JP6944963B2 - Rolled copper foil for flexible printed circuit boards, flexible copper-clad laminates and flexible printed circuit boards - Google Patents

Rolled copper foil for flexible printed circuit boards, flexible copper-clad laminates and flexible printed circuit boards Download PDF

Info

Publication number
JP6944963B2
JP6944963B2 JP2019039549A JP2019039549A JP6944963B2 JP 6944963 B2 JP6944963 B2 JP 6944963B2 JP 2019039549 A JP2019039549 A JP 2019039549A JP 2019039549 A JP2019039549 A JP 2019039549A JP 6944963 B2 JP6944963 B2 JP 6944963B2
Authority
JP
Japan
Prior art keywords
copper foil
flexible printed
printed circuit
flexible
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019039549A
Other languages
Japanese (ja)
Other versions
JP2020143321A (en
Inventor
工藤 雄大
雄大 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2019039549A priority Critical patent/JP6944963B2/en
Priority to TW109104461A priority patent/TWI717998B/en
Priority to KR1020200023528A priority patent/KR20200106834A/en
Priority to CN202010147685.8A priority patent/CN111669898A/en
Publication of JP2020143321A publication Critical patent/JP2020143321A/en
Application granted granted Critical
Publication of JP6944963B2 publication Critical patent/JP6944963B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/028Bending or folding regions of flexible printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)
  • Metal Rolling (AREA)

Description

本発明は、屈曲性を要求されるフレキシブルプリント基板用圧延銅箔、フレキシブル銅張積層板およびフレキシブルプリント回路基板に関する。 The present invention relates to a rolled copper foil for a flexible printed circuit board, a flexible copper-clad laminate, and a flexible printed circuit board, which are required to have flexibility.

フレキシブルプリント回路基板(FPC : Flexible Printed Circuit)は、フレキシブル銅張積層板(FCCL : Flexible Cupper Clad Laminate)に回路を形成したものである。そして、FCCLは、銅箔の片面又は両面に樹脂を積層してなるが、この樹脂にはポリイミドが用いられることが多い。FCCLとしてはその構造から三層FCCLと二層FCCLがある。
三層FCCLは、ポリイミドなどの樹脂フィルムと導電材となる銅箔とを、エポキシ樹脂やアクリル樹脂などの接着剤で貼り合せた構造となっている。一方、二層FCCLは、ポリイミドなどの樹脂と導電材となる銅箔が直接接合された構造となっている。二層FCCLは三層FCCLに比べて耐熱性、寸法安定性、耐屈曲性などに優れる(非特許文献1)。
A flexible printed circuit board (FPC: Flexible Printed Circuit) is a circuit formed on a flexible copper-clad laminate (FCCL: Flexible Copper Clad Laminate). The FCCL is formed by laminating a resin on one side or both sides of a copper foil, and polyimide is often used for this resin. FCCL includes three-layer FCCL and two-layer FCCL due to its structure.
The three-layer FCCL has a structure in which a resin film such as polyimide and a copper foil as a conductive material are bonded together with an adhesive such as an epoxy resin or an acrylic resin. On the other hand, the two-layer FCCL has a structure in which a resin such as polyimide and a copper foil as a conductive material are directly bonded. The two-layer FCCL is superior to the three-layer FCCL in heat resistance, dimensional stability, bending resistance, and the like (Non-Patent Document 1).

FPCに用いられる銅箔には高い屈曲性が求められる。銅箔に屈曲性を付与するための方法として、銅箔の(200)面の結晶方位の配向度を高める技術(特許文献1)、銅箔の板厚方向に貫通する結晶粒の割合を多くする技術(特許文献2)、銅箔のオイルピットの深さに相当する表面粗さRy(最大高さ)を2.0μm以下に低減する技術(特許文献3)が知られている。
屈曲部分に使用されるFPCは、銅箔にポリイミドのワニスを塗布し、熱を加えて乾燥、硬化させ積層板とするキャスト法と呼ばれる方法や、予め接着力のある熱可塑性ポリイミドを塗布したポリイミドフィルムと銅箔とを重ねて加熱ロールなどを通して圧着するラミネート法と呼ばれる方法によって製造される二層FCCLを用いている。
例えばキャスト法で高屈曲性を得たフレキシブル銅張積層板が知られている(特許文献4)。このFCCL製造工程における熱処理により、銅箔は再結晶する。
The copper foil used for FPC is required to have high flexibility. As a method for imparting flexibility to the copper foil, a technique for increasing the degree of orientation of the crystal orientation of the (200) plane of the copper foil (Patent Document 1), and a large proportion of crystal grains penetrating in the plate thickness direction of the copper foil. (Patent Document 2), and a technique for reducing the surface roughness Ry (maximum height) corresponding to the depth of the oil pit of the copper foil to 2.0 μm or less (Patent Document 3) are known.
The FPC used for the bent part is a method called a casting method in which a polyimide varnish is applied to a copper foil and then dried and cured by applying heat to form a laminated plate, or a polyimide coated with a thermoplastic polyimide having adhesive strength in advance. A two-layer FCCL manufactured by a method called a laminating method in which a film and a copper foil are laminated and pressure-bonded through a heating roll or the like is used.
For example, a flexible copper-clad laminate obtained by a casting method with high flexibility is known (Patent Document 4). The copper foil is recrystallized by the heat treatment in this FCCL manufacturing process.

ところで、FPCを携帯電話やスマートフォン、タブレットPC等の筐体の狭空間に収納するために、ハゼ折り上に折り曲げたり、ハードディスクドライブのリードライトケーブルのような小さい曲率半径で連続的に繰り返し屈曲させることがあり、より厳しい屈曲性が要求される。
ここで、ハゼ折りとは、薄い筐体へ収納するために折り目をつけて折り曲げるような態様を差し、FPCの上面側が180度反転して下面側になるよう折り曲げることを「ハゼ折り」と称する。
By the way, in order to store an FPC in a narrow space of a housing such as a mobile phone, a smartphone, or a tablet PC, it is bent on a goblet or continuously and repeatedly bent with a small radius of curvature like a read / write cable of a hard disk drive. In some cases, tighter flexibility is required.
Here, the goby fold refers to a mode in which a crease is made and bent so as to be stored in a thin housing, and the folding so that the upper surface side of the FPC is inverted 180 degrees and becomes the lower surface side is referred to as "goby fold". ..

そして、ハゼ折り等の厳しい曲げに対応するため、上記特許文献1記載の技術では、銅箔に微量のAgやSn等を添加することで、FCCL製造の加熱処理時に銅箔のアニールによる軟化が進行するとともに、ある特定の方向(200面)に結晶方位が揃った立方集合組織を発達させている。
これにより、銅箔に屈曲時のストレスが付加された場合、結晶内で発生する転移及びその移動が結晶粒界に蓄積することなく、表面方向に移動することで結晶粒界でのクラック発生及び進展による破壊を抑制して優れた屈曲特性を発現する。
高屈曲性のFPCを実現するための重要な点の一つは、FCCLを製造する際の加熱処理時に、銅箔の金属組織を屈曲性にとって好ましい状態に再結晶させることである。屈曲性に最も好ましい金属組織は、立方体方位が非常に発達し、かつ結晶粒界が少ない、換言すれば結晶粒が大きな組織である。ここで立方体方位の発達の程度は、200面のX線回折強度比I/I(I:銅箔の200面の回折強度、I:銅粉末の200面の回折強度)の大きさで表すことができ、この値が大きいほど立方体方位が発達していることを示す。
Then, in order to cope with severe bending such as folds, in the technique described in Patent Document 1, by adding a small amount of Ag, Sn, etc. to the copper foil, softening due to annealing of the copper foil during the heat treatment of FCCL production is performed. As it progresses, it develops a cubic texture in which the crystal orientations are aligned in a specific direction (200 planes).
As a result, when stress is applied to the copper foil during bending, the transitions and their movements that occur in the crystal move toward the surface without accumulating at the grain boundaries, causing cracks at the grain boundaries and cracking at the grain boundaries. It suppresses breakage due to evolution and exhibits excellent bending characteristics.
One of the important points for realizing highly flexible FPC is to recrystallize the metal structure of the copper foil in a state preferable for flexibility during the heat treatment during the production of FCCL. The most preferable metal structure for flexibility is a structure in which the cubic orientation is very developed and the grain boundaries are small, in other words, the crystal grains are large. Here, the degree of development of the cube orientation is the magnitude of the X-ray diffraction intensity ratio I / I 0 (I: diffraction intensity of 200 surfaces of copper foil, I 0 : diffraction intensity of 200 surfaces of copper powder) of 200 surfaces. It can be expressed, and the larger this value is, the more the cube orientation is developed.

キャスト法で二層FCCLを製造する場合、積層時(銅箔に樹脂材料を塗布した時)に段階的に温度を高めていく過程で、銅箔中に再結晶の核生成と再結晶粒の成長が起こる。そして、キャスト法で銅箔を200℃に達するまでに4秒以上かけて加熱し、さらに200℃で30分保持したのちに室温まで冷却したとき、室温で測定した200面のX線回折強度比I/Iが40以上であれば、高い屈曲性が得られる。
一方、ラミネート法で二層FCCLを製造する場合、既に接着剤が塗布され乾燥されたポリイミドフィルムと、銅箔とを加熱ロールで圧着するが、溶剤等を蒸発させる必要がないため、ポリイミドが硬化反応を起こす温度まで一気に昇温することが可能である。しかしながら速い速度で昇温すると、多方向の方位の核が生成して成長し、立方体方位の発達が抑制される。従って、積層時に比較的ゆっくり加熱を行うキャスト法に比べ、ラミネート法の場合に屈曲性が低下する傾向がある(特許文献5)。
When two-layer FCCL is manufactured by the casting method, recrystallized nucleation and recrystallized grains are formed in the copper foil in the process of gradually increasing the temperature during lamination (when the resin material is applied to the copper foil). Growth occurs. Then, when the copper foil was heated by the casting method for 4 seconds or more until it reached 200 ° C., held at 200 ° C. for 30 minutes, and then cooled to room temperature, the X-ray diffraction intensity ratio of 200 surfaces measured at room temperature was obtained. When I / I 0 is 40 or more, high flexibility can be obtained.
On the other hand, when the two-layer FCCL is manufactured by the laminating method, the polyimide film that has already been coated with the adhesive and dried is pressure-bonded to the copper foil with a heating roll, but the polyimide is cured because it is not necessary to evaporate the solvent or the like. It is possible to raise the temperature at once to the temperature at which the reaction occurs. However, when the temperature rises at a high rate, nuclei in multiple directions are generated and grown, and the development of cubic orientation is suppressed. Therefore, the flexibility tends to decrease in the case of the laminating method as compared with the casting method in which heating is performed relatively slowly during laminating (Patent Document 5).

特許第3009383号公報Japanese Patent No. 309383 特開2006?117977号公報JP-A-2006-117977 特開2001?058203号公報Japanese Unexamined Patent Publication No. 2001-058203 特開2006−237048号公報Japanese Unexamined Patent Publication No. 2006-237048 特開2009−292090号公報JP-A-2009-292090

フジクラ技報 株式会社フジクラ、No.109 pp.31−35(2005年)Fujikura Giho Co., Ltd. Fujikura, No. 109 pp. 31-35 (2005)

上述のように、二層FCCLの製造方法としては、それぞれ加熱条件が異なるキャスト法とラミネート法とがあるが、加熱条件に依らずに安定して屈曲性が得られるFPC用銅箔が要求されている。
特に、より厳しい屈曲性であるハゼ折り性に優れたFPC用銅箔が要望されている。
そこで、本発明は、フレキシブル銅張積層板の製造時の加熱条件に依らずに安定して屈曲性が得られ、特にハゼ折り性に優れたフレキシブルプリント基板用圧延銅箔、フレキシブル銅張積層板およびフレキシブルプリント回路基板の提供を目的とする。
As described above, the two-layer FCCL manufacturing method includes a casting method and a laminating method, which have different heating conditions, but a copper foil for FPC that can stably obtain flexibility regardless of the heating conditions is required. ing.
In particular, there is a demand for a copper foil for FPC, which has more severe flexibility and excellent goby foldability.
Therefore, according to the present invention, a rolled copper foil for a flexible printed circuit board and a flexible copper-clad laminate, which can stably obtain flexibility regardless of the heating conditions at the time of manufacturing the flexible copper-clad laminate and are particularly excellent in foldability. And to provide a flexible printed circuit board.

本発明者らは種々検討した結果、二層FCCLの製造を模した時の加熱処理により、(200)面の強度がI/I≧45となる銅箔であれば、二層FCCLの製造時の加熱条件に依らずに安定して屈曲性が得られることを見出した。 As a result of various studies by the present inventors, if the copper foil has a strength of the surface (200) of I / I 0 ≧ 45 by heat treatment when imitating the production of the two-layer FCCL, the production of the two-layer FCCL is performed. It was found that stable flexibility can be obtained regardless of the heating conditions at the time.

上記の目的を達成するために、本発明のフレキシブルプリント基板用圧延銅箔は、JIS−H0500(C1011)に規定する無酸素銅に対し、Agを300〜355質量ppm含有し、残部不可避不純物からなり、25℃から350℃に達するまで5秒間以上かけて加熱し、さらにそれぞれ350℃で30分間保持する加熱パターンA、又は25℃から350℃に1秒間で到達する加熱パターンBで大気加熱後、圧延面のX線回折で求めた(200)面の強度(I)が、微粉末銅のX線回折で求めた(200)面の強度(I)に対し、前記加熱パターンAによるI/I ≧50.8、前記加熱パターンBによるI/I46.0である。 In order to achieve the above object, the rolled copper foil for a flexible printed substrate of the present invention contains 300 to 355 mass ppm of Ag with respect to the oxygen-free copper specified in JIS-H0500 (C1011), and the balance is unavoidable impurities. it was heated over a period of 5 seconds to reach 350 ° C. from 25 ° C., the heating pattern a for holding an additional 30 minutes at each 350 ° C., or after the air heated by the heating pattern B to reach per second from 25 ° C. to 350 ° C. The strength (I) of the (200) plane obtained by X-ray diffraction of the rolled surface is I 0 according to the heating pattern A with respect to the strength (I 0) of the (200) plane obtained by X-ray diffraction of fine powdered copper. / I 0 ≥ 50.8, and I / I 046.0 according to the heating pattern B.

本発明のフレキシブル銅張積層板は、前記フレキシブルプリント基板用圧延銅箔と、樹脂とを積層してなる。 The flexible copper-clad laminate of the present invention is formed by laminating the rolled copper foil for a flexible printed circuit board and a resin.

本発明のフレキシブルプリント回路基板は、前記フレキシブル銅張積層板を有する。 The flexible printed circuit board of the present invention has the flexible copper-clad laminate.

本発明によれば、フレキシブル銅張積層板の製造時の加熱条件に依らずに安定して屈曲性が得られ、特にハゼ折り性に優れたフレキシブルプリント基板用圧延銅箔、フレキシブル銅張積層板およびフレキシブルプリント回路基板が得られる。 According to the present invention, a rolled copper foil for a flexible printed circuit board and a flexible copper-clad laminate, which can stably obtain flexibility regardless of the heating conditions at the time of manufacturing the flexible copper-clad laminate and are particularly excellent in foldability. And a flexible printed circuit board is obtained.

実施例のFPCの外観を模式的に示す図である。It is a figure which shows typically the appearance of the FPC of an Example. ハゼ折り試験の手順を模式的に示す図である。It is a figure which shows typically the procedure of the goby folding test. 実施例および比較例のAg濃度と最終冷間圧延の加工度(真ひずみ)ηの関係を示した図である。It is a figure which showed the relationship between the Ag concentration of an Example and a comparative example, and the work degree (true strain) η of the final cold rolling. 実施例および比較例の、キャスト法相当及びラミネート法相当の焼鈍後の銅箔のI/Iを示した図である。It is a figure which showed the I / I 0 of the copper foil after annealing corresponding to the casting method and the laminating method of an Example and a comparative example. 実施例および比較例のFPCのハゼ折り試験による破断回数を示した図である。It is a figure which showed the number of breaks by the goby folding test of FPC of an Example and a comparative example.

以下、本発明の実施形態に係るフレキシブルプリント基板用圧延銅箔について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。 Hereinafter, the rolled copper foil for a flexible printed circuit board according to the embodiment of the present invention will be described. In the present invention,% means mass% unless otherwise specified.

(組成)
フレキシブルプリント基板用圧延銅箔の組成は、Cuを99.0質量%以上含み、残部不可避不純物からなる。
特に、JIS−H0500(C1011)に規定する無酸素銅に対し、Agを280〜360質量ppm含有してなる組成が好ましい。
Agの含有量が280質量ppm未満であると、圧延により材料に導入されるひずみ量が少なくなり、立方体集合組織の成長が不十分となって後述するI/I≧45が実現できないことがある。特に、積層時に銅箔が急速加熱されるラミネート法相当の場合、立方体集合組織がさらに成長し難くなる。
Agの含有量が360質量ppmを超えると、銅箔の再結晶温度が高くなり、二層FCCL製造時の加熱をしても再結晶が十分に起こらず、銅箔中に未再結晶粒が多く残存し、得られたFPCのハゼ折り性が著しく劣る。
より好ましくは、無酸素銅に対し、Agを290〜340質量ppm含有する。
(composition)
The composition of the rolled copper foil for a flexible printed circuit board contains 99.0% by mass or more of Cu, and the balance consists of unavoidable impurities.
In particular, a composition containing 280 to 360 mass ppm of Ag is preferable with respect to the oxygen-free copper specified in JIS-H0500 (C1011).
If the Ag content is less than 280 mass ppm, the amount of strain introduced into the material by rolling is small, the growth of the cubic texture is insufficient, and I / I 0 ≧ 45, which will be described later, cannot be realized. be. In particular, in the case of the laminating method in which the copper foil is rapidly heated during laminating, the cubic texture becomes more difficult to grow.
When the Ag content exceeds 360 mass ppm, the recrystallization temperature of the copper foil becomes high, recrystallization does not occur sufficiently even when heated during the production of the two-layer FCCL, and unrecrystallized grains are formed in the copper foil. A large amount remains, and the obtained FPC has significantly inferior foldability.
More preferably, it contains 290 to 340 mass ppm of Ag with respect to oxygen-free copper.

圧延銅箔の厚さに特に制限はなく、要求特性に応じて適宜選択すればよく、例えば1〜100μmとすることができる。特に、ハゼ折り性や微細回路形成性を向上させるためには厚みが薄い方がよく、好ましくは6〜35μm、より好ましくは9〜18μmとすることができる。 The thickness of the rolled copper foil is not particularly limited and may be appropriately selected according to the required characteristics, and may be, for example, 1 to 100 μm. In particular, in order to improve goby folding property and fine circuit formability, the thickness is preferably thin, preferably 6 to 35 μm, and more preferably 9 to 18 μm.

[集合組織]
本発明の実施形態に係るフレキシブルプリント基板用圧延銅箔においては、常温(25℃)から350℃に達するまで5秒間以上かけて加熱し、さらに350℃で30分間保持する加熱パターンA、又は常温(25℃)から350℃に1秒間かけて到達する加熱パターンBで大気加熱後、圧延面のX線回折で求めた(200)面の強度(I)が、微粉末銅(325mesh、水素気流中で300℃で1時間加熱してから使用)のX線回折で求めた(200)面の強度(I)に対し、I/I≧45である。
350℃で30分間の加熱は、キャスト法による二層FCCLの製造時の加熱条件を模したものであり、銅箔が常温(25℃)から350℃までゆっくり加熱されることを表す。
又、350℃で1秒間の加熱は、ラミネート法による二層FCCLの製造時の加熱条件を模したものであり、ラミネート法による最高温度(350℃)までの急加熱(1秒間で常温(25℃)から350℃に到達)を表す。
なお、強度(I)、(I)は常温(25℃)で測定する。又、上記加熱パターンA、Bで最高温度350℃まで加熱した後の銅箔は、自然放冷で常温まで冷却されるが、このときの冷却速度は特に規定しなくとも、銅箔の集合組織には影響はないと考えられる。
[Aggregate organization]
In the rolled copper foil for a flexible printed substrate according to the embodiment of the present invention, heating pattern A or normal temperature, which is heated from room temperature (25 ° C.) to 350 ° C. for 5 seconds or more and further held at 350 ° C. for 30 minutes. After heating in the atmosphere with a heating pattern B that reaches 350 ° C. from (25 ° C.) over 1 second, the strength (I) of the (200) surface determined by X-ray diffraction of the rolled surface is fine powder copper (325 mesh, hydrogen stream). I / I 0 ≥ 45 with respect to the intensity (I 0 ) of the (200) plane determined by X-ray diffraction (used after heating at 300 ° C. for 1 hour).
Heating at 350 ° C. for 30 minutes mimics the heating conditions during the production of the two-layer FCCL by the casting method, and represents that the copper foil is slowly heated from room temperature (25 ° C.) to 350 ° C.
Further, heating at 350 ° C. for 1 second imitates the heating conditions at the time of manufacturing the two-layer FCCL by the laminating method, and rapid heating up to the maximum temperature (350 ° C.) by the laminating method (normal temperature (25 in 1 second)). ℃) to 350 ℃).
The intensities (I) and (I 0 ) are measured at room temperature (25 ° C.). Further, the copper foil after being heated to a maximum temperature of 350 ° C. in the above heating patterns A and B is cooled to room temperature by natural cooling, but the cooling rate at this time is not particularly specified, but the texture of the copper foil is not particularly specified. Is not considered to have any effect.

以上のように、I/I≧45に規定することで、屈曲性に優れた立方体方位が非常に発達し、フレキシブル銅張積層板の製造時の加熱条件に依らずに安定して屈曲性が得られ、特にハゼ折り性に優れた銅箔となる。
I/Iの上限は、例えば100である。
As described above, by defining I / I 0 ≥ 45, the cube orientation with excellent flexibility is greatly developed, and the flexibility is stable regardless of the heating conditions during the production of the flexible copper-clad laminate. Is obtained, and the copper foil is particularly excellent in goby foldability.
The upper limit of I / I 0 is, for example, 100.

(製造)
本発明の実施形態に係るフレキシブルプリント基板用圧延銅箔は、通常、インゴットを熱間圧延、冷間圧延と焼鈍の繰り返し、の順で行って製造することができる。
最終冷間圧延での圧延加工度を92.0〜99.8%(真ひずみηが2.53〜6.21)にするとよい。
ここで、図3に後述する実施例および比較例のAg濃度と真ひずみηの関係を示す。
図3に示すように、圧延銅箔中のAg濃度が高くなるほど、最終冷間圧延での圧延加工度(真ひずみ)ηを高くしないと、再結晶の駆動力となるひずみを導入し難く、I/I≧45の実現が困難になる傾向にある。一方、ηを高くし過ぎると、圧延銅箔中に立方体集合組織の成長を阻害するせん断帯が多く導入されてしまい、やはりI/I≧45の実現が困難になる傾向にある。
(Manufacturing)
The rolled copper foil for a flexible printed substrate according to the embodiment of the present invention can usually be produced by repeatedly performing hot rolling, cold rolling and annealing of an ingot in this order.
The degree of rolling in the final cold rolling may be 92.0 to 99.8% (true strain η is 2.53 to 6.21).
Here, FIG. 3 shows the relationship between the Ag concentration and the true strain η of Examples and Comparative Examples described later.
As shown in FIG. 3, the higher the Ag concentration in the rolled copper foil, the more difficult it is to introduce the strain that is the driving force for recrystallization unless the rolling processability (true strain) η in the final cold rolling is increased. It tends to be difficult to realize I / I 0 ≧ 45. On the other hand, if η is made too high, many shear bands that hinder the growth of the cubic texture are introduced into the rolled copper foil, and it tends to be difficult to realize I / I 0 ≧ 45.

そこで、図3の実施例と比較例を区別するべく実験的に求めた2つの右上がりの直線B-C,A−Dの間の領域で最終冷間圧延を行うよう、圧延銅箔中のAgの濃度をCAg(質量ppm)としたとき、(0.04×CAg-9.3)≦η≦(0.04CAg-7.3)とする。
直線A−Dは、η=(0.04×CAg-9.3)で表され、直線B-Cは、η=(0.04×CAg-7.3)で表される。又、直線A−Bは圧延銅箔中のAgの濃度の下限であるCAg=280質量ppmを表し、直線C−Dは圧延銅箔中のAgの濃度の上限であるCAg=360質量ppmを表す。
Therefore, in the rolled copper foil, the final cold rolling is performed in the region between the two upward-sloping straight lines BC and AD obtained experimentally to distinguish between the example and the comparative example of FIG. When the concentration of Ag is C Ag (mass ppm), (0.04 × C Ag -9.3) ≤ η ≤ ( 0.04 C Ag -7.3).
The straight line AD is represented by η = (0.04 × C Ag -9.3), and the straight line BC is represented by η = (0.04 × C Ag -7.3). The straight line AB represents the lower limit of the concentration of Ag in the rolled copper foil, C Ag = 280 mass ppm, and the straight line CD represents the upper limit of the concentration of Ag in the rolled copper foil, C Ag = 360 mass. Represents ppm.

なお、真ひずみηは次式により定義される。
η=ln{(最終冷間圧延直前の材料の断面積)/(最終冷間圧延直後の材料の断面積)}
The true strain η is defined by the following equation.
η = ln {(cross-sectional area of the material immediately before the final cold rolling) / (cross-sectional area of the material immediately after the final cold rolling)}

以下、本発明の実施例を示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。 Examples of the present invention will be described below, but these are provided for a better understanding of the present invention, and are not intended to limit the present invention.

[圧延銅箔の製造]
表1に記載した組成の銅合金を原料としてインゴットを鋳造し、800℃以上で厚さ10mmまで熱間圧延を行い、表面の酸化スケールを面削した後、冷間圧延と焼鈍とを繰り返し、最後に最終冷間圧延で厚み0.009〜0.018mmに仕上げた。表1に記載した無酸素銅は、JIS−H0500(C1011)に規格されている。
最終冷間圧延での圧延加工度を85〜99.9%(真ひずみηで1.9〜6.6)とし、実施例の最終冷間圧延での圧延加工度(真ひずみη)は試料のAg濃度(280〜360ppm)範囲内で、図3に示すように、上述の(0.04×CAg-9.3)≦η≦(0.04CAg-7.3)の範囲に調整した。
[Manufacturing of rolled copper foil]
An ingot was cast using a copper alloy having the composition shown in Table 1 as a raw material, hot-rolled at 800 ° C. or higher to a thickness of 10 mm, the oxide scale on the surface was chamfered, and then cold rolling and annealing were repeated. Finally, it was finally cold-rolled to a thickness of 0.009 to 0.018 mm. The oxygen-free copper shown in Table 1 is specified in JIS-H0500 (C1011).
The rolling workability in the final cold rolling is 85 to 99.9% (1.9 to 6.6 in true strain η), and the rolling workability (true strain η) in the final cold rolling of the example is a sample. As shown in FIG. 3, the above-mentioned range of (0.04 × C Ag -9.3) ≤ η ≤ ( 0.04 C Ag -7.3) was adjusted within the range of Ag concentration (280 to 360 ppm).

このようにして得られた各圧延銅箔試料について、I/Iおよび耐ハゼ折り性の評価を行った。
(1)立方体集合組織(I/I
銅箔試料を上記した加熱パターンA及びBでそれぞれ加熱後、25℃にて圧延面のX線回折で求めた(200)面強度の積分値(I)を求めた。この値をあらかじめ測定しておいた微粉末銅(325mesh、水素気流中で300℃で1時間加熱してから使用)の(200)面強度の積分値(I)で除し、I/Iの値を計算した。
Each rolled copper foil sample thus obtained was evaluated for I / I 0 and goby fold resistance.
(1) Cube assembly (I / I 0 )
After heating the copper foil sample in the above heating patterns A and B, respectively, the (200) integrated value (I) of the surface strength obtained by X-ray diffraction of the rolled surface at 25 ° C. was obtained. This value is divided by the integral value (I 0 ) of (200) surface strength of fine powdered copper (325 mesh, used after heating at 300 ° C. for 1 hour in a hydrogen stream) measured in advance, and I / I. A value of 0 was calculated.

(2)耐ハゼ折り性
銅箔試料を上記した加熱パターンA及びBでそれぞれ加熱して再結晶させたのち、ポリイミドフィルムの片面(銅箔と接着する面)に熱可塑性ポリイミド接着剤を2μm塗工後乾燥し、27μm厚の樹脂層を形成した。この樹脂層の接着剤面に銅箔を積層して真空熱プレスを行い、FCCLを作製した。その後、エッチングにより回路形成をして図1に示すFPCを作製した。
(2) Folding resistance Copper foil samples are recrystallized by heating them in the above heating patterns A and B, respectively, and then 2 μm of thermoplastic polyimide adhesive is applied to one side of the polyimide film (the side that adheres to the copper foil). After the work, it was dried to form a resin layer having a thickness of 27 μm. A copper foil was laminated on the adhesive surface of this resin layer and vacuum heat pressed to prepare FCCL. Then, a circuit was formed by etching to produce the FPC shown in FIG.

図2に示すように、テスターでFPCの導通を確認しながら荷重100NでFPCをハゼ折りと曲げ戻しを繰り返し実施し、FPCの耐ハゼ折り性を調査した。
具体的には、ステンレス製のステージの上にループ状に緩く曲げたFPCを図2(1)のように乗せ、同じくステンレス製の押し子を6mm/minの速度で降下させ、図2(2)のように100Nの荷重でFPCをハゼ折りする。5秒間100Nの荷重をかけ続けたのち、図2(3)のように押し子を1,000mm/minの速度で上昇させ、ハゼ折りされたFPCを広げる。その後、図2(4)のように100Nの荷重を5秒間、FPCにかけてFPCを曲げ戻し、図2(5)のように再び押し子を1,000mm/minの速度で上昇させ、FPCをループ状に緩く曲げる。
As shown in FIG. 2, the FPC was repeatedly folded and bent back at a load of 100 N while confirming the continuity of the FPC with a tester, and the fold resistance of the FPC was investigated.
Specifically, an FPC loosely bent in a loop shape is placed on a stainless steel stage as shown in FIG. 2 (1), and a stainless steel pusher is also lowered at a speed of 6 mm / min to be lowered in FIG. 2 (2). ), Fold the FPC with a load of 100N. After continuing to apply a load of 100 N for 5 seconds, the pusher is raised at a speed of 1,000 mm / min as shown in FIG. 2 (3) to spread the goby-folded FPC. Then, as shown in FIG. 2 (4), a load of 100 N is applied to the FPC for 5 seconds to bend the FPC back, and as shown in FIG. 2 (5), the pusher is raised again at a speed of 1,000 mm / min to loop the FPC. Bend loosely.

図2(1)〜(5)を1サイクルとし、何サイクル目でFPCの回路が破断して導通が取れなくなる(=FPCの回路が破断する)かを調査した。
破断に至るハゼ折り回数が7回以下を悪い(×)、8回以上14回以下を普通(△)、15回以上を良い(○)と判定した。評価が△か○であれば、実用上問題がない。
With FIGS. 2 (1) to 2 (5) as one cycle, it was investigated at what cycle the FPC circuit was broken and continuity could not be obtained (= the FPC circuit was broken).
It was judged that the number of goby foldings leading to breakage was 7 or less as bad (x), 8 or more and 14 or less as normal (Δ), and 15 or more as good (◯). If the evaluation is △ or ○, there is no problem in practical use.

得られた結果を表1に示す。総合判定は以下のようにした。総合判定が◎、○、△であれば、キャスト法、ラミネート法のいずれのでFCCLが製造されても、高い耐ハゼ折り性を発現する。
◎:キャスト法相当焼鈍後とラミネート法相当焼鈍後のハゼ折り試験の判定がどちらも○
○:キャスト法相当焼鈍後とラミネート法相当焼鈍後のハゼ折り試験の判定で、一方が○、他方が△
△:キャスト法相当焼鈍後とラミネート法相当焼鈍後のハゼ折り試験の判定がどちらも△
×:キャスト法相当焼鈍後とラミネート法相当焼鈍後のハゼ折り試験の判定の少なくとも一方が×
The results obtained are shown in Table 1. The overall judgment was as follows. If the overall judgment is ⊚, ◯, or Δ, high fold resistance is exhibited regardless of whether FCCL is manufactured by the casting method or the laminating method.
◎: Both the judgment of the goby folding test after annealing equivalent to the casting method and after annealing equivalent to the laminating method is ○
◯: In the judgment of the goby folding test after annealing equivalent to the casting method and after annealing equivalent to the laminating method, one is ○ and the other is △.
△: Both the judgment of the goby folding test after annealing equivalent to the casting method and after annealing equivalent to the laminating method is △
×: At least one of the judgments of the goby folding test after annealing equivalent to the casting method and after annealing equivalent to the laminating method is ×

Figure 0006944963
Figure 0006944963


表1から明らかなように、各実施例の場合、キャスト法相当、ラミネート法相当のいずれの焼鈍後においても銅箔がI/I≧45を満たしていた。そのため、キャスト法相当、ラミネート法相当のいずれの焼鈍後の銅箔を用いて作製されたFPCも高い耐ハゼ折り性を示した。 As is clear from Table 1, in the case of each example, the copper foil satisfied I / I 0 ≧ 45 after annealing corresponding to both the casting method and the laminating method. Therefore, the FPC produced by using the annealed copper foil equivalent to the casting method or the laminating method also showed high goby folding resistance.

比較例1、4、5の場合、図3の直線A−Dより加工度ηが下側にあり、Ag濃度に対し加工度が不足していることを意味する。このため、再結晶の駆動力となるひずみの蓄積量が少なく、銅箔の再結晶温度が高くなった。その結果、キャスト法相当又はラミネート相当の少なくとも一方の焼鈍で銅箔が十分に再結晶せず、耐ハゼ折り性が劣った。又、ひずみの溜まりやすくクラックの起点となりうる未再結晶粒が残存したものと考えられる。 In the cases of Comparative Examples 1, 4 and 5, the degree of processing η is lower than the straight line AD in FIG. 3, which means that the degree of processing is insufficient with respect to the Ag concentration. Therefore, the amount of accumulated strain, which is the driving force for recrystallization, is small, and the recrystallization temperature of the copper foil is high. As a result, the copper foil was not sufficiently recrystallized by annealing at least one of the casting method and the laminating method, and the goby folding resistance was inferior. Further, it is considered that unrecrystallized grains that easily accumulate strain and can be the starting point of cracks remain.

Ag濃度が280ppm未満の比較例2の場合、圧延により材料に導入されるひずみ量が少なくなり、ラミネート相当の焼鈍で立方体集合組織の成長が不十分となって、I/I≧45を満足しなかった。このため、耐ハゼ折り性が劣った。
なお、比較例2において、キャスト相当の焼鈍では立方体集合組織が十分に成長してI/I≧45を満足した理由は、キャスト法の方が、積層時に銅箔がゆっくり加熱されるので、立方体集合組織が成長し易いからである。
In the case of Comparative Example 2 in which the Ag concentration is less than 280 ppm, the amount of strain introduced into the material by rolling is reduced, and annealing equivalent to laminating results in insufficient growth of the cubic texture , satisfying I / I 0 ≧ 45. I didn't. Therefore, the goby folding resistance was inferior.
In Comparative Example 2, the reason why the cubic texture grew sufficiently in the annealing equivalent to casting and satisfied I / I 0 ≧ 45 is that the casting method heats the copper foil more slowly at the time of laminating. This is because the cubic texture is easy to grow.

Ag濃度が360ppmを超えた比較例3の場合、再結晶温度が高くなったため、キャスト法相当又はラミネート相当の少なくとも一方の焼鈍で銅箔が十分に再結晶せず、耐ハゼ折り性が劣った。又、ひずみの溜まりやすくクラックの起点となりうる未再結晶粒が残存したものと考えられる。 In the case of Comparative Example 3 in which the Ag concentration exceeded 360 ppm, the recrystallization temperature was high, so that the copper foil was not sufficiently recrystallized by annealing at least one of the casting method and the laminate equivalent, and the goby folding resistance was inferior. .. Further, it is considered that unrecrystallized grains that easily accumulate strain and can be the starting point of cracks remain.

比較例6、7の場合、図3の直線B−Cより加工度ηが上側にあり、Ag濃度に対し加工度ηが高過ぎることを意味する。このため、キャスト法相当又はラミネート相当の少なくとも一方の焼鈍でI/I<45となり、耐ハゼ折り性が劣った。
これは、加工度ηが高過ぎて銅箔にせん断帯が多く導入された結果、立方体集合組織の発達が阻害され、他の方位を持つ結晶粒が成長したためと考えられる。つまり、立方体集合組織が成長する時、他の方位を持つ周囲の結晶粒を飲み込みながら立方体集合組織の結晶粒が成長するが、せん断帯が存在すると立方体集合組織の成長が阻害され、他の方位を持つ結晶粒が残って成長すると考えられる。
In the case of Comparative Examples 6 and 7, the degree of processing η is on the upper side of the straight line BC in FIG. 3, which means that the degree of processing η is too high with respect to the Ag concentration. Therefore, I / I 0 <45 by annealing at least one of the casting method and the laminating method, and the goby folding resistance was inferior.
It is considered that this is because the degree of processing η is too high and many shear bands are introduced into the copper foil, and as a result, the development of the cubic texture is hindered and crystal grains having other orientations grow. That is, when the cubic texture grows, the crystal grains of the cube texture grow while swallowing the surrounding crystal grains having other orientations, but the presence of the shear zone inhibits the growth of the cube texture and other orientations. It is considered that the crystal grains with the above remain and grow.

Claims (3)

JIS−H0500(C1011)に規定する無酸素銅に対し、Agを300〜355質量ppm含有し、残部不可避不純物からなり、
25℃から350℃に達するまで5秒間以上かけて加熱し、さらにそれぞれ350℃で30分間保持する加熱パターンA、又は25℃から350℃に1秒間で到達する加熱パターンBで大気加熱後、圧延面のX線回折で求めた(200)面の強度(I)が、微粉末銅のX線回折で求めた(200)面の強度(I)に対し、前記加熱パターンAによるI/I ≧50.8、前記加熱パターンBによるI/I46.0であるフレキシブルプリント基板用圧延銅箔。
It contains 300 to 355 mass ppm of Ag with respect to oxygen-free copper specified in JIS-H0500 (C1011), and the balance consists of unavoidable impurities.
Was heated over a period of 5 seconds to reach 350 ° C. from 25 ° C., after further heating pattern A for holding at each 350 ° C. 30 minutes, or air heated by the heating pattern B to reach per second from 25 ° C. to 350 ° C., rolling The intensity (I) of the (200) surface determined by X-ray diffraction of the surface is I / I according to the heating pattern A with respect to the intensity (I 0 ) of the (200) surface determined by X-ray diffraction of fine powder copper. A rolled copper foil for a flexible printed substrate having 0 ≧ 50.8 and I / I 046.0 according to the heating pattern B.
請求項1に記載のフレキシブルプリント基板用圧延銅箔と、樹脂とを積層してなるフレキシブル銅張積層板。 A flexible copper-clad laminate obtained by laminating the rolled copper foil for a flexible printed circuit board according to claim 1 and a resin. 請求項2に記載のフレキシブル銅張積層板を有するフレキシブルプリント回路基板。 A flexible printed circuit board having the flexible copper-clad laminate according to claim 2.
JP2019039549A 2019-03-05 2019-03-05 Rolled copper foil for flexible printed circuit boards, flexible copper-clad laminates and flexible printed circuit boards Active JP6944963B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019039549A JP6944963B2 (en) 2019-03-05 2019-03-05 Rolled copper foil for flexible printed circuit boards, flexible copper-clad laminates and flexible printed circuit boards
TW109104461A TWI717998B (en) 2019-03-05 2020-02-13 Rolled copper foil for flexible printed circuit board, flexible copper clad laminate and flexible printed circuit board
KR1020200023528A KR20200106834A (en) 2019-03-05 2020-02-26 Rolled copper foil for flexible printed substrate, flexible copper clad laminate and flexible printed circuit substrate
CN202010147685.8A CN111669898A (en) 2019-03-05 2020-03-05 Rolled copper foil for flexible printed circuit board, flexible copper-clad laminate, and flexible printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019039549A JP6944963B2 (en) 2019-03-05 2019-03-05 Rolled copper foil for flexible printed circuit boards, flexible copper-clad laminates and flexible printed circuit boards

Publications (2)

Publication Number Publication Date
JP2020143321A JP2020143321A (en) 2020-09-10
JP6944963B2 true JP6944963B2 (en) 2021-10-06

Family

ID=72353315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019039549A Active JP6944963B2 (en) 2019-03-05 2019-03-05 Rolled copper foil for flexible printed circuit boards, flexible copper-clad laminates and flexible printed circuit boards

Country Status (4)

Country Link
JP (1) JP6944963B2 (en)
KR (1) KR20200106834A (en)
CN (1) CN111669898A (en)
TW (1) TWI717998B (en)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3009383U (en) 1994-08-17 1995-04-04 有限会社バディー Planting materials for hydroponics
JP2001058203A (en) 1999-08-19 2001-03-06 Nippon Mining & Metals Co Ltd Rolled copper foil excellent in bendability
JP2003193211A (en) * 2001-12-27 2003-07-09 Nippon Mining & Metals Co Ltd Rolled copper foil for copper-clad laminate
JP4430509B2 (en) 2004-10-20 2010-03-10 住友金属鉱山伸銅株式会社 Rolled copper foil
JP4756194B2 (en) 2005-02-22 2011-08-24 新日鐵化学株式会社 Method for producing copper clad laminate
JP4716520B2 (en) * 2007-03-30 2011-07-06 Jx日鉱日石金属株式会社 Rolled copper foil
JP2009292090A (en) 2008-06-06 2009-12-17 Nippon Mining & Metals Co Ltd Two-layer flexible copper-clad laminated sheet excellent in flexibility and method for manufacturing it
JP5185066B2 (en) * 2008-10-23 2013-04-17 Jx日鉱日石金属株式会社 Copper foil excellent in flexibility, manufacturing method thereof, and flexible copper-clad laminate
JP4972115B2 (en) * 2009-03-27 2012-07-11 Jx日鉱日石金属株式会社 Rolled copper foil
JP2013044005A (en) * 2011-08-23 2013-03-04 Jx Nippon Mining & Metals Corp Rolled copper alloy foil for double-sided copper-clad laminate, and method of manufacturing the double-sided copper-clad laminate using the same
JP6497881B2 (en) * 2013-10-04 2019-04-10 Jx金属株式会社 Rolled copper foil, copper-clad laminate using the same, printed wiring board, electronic equipment, circuit connecting member manufacturing method, and circuit connecting member
JP6393126B2 (en) * 2013-10-04 2018-09-19 Jx金属株式会社 Surface-treated rolled copper foil, laminate, printed wiring board, electronic device, and printed wiring board manufacturing method
JP6104200B2 (en) * 2014-03-13 2017-03-29 Jx金属株式会社 Rolled copper foil, copper clad laminate, flexible printed circuit board, and electronic device
JP2016139680A (en) * 2015-01-27 2016-08-04 Jx金属株式会社 Rolled copper foil for mounting electronic component, copper-clad laminate, printed wiring board and electronic component mounting structure
CN107046763B (en) * 2016-02-05 2019-12-24 Jx金属株式会社 Copper foil for flexible printed board and copper-clad laminate using same

Also Published As

Publication number Publication date
JP2020143321A (en) 2020-09-10
CN111669898A (en) 2020-09-15
KR20200106834A (en) 2020-09-15
TW202039891A (en) 2020-11-01
TWI717998B (en) 2021-02-01

Similar Documents

Publication Publication Date Title
JP5185066B2 (en) Copper foil excellent in flexibility, manufacturing method thereof, and flexible copper-clad laminate
JP4716520B2 (en) Rolled copper foil
JP4672515B2 (en) Rolled copper alloy foil for bending
KR101632515B1 (en) Rolled copper foil
KR20130115140A (en) Rolled copper foil, copper clad laminate, flexible printed wiring board and method of manufacturing the same
JP2009295656A (en) Substrate for flexible wiring board and method for manufacturing the same
JPWO2008050584A1 (en) Rolled copper foil with excellent bending resistance
CN103826765B (en) Rolling copper foil
JP6663712B2 (en) Rolled copper foil, copper-clad laminate using the same, flexible printed circuit board, and electronic device
KR101525368B1 (en) Copper foil for flexible printed wiring board, copper-clad laminate, flexible printed wiring board and electronic device
JP6793138B2 (en) Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices
JP6360654B2 (en) Rolled copper foil for flexible printed wiring boards
WO2018180920A1 (en) Rolled copper foil
JP6944963B2 (en) Rolled copper foil for flexible printed circuit boards, flexible copper-clad laminates and flexible printed circuit boards
JP2009280855A (en) Rolled copper foil and method for producing the same
JP5778460B2 (en) Rolled copper foil, method for producing the same, and copper-clad laminate
JP5933943B2 (en) Rolled copper foil for flexible printed wiring boards, copper-clad laminates, flexible printed wiring boards, and electronic equipment
JP2019029606A (en) Copper foil for flexible printed board, copper-clad laminate arranged by use thereof, flexible printed board, and electronic device
JP2008038170A (en) Rolled copper foil
JP6442020B1 (en) Hard rolled copper foil and method for producing the hard rolled copper foil
TWI731247B (en) Copper foil for flexible printed circuit boards, copper-clad laminates using the same, flexible printed circuit boards and electronic devices
JP2013167013A (en) Rolled copper foil for flexible printed circuit board
JP6887213B2 (en) Manufacturing method of rolled copper foil, copper-clad laminate, flexible printed wiring board, electronic equipment and rolled copper foil
JP6774457B2 (en) Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices
JP2013053323A (en) Rolled copper foil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210913

R151 Written notification of patent or utility model registration

Ref document number: 6944963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151