JP2011094200A - Copper or copper alloy foil, and method for manufacturing double-sided copper-clad laminate using the same - Google Patents

Copper or copper alloy foil, and method for manufacturing double-sided copper-clad laminate using the same Download PDF

Info

Publication number
JP2011094200A
JP2011094200A JP2009250182A JP2009250182A JP2011094200A JP 2011094200 A JP2011094200 A JP 2011094200A JP 2009250182 A JP2009250182 A JP 2009250182A JP 2009250182 A JP2009250182 A JP 2009250182A JP 2011094200 A JP2011094200 A JP 2011094200A
Authority
JP
Japan
Prior art keywords
copper
alloy foil
copper alloy
foil
sided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009250182A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ono
俊之 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2009250182A priority Critical patent/JP2011094200A/en
Priority to KR1020127011239A priority patent/KR20120064124A/en
Priority to CN201080049537.7A priority patent/CN102575317B/en
Priority to PCT/JP2010/068898 priority patent/WO2011052556A1/en
Priority to TW099136882A priority patent/TWI426995B/en
Publication of JP2011094200A publication Critical patent/JP2011094200A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1105Heating or thermal processing not related to soldering, firing, curing or laminating, e.g. for shaping the substrate or during finish plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper or copper alloy foil which can reduce wrinkles or creases occurring when used for a double-sided copper-clad laminate, and to provide a method for manufacturing a double-sided copper-clad laminate using the same. <P>SOLUTION: The copper or copper alloy foils 4 and 6 are used for the double-sided copper-clad laminate 8, satisfy ¾10,000×(E<SB>A</SB>×/2)¾≤YS<SB>A</SB>when σ<SB>A</SB>is (E<SB>A</SB>×ΔL<SB>B</SB>)/2×1,000, and have the number of bending times of 400,000 or more, wherein E<SB>A</SB>is Young's modulus (of which the unit is GPa) in a width direction after the copper or copper alloy foil has been held at 350°C for 30 min and cooled to room temperature; ΔL<SB>A</SB>is a dimensional change rate (of which the unit is ppm, and in which shrinkage is defined as positive value) in the width direction of the copper or copper alloy foil which has been heated to 350°C from room temperature, held at the temperature for 30 min and cooled to room temperature; YS<SB>A</SB>is 0.2% yield strength (of which the unit is MPa) of the copper or copper alloy foil in a tensile test; and the number of bending times is a value measured at an end point at which the electric resistance has increased from the initial stage by 20%, with the use of an IPC sliding bending tester. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えばフレキシブル配線板(FPC:Flexible Printed Circuit)に使用され、樹脂層の両面に銅又は銅合金箔が積層された両面銅張積層板に適した銅又は銅合金箔、及びそれを用いた両面銅張積層板の製造方法に関する。   The present invention is used for, for example, a flexible printed circuit (FPC), and is suitable for a double-sided copper-clad laminate in which copper or copper alloy foil is laminated on both sides of a resin layer, and It is related with the manufacturing method of the used double-sided copper clad laminated board.

フレキシブル配線板(FPC)に用いられる銅張積層板(CCL)としては、樹脂層の片面に銅箔を積層した片面銅張積層板と、樹脂層の両面に銅箔を積層した両面銅張積層板(以下、「両面CCL」という)が用いられている。両面CCLに回路を形成したものが両面フレキシブル配線板であり、回路のファイン化、FPCの省スペース化が実現しやすいことから、両面CCLの使用が増加する傾向にある。
このような両面CCLの製造方法として、銅箔の片面に樹脂組成物のワニスをキャストし、加熱硬化後に樹脂面に他の銅箔を熱圧着する方法が知られている(特許文献1)。又、熱可塑性ポリイミド層を両面に有するポリイミドフィルムの表裏面に、同時に銅箔を熱圧着する方法、熱可塑性ポリイミド層を有するポリイミドフィルムの片面に銅箔を熱圧着後、銅箔と反対側のポリイミドフィルム面に熱可塑性ポリイミド層を塗布し、その面に他の銅箔を熱圧着する方法、銅箔の片面にポリイミドの前駆体であるワニスをキャストして硬化後、銅箔と反対側の樹脂表面に熱可塑性ポリイミド層を形成し、その面に他の銅箔を熱圧着する方法等がある。
The copper-clad laminate (CCL) used for flexible wiring boards (FPC) is a single-sided copper-clad laminate in which copper foil is laminated on one side of the resin layer, and a double-sided copper-clad laminate in which copper foil is laminated on both sides of the resin layer A plate (hereinafter referred to as “double-sided CCL”) is used. A double-sided CCL with a circuit formed on a double-sided CCL is a double-sided flexible wiring board, and the use of double-sided CCL tends to increase because it is easy to realize finer circuits and space-saving FPC.
As a method for producing such a double-sided CCL, a method is known in which a varnish of a resin composition is cast on one side of a copper foil and another copper foil is thermocompression bonded to the resin side after heat curing (Patent Document 1). Moreover, the method of thermocompression bonding copper foil to the front and back of a polyimide film having a thermoplastic polyimide layer on both sides at the same time, after thermocompression bonding of the copper foil to one surface of a polyimide film having a thermoplastic polyimide layer, on the opposite side of the copper foil A method of applying a thermoplastic polyimide layer to the polyimide film surface and thermocompression bonding another copper foil on the surface, casting a varnish that is a polyimide precursor on one side of the copper foil and curing, then on the opposite side of the copper foil There is a method in which a thermoplastic polyimide layer is formed on the resin surface and another copper foil is thermocompression bonded to the surface.

特開平05-212824号公報Japanese Patent Laid-Open No. 05-212824

ここで、樹脂層(上記ポリイミドフィルムなど)の両面に銅箔を同時にラミネートする場合を除くと、最初に樹脂層と積層された銅箔(第1の銅箔)は、最初の積層の際に300℃以上の温度に加熱され,一旦冷却される。さらに、その後に樹脂層の反対面に他の銅箔(第2の銅箔)を積層する際に、第1の銅箔も同様に再加熱されて冷却される。
しかしながら、第2の銅箔を積層して加熱した後、冷却される時に第1の銅箔の長さ方向に平行に、かつ通常は幅方向中央位置にシワやオレが発生する場合がある。このシワやオレは、第2の銅箔の積層条件や積層時の加熱条件(熱圧着条件、張力等)を調整しても完全に解消することは難しい。そして、このようなシワやオレは、第1の銅箔と第2の銅箔に掛かる積層時の熱履歴が異なるため、第2の銅箔を積層して加熱した後、冷却されるときの温度変化に起因して、樹脂層を挟んで存在する両銅箔の寸法変化率が異なり、それによって生じる応力に銅箔が耐えられない場合に生じると考えられる。
Here, except when the copper foil is laminated on both sides of the resin layer (such as the above polyimide film) at the same time, the first copper foil laminated with the resin layer (first copper foil) Heated to a temperature of 300 ° C or higher and once cooled. Further, when another copper foil (second copper foil) is subsequently laminated on the opposite surface of the resin layer, the first copper foil is similarly reheated and cooled.
However, after the second copper foil is laminated and heated, when it is cooled, wrinkles and creases may occur in parallel with the length direction of the first copper foil and usually at the center in the width direction. These wrinkles and creases are difficult to completely eliminate even if the lamination conditions of the second copper foil and the heating conditions during lamination (thermocompression conditions, tension, etc.) are adjusted. And since such wrinkles and me have different heat histories during lamination on the first copper foil and the second copper foil, when the second copper foil is laminated and heated, it is cooled. It is considered that this occurs when the dimensional change rates of the two copper foils existing across the resin layer are different due to the temperature change, and the copper foil cannot withstand the stress caused thereby.

すなわち、本発明は上記の課題を解決するためになされたものであり、両面銅張積層板に用いたときにシワやオレを抑制することができる銅又は銅合金箔、及びそれを用いた両面銅張積層板の製造方法の提供を目的とする。   That is, the present invention has been made to solve the above problems, and copper or copper alloy foil capable of suppressing wrinkles and creases when used in a double-sided copper-clad laminate, and double-sided using the same It aims at providing the manufacturing method of a copper clad laminated board.

本発明者らは種々検討した結果、両面CCLを製造する際に、第1の銅箔及び第2の銅箔に加わる熱履歴が異なることに起因して両箔に寸法変化の差が生じ、箔に応力が生じたとしても,銅箔が座屈しないように両銅箔の特性を調整することで、シワやオレを抑制できることを見出した。

すなわち、本発明の銅又は銅合金箔は、両面銅張積層板に用いられ、σ=(E×ΔL)/2×1000としたとき、|10×σ|≦YSとなり、屈曲回数が40万回以上である。
但し、E:前記銅又は銅合金箔を350℃で30分間保持して室温に冷却後,の幅方向のヤング率(単位はGPa)、ΔL:室温から350℃に昇温し、30分間保持して室温に冷却した時の前記銅又は銅合金箔の幅方向の寸法変化率(単位はppm、収縮を正の値とする)、YS:引っ張り試験における前記銅又は銅合金箔の0.2%耐力(単位はMPa)
屈曲回数:IPC摺動屈曲試験機を使用し、箔を幅方向12.5mm、長さ方向200mmの短冊状に切り出し350℃で0.5時間の加熱処理をした後に用い、曲げ半径は箔厚みが18μmの場合は1.5mm、箔厚みが12μmの場合は1mmとし、毎分100回の繰り返し摺動を試験片に負荷し、電気抵抗が初期から20%上昇した屈曲回数を終点とした回数
As a result of various studies by the inventors, when producing double-sided CCL, a difference in dimensional change occurs between the two copper foils due to different thermal histories applied to the first copper foil and the second copper foil. It has been found that wrinkles and creases can be suppressed by adjusting the characteristics of both copper foils so that the copper foil does not buckle even if stress is generated in the foil.

That is, the copper or copper alloy foil of the present invention is used for a double-sided copper-clad laminate, and when σ A = (E A × ΔL A ) / 2 × 1000, | 10 × σ A | ≦ YS A The number of flexing is 400,000 times or more.
However, E A: After cooling to room temperature and held the copper or 30 minutes copper alloy foil at 350 ° C., the Young's modulus in the transverse direction of (the unit GPa), [Delta] L A: temperature was raised to 350 ° C. from room temperature, 30 minutes held (the unit ppm, the shrinkage and positive values) the copper or the width direction dimensional change rate of the copper alloy foil when cooled to room temperature, YS a: of the copper or copper alloy foil in a tensile test 0.2% yield strength (Unit: MPa)
Number of bendings: Using an IPC sliding bending tester, the foil was cut into strips with a width of 12.5 mm and a length of 200 mm and heat-treated at 350 ° C. for 0.5 hours. The bending radius was 18 μm. 1.5 mm in the case, and 1 mm in the case where the foil thickness is 12 μm, the test piece was subjected to repeated sliding 100 times per minute, and the number of bendings where the electrical resistance increased by 20% from the initial point was the number of times

前記銅又は銅合金箔がいずれも圧延箔であって、最終冷間圧延加工度R(%)が93.0%以上であり,かつ最終焼鈍後の平均結晶粒径GS(μm)が,GS≦3.08×R−260であることが好ましい。
ΔLが145ppm以下であることが好ましい。
The copper or copper alloy foil is a rolled foil, the final cold rolling degree R (%) is 93.0% or more, and the average crystal grain size GS (μm) after the final annealing is GS ≦ 3.08 × R-260 is preferable.
It is preferred [Delta] L A is not more than 145 ppm.

本発明の両面銅張積層板の製造方法は、前記銅又は銅合金箔の片面に樹脂層を形成し、片面銅張積層板を得る第1の工程と、前記片面銅張積層板の前記樹脂層側に別の前記銅又は銅合金箔を積層して加熱し両面銅張積層板を得る第2の工程とを有する。   The method for producing a double-sided copper-clad laminate of the present invention includes a first step of forming a resin layer on one side of the copper or copper alloy foil to obtain a single-sided copper-clad laminate, and the resin of the single-sided copper-clad laminate. And laminating another copper or copper alloy foil on the layer side and heating to obtain a double-sided copper-clad laminate.

本発明によれば、両面銅張積層板を製造する際に、シワやオレを抑制することができる。   According to the present invention, when producing a double-sided copper-clad laminate, wrinkles and creases can be suppressed.

本発明の実施形態に係る両面銅張積層板の製造方法を示す図である。It is a figure which shows the manufacturing method of the double-sided copper clad laminated board which concerns on embodiment of this invention. 両面銅張積層板の構成例を示す断面図である。It is sectional drawing which shows the structural example of a double-sided copper clad laminated board. 両面銅張積層板の製造時に加わる熱により、第1の銅又は銅合金箔にシワ(オレ)が発生する状態を示す図である。It is a figure which shows the state which a wrinkle (ole) generate | occur | produces in the 1st copper or copper alloy foil with the heat | fever added at the time of manufacture of a double-sided copper clad laminated board.

以下、本発明の実施形態に係る銅又は銅合金箔を用いた両面銅張積層板の製造方法について説明する。なお、本発明において%とは、特に断らない限り、質量%(質量%)を示すものとする。図1は、両面金属張積層板8の製造方法を示す。
図1において、まず、コイル状の第1の銅又は銅合金箔4を連続的に巻出し、巻出された第1の銅又は銅合金箔4の片面に、アプリケーションロール10、11等を用いてワニス状の樹脂組成物2aを所定厚みで連続的に塗布する。樹脂組成物2aは硬化後に樹脂層2となる。次に、樹脂組成物2aを塗布した第1の銅又は銅合金箔4を乾燥装置15に導入し、樹脂組成物2aを硬化(又は半硬化させる)。このようにして、第1の銅又は銅合金箔4の片面に樹脂層を形成し、片面銅張積層板を得る(第1の工程)。ここで第1の工程が終了した後にコイル状に巻き取り、第2の工程に進む場合もある。なお、第1の銅又は銅合金箔4の片面に樹脂層を形成する際に加熱がされるが、上記した樹脂組成物を塗布後に加熱する他、例えば樹脂フィルムのように既に樹脂層になっているものを第1の銅又は銅合金箔4の片面に熱圧着してもよい。又、通常、第1の工程での加熱温度は第2の工程での加熱温度以上の温度となる。次に、コイル状の第2の銅又は銅合金箔6を連続的に巻出し、例えば350〜400℃に加熱されたラミネートロール20、21の間に第1の銅又は銅合金箔4及び第2の銅又は銅合金箔6を連続的に通箔する。このとき、第1の銅又は銅合金箔4の樹脂層2側に第2の銅又は銅合金箔6を積層して加熱し、両面銅張積層板8を得る(第2の工程)。両面銅張積層板8は適宜コイルに巻き取られる。
Hereinafter, the manufacturing method of the double-sided copper clad laminated board using the copper or copper alloy foil which concerns on embodiment of this invention is demonstrated. In the present invention,% means mass% (mass%) unless otherwise specified. FIG. 1 shows a method for manufacturing a double-sided metal-clad laminate 8.
In FIG. 1, first, coiled first copper or copper alloy foil 4 is continuously unwound, and application rolls 10 and 11 are used on one side of the unwound first copper or copper alloy foil 4. The varnish-like resin composition 2a is continuously applied with a predetermined thickness. The resin composition 2a becomes the resin layer 2 after curing. Next, the 1st copper or copper alloy foil 4 which apply | coated resin composition 2a is introduce | transduced into the drying apparatus 15, and the resin composition 2a is hardened (or semi-hardened). In this way, a resin layer is formed on one side of the first copper or copper alloy foil 4 to obtain a single-sided copper-clad laminate (first step). In some cases, after the first step is completed, the coil is wound into a coil shape and the process proceeds to the second step. In addition, although it heats, when forming a resin layer in the single side | surface of the 1st copper or copper alloy foil 4, it heats after apply | coating the above-mentioned resin composition, for example, already becomes a resin layer like a resin film. You may thermocompression-bond what is to the one side of the 1st copper or copper alloy foil 4. FIG. In general, the heating temperature in the first step is equal to or higher than the heating temperature in the second step. Next, the coiled second copper or copper alloy foil 6 is continuously unwound, for example, between the first copper or copper alloy foil 4 and the first roll between the laminate rolls 20 and 21 heated to 350 to 400 ° C. Two copper or copper alloy foils 6 are continuously passed through. At this time, the second copper or copper alloy foil 6 is laminated on the resin layer 2 side of the first copper or copper alloy foil 4 and heated to obtain a double-sided copper clad laminate 8 (second step). The double-sided copper clad laminate 8 is appropriately wound around a coil.

そして、図2に示すように、両面銅張積層板8は、第1の銅又は銅合金箔4の樹脂層2側に第2の銅又は銅合金箔6を積層して構成される。
第1の銅又は銅合金箔4、及び第2の銅又は銅合金箔6としては、例えば、純銅、タフピッチ銅(JIS-1100)、無酸素銅(JIS-1020)や、これら純銅、タフピッチ銅、無酸素銅にSn及び/又はAgを合計で40〜400質量ppm添加したものが挙げられる。第1の銅又は銅合金箔4、及び第2の銅又は銅合金箔6の厚みは、例えば6〜18μm程度とすることができる。第1の銅又は銅合金箔4、及び第2の銅又は銅合金箔6は、同一のものを用いる。第1の銅又は銅合金箔4、及び第2の銅又は銅合金箔6は、圧延箔であっても電解箔であってもよい。
樹脂層2としては、ポリイミド;PET(ポリエチレンテレフタレート);エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂;飽和ポリエステル樹脂等の熱可塑性樹脂を用いることができるがこれらに限定されない。又、これら樹脂層の成分を溶剤に溶かしたワニス(例えば、ポリイミドの前駆体のポリアミック酸溶液)を第1の銅又は銅合金箔4の片面に塗布し、加熱することで溶媒を除去して反応(例えばイミド化反応)を進行させ、硬化させてもよい。樹脂層2の厚みは、例えば1〜15μm程度とすることができる。
As shown in FIG. 2, the double-sided copper-clad laminate 8 is configured by laminating a second copper or copper alloy foil 6 on the resin layer 2 side of the first copper or copper alloy foil 4.
Examples of the first copper or copper alloy foil 4 and the second copper or copper alloy foil 6 include pure copper, tough pitch copper (JIS-1100), oxygen-free copper (JIS-1020), and these pure copper and tough pitch copper. And oxygen-free copper added with Sn and / or Ag in a total amount of 40 to 400 mass ppm. The thicknesses of the first copper or copper alloy foil 4 and the second copper or copper alloy foil 6 can be, for example, about 6 to 18 μm. The first copper or copper alloy foil 4 and the second copper or copper alloy foil 6 are the same. The first copper or copper alloy foil 4 and the second copper or copper alloy foil 6 may be rolled foils or electrolytic foils.
As the resin layer 2, polyimide; PET (polyethylene terephthalate); thermosetting resin such as epoxy resin and phenol resin; and thermoplastic resin such as saturated polyester resin can be used, but not limited thereto. Also, a varnish (for example, a polyamic acid solution of a polyimide precursor) in which the components of the resin layer are dissolved in a solvent is applied to one side of the first copper or copper alloy foil 4 and the solvent is removed by heating. The reaction (for example, imidization reaction) may be advanced and cured. The thickness of the resin layer 2 can be about 1-15 micrometers, for example.

次に、本発明の特徴部分である、第1の銅又は銅合金箔4、及び第2の銅又は銅合金箔6の特性について説明する。
第1の銅又は銅合金箔4の片面に樹脂層を形成した後、第2の銅又は銅合金箔6を積層して両面CCLを製造する際、樹脂を挟んだ2つの銅又は銅合金箔4,6の寸法変化の差によって生じる応力は、以下で表される。
まず、温度T1(Tは、第2の銅又は銅合金箔6を積層する際の加熱温度)で両面CCLに積層され、T2まで冷えた場合に第1の銅又は銅合金箔4に掛かる応力σは、
σ=E×E/(E+E)×(α×(T−T)+ΔL−(α×(T−T)+ΔL))×1000 (1)で表される。なお、寸法変化Δは収縮を正とし、幅方向(銅又は銅合金箔のコイルから連続的にCCLを製造する際のコイル幅方向)の変化とする。
ここで、CCLに用いられる銅又は銅合金箔は純銅に近いものであることから、添加成分が多少含まれても熱膨張係数α(添え字A,Bはそれぞれ第1の銅又は銅合金箔4、第2の銅又は銅合金箔6を表す)は同一(α≒α)とみなせる。従って、式1は、
σ=E×E/(E+E)×(ΔL−ΔL)×1000 (2)で表される。
Next, the characteristics of the first copper or copper alloy foil 4 and the second copper or copper alloy foil 6 which are characteristic portions of the present invention will be described.
After forming a resin layer on one side of the first copper or copper alloy foil 4, when producing a double-sided CCL by laminating the second copper or copper alloy foil 6, two copper or copper alloy foils sandwiching the resin The stress caused by the difference in dimensional change between 4 and 6 is expressed as follows.
First, the first copper or copper alloy foil 4 is laminated on the double-sided CCL at a temperature T 1 (T 1 is a heating temperature when the second copper or copper alloy foil 6 is laminated) and cooled to T 2. The stress σ A applied to
σ A = E A × E B / (E A + E B) × (α B × (T 1 -T 2) + ΔL B - (α A × (T 1 -T 2) + ΔL A)) × 1000 (1) It is represented by Note that the dimensional change Δ is a positive shrinkage and a change in the width direction (coil width direction when CCL is continuously manufactured from a copper or copper alloy foil coil).
Here, since the copper or copper alloy foil used for CCL is close to pure copper, the thermal expansion coefficient α (subscripts A and B are the first copper or copper alloy foil, respectively) even if some additive components are included. 4, which represents the second copper or copper alloy foil 6) can be regarded as the same (α A ≈α B ). Therefore, Equation 1 is
represented by σ A = E A × E B / (E A + E B) × (ΔL A -ΔL B) × 1000 (2).

但し、E:前記第1の銅又は銅合金箔を350℃で30分間保持して室温に冷却後,再度350℃で30分間保持して室温に冷却する第1熱履歴に前記第1の銅又は銅合金箔の幅方向のヤング率(単位はGPa)、E:前記第2の銅又は銅合金箔を350℃で30分間保持して室温に冷却する第2熱履歴による前記第2の銅又は銅合金箔の幅方向のヤング率(単位はGPa)、ΔL:室温から350℃に昇温し、30分間保持して室温に冷却した時の寸法を基準にし,再度350℃で30分間保持して室温に冷却後の前記第1の銅又は銅合金箔の幅方向の寸法変化率(単位はppm、収縮を正の値とする)、ΔL:室温から350℃に昇温し、30分間保持して室温に冷却後の前記第2の銅又は銅合金箔の幅方向の寸法変化率(単位はppm、収縮を正の値とする)、である。
なお、室温とは、25〜35℃(通常、25℃)である。
However, E A : The first copper or copper alloy foil is held at 350 ° C. for 30 minutes and cooled to room temperature, and then held at 350 ° C. for 30 minutes and cooled to room temperature. Young's modulus in the width direction of the copper or copper alloy foil (unit: GPa), E B : the second heat history by holding the second copper or copper alloy foil at 350 ° C. for 30 minutes and cooling to room temperature in the temperature was raised to 350 ° C. from room temperature, based on the dimensions when cooled to room temperature and held for 30 minutes, again 350 ° C.: copper or the Young's modulus in the transverse direction of the copper alloy foil (the unit GPa), [Delta] L a Dimensional change rate in the width direction of the first copper or copper alloy foil after holding for 30 minutes and cooling to room temperature (unit is ppm, shrinkage is a positive value), ΔL B : temperature rise from room temperature to 350 ° C. Dimensional change rate in the width direction of the second copper or copper alloy foil after holding for 30 minutes and cooling to room temperature (unit is ppm, shrinkage is positive) The value), it is.
In addition, room temperature is 25-35 degreeC (normally 25 degreeC).

つまり,両方の銅又は銅合金箔4,6のヤング率を小さくし、銅又は銅合金箔4,6の寸法変化率の差(ΔL−ΔL)を小さくすれば、応力σが小さくなり、両面CCL製造時のシワやオレが発生しにくくなる。 That is, if the Young's modulus of both the copper or copper alloy foils 4 and 6 is reduced and the difference in the dimensional change rate between the copper or copper alloy foils 4 and 6 (ΔL A −ΔL B ) is reduced, the stress σ A is reduced. Therefore, wrinkles and creases during double-sided CCL manufacturing are less likely to occur.

ここで、両方の銅又は銅合金箔4,6に同一のものを用いても寸法変化率の差(ΔL−ΔL)が生じることから、この差は熱膨張に起因するものでないことは明らかである。そして、金属に熱をかけると再結晶や回復等の組織変化を生じるため、金属を加熱して冷却すると、元の寸法より短くなったり(熱収縮)、長くなったり(熱伸長)する。又、一旦加熱して冷却した金属を,再度同一温度以下に加熱して冷却しても熱収縮や熱伸長は起きない。なお、これらの現象は、圧延箔と電解箔のいずれにも生じるが、圧延箔のほうが圧延によるひずみが大きく,又、箔の成分によっては,CCL製造時に加わる熱で圧延組織から再結晶組織に変化するので、熱収縮または熱伸長は大きくなる。 Here, even if the same copper or copper alloy foils 4 and 6 are used, a difference in dimensional change rate (ΔL A −ΔL B ) is generated. Therefore, this difference is not caused by thermal expansion. it is obvious. When heat is applied to the metal, structural changes such as recrystallization and recovery occur. Therefore, when the metal is heated and cooled, it becomes shorter (thermal shrinkage) or longer (thermal expansion) than the original size. Further, even if the metal once heated and cooled is heated again to the same temperature or lower and then cooled, neither thermal shrinkage nor thermal elongation occurs. These phenomena occur in both rolled foil and electrolytic foil. However, rolled foil is more strained by rolling, and depending on the components of the foil, the heat applied during CCL production can change the rolled structure to the recrystallized structure. As it changes, thermal shrinkage or thermal elongation increases.

図3は、CCL製造時に加わる熱により、上記した熱伸長や熱収縮が生じ、第1の銅又は銅合金箔4にシワ(オレ)100が発生する状態を示す。
まず、上記第1工程で片面銅張積層板を製造する際、第1の銅又は銅合金箔4が加熱され冷却されると、元の長さより小さく熱収縮する。次に、上記第2工程で両面銅張積層板を製造する際、第2の銅又は銅合金箔6が加熱され冷却されると、元の長さより小さく熱収縮しようとする(図3の矢印)。一方、既に第1工程で熱収縮した第1の銅又は銅合金箔4は、第2工程では殆ど熱収縮しない(図3の矢印)。
従って、第2工程での加熱後の冷却の際、第2の銅又は銅合金箔6が縮もうとする力で第1の銅又は銅合金箔4に圧縮応力が加わる。そして、この圧縮応力に耐えられずに第1の銅又は銅合金箔4が座屈する(シワやオレが発生する)。
FIG. 3 shows a state in which the above-described thermal expansion and contraction occur due to heat applied during CCL production, and wrinkles (ole) 100 are generated in the first copper or copper alloy foil 4.
First, when producing a single-sided copper clad laminate in the first step, when the first copper or copper alloy foil 4 is heated and cooled, it heat shrinks smaller than the original length. Next, when producing a double-sided copper clad laminate in the second step, when the second copper or copper alloy foil 6 is heated and cooled, it tends to shrink less than the original length (arrow in FIG. 3). ). On the other hand, the first copper or copper alloy foil 4 which has already been heat-shrinked in the first step hardly heat-shrinks in the second step (arrow in FIG. 3).
Therefore, during the cooling after the heating in the second step, a compressive stress is applied to the first copper or copper alloy foil 4 with a force that the second copper or copper alloy foil 6 tends to shrink. And the 1st copper or copper alloy foil 4 buckles (it wrinkles and I generate | occur | produce) without being able to endure this compressive stress.

但し、第1の銅又は銅合金箔4側に圧縮応力が加わる場合、その銅箔の耐力が圧縮応力(式2のσ)より大きければ座屈は起きず、シワやオレが発生しにくくなる。通常,銅箔の圧縮に対する耐力を求めることはできないが、座屈が起きるか否かの境界値は、引っ張りに対する耐力(YS)で代用することが可能である。つまり、YSがσ以上となるように、第1の銅又は銅合金箔4を選択すれば、シワやオレが発生しないと考えられる。
そして、本発明者らが、両面銅張積層板を製造する際にシワやオレが発生しない条件を実験により求めた結果、式2のσに対し、
|10×σ|≦YS (3)
となるように、第1の銅又は銅合金箔4を選択すれば、シワやオレが発生し難いことがわかった。
一方、第2の銅または銅合金箔6に圧縮応力が加わる場合、式2のσBに対し、
|10×σB|≦YSB (4)
となるように、第2の銅又は銅合金箔6を選択すれば、シワやオレが発生し難いことがわかった。ただし、第1の銅又は銅合金箔4に圧縮応力が加わることが一般的である。
However, when compressive stress is applied to the first copper or copper alloy foil 4 side, if the proof stress of the copper foil is greater than the compressive stress (σ A in Formula 2), buckling does not occur, and wrinkles and creases are unlikely to occur. Become. Usually, the resistance to compression of the copper foil cannot be obtained, but the boundary value of whether or not buckling occurs can be substituted with the resistance to tension (YS). That is, if the first copper or copper alloy foil 4 is selected so that YS is equal to or greater than σ A , it is considered that wrinkles and creases will not occur.
And, as a result of experimentally determining the conditions in which wrinkles and creases do not occur when the present inventors manufacture a double-sided copper-clad laminate, for σ A in Equation 2,
| 10 × σ A | ≦ YS A (3)
It was found that if the first copper or copper alloy foil 4 was selected so that wrinkles and creases would not occur.
On the other hand, with respect to when the compression stress is applied to the second copper or copper alloy foil 6, of formula 2 sigma B,
| 10 × σ B | ≦ YS B (4)
It was found that if the second copper or copper alloy foil 6 was selected so that wrinkles and creases would not occur. However, it is common that compressive stress is applied to the first copper or copper alloy foil 4.

式3(又は、式4)を満足するためには、σ(σB)つまり寸法変化率の差(ΔL−ΔL)が小さい程よく、そのためには第1工程で第1の銅又は銅合金箔4が受ける熱と、第2工程で第2の銅又は銅合金箔6が受ける熱の差が小さい程好ましいことになる。又、第1工程で第1の銅又は銅合金箔4が受ける歪みが小さい程、寸法変化率の差(ΔL−ΔL)も小さくなる。
このようなことから、式3、4を満足する具体的方法として、1)第1の銅又は銅合金箔4、及び第2の銅又は銅合金箔6を予め加熱すること、2)第1の銅又は銅合金箔4、及び第2の銅又は銅合金箔6が圧延箔の場合は,圧延を低加工度で行うこと、3)箔の厚みと機械的性質から設定する圧延時の張力を過度にしないこと、4)第1の銅又は銅合金箔4、及び第2の銅又は銅合金箔6に電解箔を用いることが挙げられる。ただし、第1の銅又は銅合金箔4側に圧縮応力が加わることが一般的と考えると、第2の銅又は銅合金箔6にのみ、1)から4)の手法を施しても良い。
In order to satisfy Equation 3 (or Equation 4), it is better that σ AB ), that is, the difference in dimensional change rate (ΔL A −ΔL B ) is smaller. For this purpose, in the first step, the first copper or The smaller the difference between the heat received by the copper alloy foil 4 and the heat received by the second copper or copper alloy foil 6 in the second step, the better. In addition, the smaller the strain that the first copper or copper alloy foil 4 receives in the first step, the smaller the difference in dimensional change rate (ΔL A −ΔL B ).
Therefore, as a specific method satisfying the expressions 3 and 4, 1) preheating the first copper or copper alloy foil 4 and the second copper or copper alloy foil 6 or 2) first. When the copper or copper alloy foil 4 and the second copper or copper alloy foil 6 are rolled foils, rolling should be performed at a low degree of work. 3) Tension at the time of rolling set from the thickness and mechanical properties of the foil 4) Use of electrolytic foil for the first copper or copper alloy foil 4 and the second copper or copper alloy foil 6 can be mentioned. However, if it is generally considered that compressive stress is applied to the first copper or copper alloy foil 4 side, the methods 1) to 4) may be applied only to the second copper or copper alloy foil 6.

上記1)の手法について、純銅は面心立方構造を持つ金属であり,加熱によって再結晶すると立方体方位が発達し、屈曲性が良くなることが知られている。立方体方位が発達した銅箔はヤング率が低く,引っ張り試験における0.2%耐力も低い。つまり、このような立方体方位が発達した銅箔は、両面CCL製造時(第2の工程を行った時)に最もオレシワが発生し易くなると言える。例えば、純銅箔を350℃で30分保持して冷却したところ、ヤング率は70GPa程度,0.2%耐力は50MPa程度になることが本発明者らの実験で判明した。このように、耐力が小さい銅又は銅合金箔を再度350℃程度まで加熱して冷却しても、寸法変化がほとんど0であると考えられる。
従って、第1の銅又は銅合金箔4、及び第2の銅又は銅合金箔6として同一のものを用い(E≒E、|σ|≒|σ|)、ΔL≒0で近似したとき、式2は、
σ=(E×ΔL)/2×1000 (5)
で表される。そして、式3と式5から、
|10000×(E×ΔL/2)|≦YS (6)
であり、式6を満たすような銅又は銅合金箔を用いて両面CCLを製造すればよいことになる。
又、上記実験結果からE=70Gpa、YS=50MPaを式5に代入すると、ΔL=143(ppm)が得られる。つまり、少なくとも第2の銅又は銅合金箔6を使用前に加熱し、ΔL≦143(ppm)のものを用いると、屈曲性を兼ね備え、かつオレやシワが発生し難くなる。第2の銅又は銅合金箔6の加熱条件は、50℃〜200℃で1秒〜10時間程度とすればよいが、これに限定されない。例えば、加熱条件として、60℃で3時間の保持や130℃で3秒の保持が挙げられる。つまり、このような熱処理を銅又は銅合金箔に予備的に加え、両面CCLの製造に用いればよいことになる。
With respect to the method 1), pure copper is a metal having a face-centered cubic structure, and it is known that when recrystallized by heating, the cubic orientation develops and the flexibility is improved. Copper foils with developed cube orientation have a low Young's modulus and a low 0.2% proof stress in the tensile test. That is, it can be said that a copper foil having such a cube orientation is most susceptible to wrinkles when double-sided CCL is manufactured (when the second step is performed). For example, when the pure copper foil is cooled by being held at 350 ° C. for 30 minutes, it has been found through experiments by the inventors that the Young's modulus is about 70 GPa and the 0.2% proof stress is about 50 MPa. Thus, even if the copper or copper alloy foil having a small proof stress is heated again to about 350 ° C. and cooled, the dimensional change is considered to be almost zero.
Accordingly, the first copper or copper alloy foil 4 and the second copper or copper alloy foil 6 are the same (E A ≈E B , | σ A | ≈ | σ B |), ΔL A ≈0 Is approximated by
σ A = (E A × ΔL B ) / 2 × 1000 (5)
It is represented by From Equation 3 and Equation 5,
| 10000 × (E A × ΔL B / 2) | ≦ YS A (6)
Therefore, the double-sided CCL may be manufactured using a copper or copper alloy foil that satisfies Equation 6.
Further, if E A = 70 Gpa and YS A = 50 MPa are substituted into Formula 5 from the above experimental results, ΔL B = 143 (ppm) is obtained. That is, if at least the second copper or copper alloy foil 6 is heated before use and ΔL B ≦ 143 (ppm) is used, both flexibility and wrinkles and wrinkles are less likely to occur. The heating condition of the second copper or copper alloy foil 6 may be about 1 second to 10 hours at 50 ° C. to 200 ° C., but is not limited thereto. For example, heating conditions include holding at 60 ° C. for 3 hours and holding at 130 ° C. for 3 seconds. That is, such heat treatment may be preliminarily applied to the copper or copper alloy foil and used for the production of double-sided CCL.

次に、上記2)の手法について、圧延箔の歪みは、最終焼鈍後の圧延加工度,1パスの圧下量,張力,および加工温度等で変化する。ただし、圧下量や張力は,加工対象の箔の厚みや圧延機の性能に依存し,一様に規定することが難しい。また,加工温度が高いほどひずみは小さくなるが,圧延中は圧延油がクーラントの役目を担っており,瞬間的な加工温度を規定することは難しい。
そこで,圧延加工度から箔に求められる条件を規定する。ここで、圧延加工度を小さくすると箔の歪みは小さくなるが,再結晶する際に立方体方位が発達し難くなって屈曲性が低下するので好ましくない。これに対し、圧延前の結晶粒径を小さくすると、同じ加工度で圧延しても立方体方位が発達する。以上の知見から、本発明者らが実験したところ、最終冷間圧延加工度をR(%)が93.0%以上であり,かつ最終焼鈍後の平均結晶粒径GS(μm)が,GS≦3.08×R−260であれば、屈曲性を損なうことなく、オレやシワの発生を抑制できることが判明した。但し、Rが高すぎると屈曲性が低下する傾向にあるので、銅又は銅合金箔を使用前に予備加熱しない場合(上記1)の手法を行わない場合)には、Rが98%以下であることが好ましい。
Next, with respect to the above method 2), the strain of the rolled foil varies depending on the degree of rolling process after final annealing, the amount of rolling reduction in one pass, the tension, the processing temperature, and the like. However, the amount of reduction and tension depend on the thickness of the foil to be processed and the performance of the rolling mill, and are difficult to define uniformly. Also, the higher the processing temperature, the smaller the strain, but the rolling oil plays the role of coolant during rolling, and it is difficult to define the instantaneous processing temperature.
Therefore, the conditions required for foil from the degree of rolling are specified. Here, when the rolling degree is reduced, the distortion of the foil is reduced, but it is not preferable because the cube orientation becomes difficult to develop during recrystallization and the flexibility is lowered. On the other hand, if the crystal grain size before rolling is reduced, the cube orientation develops even if rolling is performed at the same degree of work. Based on the above knowledge, the present inventors have conducted experiments. As a result, the final cold rolling degree R (%) is 93.0% or more, and the average grain size GS (μm) after the final annealing is GS. It has been found that if ≦ 3.08 × R-260, the occurrence of wrinkles and wrinkles can be suppressed without impairing the flexibility. However, if R is too high, the flexibility tends to decrease. Therefore, when the copper or copper alloy foil is not preheated before use (when the method 1) is not used, R is 98% or less. Preferably there is.

上記したように、本発明の銅又は銅合金箔において、屈曲性に優れることが必要であり、銅又は銅合金箔の屈曲回数が40万回以上であることが必要となる。
ここで、屈曲回数は、IPC(アメリカプリント回路工業会)摺動屈曲試験機を使用し、箔を幅方向(圧延方向に直角な方向になります。電解箔の場合はMD(machine direction)に直角な方向)12.5mm、長さ方向200mmの短冊状に切り出した試験片を、350℃で0.5時間の加熱処理をした後に用いた。曲げ半径は、箔厚みが18μmの場合は1.5mm、箔厚みが12μmの場合は1mmとし、毎分100回の繰り返し摺動を試験片に負荷し、試験片の電気抵抗が初期から20%上昇した屈曲回数を終点とした回数とする。銅又は銅合金箔の屈曲回数が40万回以上であるものは、実際の両面CCLで合格とされる屈曲回数に相当することがわかっている。
例えば、従来の銅箔においても、R(%)が93.0%以上であり,かつ最終焼鈍後の平均結晶粒径GS(μm)が,GS≦3.08×R−260であるものは存在するが(例えば、1200ppmSnを含有する無酸素銅)、このものは屈曲回数が40万回未満である。又、公知の組成でかつ高屈曲性を持たせるために公知の方法で製造した銅箔 (例えば加工度を99.2%で最終圧延した箔)を用いても、50℃〜200℃で1秒〜10時間程度の予備加熱を行ったものは、上記式6を満たすようになるので屈曲性に優れ、両面銅張積層板に適する。
As described above, the copper or copper alloy foil of the present invention needs to have excellent flexibility, and the copper or copper alloy foil needs to be bent 400,000 times or more.
Here, the number of bends is measured using an IPC (American Printed Circuit Industry Association) sliding bend tester, and the foil is in the width direction (perpendicular to the rolling direction. In the case of electrolytic foil, the MD (machine direction) A test piece cut into a strip shape of 12.5 mm and a length direction of 200 mm was used after heat treatment at 350 ° C. for 0.5 hour. The bending radius is 1.5 mm when the foil thickness is 18 μm and 1 mm when the foil thickness is 12 μm. The test piece is subjected to repeated sliding 100 times per minute, and the electrical resistance of the test piece is increased by 20% from the beginning. The number of bent times is taken as the number of end points. It has been found that a copper or copper alloy foil having a number of flexing cycles of 400,000 or more corresponds to the number of flexing cycles that are accepted by an actual double-sided CCL.
For example, even in a conventional copper foil, R (%) is 93.0% or more and the average crystal grain size GS (μm) after final annealing is GS ≦ 3.08 × R-260. Although present (eg, oxygen-free copper containing 1200 ppm Sn), it has a flexion number of less than 400,000. Further, even when using a copper foil having a known composition and having a high flexibility and produced by a known method (for example, a foil finally rolled at a working degree of 99.2%), it is 1 second at 50 ° C. to 200 ° C. What preheated for about 10 hours will satisfy | fill said Formula 6, Since it is excellent in flexibility, it is suitable for a double-sided copper clad laminated board.

表1に示す組成の銅箔(銅合金箔)を用い、図1に示すようにして両面CCLを製造した。ここで、第1の銅箔4と第2の銅箔6は同一であるが、CCL製造に使用する順番から、第1の銅箔4及び第2の銅箔6と区別して説明する。
なお、一部の銅箔は、表1に示すように結晶粒径GSと加工度を調整したり、予備熱処理を施した。なお、予備熱処理は下記化学処理(めっき)後に行ったが、CCL製造直前に行っても良い
Using a copper foil (copper alloy foil) having the composition shown in Table 1, double-sided CCL was produced as shown in FIG. Here, although the 1st copper foil 4 and the 2nd copper foil 6 are the same, it demonstrates distinguishing from the 1st copper foil 4 and the 2nd copper foil 6 from the order used for CCL manufacture.
In addition, as shown in Table 1, some copper foils adjusted the crystal grain size GS and the degree of processing, and performed preliminary heat treatment. The preliminary heat treatment was performed after the following chemical treatment (plating), but may be performed immediately before CCL production.

まず、第1の銅箔4の片面を化学処理(めっき)し、この面にポリイミド樹脂の前駆体ワニス(宇部興産製U−ワニスA)を厚さ25μmになるように塗布した。この後、130℃に設定した熱風循環式高温槽で30分乾燥し、段階的に350℃まで2000秒かけて昇温して硬化(イミド化)して樹脂層2を形成し、片面CCLを作製した。次に、片面CCLの樹脂側面に熱可塑性ポリイミド(接着層)を塗布して乾燥した後、第2の銅箔6を重ねて350℃に加熱したプレスで10分間熱圧着させ両面CCLを製造した。その後、両面CCLを室温まで冷却し、オレやシワの発生状況を目視で判定した。   First, one surface of the first copper foil 4 was chemically treated (plated), and a polyimide resin precursor varnish (Ube Industries U-Varnish A) was applied to this surface to a thickness of 25 μm. After that, it is dried for 30 minutes in a hot air circulation type high temperature bath set at 130 ° C., and heated up to 350 ° C. over 2000 seconds and cured (imidized) to form a resin layer 2. Produced. Next, after applying thermoplastic polyimide (adhesive layer) to the resin side of one side CCL and drying, the second copper foil 6 was stacked and thermocompression bonded with a press heated to 350 ° C. for 10 minutes to produce a double-sided CCL. . Thereafter, the double-sided CCL was cooled to room temperature, and the state of occurrence of wrinkles and wrinkles was visually determined.

ΔLは、銅箔を幅方向に150mm,長さ方向に12.5mmの短冊状に切り出し,ビッカース硬さ計で評点間隔80mmの打痕を打ち、両打痕の座標を測定することで、熱をかける前の距離Lを求めた。なお,積層前に予め熱処理した銅箔試料の場合、この熱処理後に同様に距離を求めた。次に350℃のオーブンに試料を30分間保持した後に取り出し、室温に冷却後に両打痕の座標を測定し、距離L'を求めた。ΔLは、それぞれ (L-L')/Lで計算でき、収縮の場合が正の値となる。
又、銅箔のヤング率EはJIS-Z2280-1993に従って振動法で求め、0.2%耐力YSは引っ張り試験機を用いてJIS-Z2241-1998に従って求めた。
[Delta] L A is, 150 mm copper foil in the width direction, cut into strips of 12.5mm in the longitudinal direction, hit the dents scores spacing 80mm Vickers meter, to measure the coordinates of both dents, heat The distance L before applying was calculated. In addition, in the case of the copper foil sample heat-processed before lamination | stacking, the distance was calculated | required similarly after this heat processing. Next, the sample was held in a 350 ° C. oven for 30 minutes and then taken out. After cooling to room temperature, the coordinates of both dents were measured to determine the distance L ′. [Delta] L A, respectively can be calculated as (L-L ') / L , when the contraction becomes a positive value.
Further, the Young's modulus E A of the copper foil is determined by the oscillation method according to JIS-Z2280-1993, 0.2% yield strength YS A was determined according to JIS-Z2241-1998 using a tensile tester.

屈曲性は以下のようにして評価した。まず、銅箔を幅方向12.5mm、長さ方向200mmの短冊状に切り出して試験片とし、これを350℃で0.5時間の加熱処理をした後に用いた。屈曲試験は、IPC(アメリカプリント回路工業会)摺動屈曲試験機を使用し、曲げ半径は銅箔厚みが18μmの場合は1.5mm、銅箔厚みが12μmの場合は1mmとした。屈曲性は銅箔厚みが薄くなるほど良くなることから、同じ基準で評価するために銅箔厚みによって曲げ半径を変えればよい。そして、毎分100回の繰り返し摺動を試験片に負荷し、試験片の電気抵抗が初期から20%上昇した屈曲回数を終点とした回数とした。銅又は銅合金箔の屈曲回数が40万回以上であるものは、実際の両面CCLで合格とされる屈曲回数に相当することがわかっている。   Flexibility was evaluated as follows. First, a copper foil was cut into a strip shape having a width direction of 12.5 mm and a length direction of 200 mm to obtain a test piece, which was used after being heated at 350 ° C. for 0.5 hours. For the bending test, an IPC (American Printed Circuit Industry Association) sliding bending tester was used, and the bending radius was 1.5 mm when the copper foil thickness was 18 μm and 1 mm when the copper foil thickness was 12 μm. Since the flexibility becomes better as the copper foil thickness becomes thinner, the bending radius may be changed depending on the copper foil thickness in order to evaluate on the same basis. Then, 100 times per minute repeated sliding was applied to the test piece, and the number of bendings where the electrical resistance of the test piece increased by 20% from the initial stage was defined as the number of end points. It has been found that a copper or copper alloy foil having a number of flexing cycles of 400,000 or more corresponds to the number of flexing cycles that are accepted by an actual double-sided CCL.

得られた結果を表1に示す。   The obtained results are shown in Table 1.

Figure 2011094200
Figure 2011094200

表1から明らかなように、銅箔に予め熱処理した実施例1〜13の場合、|10×σ|≦YSとなり、得られた両面CCLにシワやオレがなく、屈曲性にも優れたものとなった。
又、銅箔の圧延条件を調整し、Rを93.0%以上で98.0%以下としつつGS≦3.08×R−260となるようにした実施例12、13の場合、予備熱処理をしなくても、|10×σ|≦YSとなり、得られた両面CCLにシワやオレがなく、屈曲性にも優れたものとなった。
As is evident from Table 1, in the case of Examples 1 to 13 which is previously heat treated copper foil, | 10 × σ A | ≦ YS A next, without wrinkles or I on both sides CCL obtained, excellent flexibility It became a thing.
In the case of Examples 12 and 13 in which the rolling conditions of the copper foil were adjusted so that GS ≦ 3.08 × R-260 while R was 93.0% or more and 98.0% or less, preliminary heat treatment Even if not, | 10 × σ A | ≦ YS A was obtained, and the obtained double-sided CCL was free of wrinkles and creases and had excellent flexibility.

一方、Rを93.0%未満とし、予備熱処理しなかった比較例1〜3の場合、屈曲性が低下した。電解銅箔を用い、予備熱処理しなかった比較例4の場合も、屈曲性が低下した。
GS>3.08×R−260となるGSが得られるように焼鈍して圧延した比較例5の場合、及びRを93.0%未満とした比較例6の場合も、屈曲性が低下した。
Rが98.0%を超える条件で圧延し、予備熱処理しなかった比較例7〜10の場合、|10×σ|>YSとなり、得られた両面CCLにシワやオレが発生した。
銅への添加元素(Sn又はAg)の量が400ppmを超えた比較例11,12の場合、屈曲性が低下した。
On the other hand, in the case of Comparative Examples 1 to 3 in which R was less than 93.0% and no preliminary heat treatment was performed, the flexibility decreased. In the case of Comparative Example 4 in which the electrolytic copper foil was used and no preliminary heat treatment was performed, the flexibility was lowered.
In the case of Comparative Example 5 that was annealed and rolled to obtain a GS of GS> 3.08 × R-260, and in the case of Comparative Example 6 in which R was less than 93.0%, the flexibility was lowered. .
In the case of Comparative Examples 7 to 10 where R was rolled under conditions exceeding 98.0% and no preliminary heat treatment was performed, | 10 × σ A |> YS A , and wrinkles and creases occurred on the obtained double-sided CCL.
In the case of Comparative Examples 11 and 12 in which the amount of the additive element (Sn or Ag) to copper exceeded 400 ppm, the flexibility decreased.

2 樹脂層
2a 樹脂組成物
4 第1の銅又は銅合金箔
6 第2の銅又は銅合金箔
8 両面銅張積層板
2 resin layer 2a resin composition 4 first copper or copper alloy foil 6 second copper or copper alloy foil 8 double-sided copper clad laminate

Claims (4)

両面銅張積層板に用いられ、
σ=(E×ΔL)/2×1000としたとき、|10×σ|≦YSとなり、屈曲回数が40万回以上である銅又は銅合金箔。
但し、E:前記銅又は銅合金箔を350℃で30分間保持して室温に冷却後,の幅方向のヤング率(単位はGPa)、ΔL:室温から350℃に昇温し、30分間保持して室温に冷却した時の前記銅又は銅合金箔の幅方向の寸法変化率(単位はppm、収縮を正の値とする)、YS:引っ張り試験における前記銅又は銅合金箔の0.2%耐力(単位はMPa)
屈曲回数:IPC摺動屈曲試験機を使用し、箔を幅方向12.5mm、長さ方向200mmの短冊状に切り出し350℃で0.5時間の加熱処理をした後に用い、曲げ半径は箔厚みが18μmの場合は1.5mm、箔厚みが12μmの場合は1mmとし、毎分100回の繰り返し摺動を試験片に負荷し、電気抵抗が初期から20%上昇した屈曲回数を終点とした回数
Used for double-sided copper-clad laminates,
A copper or copper alloy foil in which, when σ A = (E A × ΔL A ) / 2 × 1000, | 10 × σ A | ≦ YS A , and the number of bendings is 400,000 or more.
However, E A: After cooling to room temperature and held the copper or 30 minutes copper alloy foil at 350 ° C., the Young's modulus in the transverse direction of (the unit GPa), [Delta] L A: temperature was raised to 350 ° C. from room temperature, 30 minutes held (the unit ppm, the shrinkage and positive values) the copper or the width direction dimensional change rate of the copper alloy foil when cooled to room temperature, YS a: of the copper or copper alloy foil in a tensile test 0.2% yield strength (Unit: MPa)
Number of bendings: Using an IPC sliding bending tester, the foil was cut into strips with a width of 12.5 mm and a length of 200 mm and heat-treated at 350 ° C. for 0.5 hours. The bending radius was 18 μm. 1.5 mm in the case, and 1 mm in the case where the foil thickness is 12 μm, the test piece was subjected to repeated sliding 100 times per minute, and the number of bendings where the electrical resistance increased by 20% from the initial point was the number of times
前記銅又は銅合金箔がいずれも圧延箔であって、最終冷間圧延加工度R(%)が93.0%以上であり,かつ最終焼鈍後の平均結晶粒径GS(μm)が,GS≦3.08×R−260である請求項1に記載の銅又は銅合金箔。 The copper or copper alloy foil is a rolled foil, the final cold rolling degree R (%) is 93.0% or more, and the average crystal grain size GS (μm) after the final annealing is GS The copper or copper alloy foil according to claim 1, wherein ≦ 3.08 × R-260. ΔLが145ppm以下である請求項1又は2に記載の銅又は銅合金箔。 Copper or a copper alloy foil according to claim 1 or 2 [Delta] L A is not more than 145 ppm. 請求項1〜3のいずれかに記載の銅又は銅合金箔の片面に樹脂層を形成し、片面銅張積層板を得る第1の工程と、前記片面銅張積層板の前記樹脂層側に別の前記銅又は銅合金箔を積層して加熱し両面銅張積層板を得る第2の工程とを有する両面銅張積層板の製造方法。 A first step of forming a resin layer on one side of the copper or copper alloy foil according to any one of claims 1 to 3 to obtain a single-sided copper-clad laminate, and the resin layer side of the single-sided copper-clad laminate A method for producing a double-sided copper-clad laminate, comprising a second step of laminating and heating another copper or copper alloy foil to obtain a double-sided copper-clad laminate.
JP2009250182A 2009-10-30 2009-10-30 Copper or copper alloy foil, and method for manufacturing double-sided copper-clad laminate using the same Withdrawn JP2011094200A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009250182A JP2011094200A (en) 2009-10-30 2009-10-30 Copper or copper alloy foil, and method for manufacturing double-sided copper-clad laminate using the same
KR1020127011239A KR20120064124A (en) 2009-10-30 2010-10-26 Copper or copper-alloy foil and method of manufacturing double-sided copper-clad laminate using same
CN201080049537.7A CN102575317B (en) 2009-10-30 2010-10-26 Two sides copper-coated laminated board copper alloy foil
PCT/JP2010/068898 WO2011052556A1 (en) 2009-10-30 2010-10-26 Copper or copper-alloy foil and method of manufacturing double-sided copper-clad laminate using same
TW099136882A TWI426995B (en) 2009-10-30 2010-10-28 Copper or copper alloy foil, and a method of manufacturing both sides of a copper-clad laminate using the copper or copper alloy foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009250182A JP2011094200A (en) 2009-10-30 2009-10-30 Copper or copper alloy foil, and method for manufacturing double-sided copper-clad laminate using the same

Publications (1)

Publication Number Publication Date
JP2011094200A true JP2011094200A (en) 2011-05-12

Family

ID=43921980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009250182A Withdrawn JP2011094200A (en) 2009-10-30 2009-10-30 Copper or copper alloy foil, and method for manufacturing double-sided copper-clad laminate using the same

Country Status (5)

Country Link
JP (1) JP2011094200A (en)
KR (1) KR20120064124A (en)
CN (1) CN102575317B (en)
TW (1) TWI426995B (en)
WO (1) WO2011052556A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016176094A (en) * 2015-03-19 2016-10-06 Jx金属株式会社 Rolled copper foil, copper-clad laminate, and flexible printed board and electronic equipment
JP2018154888A (en) * 2017-03-21 2018-10-04 Jx金属株式会社 Copper foil for flexible printed circuit board, and copper clad laminate, flexible printed circuit board, and electronic apparatus using the same
WO2024014170A1 (en) * 2022-07-14 2024-01-18 Jx金属株式会社 Rolled copper foil, copper-clad laminated plate, production method for copper-clad laminated plate, production method for flexible printed circuit, and production method for electronic component
WO2024014171A1 (en) * 2022-07-14 2024-01-18 Jx金属株式会社 Rolled copper foil, copper-clad laminate, method for manufacturing copper-clad laminate, method for manufacturing flexible printed circuit board, and method for manufacturing electronic part

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101586157B1 (en) * 2011-08-12 2016-01-15 미쓰비시 마테리알 가부시키가이샤 Substrate for power module, substrate for power module with heat sink, power module, and method for manufacturing substrate for power module
JP5679580B2 (en) * 2011-11-07 2015-03-04 Jx日鉱日石金属株式会社 Rolled copper foil
JP5826160B2 (en) * 2012-04-10 2015-12-02 Jx日鉱日石金属株式会社 Rolled copper foil, copper-clad laminate, flexible printed wiring board and manufacturing method thereof
JP6647253B2 (en) * 2017-08-03 2020-02-14 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05212824A (en) * 1992-02-04 1993-08-24 Yokohama Rubber Co Ltd:The Laminated board with metal clad surfaces and its manufacture
JP3009383B2 (en) * 1998-03-31 2000-02-14 日鉱金属株式会社 Rolled copper foil and method for producing the same
JP4254488B2 (en) * 2003-11-04 2009-04-15 日立電線株式会社 Copper foil for electronic parts and manufacturing method thereof
JP2006068920A (en) * 2004-08-31 2006-03-16 Shin Etsu Chem Co Ltd Manufacturing method of flexible copper foil/polyimide laminate
JP4430509B2 (en) * 2004-10-20 2010-03-10 住友金属鉱山伸銅株式会社 Rolled copper foil

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016176094A (en) * 2015-03-19 2016-10-06 Jx金属株式会社 Rolled copper foil, copper-clad laminate, and flexible printed board and electronic equipment
JP2018154888A (en) * 2017-03-21 2018-10-04 Jx金属株式会社 Copper foil for flexible printed circuit board, and copper clad laminate, flexible printed circuit board, and electronic apparatus using the same
WO2024014170A1 (en) * 2022-07-14 2024-01-18 Jx金属株式会社 Rolled copper foil, copper-clad laminated plate, production method for copper-clad laminated plate, production method for flexible printed circuit, and production method for electronic component
WO2024014171A1 (en) * 2022-07-14 2024-01-18 Jx金属株式会社 Rolled copper foil, copper-clad laminate, method for manufacturing copper-clad laminate, method for manufacturing flexible printed circuit board, and method for manufacturing electronic part
WO2024014172A1 (en) * 2022-07-14 2024-01-18 Jx金属株式会社 Rolled copper foil, copper-clad laminate, method for producing copper-clad laminate, method for producing flexible printed wiring board, and method for producing electronic component
WO2024014168A1 (en) * 2022-07-14 2024-01-18 Jx金属株式会社 Rolled copper foil, copper-clad laminate manufacturing method, flexible printed circuit board manufacturing method, and electronic component manufacturing method
WO2024014173A1 (en) * 2022-07-14 2024-01-18 Jx金属株式会社 Rolled copper foil, copper-clad laminate, method for manufacturing copper-clad laminate, method for manufacturing flexible printed wiring board, and method for manufacturing electronic component

Also Published As

Publication number Publication date
TW201132493A (en) 2011-10-01
TWI426995B (en) 2014-02-21
KR20120064124A (en) 2012-06-18
CN102575317B (en) 2015-10-07
CN102575317A (en) 2012-07-11
WO2011052556A1 (en) 2011-05-05

Similar Documents

Publication Publication Date Title
WO2011052556A1 (en) Copper or copper-alloy foil and method of manufacturing double-sided copper-clad laminate using same
JP5094834B2 (en) Copper foil manufacturing method, copper foil and copper clad laminate
JP5124039B2 (en) Copper foil and copper-clad laminate using the same
JP5467930B2 (en) Copper clad laminate
JP5185066B2 (en) Copper foil excellent in flexibility, manufacturing method thereof, and flexible copper-clad laminate
WO2016170779A1 (en) Metal-clad laminate sheet manufacturing method, and metal-clad laminate sheet using same
KR101396218B1 (en) Method for producing copper clad laminate, copper foil used therein, and laminating apparatus for copper clad laminate
JP2009292090A (en) Two-layer flexible copper-clad laminated sheet excellent in flexibility and method for manufacturing it
JP4756194B2 (en) Method for producing copper clad laminate
TWI588273B (en) Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board and electronic equipment
TW201734219A (en) Copper foil for flexible printed circuit board, cooper-clad laminate using same, flexible printed circuit board, and electronic machine whose copper foil contains 0.001~0.05 mass% of Ag and contains total 0.003~0.825 mass% of addition elements selected from more than one of the group of P, Ti, Sn, Ni, Be, Zn, In, and Mg
JP2013044005A (en) Rolled copper alloy foil for double-sided copper-clad laminate, and method of manufacturing the double-sided copper-clad laminate using the same
JP6663712B2 (en) Rolled copper foil, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP2011153360A (en) Rolled copper alloy foil for double-sided copper-clad laminated plate, and method for producing double-sided copper-clad laminated plate using the same
JP2015175005A (en) Rolled copper foil, copper-clad laminate sheet and flexible printed wiring board and electronic equipment
WO2011052557A1 (en) Method of manufacturing double-sided copper-clad laminate, and pair of copper or copper alloy foil sheets used thereupon
JP2011174156A (en) Rolled copper alloy foil for double-sided copper clad laminated plate and method for manufacturing double-sided copper clad laminated plate using the same
JP6647253B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6827022B2 (en) Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices
CN111526674A (en) Rolled copper foil, copper-clad laminate, flexible printed board, and electronic device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130108