JP2011174156A - Rolled copper alloy foil for double-sided copper clad laminated plate and method for manufacturing double-sided copper clad laminated plate using the same - Google Patents
Rolled copper alloy foil for double-sided copper clad laminated plate and method for manufacturing double-sided copper clad laminated plate using the same Download PDFInfo
- Publication number
- JP2011174156A JP2011174156A JP2010040731A JP2010040731A JP2011174156A JP 2011174156 A JP2011174156 A JP 2011174156A JP 2010040731 A JP2010040731 A JP 2010040731A JP 2010040731 A JP2010040731 A JP 2010040731A JP 2011174156 A JP2011174156 A JP 2011174156A
- Authority
- JP
- Japan
- Prior art keywords
- double
- copper
- sided
- alloy foil
- foil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Laminated Bodies (AREA)
Abstract
Description
本発明は、例えばフレキシブル配線板(FPC:Flexible Printed Circuit)に使用され、両面銅張積層板に適した圧延銅合金箔、及びそれを用いた両面銅張積層板の製造方法に関する。 The present invention relates to a rolled copper alloy foil that is used for, for example, a flexible printed circuit (FPC) and is suitable for a double-sided copper-clad laminate, and a method for producing a double-sided copper-clad laminate using the same.
フレキシブル配線板(FPC)に用いられる銅張積層板(CCL)としては、樹脂層の片面に銅箔を積層した片面銅張積層板と、樹脂層の両面に銅箔を積層した両面銅張積層板(以下、「両面CCL」という)が用いられている。両面CCLに回路を形成したものが両面フレキシブル配線板であり、回路のファイン化、FPCの省スペース化が実現しやすいことから、両面CCLの使用が増加する傾向にある。
このような両面CCLの製造方法として、銅箔の片面に樹脂組成物のワニスをキャストし、加熱硬化後に樹脂面に他の銅箔を熱圧着する方法が知られている(特許文献1)。又、熱可塑性ポリイミド層を両面に有するポリイミドフィルムの表裏面に、同時に銅箔を熱圧着する方法、熱可塑性ポリイミド層を有するポリイミドフィルムの片面に銅箔を熱圧着後、銅箔と反対側のポリイミドフィルム面に熱可塑性ポリイミド層を塗布し、その面に他の銅箔を熱圧着する方法、銅箔の片面にポリイミドの前駆体であるワニスをキャストして硬化後、銅箔と反対側の樹脂表面に熱可塑性ポリイミド層を形成し、その面に他の銅箔を熱圧着する方法等がある。
The copper-clad laminate (CCL) used for flexible wiring boards (FPC) is a single-sided copper-clad laminate in which copper foil is laminated on one side of the resin layer, and a double-sided copper-clad laminate in which copper foil is laminated on both sides of the resin layer A plate (hereinafter referred to as “double-sided CCL”) is used. A double-sided CCL with a circuit formed on a double-sided CCL is a double-sided flexible wiring board, and the use of double-sided CCL tends to increase because it is easy to realize finer circuits and space-saving FPC.
As a method for producing such a double-sided CCL, a method is known in which a varnish of a resin composition is cast on one side of a copper foil and another copper foil is thermocompression bonded to the resin side after heat curing (Patent Document 1). Moreover, the method of thermocompression bonding copper foil to the front and back of a polyimide film having a thermoplastic polyimide layer on both sides at the same time, after thermocompression bonding of the copper foil to one surface of a polyimide film having a thermoplastic polyimide layer, on the opposite side of the copper foil A method of applying a thermoplastic polyimide layer to the polyimide film surface and thermocompression bonding another copper foil on the surface, casting a varnish that is a polyimide precursor on one side of the copper foil and curing, then on the opposite side of the copper foil There is a method in which a thermoplastic polyimide layer is formed on the resin surface and another copper foil is thermocompression bonded to the surface.
又、近年、CCL用の屈曲性に優れた圧延銅箔として、再結晶焼鈍を施すことにより立方体集合組織が発達する銅箔が用いられている。このような高屈曲性銅箔として、無酸素銅に0.001〜0.009質量%のSnを添加した銅箔がある(特許文献2)。 In recent years, as a rolled copper foil having excellent flexibility for CCL, a copper foil having a cubic texture developed by recrystallization annealing has been used. As such a highly flexible copper foil, there is a copper foil obtained by adding 0.001 to 0.009 mass% Sn to oxygen-free copper (Patent Document 2).
ところで、第1の銅箔の片面に樹脂層(上記ポリイミドフィルムなど)を形成又は積層した後、樹脂層の他の面に第2の銅箔を積層する場合、第2の銅箔を積層する工程の手前で第1の銅箔に折れが生じることがある。この折れは、前記高屈曲性の圧延銅箔において特に発生し易い。
上記した折れは、第2の銅箔を樹脂層と積層するための加熱ロールにより、第1の銅箔が加熱されつつ張力を掛けられることで発生する。そして、第1の銅箔のヤング率が低いと、張力が掛かったときの弾性伸びが大きくなるため張力の不均一や変動の影響をより受け易くなり、折れの発生が助長される。従来の高屈曲性圧延銅箔では、片面に樹脂層を形成又は積層する際の熱履歴によって圧延方向のヤングが著しく低下し、折れにより歩留が著しく低下していた。
By the way, after forming or laminating a resin layer (the polyimide film or the like) on one surface of the first copper foil, when laminating the second copper foil on the other surface of the resin layer, the second copper foil is laminated. The first copper foil may be broken before the process. This folding is particularly likely to occur in the highly flexible rolled copper foil.
The above-described folds are generated when tension is applied to the first copper foil while it is heated by a heating roll for laminating the second copper foil with the resin layer. If the Young's modulus of the first copper foil is low, the elastic elongation when tension is applied increases, so that it is more susceptible to tension non-uniformity and fluctuation, and the occurrence of bending is promoted. In the conventional highly flexible rolled copper foil, Young in the rolling direction is remarkably reduced due to the heat history when a resin layer is formed or laminated on one side, and the yield is remarkably reduced due to bending.
すなわち、本発明は上記の課題を解決するためになされたものであり、両面銅張積層板に用いたときに折れを抑制することができる高屈曲性の圧延銅合金箔、及びそれを用いた両面銅張積層板の製造方法の提供を目的とする。 That is, the present invention has been made to solve the above problems, and uses a highly flexible rolled copper alloy foil capable of suppressing folding when used in a double-sided copper-clad laminate, and the same. It aims at providing the manufacturing method of a double-sided copper clad laminated board.
本発明者らは種々検討した結果、両面CCLを製造する際に、最初に樹脂層を形成又は積層する第1の銅箔がこの積層工程で熱履歴を受けてもヤングが低下しないよう、銅箔を調質することで、折れを抑制できることを見出した。さらに、第1の銅箔に積層した樹脂層に第2の銅箔を積層する際の熱履歴でヤング率が充分に低下するよう、第1の銅箔を調質することで、良好な屈曲性が得られることをも見出した。 As a result of various investigations, the present inventors have found that when producing double-sided CCL, the first copper foil that first forms or laminates the resin layer is subjected to a thermal history in this laminating process so that Young does not decrease. It discovered that a fold could be suppressed by refining foil. Furthermore, the first copper foil is tempered so that the Young's modulus is sufficiently lowered by the thermal history when the second copper foil is laminated on the resin layer laminated on the first copper foil. It has also been found that sex can be obtained.
すなわち本発明の両面銅張積層板用圧延銅合金箔は、添加元素としてSnを100〜500質量ppm含み、残部がJIS−1020に規格する無酸素銅からなる銅合金箔であって、150℃で30分間の焼鈍を施したときに圧延方向のヤング率が90〜120GPa以上となり、350℃で30分間焼鈍を施したときに圧延方向のヤング率が60〜75GPa以下となる。 That is, the rolled copper alloy foil for double-sided copper clad laminates of the present invention is a copper alloy foil containing oxygen as an additive element in an amount of 100 to 500 ppm by mass, and the balance of oxygen free copper standardized to JIS-1020, at 150 ° C. When annealing is performed for 30 minutes, the Young's modulus in the rolling direction is 90 to 120 GPa or more, and when annealing is performed at 350 ° C. for 30 minutes, the Young's modulus in the rolling direction is 60 to 75 GPa or less.
本発明の両面銅張積層板の製造方法は、前記両面銅張積層板用圧延銅合金箔の片面に樹脂層を形成し、片面銅張積層板を得る第1の工程と、前記片面銅張積層板の前記樹脂層側に別の銅箔又は銅合金箔を積層して加熱し両面銅張積層板を得る第2の工程とを有する。
前記第1の工程直後の前記両面銅張積層板用圧延銅合金箔の圧延方向のヤング率が90GPa以上となり、前記第2の工程直後の前記両面銅張積層板用圧延銅合金箔の圧延方向のヤング率が70GPa以下となることが好ましい。
The method for producing a double-sided copper-clad laminate of the present invention includes a first step of forming a resin layer on one side of the rolled copper alloy foil for the double-sided copper-clad laminate to obtain a single-sided copper-clad laminate, and the single-sided copper-clad laminate. A second step of laminating another copper foil or copper alloy foil on the resin layer side of the laminate and heating to obtain a double-sided copper-clad laminate.
The Young's modulus in the rolling direction of the rolled copper alloy foil for double-sided copper-clad laminate immediately after the first step is 90 GPa or more, and the rolling direction of the rolled copper alloy foil for double-sided copper-clad laminate immediately after the second step The Young's modulus is preferably 70 GPa or less.
本発明によれば、両面銅張積層板を製造する際に、折れを抑制することができる。 According to the present invention, when manufacturing a double-sided copper-clad laminate, folding can be suppressed.
以下、本発明の実施形態に係る圧延銅合金箔4を用いた両面銅張積層板の製造方法について説明する。図1は、両面金属張積層板8の製造方法を示す。又、後から樹脂層に積層される銅箔(第2の銅箔)6は、本発明の両面銅張積層板用圧延銅合金箔である必要はなく、あらゆる銅箔又は銅合金箔を用いることができるが、本発明の両面銅張積層板用圧延銅合金箔を用いてもよい。
図1において、まず、コイル状の両面銅張積層板用圧延銅合金箔4を連続的に巻出し、巻出された両面銅張積層板用圧延銅合金箔4の片面に、アプリケーションロール10、11等を用いてワニス状の樹脂組成物2aを所定厚みで連続的に塗布する。樹脂組成物2aは硬化後に樹脂層2となる。次に、樹脂組成物2aを塗布した両面銅張積層板用圧延銅合金箔4を乾燥装置15に導入し、樹脂組成物2aを硬化(又は半硬化させる)。このようにして、両面銅張積層板用圧延銅合金箔4の片面に樹脂層を形成し、片面銅張積層板を得る(第1の工程)。ここで第1の工程が終了した後にコイル状に巻き取り、第2の工程に進む場合もある。なお、両面銅張積層板用圧延銅合金箔4の片面に樹脂層を形成する際に加熱がされるが、上記した樹脂組成物を塗布後に加熱する他、例えば樹脂フィルムのように既に樹脂層になっているものを両面銅張積層板用圧延銅合金箔4の片面に熱圧着してもよい。
Hereinafter, the manufacturing method of the double-sided copper clad laminated board using the rolled copper alloy foil 4 which concerns on embodiment of this invention is demonstrated. FIG. 1 shows a method for manufacturing a double-sided metal-
In FIG. 1, first, a rolled copper alloy foil 4 for a double-sided copper-clad laminate is continuously unwound, and an
又、通常、第2の工程での熱負荷は第1の工程での熱負荷以上となる。次に、コイル状の第2の銅箔6を連続的に巻出し、例えば350〜400℃に加熱されたラミネートロール(加熱ロール)20、21の間に両面銅張積層板用圧延銅合金箔4及び第2の銅箔6を連続的に通箔する。このとき、両面銅張積層板用圧延銅合金箔4の樹脂層2側に第2の銅箔6を積層して加熱し、両面銅張積層板8を得る(第2の工程)。両面銅張積層板8は適宜コイルに巻き取られる。
In general, the heat load in the second step is greater than or equal to the heat load in the first step. Next, the coiled
ここで、圧延銅合金箔4として従来の高屈曲性圧延銅箔を用いると、ラミネートロール20、21の手前付近で、既に第1の工程で加熱されつつ張力を掛けられた圧延銅合金箔4に折れが生じ歩留が著しく低下する。これは、圧延銅合金箔4が第1の工程の乾燥装置15で加熱された際(又は、樹脂層がフィルムの場合は、第1の工程での圧延銅合金箔4と樹脂フィルムとの積層加熱の際)に、圧延方向のヤング率が低下するためである。すなわち、折れを防止するためには、第1工程での熱負荷を受けた直後において、銅合金箔が高レベルのヤング率を維持している必要がある。
Here, when a conventional highly flexible rolled copper foil is used as the rolled copper alloy foil 4, the rolled copper alloy foil 4 that has already been heated and tensioned in the first step in the vicinity of the
具体的には、150℃で30分間の焼鈍を施したときに、銅合金箔の圧延方向のヤング率が90GPa以上の値を維持するよう、銅合金箔を調質する必要がある。ここで、150℃で30分間の焼鈍は、乾燥装置15(第1の工程)での熱負荷を模したものである。圧延方向のヤング率が90GPa以上であれば、第2の工程(ラミネートロール)に導入される手前での折れ発生は改善される。より好ましくは、圧延方向の100GPa以上であれば、さらに安定して折れ発生を防止できる。150℃で30分間焼鈍後のヤング率の上限値については折れ防止の点からは規制されないが、ヤング率が120GPaを超えると、装置に通箔する際の取り扱いが難しくなるので、上限を120GPaとする。なお、圧延上がり(第1工程での熱負荷を受ける前)における、銅合金箔の圧延方向のヤング率は100〜130GPaである。 Specifically, it is necessary to temper the copper alloy foil so that the Young's modulus in the rolling direction of the copper alloy foil maintains a value of 90 GPa or more when annealed at 150 ° C. for 30 minutes. Here, the annealing at 150 ° C. for 30 minutes imitates the thermal load in the drying device 15 (first step). If the Young's modulus in the rolling direction is 90 GPa or more, the occurrence of folds before being introduced into the second step (laminate roll) is improved. More preferably, if it is 100 GPa or more in the rolling direction, the occurrence of folding can be prevented more stably. The upper limit of Young's modulus after annealing at 150 ° C. for 30 minutes is not restricted from the point of prevention of breakage, but if the Young's modulus exceeds 120 GPa, it becomes difficult to handle when foiling the apparatus, so the upper limit is 120 GPa. To do. In addition, the Young's modulus in the rolling direction of the copper alloy foil after rolling (before receiving the heat load in the first step) is 100 to 130 GPa.
一方、銅合金箔のヤング率が低いほど、この銅箔を使用したCCLの屈曲寿命が長くなる。これは、ヤング率は弾性域の応力を歪で割った値なので、ヤング率が低いほど同じ曲げ歪を与えたときに銅箔に掛かる応力が小さくなるためである。したがって、良好な屈曲性を得るためには、第1工程後の高いヤング率が、第2工程での熱負荷を受けた際に充分に低下する必要がある。
具体的には、350℃で30分間の焼鈍を施すことにより銅合金箔の圧延方向のヤング率が75GPa以下の値まで低下するよう、銅合金箔を調質する必要がある。ここで、350℃で30分間の焼鈍はラミネートロール20、21(第2の工程)での熱負荷を模したものである。圧延方向のヤング率を75GPa以下にすることにより、この銅合金箔を用いたCCLの屈曲寿命は著しく向上する。より好ましくは、圧延方向のヤング率が70GPa以下であれば、さらに良好な屈曲性が得られる。350℃で30分間焼鈍後のヤング率の下限値については屈曲性の点からは規制されないが、ヤング率が60GPa未満になるとCCLが変形しやすくなりその取り扱いが難しくなるので、下限を60GPaとする。
On the other hand, the lower the Young's modulus of the copper alloy foil, the longer the bending life of the CCL using this copper foil. This is because the Young's modulus is a value obtained by dividing the stress in the elastic region by the strain, so that the lower the Young's modulus, the smaller the stress applied to the copper foil when the same bending strain is applied. Therefore, in order to obtain good bendability, the high Young's modulus after the first step needs to be sufficiently reduced when subjected to the thermal load in the second step.
Specifically, it is necessary to temper the copper alloy foil so that the Young's modulus in the rolling direction of the copper alloy foil is lowered to a value of 75 GPa or less by annealing at 350 ° C. for 30 minutes. Here, the annealing at 350 ° C. for 30 minutes imitates the thermal load in the
以上のように、圧延方向のヤング率が、150℃で30分間の焼鈍を施したときに90〜120GPa(好ましくは100〜120GPa)となり、350℃で30分間の焼鈍を施したときに60〜75GPa(好ましくは60〜70GPa)となるように、銅合金箔の成分組成および製造条件を最適化することにより、両面銅張積層板の製造工程での折れを防止し、同時に良好な屈曲性を得ることが可能となる。
なお、「350℃で30分間の焼鈍を施したときに60〜75GPaとなる」とは、150℃で30分間の焼鈍する代わりに350℃で30分間焼鈍した場合を示す。
As described above, the Young's modulus in the rolling direction is 90 to 120 GPa (preferably 100 to 120 GPa) when annealed at 150 ° C. for 30 minutes, and 60 to 60 when annealed at 350 ° C. for 30 minutes. By optimizing the component composition and manufacturing conditions of the copper alloy foil so as to be 75 GPa (preferably 60 to 70 GPa), it prevents folding in the manufacturing process of the double-sided copper-clad laminate, and at the same time has good flexibility Can be obtained.
In addition, "it will be 60-75 GPa when annealing for 30 minutes at 350 degreeC" shows the case where it annealed for 30 minutes at 350 degreeC instead of annealing for 30 minutes at 150 degreeC.
銅合金箔の成分組成については、添加元素としてSnを100〜500質量ppm含有し、残部がJIS−1020に規格する無酸素銅とする。
Sn含有量が100質量ppm未満であると、150℃で30分間焼鈍後の圧延方向のヤング率が90GPa未満となる場合があり、折れが発生し易くなる。一方、Snの含有量が500質量ppmを超えると、350℃で30分間焼鈍後の圧延方向のヤング率が75GPaを超える場合があり、良好な屈曲性が得られないことがある。より好ましいSn濃度は150〜400質量ppmである。
About the component composition of copper alloy foil, it is set as the oxygen-free copper which contains Sn as an additional element 100-500 mass ppm, and balances to JIS-1020.
If the Sn content is less than 100 mass ppm, the Young's modulus in the rolling direction after annealing at 150 ° C. for 30 minutes may be less than 90 GPa, and folds are likely to occur. On the other hand, if the Sn content exceeds 500 ppm by mass, the Young's modulus in the rolling direction after annealing at 350 ° C. for 30 minutes may exceed 75 GPa, and good flexibility may not be obtained. A more preferable Sn concentration is 150 to 400 ppm by mass.
本発明の両面銅張積層板用圧延銅合金箔は、例えば次のようにして製造することができる。
まず、上記組成の銅インゴットを製造し、熱間圧延を行う。その後、焼鈍と冷間圧延を繰り返し、圧延板を得る。この圧延板を焼鈍して再結晶させ,所定の厚みまで最終冷間圧延して箔を得る。
ここで、銅箔の平均結晶粒径が10〜30μmになる条件で再結晶焼鈍を行なった後、加工度93.0〜99.7%の範囲で最終冷間圧延を行う。加工度rは、r=(to−t)/to(t:圧延後の厚み,to:圧延前の厚み)で定義される。
The rolled copper alloy foil for a double-sided copper-clad laminate of the present invention can be produced, for example, as follows.
First, a copper ingot having the above composition is manufactured and hot-rolled. Thereafter, annealing and cold rolling are repeated to obtain a rolled sheet. The rolled sheet is annealed and recrystallized, and finally cold-rolled to a predetermined thickness to obtain a foil.
Here, after recrystallization annealing is performed under the condition that the average crystal grain size of the copper foil is 10 to 30 μm, the final cold rolling is performed in a workability range of 93.0 to 99.7%. The working degree r is defined by r = (to-t) / to (t: thickness after rolling, to: thickness before rolling).
最終冷間圧延前の銅箔の平均粒径が10μm未満の場合、または最終冷間圧延の加工度が99.7%を超える場合、150℃で30分間焼鈍後の圧延方向のヤング率が90GPa未満となり、折れが発生する。一方、最終冷間圧延前の銅箔の平均結晶粒径が30μmを超える場合、または最終冷間圧延の加工度が93.0%未満の場合、350℃で30分間焼鈍後の圧延方向のヤング率が75GPaを超え、良好な屈曲性が得られない。
より好ましい最終冷間圧延前の平均結晶粒径は15〜25μmであり、より好ましい最終冷間圧延の加工度は96.0〜99.5%である。なお,最終冷間圧延前の焼鈍を熱間圧延で兼ねることもできるが,この場合も熱間圧延上がりの結晶粒径を10〜30μmに調整することが望ましい。
When the average particle size of the copper foil before the final cold rolling is less than 10 μm, or when the workability of the final cold rolling exceeds 99.7%, the Young's modulus in the rolling direction after annealing at 150 ° C. for 30 minutes is 90 GPa The breakage occurs. On the other hand, when the average crystal grain size of the copper foil before the final cold rolling exceeds 30 μm, or when the workability of the final cold rolling is less than 93.0%, the Young in the rolling direction after annealing for 30 minutes at 350 ° C. The rate exceeds 75 GPa, and good flexibility cannot be obtained.
A more preferable average grain size before final cold rolling is 15 to 25 μm, and a more preferable workability of final cold rolling is 96.0 to 99.5%. In addition, although annealing before the last cold rolling can also serve as hot rolling, it is desirable to adjust the crystal grain diameter after hot rolling to 10-30 micrometers also in this case.
本発明の両面銅張積層板用圧延銅合金箔の厚みは、18μm以下とすることが好ましい。箔厚が薄いほど曲げ部の外周に生じる歪みが減少するため屈曲性が向上する。箔厚の下限は製造装置の仕様や取り扱い性に依存するが、6μm以上とすることが好ましい。 The thickness of the rolled copper alloy foil for double-sided copper clad laminates of the present invention is preferably 18 μm or less. As the foil thickness is thinner, the distortion generated on the outer periphery of the bent portion is reduced, so that the flexibility is improved. The lower limit of the foil thickness depends on the specifications and handling properties of the production apparatus, but is preferably 6 μm or more.
次に、図2に示す両面銅張積層板8の構成について説明する。両面銅張積層板8は、樹脂層2の表裏に両面銅張積層板用圧延銅合金箔4及び第2の銅箔6をそれぞれ積層して構成される。
樹脂層2としては、ポリイミド;PET(ポリエチレンテレフタレート);エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂;飽和ポリエステル樹脂等の熱可塑性樹脂を用いることができるがこれらに限定されない。又、これら樹脂層の成分を溶剤に溶かしたワニス(例えば、ポリイミドの前駆体のポリアミック酸溶液)を両面銅張積層板用圧延銅合金箔4の片面に塗布し、加熱することで溶媒を除去して反応(例えばイミド化反応)を進行させ、硬化させてもよい。樹脂層2の厚みは、例えば1〜15μm程度とすることができる。
第2の銅箔6としては、例えば、純銅、タフピッチ銅(JIS-1100)、無酸素銅(JIS-1020)や、これら純銅、タフピッチ銅、無酸素銅にSn及び/又はSnを合計で40〜400質量ppm添加したものが挙げられる。第2の銅箔6の厚みは、例えば6〜18μm程度とすることができる。第2の銅箔6としてとして、上記した両面銅張積層板用圧延銅合金箔4を用いてもよい。第2の銅箔6は、圧延箔であっても電解箔であってもよい。
Next, the structure of the double-sided copper clad
As the
As the
まず、表1に示す量のSnを加えた無酸素銅(JIS−1020)を組成とする銅インゴットを製造し、厚み10mmまで熱間圧延を行った。その後、焼鈍と冷間圧延を繰り返し、種々の厚みの圧延板コイルを得た。この圧延板を750℃の連続焼鈍炉に通板し再結晶させた。その際、板の走行速度を変えることにより再結晶後の結晶粒径を調整した。その後、表1の厚みまで最終冷間圧延して箔(コイル)を得た。
この箔コイル4を用い、図1に示すようにして両面CCLを製造した。ここで、第2の銅箔6としては、190質量ppmのSnを含有するタフピッチ銅を用いた。
First, a copper ingot having a composition of oxygen-free copper (JIS-1020) added with Sn in the amount shown in Table 1 was manufactured, and hot-rolled to a thickness of 10 mm. Thereafter, annealing and cold rolling were repeated to obtain rolled plate coils having various thicknesses. The rolled plate was passed through a continuous annealing furnace at 750 ° C. and recrystallized. At that time, the crystal grain size after recrystallization was adjusted by changing the traveling speed of the plate. Then, the foil (coil) was obtained by final cold rolling to the thickness shown in Table 1.
Using this foil coil 4, a double-sided CCL was manufactured as shown in FIG. Here, as the
まず、圧延銅合金箔4の片面を化学処理(めっき)し、この面にポリイミド樹脂の前駆体ワニス(宇部興産製U−ワニスA)を厚さ25μmになるように塗布した。この後、300℃に設定した熱風循環式高温槽(乾燥装置)15内で圧延銅合金箔4を20秒で通過させて乾燥し、硬化(イミド化)して樹脂層2を形成し、片面CCLを作製した。次に、片面CCLの樹脂側面に熱可塑性ポリイミド(接着層)を塗布して乾燥した後、第2の銅箔6を重ね、350℃に加熱されたラミネートロール20、21の間を通して両面CCLを製造した。その後、両面CCLを室温まで冷却し、折れの発生状況を目視で判定した。
First, one side of the rolled copper alloy foil 4 was chemically treated (plated), and a polyimide resin precursor varnish (Ube Industries U-Varnish A) was applied to this surface to a thickness of 25 μm. Thereafter, the rolled copper alloy foil 4 is passed in a hot air circulation type high-temperature bath (drying device) 15 set at 300 ° C. for 20 seconds, dried, cured (imidized), and the
最終冷間圧延前の圧延銅合金箔4の平均粒径は、圧延方向に直角な断面において切断法で測定した。
圧延方向のヤング率の測定は、圧延銅合金箔4から、長手方向が圧延方向に平行に(L方向)なるように試験片を切り出し、150℃で30分間または350℃で30分間の焼鈍を施した後、振動法で測定した。測定装置には、日本テクノプラス株式会社製の片持ち式薄板ヤング率測定装置、TE−RTを用いた。試料は幅3.2mm、長さ15mmの短冊形状とし、振動長さを10mmとした。
The average particle diameter of the rolled copper alloy foil 4 before final cold rolling was measured by a cutting method in a cross section perpendicular to the rolling direction.
The Young's modulus in the rolling direction is measured by cutting a test piece from the rolled copper alloy foil 4 so that the longitudinal direction is parallel to the rolling direction (L direction) and annealing at 150 ° C. for 30 minutes or 350 ° C. for 30 minutes. After applying, it was measured by the vibration method. As a measuring device, a cantilever type thin plate Young's modulus measuring device TE-RT manufactured by Nippon Techno Plus Co., Ltd. was used. The sample had a strip shape with a width of 3.2 mm and a length of 15 mm, and the vibration length was 10 mm.
屈曲性は以下のようにして評価した。まず、既知のフォトリソグラフイ技術を用いて第2の銅箔6を除去し,他方の(第1の)銅箔に回路幅200μmの配線を形成し、その配線の上にエポキシ系接着剤が塗布されたポリイミドフィルムをカバーレイとして熱圧着し、屈曲試験用のFPCを作製した。この時、樹脂層2の厚みを15μm、カバーレイを12.5μm、銅箔上の接着層の厚みは2μmとした。なお、両面CCLを屈曲部に用いる場合は、どちらか一方(屈曲性が劣る方)の銅箔をエッチングで除去して、屈曲部分のみ片面CCL様にする。本試験では、第1の銅箔4の屈曲性能を評価することを目的としているため、第2の銅箔6を除去した。
屈曲試験は、IPC(アメリカプリント回路工業会)摺動屈曲試験機を使用し、曲げ半径は1mmとした。毎分100回の繰り返し摺動をFPC試験片に負荷し、配線の電気抵抗が初期から10%上昇した屈曲回数を終点とした。
Flexibility was evaluated as follows. First, the
For the bending test, an IPC (American Printed Circuit Industry Association) sliding bending tester was used, and the bending radius was 1 mm. 100 times per minute repeated sliding was loaded on the FPC test piece, and the end point was the number of flexing times when the electrical resistance of the wiring increased by 10% from the initial stage.
得られた結果を表1に示す。 The obtained results are shown in Table 1.
表1から明らかなように、Snを100〜500質量ppm含む無酸素銅からなり、最終冷間圧延前の平均結晶粒径を10〜30μm、最終冷間圧延の加工度を93.0〜99.7%として製造した各実施例の場合、150℃で30分間の焼鈍後に90GPa以上のヤング率が得られ、350℃で30分間の焼鈍後に75GPa以上のヤング率が得られた。これらは、両面CCLの製造工程で折れが発生せず、良好な屈曲性が得られた。 As apparent from Table 1, it is made of oxygen-free copper containing 100 to 500 ppm by mass of Sn, the average crystal grain size before the final cold rolling is 10 to 30 μm, and the workability of the final cold rolling is 93.0 to 99. In the case of each example manufactured as 0.7%, a Young's modulus of 90 GPa or more was obtained after annealing at 150 ° C. for 30 minutes, and a Young's modulus of 75 GPa or more was obtained after annealing at 350 ° C. for 30 minutes. These were not bent in the production process of the double-sided CCL, and good flexibility was obtained.
一方、通常のタフピッチ銅(不純物として10質量ppmのSnを含有)からなる比較例1、及びSn濃度が100質量ppm未満である比較例2の場合、150℃で30分間焼鈍後のヤング率が90GPa未満となり、両面CCLに折れが生じた。
最終冷間圧延の加工度が99.5%を超えた比較例5の場合、及び最終冷間圧延前の平均結晶粒径が10μm未満であった比較例6の場合も、150℃で30分間焼鈍後のヤング率が90GPa未満となり、両面CCLに折れが生じた。
Sn濃度が500質量ppmを超えた比較例3、最終冷間圧延の加工度が93.0%未満であった比較例4、及び最終冷間圧延前の平均結晶粒径が30μmを超えた比較例7の場合、350℃で30分間焼鈍後のヤング率が70GPaを超え、屈曲回数が低下した。
On the other hand, in Comparative Example 1 made of ordinary tough pitch copper (containing 10 mass ppm of Sn as an impurity) and Comparative Example 2 in which the Sn concentration is less than 100 mass ppm, the Young's modulus after annealing at 150 ° C. for 30 minutes is The pressure was less than 90 GPa, and the double-sided CCL was broken.
Also in the case of Comparative Example 5 in which the degree of work of the final cold rolling exceeds 99.5% and in the case of Comparative Example 6 in which the average crystal grain size before the final cold rolling was less than 10 μm, 30 minutes at 150 ° C. The Young's modulus after annealing was less than 90 GPa, and the double-sided CCL was broken.
Comparative Example 3 in which the Sn concentration exceeded 500 mass ppm, Comparative Example 4 in which the degree of work of the final cold rolling was less than 93.0%, and comparison in which the average crystal grain size before the final cold rolling exceeded 30 μm In the case of Example 7, the Young's modulus after annealing at 350 ° C. for 30 minutes exceeded 70 GPa, and the number of bendings decreased.
なお、屈曲回数は第1の銅箔4が薄くなるほど増加するが、同じ箔厚で比較するとヤング率が屈曲性へ影響することが明らかに認められる。 Although the number of bendings increases as the first copper foil 4 becomes thinner, it is clearly recognized that the Young's modulus affects the flexibility when compared with the same foil thickness.
2 樹脂層
2a 樹脂組成物
4 両面銅張積層板用圧延銅合金箔
6 第2の銅箔
8 両面銅張積層板
2
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010040731A JP2011174156A (en) | 2010-02-25 | 2010-02-25 | Rolled copper alloy foil for double-sided copper clad laminated plate and method for manufacturing double-sided copper clad laminated plate using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010040731A JP2011174156A (en) | 2010-02-25 | 2010-02-25 | Rolled copper alloy foil for double-sided copper clad laminated plate and method for manufacturing double-sided copper clad laminated plate using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011174156A true JP2011174156A (en) | 2011-09-08 |
Family
ID=44687267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010040731A Withdrawn JP2011174156A (en) | 2010-02-25 | 2010-02-25 | Rolled copper alloy foil for double-sided copper clad laminated plate and method for manufacturing double-sided copper clad laminated plate using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011174156A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013191638A (en) * | 2012-03-12 | 2013-09-26 | Jx Nippon Mining & Metals Corp | Rolled copper foil for printed wiring board |
JP6348621B1 (en) * | 2017-02-15 | 2018-06-27 | Jx金属株式会社 | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device |
-
2010
- 2010-02-25 JP JP2010040731A patent/JP2011174156A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013191638A (en) * | 2012-03-12 | 2013-09-26 | Jx Nippon Mining & Metals Corp | Rolled copper foil for printed wiring board |
JP6348621B1 (en) * | 2017-02-15 | 2018-06-27 | Jx金属株式会社 | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device |
JP2018131653A (en) * | 2017-02-15 | 2018-08-23 | Jx金属株式会社 | Copper foil for flexible printed circuit board, and copper clad laminate, flexible printed circuit board, and electronic apparatus prepared therewith |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5094834B2 (en) | Copper foil manufacturing method, copper foil and copper clad laminate | |
JP5124039B2 (en) | Copper foil and copper-clad laminate using the same | |
JP5467930B2 (en) | Copper clad laminate | |
JP4672515B2 (en) | Rolled copper alloy foil for bending | |
WO2011052556A1 (en) | Copper or copper-alloy foil and method of manufacturing double-sided copper-clad laminate using same | |
JP2013044005A (en) | Rolled copper alloy foil for double-sided copper-clad laminate, and method of manufacturing the double-sided copper-clad laminate using the same | |
KR101396218B1 (en) | Method for producing copper clad laminate, copper foil used therein, and laminating apparatus for copper clad laminate | |
JP4756194B2 (en) | Method for producing copper clad laminate | |
TWI588273B (en) | Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board and electronic equipment | |
JP2009292090A (en) | Two-layer flexible copper-clad laminated sheet excellent in flexibility and method for manufacturing it | |
JP2011153360A (en) | Rolled copper alloy foil for double-sided copper-clad laminated plate, and method for producing double-sided copper-clad laminated plate using the same | |
JP2008068406A (en) | Flexible metal laminate and flexible printed circuit board | |
JP6663712B2 (en) | Rolled copper foil, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
JP5694094B2 (en) | Copper foil for flexible printed wiring board, copper-clad laminate, flexible printed wiring board, and electronic device | |
JP6348621B1 (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
JP5753115B2 (en) | Rolled copper foil for printed wiring boards | |
JP2011174156A (en) | Rolled copper alloy foil for double-sided copper clad laminated plate and method for manufacturing double-sided copper clad laminated plate using the same | |
WO2011052557A1 (en) | Method of manufacturing double-sided copper-clad laminate, and pair of copper or copper alloy foil sheets used thereupon | |
JP6647253B2 (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
CN111757599A (en) | Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device | |
JP2008243898A (en) | Manufacturing method of flexible copper clad laminate | |
JP6827022B2 (en) | Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20130507 |