JP4716520B2 - Rolled copper foil - Google Patents
Rolled copper foil Download PDFInfo
- Publication number
- JP4716520B2 JP4716520B2 JP2007091999A JP2007091999A JP4716520B2 JP 4716520 B2 JP4716520 B2 JP 4716520B2 JP 2007091999 A JP2007091999 A JP 2007091999A JP 2007091999 A JP2007091999 A JP 2007091999A JP 4716520 B2 JP4716520 B2 JP 4716520B2
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- copper foil
- annealing
- minutes
- rolled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims description 68
- 239000011889 copper foil Substances 0.000 title claims description 49
- 238000005096 rolling process Methods 0.000 claims description 67
- 238000000137 annealing Methods 0.000 claims description 40
- 239000010949 copper Substances 0.000 claims description 22
- 229910052802 copper Inorganic materials 0.000 claims description 19
- 238000002441 X-ray diffraction Methods 0.000 claims description 14
- 229910052709 silver Inorganic materials 0.000 claims description 9
- 229910052718 tin Inorganic materials 0.000 claims description 9
- 229910052749 magnesium Inorganic materials 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 3
- 238000011161 development Methods 0.000 description 11
- 238000001953 recrystallisation Methods 0.000 description 11
- 239000010731 rolling oil Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 238000012545 processing Methods 0.000 description 10
- 238000005452 bending Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 239000003921 oil Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 238000005097 cold rolling Methods 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 239000011888 foil Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 230000003746 surface roughness Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 239000002648 laminated material Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000002966 varnish Substances 0.000 description 2
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Landscapes
- Parts Printed On Printed Circuit Boards (AREA)
Description
本発明は、屈曲用フレキシブルプリント基板(FPC)に適した、屈曲性に優れた銅箔に関する。 The present invention relates to a copper foil having excellent flexibility suitable for a flexible printed circuit board (FPC) for bending.
近年、樹脂基板に銅箔をラミネートしたフレキシブルプリント回路基板(FPC)が電子部品の実装に広く用いられている。FPCは可撓性を有するため、電気機器等の可動部の電気的接続に用いられることが多く、FPCを構成する銅箔には屈曲性が要求されている。 In recent years, a flexible printed circuit board (FPC) in which a copper foil is laminated on a resin substrate has been widely used for mounting electronic components. Since the FPC has flexibility, it is often used for electrical connection of movable parts such as electric devices, and the copper foil constituting the FPC is required to be flexible.
このようなことから、銅箔表面を平滑にして屈曲性を向上させる技術が報告されている(特許文献1参照)。この技術によれば、屈曲性が向上する場合には,銅の再結晶集合組織である立方体方位が発達し、X線回折で求めた200面の強度(I)が微粉末銅のX線回折で求めた200面の強度(I0)に対し I/I0>40の関係を満たすことが記載されている。
又、屈曲性に優れた圧延銅箔として、200℃で30分間の焼鈍後の圧延面のIがI0に対し、I/I0>20であるものが開示されている(特許文献2参照)。
一方、減肉エッチング性を向上させるため、半軟化温度より50℃高い温度で再結晶焼鈍を行い、I/I0>50を達成する厚み20μm以下の圧延銅箔が報告されている(特許文献3参照)。
For this reason, a technique for improving the flexibility by smoothing the copper foil surface has been reported (see Patent Document 1). According to this technology, when the flexibility is improved, the cube orientation, which is the recrystallized texture of copper, develops, and the strength (I) of the 200 plane obtained by X-ray diffraction is X-ray diffraction of fine powder copper. It is described that the relationship of I / I 0 > 40 is satisfied with respect to the strength (I 0 ) of 200 planes obtained in ( 1 ).
Further, as a rolled copper foil having excellent flexibility, one having I / I 0 > 20 with respect to I 0 of the rolled surface after annealing at 200 ° C. for 30 minutes is disclosed (see Patent Document 2). ).
On the other hand, a rolled copper foil having a thickness of 20 μm or less that achieves I / I 0 > 50 by performing recrystallization annealing at a temperature higher by 50 ° C. than the semi-softening temperature in order to improve the thinning etching property has been reported (Patent Document). 3).
銅箔を用いてCCL(Copper Clad Laminate:銅張積層板)を製造する場合、一般に樹脂は銅よりも熱に弱いため、低温または短時間の熱処理条件が必要となる。具体的には、銅箔と樹脂フィルムとの接合に接着剤を用いる3層CCLでは140℃程度で1時間程度、接着剤を用いない3層CCLでは350℃で10分程度の熱処理条件が一般的である。
しかしながら、上記特許文献2,3記載の技術の場合、200℃付近(タフピッチ銅箔の半軟化温度は120〜130℃程度)で30分間の焼鈍を行うことで、200面の方位を調整するため、樹脂への熱影響を与えるおそれがある。一方、上記特許文献2,3記載の技術の場合、低温、短時間の熱処理を行った場合、充分に200面の組織が揃わず、屈曲性が向上しない。
本発明は上記の課題を解決するためになされたものであり、短時間の焼鈍によっても200面に組織を配向させて屈曲性を向上させることができる圧延銅箔の提供を目的とする。
When manufacturing CCL (Copper Clad Laminate: copper clad laminate) using copper foil, resin is generally weaker to heat than copper, and therefore heat treatment conditions at a low temperature or for a short time are required. Specifically, for 3-layer CCL that uses an adhesive to bond the copper foil and resin film, heat treatment conditions are typically about 140 ° C for about 1 hour, and for 3-layer CCL that does not use an adhesive at 350 ° C for about 10 minutes. Is.
However, in the case of the techniques described in Patent Documents 2 and 3, the orientation of the 200 plane is adjusted by annealing for 30 minutes at around 200 ° C. (the semi-softening temperature of the tough pitch copper foil is about 120 to 130 ° C.). There is a risk of thermal effects on the resin. On the other hand, in the case of the techniques described in Patent Documents 2 and 3, when the heat treatment is performed at a low temperature for a short time, the structure of 200 planes is not sufficiently obtained and the flexibility is not improved.
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a rolled copper foil capable of improving the flexibility by orienting the structure on the 200 plane even by annealing for a short time.
上記の目的を達成するために、本発明の圧延銅箔は、JISに規格するタフピッチ銅(JIS-C1100)または無酸素銅(JIS-C1011)からなり、350℃で10分間焼鈍後の圧延面をX線回折して求めた(200)面の強度をIとし、微粉末銅のX線回折で求めた(200)面の強度をI0としたとき、I/IO≧65であることを特徴とする。 In order to achieve the above object, the rolled copper foil of the present invention is made of tough pitch copper (JIS-C1100) or oxygen-free copper (JIS-C1011) specified in JIS , and is a rolled surface after annealing at 350 ° C. for 10 minutes. When the intensity of the (200) plane obtained by X-ray diffraction is I and the intensity of the (200) plane obtained by X-ray diffraction of fine powder is I 0 , I / I O ≧ 65 It is characterized by.
又、本発明の圧延銅箔は、Ag,Sn及びMgの群から選ばれる一種以上を0.5質量%以下含み、残部がCuおよび不可避的不純物からなり、350℃で10分間焼鈍後の圧延面をX線回折して求めた(200)面の強度をIとし、微粉末銅のX線回折で求めた(200)面の強度をI0としたとき、I/IO≧65であることを特徴とする。 The rolled copper foil of the present invention contains 0.5% by mass or less of one or more selected from the group of Ag, Sn, and Mg, the balance is made of Cu and inevitable impurities, and the rolled surface after annealing at 350 ° C. for 10 minutes is used. When the intensity of the (200) plane obtained by X-ray diffraction is I and the intensity of the (200) plane obtained by X-ray diffraction of fine powder is I 0 , I / I O ≧ 65 Features.
本発明において、Ag,Sn及びMgの群から選ばれる一種以上を0.1質量%以上含み、I/IO≧70であることが好ましい。圧延平行方向の断面から見たとき、厚み方向の中心線と交差するせん断帯の個数が厚みの100倍長さの観察領域当り100本以下であることが好ましい。最終圧延工程における加工度を95%以上として製造されたことが好ましい。 In the present invention, it is preferable that at least one mass selected from the group consisting of Ag, Sn and Mg is contained in an amount of 0.1% by mass or more and I / I O ≧ 70. When viewed from a cross section in the rolling parallel direction, the number of shear bands intersecting the center line in the thickness direction is preferably 100 or less per observation region having a length 100 times the thickness. It was preferable that the degree of processing in the final rolling step was 95% or more.
本発明によれば、短時間の焼鈍によっても200面に組織を配向させて屈曲性を向上させることができる。 According to the present invention, it is possible to improve the flexibility by orienting the structure on the 200 plane even by short-time annealing.
以下、本発明に係る圧延銅箔の実施の形態について説明する。なお、本発明において%,ppmとは、特に断らない限り、それぞれ質量%,mass(質量) ppmを示すものとする。 Hereinafter, embodiments of the rolled copper foil according to the present invention will be described. In the present invention, “%” and “ppm” mean mass% and mass (mass) ppm, respectively, unless otherwise specified.
<組成>
第1の発明に係る圧延銅箔は、JISに規格するタフピッチ銅(JIS-C1100)または無酸素銅(JIS-C1011)からなる。
第1の発明においては上記組成とすることにより、導電性を向上させることができる。
<Composition>
Rolled copper foil according to the first invention consists of tough pitch copper of standards JIS (JIS-C1100) or oxygen-free copper (JIS-C 1011).
In the first invention, the conductivity can be improved by the above composition .
第2の発明に係る圧延銅箔は、Ag,Sn及びMgの群から選ばれる一種以上を500 mass ppm以下含み、残部がCuおよび不可避的不純物からなる。Ag,Sn,Mgを添加すると、(200)面への配向が強くなり易く、後述するI/IOを65以上とすることができ、屈曲性を向上させることができる。
Ag,Sn及びMgの群から選ばれる一種以上の合計濃度が500 mass ppmを超えると、黄銅型集合組織が安定方位となるため、屈曲に寄与する立方体方位集合組織((200)方位)が発達せず、I/IOが65未満となる。一方、これらの元素の合計濃度の下限は、元素の分析レベル程度であり、これらの元素がわずかでも含まれていればよい。
特に、上記合計濃度を100〜500 mass ppmの範囲とすると、I/IO≧70とすることができ、屈曲性をより一層向上させることができる。
The rolled copper foil according to the second invention contains at least 500 mass ppm of one or more selected from the group consisting of Ag, Sn and Mg, with the balance being Cu and inevitable impurities. When Ag, Sn, or Mg is added, the orientation to the (200) plane is likely to be strong, and I / IO described later can be set to 65 or more, and the flexibility can be improved.
When the total concentration of one or more selected from the group of Ag, Sn, and Mg exceeds 500 mass ppm, the brass-type texture becomes a stable orientation, so that a cubic orientation texture ((200) orientation) that contributes to bending develops. No, I / I O is less than 65. On the other hand, the lower limit of the total concentration of these elements is about the analysis level of the elements, and it is sufficient that these elements are included even in a slight amount.
In particular, when the total concentration is in the range of 100 to 500 mass ppm, I / I O ≧ 70 can be achieved, and the flexibility can be further improved.
<I/IO>
銅箔の圧延面において(200)面への配向を強くすると、屈曲性が向上することは、上記特許文献2,3に記載されている。ここで、圧延面をX線回折して求めた(200)面の強度をIとし、微粉末銅(ランダム方位)のX線回折で求めた(200)面の強度をI0としたとき、I/IOの値が高いほど、(200)面への配向が強い。
一般に、圧延集合組織を形成するためには60%以上の圧延加工度が必要であるといわれており、本発明においても最終圧延の加工度を高めることが必要である。
しかしながら、特許文献2,3に記載されているように、200℃付近(タフピッチ銅箔の半軟化温度は120〜130℃程度)で30分間の再結晶焼鈍条件であれば、圧延加工度を高めることで(200)面への配向を強くすることは容易であるが、本発明のような短時間焼鈍(350℃で10分)では、単純に圧延加工度を高めるだけでは(200)面への配向を強くすることが難しい。この理由は高加工度の圧延で発生するせん断帯の影響であるが、これについては後述する。
また、高い加工度で圧延すると、圧延中に加工熱によって材料の再結晶が起こることがあるが、上記したせん断帯が材料中に多数発生した場合、再結晶が不均一となり、均一な圧延集合組織の発達が阻害されるため、やはり焼鈍後の(200)配向度を高めることが困難になる。
<I / I O >
It is described in Patent Documents 2 and 3 that the flexibility improves when the orientation of the copper foil on the rolled surface is increased to the (200) plane. Here, when the strength of the (200) plane obtained by X-ray diffraction of the rolled surface is I, and the strength of the (200) plane obtained by X-ray diffraction of fine powder copper (random orientation) is I 0 , The higher the I / I O value, the stronger the (200) plane orientation.
In general, it is said that a rolling workability of 60% or more is necessary to form a rolling texture. In the present invention, it is necessary to increase the workability of the final rolling.
However, as described in Patent Documents 2 and 3, if the recrystallization annealing condition is around 200 ° C. (the semi-softening temperature of the tough pitch copper foil is about 120 to 130 ° C.) for 30 minutes, the rolling degree is increased. Therefore, it is easy to strengthen the orientation to the (200) plane, but in the case of short-time annealing (350 ° C. for 10 minutes) as in the present invention, it is possible to simply increase the degree of rolling to the (200) plane. It is difficult to strengthen the orientation of The reason for this is the influence of the shear band generated in rolling at a high workability, which will be described later.
In addition, when rolling at a high degree of work, recrystallization of the material may occur due to processing heat during rolling, but when a large number of the above-mentioned shear bands occur in the material, recrystallization becomes non-uniform and uniform rolling aggregation Since the development of the tissue is inhibited, it is still difficult to increase the degree of (200) orientation after annealing.
そこで、本発明においては、以下に述べるようにせん断帯の発達を抑制することにより、再結晶焼鈍を350℃で10分間という短時間としても、I/IOを65以上にすることができ、(200)配向度を高めて屈曲性を向上できる。I/IOが65未満であると、(200)配向度が高くならず、屈曲性も向上しない。好ましくは、I/IOを70以上とする。 Therefore, in the present invention, by suppressing the development of the shear band as described below, even if the recrystallization annealing is performed at 350 ° C. for 10 minutes, the I / I O can be made 65 or more, (200) Flexibility can be improved by increasing the degree of orientation. When I / I O is less than 65, the degree of (200) orientation does not increase and the flexibility does not improve. Preferably, I / I O is 70 or more.
<せん断帯>
又、焼鈍によって再結晶集合組織を発達させるためには、焼鈍前の圧延集合組織が均一に発達している必要がある。ここで、金属材料は圧延加工されるとすべり変形を起こすが、高加工度で変形すると塑性不安定による不均一変形がおこり、せん断帯が発生する。せん断帯とは、圧延板面に対して30〜60度傾いた、薄い面状の組織を言う。(例えば「鉄と鋼」第70年(1984)第15号P.18)
せん断帯は周囲の母相とほぼ類似の結晶方位を持っているが、密なセル組織を持っており、再結晶核生成が起こりやすい。そのため、せん断帯が発達した材料ではせん断帯部と母相とで再結晶が不均一に起こり、その結果として再結晶集合組織の発達が妨げられる。
このように、いたずらに圧延加工度を高めても、せん断帯の発達によって(200)面への配向度が低下し、短時間焼鈍によって(200)面への配向を強めることができない。
<Shear band>
In order to develop a recrystallized texture by annealing, the rolled texture before annealing needs to be developed uniformly. Here, the metal material undergoes slip deformation when rolled, but when deformed at a high degree of work, non-uniform deformation due to plastic instability occurs and shear bands occur. The shear band refers to a thin planar structure inclined by 30 to 60 degrees with respect to the rolled plate surface. (For example, "Iron and Steel" 70th year (1984) No.15 P.18)
The shear band has a crystal orientation almost similar to that of the surrounding matrix, but has a dense cell structure and recrystallization nucleation is likely to occur. Therefore, in a material with a developed shear band, recrystallization occurs unevenly between the shear band and the matrix, and as a result, the development of the recrystallized texture is hindered.
Thus, even if the rolling degree is increased unnecessarily, the degree of orientation to the (200) plane decreases due to the development of the shear band, and the orientation to the (200) plane cannot be increased by short-time annealing.
特許文献2,3に記載されているように、200℃(又は半軟化温度+50℃)で30分間の充分な焼鈍を行うと、せん断帯はその発生数の多少に関らず消滅し、再結晶粒が均一な等軸粒になるまで成長する。このため、せん断帯の影響がなく、 (200)面への配向度が高くなる。しかし、一般に2層CCL加工工程で行われる熱処理時間は10分程度であり、30分もの長時間の焼鈍は現実的ではない。
従って、200℃で30分間の焼鈍によって (200)面への配向度を高くした材料であっても、圧延後のせん断帯の個数が多い場合、短時間焼鈍(350℃で10分)では均一な再結晶組織が得られず、(200)配向度を高めて屈曲性を向上させることができない。これは、せん断帯の個数が多いと、10分間の短時間焼鈍ではせん断帯が消滅しないからである。
充分な屈曲性を得るためには、350℃で10分焼鈍後において、せん断帯が30本以下/(銅箔厚みの100倍)、好ましくは20本以下/(銅箔厚みの100倍)である必要がある。このようにせん断帯の本数を抑えるためには、圧延後でのせん断帯の本数を100本以下/(銅箔厚みの100倍)にすることが必要である。
ここで、「/(銅箔厚みの100倍)」とは、厚みの100倍長さの観察領域当り100本以下であることを示すが、詳しくは後述する。
As described in Patent Documents 2 and 3, when sufficient annealing is performed at 200 ° C. (or semi-softening temperature + 50 ° C.) for 30 minutes, the shear band disappears regardless of the number of occurrences, Grows until recrystallized grains become uniform equiaxed grains. For this reason, there is no influence of the shear band, and the degree of orientation to the (200) plane increases. However, the heat treatment time generally performed in the two-layer CCL processing step is about 10 minutes, and annealing for as long as 30 minutes is not realistic.
Therefore, even if the material has a high degree of orientation to the (200) plane by annealing at 200 ° C for 30 minutes, if the number of shear bands after rolling is large, it is uniform in short-time annealing (350 ° C for 10 minutes) A recrystallized structure cannot be obtained, and the (200) orientation degree cannot be increased to improve the flexibility. This is because if the number of shear bands is large, the shear bands will not disappear after 10 minutes of short-term annealing.
In order to obtain sufficient flexibility, after annealing at 350 ° C. for 10 minutes, the shear band is 30 or less / (100 times the copper foil thickness), preferably 20 or less / (100 times the copper foil thickness). There must be. Thus, in order to suppress the number of shear bands, the number of shear bands after rolling needs to be 100 or less / (100 times the copper foil thickness).
Here, “/ (100 times the thickness of the copper foil)” means 100 or less per observation region having a length 100 times the thickness, which will be described in detail later.
このように、本発明においては、せん断帯の発達を抑えつつ圧延加工度を高めることによって、短時間焼鈍によって(200)面への配向を強めることに成功している。
せん断帯の発達を抑える方法としては、冷間圧延時の圧延油の粘度を下げることが挙げられる。一般に圧延油は圧延ロールを冷却するとともに、ロールと材料との間に油膜を作ることで圧延抵抗を低減し、さらに油膜はロールから材料への圧延加重を伝達する役割も果たしている。そのため、一般には、圧延を容易にするため油膜厚みが厚くなる条件で圧延する。
しかし、油膜厚みが厚いと、油膜中で材料表面が拘束されず変形するため、せん断帯が発達しやすい。圧延油の粘度が高いほど、圧延ロール径が大きいほど、又、圧延速度が速いほど、油膜厚みが厚くなるため、せん断帯が発達しやすくなる。また、圧延ロールの表面粗さが粗いと、局部的に油膜の厚い状態となり、せん断帯が発達しやすくなる。さらに、せん断帯は加工度が高いほど発達し、90%以上の圧延加工度となると、せん断帯は飛躍的に発達し、95%以上の圧延加工度を加える場合にはせん断帯が箔厚を貫通する。
このようなことから、せん断帯の発達を抑える方法としては、油膜厚みを薄くして圧延をする、すなわち圧延油の粘度を低くし、圧延ロール径を小さくし、圧延速度を遅くすればよい。また、圧延ロールの表面粗さを小さくしたり、加工度を小さくしてもよい。
As described above, in the present invention, the orientation to the (200) plane is successfully strengthened by short-time annealing by increasing the rolling degree while suppressing the development of the shear band.
As a method for suppressing the development of the shear band, the viscosity of the rolling oil during cold rolling can be reduced. In general, the rolling oil cools the rolling roll and reduces the rolling resistance by forming an oil film between the roll and the material. The oil film also plays a role of transmitting the rolling load from the roll to the material. Therefore, in general, rolling is performed under the condition that the oil film thickness is increased in order to facilitate rolling.
However, when the oil film thickness is thick, the material surface is deformed without being constrained in the oil film, so that a shear band is easily developed. The higher the rolling oil viscosity, the larger the rolling roll diameter, and the higher the rolling speed, the thicker the oil film, so that the shear band is likely to develop. Further, if the surface roughness of the rolling roll is rough, the oil film is locally thick and the shear band is easily developed. In addition, the shear band develops as the degree of work increases, and when the rolling degree reaches 90% or more, the shear band develops dramatically. When adding a degree of rolling greater than 95%, the shear band increases the foil thickness. To penetrate.
For this reason, as a method for suppressing the development of the shear band, rolling is performed with a thin oil film thickness, that is, the viscosity of the rolling oil is lowered, the rolling roll diameter is reduced, and the rolling speed is reduced. Moreover, you may make the surface roughness of a rolling roll small, or make a workability small.
但し、本発明においては、(200)配向度を高めるため、加工度を高くする必要があり、また、生産性の観点からはできるかぎり圧延速度は速いほうがよい。従って、圧延油の粘度を低くし、圧延ロール径を小径とし、圧延ロールの表面粗さを小さくすることによって、圧延時の油膜厚みを均一に薄く制御し、せん断帯の発達を抑えることが好ましい。具体的には圧延油の粘度を6cSt以下、好ましくは、4〜5cSt、圧延ロール径を40mm〜150mm、圧延ロールの表面粗さをRa≦0.05μm程度とすることで、高い加工度でもせん断帯の少ない銅箔を得ることができる。 However, in the present invention, in order to increase the degree of (200) orientation, it is necessary to increase the degree of processing, and from the viewpoint of productivity, the rolling speed is preferably as fast as possible. Therefore, it is preferable to reduce the viscosity of the rolling oil, to reduce the rolling roll diameter, and to reduce the surface roughness of the rolling roll so as to uniformly control the oil film thickness during rolling and suppress the development of the shear band. . Specifically, the viscosity of the rolling oil is 6 cSt or less, preferably 4 to 5 cSt, the diameter of the rolling roll is 40 mm to 150 mm, and the surface roughness of the rolling roll is about Ra ≦ 0.05 μm, so that even at high workability, the shear band Can be obtained.
なお、最終の冷間圧延においてすべてのパスにおいて上記条件で圧延を行うことも可能であるが、加工度80%以降のパスにおいて上記圧延条件で行うことが好ましい。これは、上記した圧延条件は圧延加工性能を悪化させるものであるため、すべてのパスにおいて上記条件で圧延を行うと、狙い厚みまでの圧延においてパス数が増加し、生産性が低下する傾向にあるためである。たとえば、加工度90%までのパスにおいては粘度の高い圧延油を用い、表面粗さの大きい圧延ロールを用いることで大きな加工がとれ、高い生産性を維持する事ができる。
ただし、上記した圧延条件に限定されず、せん断帯の発達を抑えることができれば他の方法(例えば圧延温度の制御)を採用してもよい。
In the final cold rolling, it is possible to carry out rolling under the above conditions in all passes, but it is preferable to carry out under the above rolling conditions in a pass with a working degree of 80% or more. This is because the rolling conditions described above deteriorate the rolling performance, and if rolling is performed under the above conditions in all passes, the number of passes increases in the rolling to the target thickness, and the productivity tends to decrease. Because there is. For example, in a pass up to a processing degree of 90%, using a rolling oil having a high viscosity and using a rolling roll having a large surface roughness, large processing can be taken and high productivity can be maintained.
However, the present invention is not limited to the above rolling conditions, and other methods (for example, control of the rolling temperature) may be adopted as long as the development of the shear band can be suppressed.
以上のように、本発明においては、例えば圧延油流量や温度、圧延前の結晶粒径を制御することで、加工中の再結晶を抑制してせん断帯の発生を低減し、集合組織を発達させる。これにより、短時間焼鈍(350℃で10分)を行っても、(200)面への配向が強くなる。
又、本発明の第2の発明によれば、Ag,Sn及びMgの群から選ばれる一種以上の添加によって、加工中の再結晶を抑制する効果をさらに発揮させることができる。
As described above, in the present invention, for example, by controlling the rolling oil flow rate and temperature, and the crystal grain size before rolling, recrystallization during processing is suppressed and the occurrence of shear bands is reduced, and the texture is developed. Let Thereby, even if it anneals for a short time (350 degreeC for 10 minutes), the orientation to (200) plane becomes strong.
According to the second aspect of the present invention, the effect of suppressing recrystallization during processing can be further exhibited by adding one or more selected from the group consisting of Ag, Sn, and Mg.
<せん断帯の特定>
せん断帯は、強加工による塑性不安定によって圧延面と30〜60度傾いた面上でせん断変形が集中的に起こって形成される組織が観察面に現れたものである。したがって、せん断帯は圧延組織の不連続面として観察される。せん断帯部の結晶方位は母相と差がないために、結晶方位測定でせん断帯を規定することはできない。
一方、せん断帯は深さ方向に広がっているため、材料の断面を観察して特定することができる。従って、最終圧延後の銅箔の圧延平行方向の断面を観察したとき、圧延面と30〜60度傾いた圧延組織の不連続部分をせん断帯とする。具体的には、上記断面の顕微鏡(金属顕微鏡、走査型電子顕微鏡(SEM)、走査イオン顕微鏡(SIM))の像を得て、圧延面と30〜60度傾いた線を画像解析や目視によりせん断帯と判定することができる。銅箔の断面加工はFIBやCPで行うのが好ましいが、機械研磨等の方法を用いても良い。又、断面観察にSIMを用いると結晶方位のコントラストが強く現れるため好ましい。
<Identification of shear band>
In the shear band, a structure formed by intensive shear deformation on the rolling surface and a surface inclined by 30 to 60 degrees due to plastic instability due to strong processing appears on the observation surface. Therefore, the shear band is observed as a discontinuous surface of the rolled structure. Since the crystal orientation of the shear band portion is not different from the parent phase, the shear band cannot be defined by crystal orientation measurement.
On the other hand, since the shear band extends in the depth direction, it can be specified by observing the cross section of the material. Therefore, when the cross section in the rolling parallel direction of the copper foil after the final rolling is observed, a discontinuous portion of the rolled structure inclined by 30 to 60 degrees is defined as a shear band. Specifically, an image of a microscope (metal microscope, scanning electron microscope (SEM), scanning ion microscope (SIM)) of the above-mentioned cross section is obtained, and the rolling surface and a line inclined by 30 to 60 degrees are obtained by image analysis or visual observation. It can be determined as a shear band. The cross-section processing of the copper foil is preferably performed by FIB or CP, but a method such as mechanical polishing may be used. In addition, it is preferable to use SIM for cross-sectional observation because the crystal orientation contrast appears strongly.
本発明においては、上記のようにして判定したせん断帯のうち、箔の厚み方向の中心線と交差するせん断帯の個数が厚みの100倍長さの観察領域当り100本以下であることが好ましい。
図1は圧延平行方向の断面から見たときの組織のSIM像を示す。この図において、符号Shで表した2つの矢印を結ぶ線がせん断帯である。
図2は銅箔断面のせん断帯を示す銅箔断面の模式図である。この図において、四角の枠R内が図1のSIM像に対応する。箔の厚みをtとすると、観察領域は圧延平行方向に沿ってt×100の長さに至っている。有意なせん断帯Shは、その一端が銅箔表面に至り、他端が箔の厚み方向の中心線Cと交差する線であり、これ以外のせん断帯(銅箔表面に到達しないか、又は中心線Cと交差しないせん断帯)は、再結晶集合組織発達への影響が小さいため、本発明ではせん断帯としてカウントしない。上記観察領域内において、上記した有意なせん断帯の個数が100本以下であれば、せん断帯が少ないために再結晶集合組織の発達が妨げられず、(200)面への配向がより強くなる。
In the present invention, among the shear bands determined as described above, the number of shear bands intersecting with the center line in the thickness direction of the foil is preferably 100 or less per observation region 100 times the thickness. .
FIG. 1 shows a SIM image of a structure as viewed from a cross section in the rolling parallel direction. In this figure, a line connecting two arrows represented by symbol Sh is a shear band.
FIG. 2 is a schematic view of a copper foil cross section showing a shear band of the copper foil cross section. In this figure, the square frame R corresponds to the SIM image of FIG. When the thickness of the foil is t, the observation region reaches a length of t × 100 along the rolling parallel direction. The significant shear band Sh is a line whose one end reaches the copper foil surface and the other end intersects the center line C in the thickness direction of the foil, and other shear bands (not reaching the copper foil surface or center In the present invention, the shear band that does not intersect the line C is not counted as a shear band because the influence on the development of the recrystallized texture is small. Within the observation region, if the number of significant shear bands is 100 or less, the development of recrystallized texture is not hindered because there are few shear bands, and the orientation to the (200) plane becomes stronger. .
(製造)
本発明の銅箔は、例えば以下のようにして製造することができる。まず、電気銅又は無酸素銅を主原料とし、上記化学成分その他を必要に応じて添加した組成を溶解炉にて溶解し、インゴットを作製する。インゴットを例えば均質化焼鈍、熱間圧延、冷間圧延、焼鈍、冷間圧延、焼鈍を順次行うことで、圧延銅箔が得られる。冷間圧延は、例えば加工度90%以上で行うことが好ましく、95%以上がより好ましい。
(Manufacturing)
The copper foil of this invention can be manufactured as follows, for example. First, an ingot is produced by melting a composition in which electrolytic copper or oxygen-free copper is used as a main raw material and adding the above chemical components and the like as necessary in a melting furnace. A rolled copper foil is obtained by sequentially performing, for example, homogenization annealing, hot rolling, cold rolling, annealing, cold rolling, and annealing on the ingot. Cold rolling is preferably performed at a workability of 90% or more, for example, and more preferably 95% or more.
次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these.
1.試料の作製
電気銅に表1に示す組成の元素をそれぞれ添加して真空溶解してインゴットを鋳造し、これを800℃の温度で3時間の条件で均質化焼鈍し、950℃で溶体化処理後、熱間圧延を施した。さらに面削して冷間圧延を行い、板厚17μmの銅箔試料を作製した。冷間圧延の総圧延加工度、圧延油の粘度、圧延ワークロール(WR)の粗さ(Ra)及び直径を表1に示す値とした。
1. Sample preparation Each element of the composition shown in Table 1 is added to electrolytic copper and melted in vacuum to cast an ingot. This is homogenized and annealed at a temperature of 800 ° C for 3 hours. Thereafter, hot rolling was performed. Further, the surface was cut and cold-rolled to prepare a copper foil sample having a plate thickness of 17 μm. The total rolling work degree of cold rolling, the viscosity of the rolling oil, the roughness (Ra) and the diameter of the rolled work roll (WR) were set to the values shown in Table 1.
<評価>
(1)せん断帯の個数
最終圧延後の銅箔試料の圧延平行方向の断面を機械研磨し、走査イオン顕微鏡(SIM))による断面像を得た。この像の観察領域を圧延平行方向に厚みの100倍の長さとして目視し、図1、図2に示すように圧延面と30〜60度傾いた線(圧延組織の不連続部分)のうち、箔の厚み方向の中心線と交差する線の個数を数えた。
なお、せん断帯の個数は、圧延ままの試料、圧延後の試料をAr雰囲気中で350℃で10分間焼鈍した試料、及び試料の半軟化温度より50℃高温で大気中、30分間焼鈍した試料についてそれぞれカウントした。
半軟化温度は、焼鈍後の引張り強さが,圧延上がりの引張り強さと、300℃で30分間焼鈍し完全に軟化させた後の引張り強さとの中間の値になるときの焼鈍温度として求めた。
(2)I/IOの算出
銅箔試料の圧延面をX線回折(株式会社リガク製 RINT2000)して求めた(200)面の強度をIとし、微粉末銅(ランダム方位関東科学株式会社製 325メッシュ)のX線回折で求めた(200)面の強度をI0として測定し、I/IOを算出した。I/IOが高いほど、(200)面への配向が強く、屈曲性が良好である。
なお、各試料のI/IOの算出は、上記した圧延まま、350℃で10分間焼鈍後、及び半軟化温度より50℃高温で30分間焼鈍後についてそれぞれ行った。
<Evaluation>
(1) Number of shear bands The cross section in the rolling parallel direction of the copper foil sample after final rolling was mechanically polished to obtain a cross-sectional image by a scanning ion microscope (SIM). The observation area of this image is visually observed as a length 100 times the thickness in the rolling parallel direction, and as shown in FIG. 1 and FIG. 2, among the lines inclined by 30 to 60 degrees with the rolling surface (discontinuous portion of the rolling structure) The number of lines intersecting the center line in the thickness direction of the foil was counted.
The number of shear bands is as follows: a sample as-rolled, a sample obtained by annealing a sample after rolling in an Ar atmosphere at 350 ° C. for 10 minutes, and a sample obtained by annealing in the air at 50 ° C. higher than the semi-softening temperature of the sample for 30 minutes. Was counted for each.
The semi-softening temperature was determined as the annealing temperature when the tensile strength after annealing reached an intermediate value between the tensile strength after rolling and the tensile strength after annealing at 300 ° C for 30 minutes and completely softening. .
(2) Calculation of I / I O The strength of the (200) plane obtained by X-ray diffraction (RINT2000, Rigaku Co., Ltd.) on the rolled surface of the copper foil sample is I, and fine powder copper (Random orientation Kanto Science Co., Ltd.) I / I 2 O was calculated by measuring the intensity of the (200) plane obtained by X-ray diffraction of 325 mesh) as I 0 . The higher I / I O, the stronger the orientation to the (200) plane and the better the flexibility.
In addition, calculation of I / I 2 O of each sample was performed after annealing for 10 minutes at 350 ° C., and after annealing for 30 minutes at a temperature 50 ° C. higher than the semi-softening temperature.
(3)屈曲性
銅箔表面にポリイミド(宇部興産製 UワニスA)を塗布し、大気中で130℃で30分の乾燥を行った後に、Ar雰囲気中で350℃×10分のキュア熱処理を行って樹脂銅箔積層材を作製した。上記積層材を塩化第二鉄でエッチングして屈曲試験用回路パターンを形成し、屈曲用試料とした。
この試料について、特開2000-212661号公報の実施例で行ったのと同一の方法により評価した(同公報の段落0034、0035、及び図1を参照)。ただし、屈曲時には銅箔面を屈曲内側とした。
屈曲試験中の試料の電気抵抗の変化を測定し、電気抵抗が初期値より10%増加するまでの屈曲回数で屈曲性を評価した。評価基準は、屈曲回数が30000回以上を〇、30000未満を×とした。
(3) Flexibility After applying polyimide (U varnish A varnish A) on the copper foil surface and drying in the atmosphere for 30 minutes at 130 ° C, a cure heat treatment in an Ar atmosphere at 350 ° C for 10 minutes is performed. It went and produced the resin copper foil laminated material. The laminated material was etched with ferric chloride to form a bending test circuit pattern, which was used as a bending sample.
This sample was evaluated by the same method as that performed in the example of Japanese Patent Laid-Open No. 2000-212661 (see paragraphs 0034 and 0035 of FIG. 1 and FIG. 1). However, at the time of bending, the copper foil surface was set to the bending inner side.
The change in the electrical resistance of the sample during the bending test was measured, and the flexibility was evaluated by the number of bendings until the electrical resistance increased by 10% from the initial value. The evaluation criteria were ◯ when the number of bendings was 30000 times or more and x when less than 30000.
得られた結果を表1、表2に示す。 The obtained results are shown in Tables 1 and 2.
表1、表2から明らかなように、各実施例の場合、圧延ままであってもせん断帯の個数が100本以下/(銅箔厚みの100倍)であり、さらに350℃×10分の短時間再結晶焼鈍によってもI/IOが65以上であり、屈曲性も良好であった。
特に、添加元素としてAg,Sn,又はMgを添加した実施例2〜7の場合、I/IOが70以上に向上し、純銅型の実施例1に比べて優れていた。
As is apparent from Tables 1 and 2, in each example, the number of shear bands is 100 or less / (100 times the copper foil thickness) even when rolled, and 350 ° C. × 10 minutes. Even after short-time recrystallization annealing, the I / I O was 65 or more and the flexibility was good.
In particular, in Examples 2 to 7 in which Ag, Sn, or Mg was added as an additive element, I / IO was improved to 70 or more, which was superior to that of Example 1 of the pure copper type.
一方、圧延油粘度が実施例より高い比較例3〜5、7〜9の場合、圧延ワークロールの粗さが実施例より高い比較例2の場合、及び圧延ワークロールの直径が実施例より高い比較例2の場合、いずれも圧延後にせん断帯の個数が100本/(銅箔厚みの100倍)を超えた。又、その結果、これらの比較例の場合、350℃×10分の短時間再結晶焼鈍ではI/IOが65未満であり、長時間焼鈍(半軟化温度より50℃高温で30分間)したときにはじめてI/IOが65以上に増加した。
又、圧延油粘度が実施例より高く、さらに圧延ワークロールの粗さが実施例より高い比較例1の場合、長時間焼鈍(半軟化温度より50℃高温で30分間)してもI/IOが65未満のままであった。
On the other hand, in the case of Comparative Examples 3 to 5 and 7 to 9 in which the rolling oil viscosity is higher than that in the Examples, in the case of Comparative Example 2 in which the roughness of the rolled work roll is higher than that in the Examples, the diameter of the rolled work roll is higher than that in the Examples. In Comparative Example 2, the number of shear bands after rolling exceeded 100 / (100 times the copper foil thickness). As a result, in the case of these comparative examples, I / I O was less than 65 in short-time recrystallization annealing at 350 ° C. for 10 minutes, and annealing was performed for a long time (30 minutes at 50 ° C. higher than the semi-softening temperature). For the first time, I / I O increased to over 65.
Further, in the case of Comparative Example 1 in which the rolling oil viscosity is higher than that of the example and the roughness of the rolled work roll is higher than that of the example, the I / I even when annealed for a long time (30 ° C. higher than the semi-softening temperature for 30 minutes). O remained below 65.
圧延加工度が実施例より低い比較例10の場合、圧延後のせん断帯の個数は100本以下/(銅箔厚みの100倍)と少なかったが、加工度が低いために長時間焼鈍(半軟化温度より50℃高温で30分間)してもI/IOが65未満のままであった。
Agの添加量が500mass %を超えた比較例11の場合、圧延後のせん断帯の個数が100本/(銅箔厚みの100倍)を超えて増え、長時間焼鈍(半軟化温度より50℃高温で30分間)してもI/IOが65未満のままであった。
In the case of Comparative Example 10 in which the rolling degree is lower than that of the example, the number of shear bands after rolling was as small as 100 or less / (100 times the copper foil thickness), but because of the low degree of working, annealing was performed for a long time (half I / I O remained below 65 even after 30 minutes at 50 ° C. above the softening temperature.
In the case of Comparative Example 11 in which the added amount of Ag exceeded 500 mass%, the number of shear bands after rolling increased beyond 100 / (100 times the copper foil thickness) and annealed for a long time (50 ° C. above the semi-softening temperature). Even at high temperature (30 minutes), I / I O remained below 65.
なお、再結晶粒が成長する過程でせん断帯は消滅するため、軟化温度+50℃で30分の長時間焼鈍を行うと、実施例及び比較例においてせん断帯の数は0であった。
一方、各比較例の場合、いずれも屈曲性が劣ったが、各比較例の場合、圧延ままのせん断帯の数が実施例に比べて多く、350℃で10分焼鈍後のI/IOも実施例に比べて低かった。これより、屈曲性に相関があるのは、圧延ままのせん断帯の数、及び350℃で10分焼鈍後のI/IOであることがわかる。
Since the shear bands disappear in the process of growing the recrystallized grains, the number of shear bands in the examples and comparative examples was 0 when annealing was performed for 30 minutes at a softening temperature of + 50 ° C.
On the other hand, in each comparative example, the flexibility was inferior, but in each comparative example, the number of unrolled shear bands was larger than in the examples, and I / I O after annealing at 350 ° C. for 10 minutes. Also, it was low compared to the examples. From this, it is understood that the flexibility is correlated with the number of shear bands as rolled and I / IO after annealing at 350 ° C. for 10 minutes.
t 銅箔の厚み
C 厚み方向の中心線
Sh (有意な)せん断帯
t Copper foil thickness C Thickness center line Sh (significant) shear band
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007091999A JP4716520B2 (en) | 2007-03-30 | 2007-03-30 | Rolled copper foil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007091999A JP4716520B2 (en) | 2007-03-30 | 2007-03-30 | Rolled copper foil |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008248331A JP2008248331A (en) | 2008-10-16 |
JP4716520B2 true JP4716520B2 (en) | 2011-07-06 |
Family
ID=39973622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007091999A Active JP4716520B2 (en) | 2007-03-30 | 2007-03-30 | Rolled copper foil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4716520B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012211380A (en) * | 2011-03-24 | 2012-11-01 | Jx Nippon Mining & Metals Corp | Rolled copper foil, method for producing the same, and copper laminated plate |
JP2013096006A (en) * | 2011-11-07 | 2013-05-20 | Jx Nippon Mining & Metals Corp | Rolled copper foil |
KR20160104598A (en) | 2013-10-04 | 2016-09-05 | 제이엑스금속주식회사 | Rolled copper foil, copper-clad laminate, printed wiring board and electronic device using the same, method for producing circuit connecting member, and circuit connecting member |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5698634B2 (en) * | 2010-10-28 | 2015-04-08 | Jx日鉱日石金属株式会社 | Rolled copper foil |
JP5496139B2 (en) * | 2011-03-28 | 2014-05-21 | Jx日鉱日石金属株式会社 | Copper foil and secondary battery using the same |
JP5705311B2 (en) * | 2011-05-13 | 2015-04-22 | Jx日鉱日石金属株式会社 | Copper foil composite, copper foil used therefor, molded body and method for producing the same |
JP5676401B2 (en) * | 2011-09-21 | 2015-02-25 | Jx日鉱日石金属株式会社 | Copper foil for flexible printed wiring boards |
JP5679580B2 (en) * | 2011-11-07 | 2015-03-04 | Jx日鉱日石金属株式会社 | Rolled copper foil |
JP5683432B2 (en) * | 2011-11-07 | 2015-03-11 | Jx日鉱日石金属株式会社 | Rolled copper foil |
JP5650098B2 (en) * | 2011-11-22 | 2015-01-07 | Jx日鉱日石金属株式会社 | Rolled copper foil for superconducting film formation |
JP5650099B2 (en) * | 2011-11-22 | 2015-01-07 | Jx日鉱日石金属株式会社 | Rolled copper foil for superconducting film formation |
JP5126436B1 (en) * | 2012-02-17 | 2013-01-23 | 日立電線株式会社 | Rolled copper foil |
KR101540508B1 (en) * | 2012-02-28 | 2015-07-29 | 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 | Rolled copper foil |
JP6058915B2 (en) * | 2012-05-28 | 2017-01-11 | Jx金属株式会社 | Rolled copper foil or rolled copper alloy foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same |
JP6196429B2 (en) * | 2012-08-23 | 2017-09-13 | Jx金属株式会社 | Copper alloy sheet with excellent heat dissipation and repeated bending workability |
JP2016191091A (en) * | 2015-03-30 | 2016-11-10 | Jx金属株式会社 | Rolled copper foil for flexible printed wiring board |
JP6944963B2 (en) * | 2019-03-05 | 2021-10-06 | Jx金属株式会社 | Rolled copper foil for flexible printed circuit boards, flexible copper-clad laminates and flexible printed circuit boards |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001058203A (en) * | 1999-08-19 | 2001-03-06 | Nippon Mining & Metals Co Ltd | Rolled copper foil excellent in bendability |
JP2003193211A (en) * | 2001-12-27 | 2003-07-09 | Nippon Mining & Metals Co Ltd | Rolled copper foil for copper-clad laminate |
JP2006326684A (en) * | 2005-04-28 | 2006-12-07 | Nikko Kinzoku Kk | High-gloss rolled copper foil for copper-clad laminate substrate |
-
2007
- 2007-03-30 JP JP2007091999A patent/JP4716520B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001058203A (en) * | 1999-08-19 | 2001-03-06 | Nippon Mining & Metals Co Ltd | Rolled copper foil excellent in bendability |
JP2003193211A (en) * | 2001-12-27 | 2003-07-09 | Nippon Mining & Metals Co Ltd | Rolled copper foil for copper-clad laminate |
JP2006326684A (en) * | 2005-04-28 | 2006-12-07 | Nikko Kinzoku Kk | High-gloss rolled copper foil for copper-clad laminate substrate |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012211380A (en) * | 2011-03-24 | 2012-11-01 | Jx Nippon Mining & Metals Corp | Rolled copper foil, method for producing the same, and copper laminated plate |
JP2013096006A (en) * | 2011-11-07 | 2013-05-20 | Jx Nippon Mining & Metals Corp | Rolled copper foil |
KR20160104598A (en) | 2013-10-04 | 2016-09-05 | 제이엑스금속주식회사 | Rolled copper foil, copper-clad laminate, printed wiring board and electronic device using the same, method for producing circuit connecting member, and circuit connecting member |
Also Published As
Publication number | Publication date |
---|---|
JP2008248331A (en) | 2008-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4716520B2 (en) | Rolled copper foil | |
JP5170916B2 (en) | Copper alloy sheet and manufacturing method thereof | |
JP6696769B2 (en) | Copper alloy plate and connector | |
WO2011068134A1 (en) | Copper alloy sheet material having low young's modulus and method for producing same | |
JP4444245B2 (en) | Cu-Zn-Sn alloy for electrical and electronic equipment | |
JP2011214087A (en) | Cu-ni-si based alloy with excellent bendability | |
JP5871443B1 (en) | Copper alloy sheet and manufacturing method thereof | |
JP2006249516A (en) | Copper alloy and its manufacturing method | |
WO2013145350A1 (en) | Cu-Zn-Sn-Ni-P-BASED ALLOY | |
JP5839126B2 (en) | Copper alloy | |
KR102098479B1 (en) | Copper foil for flexible printed circuit, copper clad laminate using the same, flexible printed circuit and electronic device | |
JP2010150598A (en) | Rolled copper foil | |
JP6696770B2 (en) | Copper alloy plate and connector | |
JP2008248274A (en) | Rolled copper foil | |
JP5778460B2 (en) | Rolled copper foil, method for producing the same, and copper-clad laminate | |
JP6643287B2 (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
JP5339995B2 (en) | Cu-Zn-Sn alloy plate and Cu-Zn-Sn alloy Sn plating strip | |
TWI747330B (en) | Copper foil for flexible printed circuit boards | |
JP2013213236A (en) | Cu-Zn-Sn-Ni-P-BASED ALLOY | |
JP2010280191A (en) | Copper foil for heat treatment, manufacturing method thereof and flexible printed wiring board | |
TWI621721B (en) | Copper alloy sheet, connector, and method for manufacturing copper alloy sheet | |
TWI639163B (en) | Cu-Co-Ni-Si alloy for electronic parts, and electronic parts | |
JP6162512B2 (en) | Copper alloy rolled foil for secondary battery current collector and method for producing the same | |
JP6647253B2 (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
TWI529255B (en) | Cu-ni-si alloy and method of producing the alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080919 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100903 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110303 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110328 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110328 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4716520 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140408 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |