JP4430509B2 - Rolled copper foil - Google Patents

Rolled copper foil Download PDF

Info

Publication number
JP4430509B2
JP4430509B2 JP2004305097A JP2004305097A JP4430509B2 JP 4430509 B2 JP4430509 B2 JP 4430509B2 JP 2004305097 A JP2004305097 A JP 2004305097A JP 2004305097 A JP2004305097 A JP 2004305097A JP 4430509 B2 JP4430509 B2 JP 4430509B2
Authority
JP
Japan
Prior art keywords
copper foil
cross
rolled copper
sectional area
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004305097A
Other languages
Japanese (ja)
Other versions
JP2006117977A (en
Inventor
浩一 山岸
Original Assignee
住友金属鉱山伸銅株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山伸銅株式会社 filed Critical 住友金属鉱山伸銅株式会社
Priority to JP2004305097A priority Critical patent/JP4430509B2/en
Publication of JP2006117977A publication Critical patent/JP2006117977A/en
Application granted granted Critical
Publication of JP4430509B2 publication Critical patent/JP4430509B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)

Description

本発明は、フレキシブルプリント配線板(Flexible Printed Circuit、以下FPCとも称する)などの可撓性配線部材用として好適な圧延銅箔に関する。   The present invention relates to a rolled copper foil suitable for a flexible wiring member such as a flexible printed circuit board (hereinafter also referred to as FPC).

FPCは、可撓性の樹脂基材に銅箔を積層し、接着剤又は加熱加圧により一体化したものであり、デジタルカメラ、携帯電話、HDD、プリンター、液晶パネルなどの配線部材として広く使用されている。また、FPCは折り曲げでき、狭い空間にも実装可能であるため、HDDやDVD及びCD−ROMなどのディスク関連機器の可動部、折りたたみ式携帯電話の折り曲げ部などに多く用いられている。   FPC is made by laminating a copper foil on a flexible resin base material and integrated by adhesive or heat and pressure, and is widely used as a wiring member for digital cameras, mobile phones, HDDs, printers, liquid crystal panels, etc. Has been. Further, since the FPC can be bent and can be mounted in a narrow space, the FPC is often used for a movable part of a disk-related device such as an HDD, a DVD, and a CD-ROM, and a folding part of a folding mobile phone.

FPCの一般的な製造工程としては、例えば、ポリイミドやポリエステルなどからなる基材(ベースフィルム)に表面処理された銅箔を接着剤で張り合わせ、全体を130〜180℃の温度に加熱することにより接着剤を硬化させた後、配線のパターニングを行い、その上に更に配線保護のためにカバーレイを施す。また、接着剤の代わりに、ベースフィルムと銅箔を130〜200℃で加熱加圧することによって一体化する方法もある。   As a general manufacturing process of FPC, for example, by bonding a surface-treated copper foil to a base material (base film) made of polyimide or polyester with an adhesive, and heating the whole to a temperature of 130 to 180 ° C. After the adhesive is cured, the wiring is patterned, and a coverlay is further applied thereon to protect the wiring. There is also a method of integrating the base film and the copper foil by heating and pressing at 130 to 200 ° C. instead of the adhesive.

FPCに使用する銅箔としては、上記した折り曲げ部用の配線部材としての用途から、電解銅箔よりも高い耐屈曲性を有するタフピッチ銅あるいは無酸素銅の圧延銅箔が使用されている。これらの圧延銅箔を製造するには、その銅素材を熱間圧延した後、所定の厚さとなるまで冷間圧延と焼鈍を繰り返し、最後に最終冷間圧延して所定の板厚に仕上げる。尚、FPC用の圧延銅箔の板厚は、通常は50μm以下であり、最近では十数μm以下と更に薄くなる傾向にある。   As the copper foil used for the FPC, rolled copper foil of tough pitch copper or oxygen-free copper having higher bending resistance than the electrolytic copper foil is used from the above-described use as a wiring member for a bent portion. In order to produce these rolled copper foils, the copper material is hot-rolled, then cold rolling and annealing are repeated until a predetermined thickness is obtained, and finally the final cold rolling is performed to obtain a predetermined plate thickness. In addition, the plate | board thickness of the rolled copper foil for FPC is 50 micrometers or less normally, and it exists in the tendency which becomes still thinner with 10 or less micrometers recently.

これらタフピッチ銅や無酸素銅の圧延銅箔は、焼鈍することによって軟化して耐屈曲性が向上するため、焼鈍した状態でFPCに使用されている。しかしながら、FPCの耐屈曲性はベースフィルムやカバーレイと比較して耐屈曲性に劣る銅箔によって決まるため、FPC構成材料のうち銅箔の耐屈曲性が最も重要とされている。そのため、FPC用のタフピッチ銅あるいは無酸素銅からなる圧延銅箔については、機器の耐久性の観点から更に高い耐屈曲性が求められている。   These rolled copper foils of tough pitch copper and oxygen-free copper are used for FPC in an annealed state because they are softened by annealing and have improved bending resistance. However, since the bending resistance of FPC is determined by a copper foil that is inferior in bending resistance compared to a base film or coverlay, the bending resistance of copper foil is the most important among the FPC constituent materials. For this reason, rolled copper foil made of tough pitch copper or oxygen-free copper for FPC is required to have higher bending resistance from the viewpoint of the durability of the equipment.

このような耐屈曲性に優れた圧延銅箔としては、例えば、特許第3009383号公報に、200℃で30分間加熱して再結晶組織に調質した状態において、15%以上の伸びを有し、且つ圧延面のX線回折で求めた(200)面の強度(I)が、微粉末銅のX線回折で求めた(200)面の強度(I)に対し、I/I>20である立方体集合組織を有することを特徴とする、優れた屈曲性を有する圧延銅箔が報告されている。 As such a rolled copper foil having excellent bending resistance, for example, in Patent No. 3009383, it has an elongation of 15% or more in a state of being tempered to a recrystallized structure by heating at 200 ° C. for 30 minutes. and the intensity of the (200) plane determined by X-ray diffraction of the rolled surface (I) is, with respect to the strength of the powder copper was determined by X-ray diffraction (200) plane (I 0), I / I 0> A rolled copper foil having excellent flexibility characterized by having a cubic texture of 20 has been reported.

特許第3009383号公報Japanese Patent No. 3009383

本発明は、このような従来の事情に鑑みてなされたものであり、耐屈曲性に優れた圧延銅箔を提供することを目的とするものである。   This invention is made | formed in view of such a conventional situation, and it aims at providing the rolled copper foil excellent in the bending resistance.

上記目的を達成するため、本発明が提供する圧延銅箔は、最終板厚が10〜16μmであり、最終圧延後に焼鈍された状態の銅箔の断面組織において、銅箔の両表面間を板厚方向に貫通した結晶粒の断面面積率が70%以上であって、該銅箔からなる幅12.7mm及び長さ200mmの試験用銅箔片を固定板と可動板に固定し、可動板を周期的に振動させて該試験用銅箔片を曲率半径2.5mmで屈曲させ、破断までの屈曲回数として求めた屈曲寿命が684,000回以上であることを特徴とする。 To achieve the above object, the rolled copper foil provided by the present invention, the final thickness is 10~16Myuemu, in the cross-sectional structure of a copper foil of annealed state after the final rolling, between both surfaces of the copper foil A cross-sectional area ratio of crystal grains penetrating in the plate thickness direction is 70% or more, and a test copper foil piece made of the copper foil and having a width of 12.7 mm and a length of 200 mm is fixed to a fixed plate and a movable plate, and is movable. The plate is periodically vibrated to bend the test copper foil piece with a radius of curvature of 2.5 mm, and the bending life obtained as the number of bending times until breakage is 684,000 times or more .

上記本発明の圧延銅箔においては、前記断面面積率が、該銅箔の板厚の少なくとも100倍の長さについて求めたものであることが好ましい。また、前記焼鈍時の熱処理温度としては、130〜200℃であることが好ましい。
In the rolled copper foil of the present invention, it is preferable that the cross-sectional area ratio is determined for a length at least 100 times the thickness of the copper foil . Moreover, it is preferable that it is 130-200 degreeC as heat processing temperature at the time of the said annealing.

本発明によれば、優れた耐屈曲性を備え、フレキシブルプリント配線板(FPC)などの可撓性配線部材用として好適な圧延銅箔を提供することができる。   According to the present invention, it is possible to provide a rolled copper foil having excellent bending resistance and suitable for a flexible wiring member such as a flexible printed wiring board (FPC).

本発明者は、タフピッチ銅又は無酸素銅からなる圧延銅箔における耐屈曲性の改善向上について鋭意検討を進めた結果、圧延銅箔を焼鈍した状態の銅箔の断面組織において、銅箔の両表面の間を板厚方向に貫通した結晶粒の断面積が全体の断面積に対して占める比率(断面面積率)が大きくなるほど、銅箔の耐屈曲性が大幅に改善されることを見出した。   As a result of earnestly examining the improvement in bending resistance of rolled copper foil made of tough pitch copper or oxygen-free copper, the present inventor has obtained a cross-sectional structure of the copper foil in a state where the rolled copper foil is annealed. It has been found that the bending resistance of the copper foil is greatly improved as the ratio of the cross-sectional area of the crystal grains penetrating between the surfaces in the plate thickness direction to the total cross-sectional area (cross-sectional area ratio) increases. .

即ち、本発明の圧延銅箔においては、両表面の間を板厚方向に貫通した結晶粒の結晶粒の断面面積率を40%以上とすることにより、従来よりも屈曲性に優れた圧延銅箔を得ることができる。更に好ましくは、銅箔の両表面の間を板厚方向に貫通した結晶粒の断面面積率を60%以上とすることによって、銅箔を板厚方向に貫通した結晶粒が銅箔表面に現れる比率が急激に高まる傾向があり、このため銅箔の屈曲性がより一層改善される。   That is, in the rolled copper foil of the present invention, by making the cross-sectional area ratio of the crystal grains of the crystal grains penetrating between both surfaces in the plate thickness direction to be 40% or more, the rolled copper having better flexibility than conventional ones. A foil can be obtained. More preferably, the crystal grains penetrating the copper foil in the plate thickness direction appear on the copper foil surface by setting the cross-sectional area ratio of the crystal grains penetrating between both surfaces of the copper foil in the plate thickness direction to 60% or more. There is a tendency for the ratio to increase rapidly, which further improves the flexibility of the copper foil.

板厚を貫通した結晶粒が多いほど銅箔の屈曲性が向上する理由は、以下のように考えられる。即ち、通常は屈曲による変形により転位が結晶粒内から発生し、この転位が粒界部に集積して、その粒界部分で破断が起こる。一方、結晶粒が銅箔の板厚を貫通した部分では、屈曲による変形は単結晶そのものの変形となり、結晶粒内に発生した転位が表面に抜けてしまうため、転位の集積が起こらず、繰り返しの変形に対して破断が起こり難くなるものと考えられる。   The reason why the flexibility of the copper foil is improved as the number of crystal grains penetrating the plate thickness increases is as follows. That is, dislocations are usually generated from within the crystal grains due to deformation due to bending, and the dislocations accumulate at the grain boundary part, and breakage occurs at the grain boundary part. On the other hand, in the part where the crystal grain penetrates the plate thickness of the copper foil, the deformation due to bending becomes the deformation of the single crystal itself, and the dislocation generated in the crystal grain escapes to the surface. It is considered that breakage is less likely to occur with respect to the deformation of.

銅箔を厚さ方向に貫通した結晶粒の断面面積率は、図1に示すように、銅箔1の断面金属組織の顕微鏡写真観察により、銅箔1の表面1aと表面1bの間を板厚dの方向に貫通した貫通結晶粒2の断面積Aを求め、貫通していない非貫通結晶粒3も含めた銅箔1全体の断面積Bに対する断面積Aの比、即ち断面積A/断面積Bとして算出する。具体的な断面積の測定は、銅箔を樹脂に埋め込み、その銅箔の断面を機械研磨して鏡面に仕上げ、アンモニア−過酸化水素水でエッチングした後、光学顕微鏡による組織写真から測定する。   As shown in FIG. 1, the cross-sectional area ratio of the crystal grains penetrating through the copper foil in the thickness direction is determined by observing the cross-sectional metal structure of the copper foil 1 between the surface 1a and the surface 1b of the copper foil 1. The sectional area A of the penetrating crystal grain 2 penetrating in the direction of the thickness d is obtained, and the ratio of the sectional area A to the sectional area B of the entire copper foil 1 including the non-penetrating crystal grain 3 not penetrating, that is, the sectional area A / Calculated as the cross-sectional area B. Specifically, the cross-sectional area is measured by embedding a copper foil in a resin, mechanically polishing the cross-section of the copper foil to give a mirror surface, etching with ammonia-hydrogen peroxide, and then measuring the structure photograph with an optical microscope.

フレキシブルプリント配線板(FPC)に用いる圧延銅箔の厚みは、一般的に50μm以下であり、最近では更に薄くなりつつある。従って、銅箔の結晶粒の断面積を測定するに際しては、銅箔を折り畳んで何層かに積層して樹脂に埋め込むことが好ましい。また、断面積の顕微鏡観察に用いる銅箔のサンプリングは、局部的な粗大結晶粒や微細結晶粒の影響を小さくするために、銅箔の板厚の少なくとも100倍以上の長さとすることが望ましい。   The thickness of the rolled copper foil used for the flexible printed wiring board (FPC) is generally 50 μm or less, and recently it is becoming thinner. Therefore, when measuring the cross-sectional area of the crystal grains of the copper foil, it is preferable that the copper foil is folded and laminated in several layers and embedded in the resin. In addition, the sampling of the copper foil used for microscopic observation of the cross-sectional area is preferably at least 100 times longer than the thickness of the copper foil in order to reduce the influence of local coarse crystal grains and fine crystal grains. .

本発明の圧延銅箔の製造は、タフピッチ銅あるいは無酸素銅の銅素材を熱間圧延した後、所定の厚さとなるまで冷間圧延と焼鈍を繰り返し、最後に最終冷間圧延して所定の板厚、好ましくは50μm以下に仕上げる。その後、この圧延銅箔を焼鈍した状態で使用するが、そのための焼鈍は、圧延銅箔の粗面化工程におけるメッキなどの表面処理後に熱処理を行うか、あるいはFPCの製造工程におけるベースフィルムとの一体化時に曝される130〜200℃の温度での熱処理によって行われる。従って、本発明によれば、FPC製造に用いる状態、即ち最終圧延後に焼鈍された状態の圧延銅箔について、結晶粒の断面面積率を調べるだけで、その圧延銅箔の耐屈曲性を検査することが可能である。   In the production of the rolled copper foil of the present invention, after hot rolling a tough pitch copper or oxygen-free copper material, cold rolling and annealing are repeated until a predetermined thickness is obtained, and finally the final cold rolling is performed to obtain a predetermined thickness. Finish to plate thickness, preferably 50 μm or less. Thereafter, the rolled copper foil is used in an annealed state. For the annealing, the heat treatment is performed after the surface treatment such as plating in the roughening process of the rolled copper foil, or the base film in the FPC manufacturing process. It is performed by a heat treatment at a temperature of 130 to 200 ° C. exposed during the integration. Therefore, according to the present invention, the bending resistance of the rolled copper foil is inspected only by examining the cross-sectional area ratio of the crystal grains of the rolled copper foil in the state used for FPC manufacture, that is, in the state annealed after the final rolling. It is possible.

最終圧延後に焼鈍された状態の圧延銅箔において、その板厚を貫通した結晶粒の断面面積率は、以下の条件により制御することが可能である。即ち、(1)最終圧延前の平均結晶粒径が同じであれば、最終圧延の圧下率が大きいほど貫通結晶粒の断面面積率を大きくすることができる。また、(2)最終圧延の圧下率が同一であれば、最終圧延前の平均結晶粒径が小さいほど貫通結晶粒の断面面積率を大きくすることができる。   In the rolled copper foil in the state annealed after the final rolling, the cross-sectional area ratio of the crystal grains penetrating the plate thickness can be controlled by the following conditions. That is, (1) If the average grain size before the final rolling is the same, the larger the rolling reduction of the final rolling, the larger the cross-sectional area ratio of the through crystal grains. Further, (2) if the rolling reduction of the final rolling is the same, the cross-sectional area ratio of the through crystal grains can be increased as the average crystal grain size before the final rolling is smaller.

高純度の電気銅を溶解し、厚さ200mm、幅650mmのタフピッチ銅(酸素含有量250ppm)の鋳塊を作製した。この鋳塊を18mmの板厚まで熱間圧延で薄くし、表面のスケールを面削により除去した後、冷間圧延により2.0mmの板厚まで薄くして、中間焼鈍・洗浄を行い、エッジ部をトリミングして600mm幅とした。その後、更に冷間圧延と焼鈍・洗浄を繰り返して所定の板厚とした後、その所定の板厚の銅箔を最終冷間圧延して0.016mm(16μm)の圧延銅箔を製造した。   High-purity electrolytic copper was melted to produce an ingot of tough pitch copper (oxygen content 250 ppm) having a thickness of 200 mm and a width of 650 mm. This ingot is thinned by hot rolling to a plate thickness of 18 mm, the scale on the surface is removed by chamfering, then thinned to a plate thickness of 2.0 mm by cold rolling, intermediate annealing and cleaning are performed, and an edge is obtained. The part was trimmed to a width of 600 mm. Thereafter, cold rolling and annealing / washing were repeated to obtain a predetermined plate thickness, and then the copper foil having the predetermined plate thickness was subjected to final cold rolling to produce a 0.016 mm (16 μm) rolled copper foil.

得られた板厚16μmの圧延銅箔を、フレキシブルプリント配線板(FPC)の製造工程での熱処理を模して、180℃で30分の熱処理を施した。この焼鈍された状態の圧延銅箔について、板厚方向に貫通した貫通結晶粒の断面面積率並びに屈曲寿命を測定した。また、上記と同様にして、ただし最終圧延前の板厚と平均結晶粒径を変えることにより結晶組織を制御して、板厚33μm及び10μmの圧延銅箔を製造し、同様の熱処理を施した後、貫通結晶粒の断面面積率並びに屈曲寿命を測定した。得られた結果を、下記表1に示した。   The obtained rolled copper foil with a plate thickness of 16 μm was subjected to heat treatment at 180 ° C. for 30 minutes, imitating heat treatment in the manufacturing process of the flexible printed wiring board (FPC). For the rolled copper foil in the annealed state, the cross-sectional area ratio and the bending life of the through crystal grains penetrating in the plate thickness direction were measured. Further, in the same manner as above, however, a rolled copper foil having a thickness of 33 μm and 10 μm was manufactured by changing the thickness and the average crystal grain size before the final rolling, and subjected to the same heat treatment. Thereafter, the cross-sectional area ratio and the bending life of the through crystal grains were measured. The obtained results are shown in Table 1 below.

尚、熱処理後の焼鈍された状態の圧延銅箔における貫通結晶粒の断面面積率は、以下のようにして求めた。即ち、板厚に対して200倍の長さとなるようにサンプリングを行い、その銅箔を積層させて樹脂に埋め込んだ後、銅箔の断面を機械研磨して鏡面に仕上げ、アンモニア−過酸化水素水でエッチングを行い、光学顕微鏡により銅箔断面の金属組織を観察した。具体的には、400倍の顕微鏡写真を撮影し、その組織写真から、銅箔を板厚方向に貫通する貫通結晶粒を着色し、画像ソフトを使用して全断面積に対する着色部の面積の比率を測定した。   In addition, the cross-sectional area ratio of the through crystal grain in the rolled copper foil in the annealed state after the heat treatment was obtained as follows. That is, sampling is performed so that the length is 200 times the plate thickness, the copper foil is laminated and embedded in a resin, and then the copper foil is mechanically polished to a mirror finish. Etching was performed with water, and the metal structure of the copper foil cross section was observed with an optical microscope. Specifically, a microphotograph of 400 times is taken, and from the structure photograph, the penetrating crystal grains penetrating the copper foil in the plate thickness direction are colored, and the area of the colored portion relative to the total cross-sectional area is measured using image software. The ratio was measured.

また、圧延銅箔の屈曲寿命については、図2に示す屈曲試験装置により測定した。即ち、この装置の固定板6と可動板7に試験用銅箔片5を固定し、可動板7を周期的に振動させることにより、試験用銅箔片5の中間部が所定の曲率半径でヘアピン状に屈曲され、ある屈曲回数に達した時点で破断する。この破断までの屈曲回数を屈曲寿命とした。尚、試験用銅箔片5の採取は、その長さ方向が圧延方向と平行になるように行った。また、測定条件は、試験用銅箔片5の幅12.7mm、試験用銅箔片5の長さ200mm、曲率半径2.5mm、振動ストローク25mm、振動速度500回/分とした。   Further, the bending life of the rolled copper foil was measured by a bending test apparatus shown in FIG. That is, the test copper foil piece 5 is fixed to the fixed plate 6 and the movable plate 7 of this apparatus, and the movable plate 7 is periodically vibrated so that the intermediate portion of the test copper foil piece 5 has a predetermined radius of curvature. It bends into a hairpin shape and breaks when it reaches a certain number of bends. The number of bendings until this breakage was defined as the bending life. The test copper foil pieces 5 were collected so that the length direction thereof was parallel to the rolling direction. The measurement conditions were as follows: the width of the test copper foil piece 12.7 mm, the length of the test copper foil piece 5 200 mm, the radius of curvature 2.5 mm, the vibration stroke 25 mm, and the vibration speed 500 times / minute.

Figure 0004430509
Figure 0004430509

上記表1によれば、最終板厚が16μmの圧延銅箔の場合、焼鈍した状態の銅箔の断面組織において貫通結晶粒の断面面積率が40%以上である本発明の実施例による各試料は、銅箔の屈曲寿命が30万回を超え、比較例の各試料と比較して耐屈曲性が大幅に改善されていることが分かる。また、銅箔の貫通結晶粒の断面面積率が60%以上であれば、屈曲寿命が40万回を超える結果が得られ、更に好ましいことが分かる。尚、試料7は従来一般的な条件で製造した圧延銅箔であるが、その屈曲寿命が30万回に満たないものである。   According to Table 1 above, in the case of a rolled copper foil having a final plate thickness of 16 μm, each sample according to the example of the present invention in which the cross-sectional area ratio of the through crystal grains is 40% or more in the cross-sectional structure of the annealed copper foil It can be seen that the bending life of the copper foil exceeds 300,000 times, and the bending resistance is greatly improved as compared with each sample of the comparative example. Moreover, if the cross-sectional area ratio of the penetrating crystal grains of the copper foil is 60% or more, a result that the bending life exceeds 400,000 times can be obtained, which is further preferable. Sample 7 is a rolled copper foil manufactured under conventional general conditions, but its bending life is less than 300,000 times.

また、最終板厚が33μm及び10μmの場合については、板厚が薄くなると耐屈曲性が向上し又板厚が厚くなると耐屈曲性が低下するために、上記最終板厚16μmの試料と単純に比較することはできない。しかしながら、本発明の実施例による試料10、12と比較例の試料11、13とを比較すると、貫通結晶粒の断面面積率を40%以上とすることで破断までの屈曲回数が増加し、断面面積率が40%未満の場合に比べて耐屈曲性が大きく改善されていることが明らかである。   Further, in the case where the final plate thickness is 33 μm and 10 μm, the bending resistance is improved as the plate thickness is reduced, and the bending resistance is lowered as the plate thickness is increased. It cannot be compared. However, when the samples 10 and 12 according to the embodiment of the present invention are compared with the samples 11 and 13 of the comparative example, the number of bends until breakage is increased by setting the cross-sectional area ratio of the through crystal grains to 40% or more. It is clear that the bending resistance is greatly improved as compared with the case where the area ratio is less than 40%.

圧延銅箔断面の金属組織を示す模式図である。It is a schematic diagram which shows the metal structure of a rolled copper foil cross section. 圧延銅箔の屈曲寿命の測定に用いた屈曲試験装置の概略図である。It is the schematic of the bending test apparatus used for the measurement of the bending life of rolled copper foil.

符号の説明Explanation of symbols

1 銅箔
1a、1b 表面
2 貫通結晶粒
3 非貫通結晶粒
5 試験用銅箔片
6 固定板
7 可動板
DESCRIPTION OF SYMBOLS 1 Copper foil 1a, 1b Surface 2 Through crystal grain 3 Non-penetrating crystal grain 5 Copper foil piece for a test 6 Fixed plate 7 Movable plate

Claims (3)

最終板厚が10〜16μmであり、最終圧延後に焼鈍された状態の銅箔の断面組織において、銅箔の両表面間を板厚方向に貫通した結晶粒の断面面積率が70%以上であって、該銅箔からなる幅12.7mm及び長さ200mmの試験用銅箔片を固定板と可動板に固定し、可動板を周期的に振動させて該試験用銅箔片を曲率半径2.5mmで屈曲させ、破断までの屈曲回数として求めた屈曲寿命が684,000回以上であることを特徴とする耐屈曲性に優れた圧延銅箔。 Final thickness is 10~16Myuemu, in the cross-sectional structure of a copper foil in a state of being annealed after the final rolling, in cross-section area ratio of crystal grains through between both surfaces of the copper foil in the thickness direction is 70% or more Then, a test copper foil piece made of the copper foil and having a width of 12.7 mm and a length of 200 mm is fixed to the fixed plate and the movable plate, and the movable plate is periodically vibrated to change the radius of curvature of the test copper foil piece. A rolled copper foil having excellent bending resistance, characterized by having a bending life of 684,000 times or more obtained by bending at 2.5 mm and obtaining the number of bendings until breakage . 前記断面面積率が、前記銅箔の板厚の少なくとも100倍の長さについて求めたものであることを特徴とする、請求項1に記載の圧延銅箔。 The rolled copper foil according to claim 1, wherein the cross-sectional area ratio is obtained for a length at least 100 times the plate thickness of the copper foil. 前記焼鈍時の熱処理温度が130〜200℃であることを特徴とする、請求項1又は2に記載の圧延銅箔。   The rolled copper foil according to claim 1 or 2, wherein a heat treatment temperature during the annealing is 130 to 200 ° C.
JP2004305097A 2004-10-20 2004-10-20 Rolled copper foil Expired - Lifetime JP4430509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004305097A JP4430509B2 (en) 2004-10-20 2004-10-20 Rolled copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004305097A JP4430509B2 (en) 2004-10-20 2004-10-20 Rolled copper foil

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009172133A Division JP4430733B2 (en) 2009-07-23 2009-07-23 Method for producing rolled copper foil with excellent flexibility

Publications (2)

Publication Number Publication Date
JP2006117977A JP2006117977A (en) 2006-05-11
JP4430509B2 true JP4430509B2 (en) 2010-03-10

Family

ID=36536130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004305097A Expired - Lifetime JP4430509B2 (en) 2004-10-20 2004-10-20 Rolled copper foil

Country Status (1)

Country Link
JP (1) JP4430509B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4242403B2 (en) 2006-07-13 2009-03-25 信越化学工業株式会社 Oxygen-enriched film and composition for forming the film
JP2008038169A (en) * 2006-08-03 2008-02-21 Sumitomo Kinzoku Kozan Shindo Kk Rolled copper foil
JP2008038170A (en) * 2006-08-03 2008-02-21 Sumitomo Kinzoku Kozan Shindo Kk Rolled copper foil
US7789977B2 (en) 2006-10-26 2010-09-07 Hitachi Cable, Ltd. Rolled copper foil and manufacturing method thereof
JP5038765B2 (en) * 2006-12-14 2012-10-03 日立電線株式会社 Solder-plated wire for solar cell and manufacturing method thereof
JP4466688B2 (en) 2007-07-11 2010-05-26 日立電線株式会社 Rolled copper foil
JP4941987B2 (en) 2007-09-28 2012-05-30 独立行政法人産業技術総合研究所 Carbide tool for micro machining
WO2010073436A1 (en) * 2008-12-26 2010-07-01 三菱電機株式会社 Fpc fixing structure for two-axis hinge mechanism
JP2011094200A (en) * 2009-10-30 2011-05-12 Jx Nippon Mining & Metals Corp Copper or copper alloy foil, and method for manufacturing double-sided copper-clad laminate using the same
JP2011093229A (en) * 2009-10-30 2011-05-12 Jx Nippon Mining & Metals Corp Method for manufacturing double-sided copper-clad laminated plate, and one set of copper or copper alloy foil used for the same
TWI499067B (en) 2010-03-17 2015-09-01 Nippon Steel & Sumitomo Metal Corp Interconnects for metal tape and solar collectors
JP5758254B2 (en) 2011-09-27 2015-08-05 Jx日鉱日石金属株式会社 Rolled copper foil
KR101983157B1 (en) * 2013-11-19 2019-05-28 삼성전기주식회사 Printed circuit board and method of manufacturing the same
JP6944963B2 (en) 2019-03-05 2021-10-06 Jx金属株式会社 Rolled copper foil for flexible printed circuit boards, flexible copper-clad laminates and flexible printed circuit boards

Also Published As

Publication number Publication date
JP2006117977A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
JP4285526B2 (en) Rolled copper foil and method for producing the same
JP4430509B2 (en) Rolled copper foil
JP4215093B2 (en) Rolled copper foil and method for producing the same
JP4466688B2 (en) Rolled copper foil
JP3009383B2 (en) Rolled copper foil and method for producing the same
JP4672515B2 (en) Rolled copper alloy foil for bending
JP2009185376A (en) Rolled copper foil and manufacturing method therefor
JP6696895B2 (en) Rolled copper foil, rolled copper foil manufacturing method, flexible flat cable, flexible flat cable manufacturing method
CN107429324B (en) Flat rolled copper foil, flexible flat cable, rotary connector, and method for manufacturing flat rolled copper foil
JP5245813B2 (en) Rolled copper foil
JP3859384B2 (en) Rolled copper foil for flexible printed circuit board having excellent flexibility and manufacturing method thereof
KR20140037962A (en) Rolled copper foil
JP2010150597A (en) Rolled copper foil
KR101586594B1 (en) Rolled copper foil
JP4162087B2 (en) Highly flexible rolled copper foil and method for producing the same
JP5390852B2 (en) Rolled copper foil
JP4430733B2 (en) Method for producing rolled copper foil with excellent flexibility
JP2001262296A (en) Rolled copper foil and its manufacturing process
JP2009280855A (en) Rolled copper foil and method for producing the same
JP2008038170A (en) Rolled copper foil
JP5261595B1 (en) Rolled copper foil, method for producing the same, and laminate
JP3709109B2 (en) Rolled copper foil for printed circuit board excellent in overhang processability and method for producing the same
JP4354930B2 (en) Low gloss rolled copper foil for copper-clad laminates
KR102227339B1 (en) Hard-rolled copper foil and manufacturing method of the hard-rolled copper foil
JP4242801B2 (en) Rolled copper foil and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4430509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250