限公司 | Copper foil for flexible printed circuit boards, copper-clad laminates using the same, flexible printed circuit boards and electronic devices |
CN110072333B (en) * | 2018-01-22 | 2022-05-13 | 捷客斯金属株式会社 | Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device |
KR102470725B1 (en) * | 2018-01-22 | 2022-11-25 | 제이엑스금속주식회사 | Copper foil for flexible printed circuit, and copper clad laminate, flexible printed circuit and electronic device using copper foil |
CN117655103A (en) * | 2023-11-24 | 2024-03-08 | 中色正锐(山东)铜业有限公司 | Production method of high-deflection rolled copper foil for high-frequency high-speed communication |
Also Published As
Publication number | Publication date |
---|---|
JP3824593B2 (en) | 2006-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3824593B2 (en) | Rolled copper foil with high elongation | |
JP4972115B2 (en) | Rolled copper foil | |
JP4285526B2 (en) | Rolled copper foil and method for producing the same | |
JP4215093B2 (en) | Rolled copper foil and method for producing the same | |
JP4522972B2 (en) | High gloss rolled copper foil for copper-clad laminates | |
JP3856582B2 (en) | Rolled copper foil for flexible printed circuit board and method for producing the same | |
JP4716520B2 (en) | Rolled copper foil | |
JP3856581B2 (en) | Rolled copper foil for flexible printed circuit board and method for producing the same | |
JP4466688B2 (en) | Rolled copper foil | |
JP4672515B2 (en) | Rolled copper alloy foil for bending | |
JP2006281249A (en) | High gloss rolled copper foil for copper-clad laminated substrate, and method for producing the same | |
JP5245813B2 (en) | Rolled copper foil | |
JP2010150597A (en) | Rolled copper foil | |
JP2006063431A (en) | Copper alloy and its production method | |
JP2009242846A (en) | Copper alloy foil | |
TWI462787B (en) | Rolled copper foil | |
TW201643260A (en) | Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board and electronic device | |
JP4162087B2 (en) | Highly flexible rolled copper foil and method for producing the same | |
JP6663712B2 (en) | Rolled copper foil, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
JP4744938B2 (en) | Metal materials for printed wiring boards | |
JP2006283078A (en) | Rolled copper foil for copper-clad laminate, and manufacturing method therefor | |
JP5753115B2 (en) | Rolled copper foil for printed wiring boards | |
JP4354930B2 (en) | Low gloss rolled copper foil for copper-clad laminates | |
WO2010113749A1 (en) | Cu-Zn-Sn ALLOY PLATE AND TIN-PLATED Cu-Zn-Sn ALLOY STRIP | |
JP2006339304A (en) | Metal material for printed circuit board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040914 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060228 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060427 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20060427 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060620 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060627 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3824593 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100707 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110707 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110707 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110707 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110707 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120707 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120707 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130707 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130707 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |