JP2013191638A - Rolled copper foil for printed wiring board - Google Patents

Rolled copper foil for printed wiring board Download PDF

Info

Publication number
JP2013191638A
JP2013191638A JP2012055117A JP2012055117A JP2013191638A JP 2013191638 A JP2013191638 A JP 2013191638A JP 2012055117 A JP2012055117 A JP 2012055117A JP 2012055117 A JP2012055117 A JP 2012055117A JP 2013191638 A JP2013191638 A JP 2013191638A
Authority
JP
Japan
Prior art keywords
copper foil
young
modulus
gpa
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012055117A
Other languages
Japanese (ja)
Other versions
JP5753115B2 (en
Inventor
Kazutaka AOSHIMA
一貴 青島
Kazuki Kan
和樹 冠
Toshiyuki Ono
俊之 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012055117A priority Critical patent/JP5753115B2/en
Publication of JP2013191638A publication Critical patent/JP2013191638A/en
Application granted granted Critical
Publication of JP5753115B2 publication Critical patent/JP5753115B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rolled copper foil that is less apt to wrinkle due to a physical property difference before and after heat treatment in a manufacturing line of a copper clad laminate board.SOLUTION: A rolled copper foil for a printed wiring board is configured so that Young's modulus E1 in a rolling direction at 25°C is 80-130 GPa, Young's modulus E2 in the rolling direction at 25°C after heat treatment at 350°C for one second is 60-110 GPa, and a difference between the Young's modulus E1 and the Young's modulus E2, namely, ΔE=E1-E2 is 12-33 GPa.

Description

本発明は、プリント配線板用の圧延銅箔に関し、とりわけFPC(Flexible Printed Circuit)用の導電性材料として好適な圧延銅箔に関する。   The present invention relates to a rolled copper foil for printed wiring boards, and more particularly to a rolled copper foil suitable as a conductive material for FPC (Flexible Printed Circuit).

プリント配線板(PWB)は、電気絶縁性の材料(絶縁基板)の表面(場合によっては内部にも)に、導電性材料で導体パターンを形成・固着したものを指し、これに電子部品類を搭載し、はんだ付け接続を完了したものがプリント回路板(PCB)と呼ばれる。プリント回路板は各種電子機器の制御に欠かせない部品である。   Printed wiring board (PWB) refers to the surface of an electrically insulating material (insulating substrate) (in some cases, also inside), with a conductive pattern formed and secured with a conductive material. A printed circuit board (PCB) that has been mounted and soldered has been completed. The printed circuit board is an indispensable part for controlling various electronic devices.

プリント配線板のベースとなる材料としては一般に銅張積層板が使用される。銅張積層板は合成樹脂ボード、フィルム等の絶縁基板に接着剤を介して、又は接着剤を使用せずに高温高圧下で銅箔を積層接着することにより製造される。   In general, a copper-clad laminate is used as a base material for a printed wiring board. A copper-clad laminate is manufactured by laminating and bonding a copper foil to an insulating substrate such as a synthetic resin board or a film via an adhesive or without using an adhesive under high temperature and pressure.

プリント配線板の内、可動部や屈曲部の配線に多用されるFPC(Flexible Printed Circuit)では、優れた屈曲疲労特性が要求されることから、電解銅箔に比べて屈曲特性に優れた圧延銅箔を中心として、屈曲特性を向上させる努力がなされてきた。例えば、特開2001−323354号公報(特許文献1)や特開2008−248331号公報(特許文献2)では、立方体集合組織((100)[001]方位)を発達させることにより、屈曲特性の向上を図っている。   Of the printed wiring boards, FPC (Flexible Printed Circuit), which is frequently used for wiring of movable parts and bent parts, requires excellent bending fatigue characteristics, so rolled copper with superior bending characteristics compared to electrolytic copper foil. Efforts have been made to improve the bending characteristics, centering on foil. For example, in Japanese Patent Application Laid-Open No. 2001-323354 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2008-248331 (Patent Document 2), by developing a cube texture ((100) [001] orientation), bending characteristics are improved. We are trying to improve.

特開2009−158382号公報(特許文献3)では、300℃の加熱処理を施す前の状態において測定した銅箔の応力−歪み曲線における原点付近の直線的な部分での傾きBと、前記300℃の加熱処理を施した後の状態において測定した当該銅箔の応力−歪み曲線における原点付近の直線的な部分での傾きAとの比B/Aを1.2以上から3.0以下に制御することを開示している。   In Japanese Patent Application Laid-Open No. 2009-158382 (Patent Document 3), the slope B at the linear portion near the origin in the stress-strain curve of the copper foil measured before the heat treatment at 300 ° C. The ratio B / A with respect to the slope A in the linear portion near the origin in the stress-strain curve of the copper foil measured in the state after the heat treatment at ℃ was from 1.2 to 3.0 It is disclosed to control.

特開2012−001786号公報(特許文献4)では、0度方向(度は銅箔の長さ方向と成す角度、以下同様)のヤング率が80〜150GPaであり、360℃×6分間の熱処理を行った後の0度および90度方向のヤング率が25〜80GPa、該熱処理後の45度方向のヤング率が80〜150GPaである銅箔を提案し、熱処理後の屈曲疲労特性の向上に加えて、熱処理前にライン張力によって銅箔に折れが発生するのを防止している。   In JP 2012-001786 A (Patent Document 4), the Young's modulus in the 0 degree direction (degree is the angle formed with the length direction of the copper foil, the same applies hereinafter) is 80 to 150 GPa, and heat treatment at 360 ° C. for 6 minutes. Proposed a copper foil having a Young's modulus in the 0 degree and 90 degree directions of 25 to 80 GPa after the heat treatment and a Young's modulus in the 45 degree direction of 80 to 150 GPa after the heat treatment to improve the bending fatigue properties after the heat treatment. In addition, the copper foil is prevented from being bent by the line tension before the heat treatment.

特開2001−323354号公報JP 2001-323354 A 特開2008−248331号公報JP 2008-248331 A 特開2009−158382号公報JP 2009-158382 A 特開2012−001786号公報JP 2012-001786 A

銅張積層板の製造過程においては、銅箔を絶縁基板に貼り合わせるために加熱処理が施されるところ、この加熱処理によって銅箔が再結晶することが一般的である。銅張積層板の工業的な製造ラインでは、銅箔にテンションを掛けながら絶縁基板との積層を行うが、再結晶前後で銅箔に物性差が生じるため、再結晶前の圧延組織と再結晶組織との境界付近や再結晶後の組織となっている部分でシワが入りやすいという問題があった。特許文献4に記載の圧延銅箔では、加熱処理前にテンションが掛かったときの折れの発生を抑制することも狙っているが、加熱処理前後の物性差に起因するシワの抑制の観点では対策がなされておらず、未だ改善の余地が残されている。   In the manufacturing process of the copper clad laminate, heat treatment is performed to bond the copper foil to the insulating substrate, and the copper foil is generally recrystallized by this heat treatment. In an industrial production line for copper-clad laminates, the copper foil is laminated with an insulating substrate while tension is applied. However, the physical properties of the copper foil differ before and after recrystallization. There was a problem that wrinkles were likely to occur near the boundary with the structure and at the part after recrystallization. The rolled copper foil described in Patent Document 4 also aims to suppress the occurrence of folds when tension is applied before the heat treatment, but it is a countermeasure in terms of suppressing wrinkles due to physical property differences before and after the heat treatment. However, there is still room for improvement.

そこで、本発明の課題は、銅張積層板の製造ラインにおいて、加熱処理前後の物性差に起因してシワが発生しにくい圧延銅箔を提供することを課題とする。また、本発明の更なる課題は、そのような圧延銅箔を備えた銅張積層板を提供することである。   Then, the subject of this invention makes it a subject to provide the rolled copper foil which is hard to generate | occur | produce a wrinkle due to the physical property difference before and behind heat processing in the production line of a copper clad laminated board. Moreover, the further subject of this invention is providing the copper clad laminated board provided with such a rolled copper foil.

本発明者は上記課題を解決するために鋭意検討したところ、圧延銅箔の再結晶前後におけるヤング率の差ΔEを制御することで、シワの発生が有意に抑制可能であることを見出した。   As a result of intensive studies to solve the above problems, the present inventor has found that wrinkles can be significantly suppressed by controlling the difference ΔE in Young's modulus before and after recrystallization of the rolled copper foil.

本発明は上記知見を基礎として完成したものであり、一側面において、25℃における圧延方向のヤング率E1がE1=80〜130GPaであり、350℃で1秒間の加熱処理をした後、25℃における圧延方向のヤング率E2がE2=60〜110GPaであり、ヤング率E1とヤング率E2の差ΔE=E1−E2が12〜33GPaであるプリント配線板用圧延銅箔である。   The present invention has been completed based on the above findings. In one aspect, the Young's modulus E1 in the rolling direction at 25 ° C. is E1 = 80 to 130 GPa, and after heat treatment at 350 ° C. for 1 second, 25 ° C. The rolled copper foil for printed wiring boards has a Young's modulus E2 in the rolling direction of E2 = 60 to 110 GPa and a difference ΔE = E1−E2 between the Young's modulus E1 and Young's modulus E2 of 12 to 33 GPa.

本発明のプリント配線板用圧延銅箔の一実施形態においては、350℃で1秒間の加熱処理をした後の圧延面のX線回折で求めた200回折強度(I)が、微粉末銅のX線回折で求めた200回折強度(I0)に対し、10≦I/I0≦30である。 In one embodiment of the rolled copper foil for a printed wiring board of the present invention, the 200 diffraction intensity (I) obtained by X-ray diffraction of the rolled surface after heat treatment at 350 ° C. for 1 second is a fine powdered copper. For the 200 diffraction intensity (I 0 ) determined by X-ray diffraction, 10 ≦ I / I 0 ≦ 30.

本発明のプリント配線板用圧延銅箔の別の一実施形態においては、25℃における圧延方向のヤング率E1がE1=85〜125GPaであり、350℃で1秒間の加熱処理をした後、25℃における圧延方向のヤング率E2がE2=65〜100GPaである。   In another embodiment of the rolled copper foil for printed wiring boards of the present invention, the Young's modulus E1 in the rolling direction at 25 ° C. is E1 = 85 to 125 GPa, and after heat treatment at 350 ° C. for 1 second, 25 The Young's modulus E2 in the rolling direction at ° C. is E2 = 65 to 100 GPa.

本発明のプリント配線板用圧延銅箔の更に別の一実施形態においては、ΔEが15〜30GPaである。   In another embodiment of the rolled copper foil for printed wiring boards of this invention, (DELTA) E is 15-30 GPa.

本発明は別の一側面において、上記プリント配線板用圧延銅箔を備えた銅張積層板である。   In another aspect, the present invention is a copper-clad laminate including the rolled copper foil for a printed wiring board.

本発明は更に別の一側面において、上記銅張積層板を材料とするプリント配線板である。   In yet another aspect, the present invention is a printed wiring board made of the copper clad laminate.

本発明に係る圧延銅箔を用いて銅張積層板を製造することにより、加熱処理に伴うシワの発生が抑制されることから、生産性及び歩留まりの向上が期待できる。   By producing a copper-clad laminate using the rolled copper foil according to the present invention, the generation of wrinkles associated with the heat treatment is suppressed, so that improvement in productivity and yield can be expected.

屈曲疲労特性を評価する際に使用した試験装置の概略図である。It is the schematic of the testing apparatus used when evaluating a bending fatigue characteristic.

(1.銅箔の組成)
本発明において使用する銅箔基材は圧延銅箔である。圧延銅箔は、振動が継続的に発生する環境に対応でき、耐屈曲性が高い点で電解銅箔よりも優れている。本発明において、「銅箔」には銅合金箔も含まれるものとする。銅箔の材料としては、特に制限はなく、用途や要求特性に応じて適宜選択すればよい。銅箔中のCu濃度は高導電性確保の理由により99.8質量%以上であることが好ましく、99.85質量%以上であることがより好ましく、99.9質量%以上であることが更により好ましい。但し、Cu濃度が高すぎてもコスト増加につながるため、99.999質量%以下が好ましく、99.995質量%以下がより好ましい。銅箔中の酸素濃度は亜酸化銅増加につながり、亜酸化銅によるピンホールの発生につながることから0.05質量以下であることが好ましく、0.01質量%以下であることがより好ましく、0.005質量%以下であることが更により好ましく、例えば0.0001質量%以上0.01質量%以下とすることができる。このような条件を満たす銅箔の材料として、例えば、JIS−H3510若しくはJIS−H3100に規定される無酸素銅やタフピッチ銅を用いることができる。
(1. Composition of copper foil)
The copper foil base material used in the present invention is a rolled copper foil. Rolled copper foil is superior to electrolytic copper foil in that it can cope with an environment in which vibration continuously occurs and has high bending resistance. In the present invention, “copper foil” includes copper alloy foil. There is no restriction | limiting in particular as a material of copper foil, What is necessary is just to select suitably according to a use or a required characteristic. The Cu concentration in the copper foil is preferably 99.8% by mass or more, more preferably 99.85% by mass or more, and more preferably 99.9% by mass or more for reasons of ensuring high conductivity. Is more preferable. However, even if the Cu concentration is too high, it leads to an increase in cost, so 99.999 mass% or less is preferable, and 99.995 mass% or less is more preferable. The oxygen concentration in the copper foil leads to an increase in cuprous oxide, which leads to the generation of pinholes due to cuprous oxide, preferably 0.05 mass or less, more preferably 0.01 mass% or less, More preferably, it is 0.005 mass% or less, for example, can be 0.0001 mass% or more and 0.01 mass% or less. For example, oxygen-free copper or tough pitch copper defined in JIS-H3510 or JIS-H3100 can be used as a copper foil material satisfying such conditions.

また、ヤング率の制御が容易になることから、タフピッチ銅や無酸素銅に対して、Sn、Ag、In、Au、Cr、Zr、Mg、Pd等の合金元素を添加することもできる。これら元素の含有量が合計で0.05質量%を超えると強度は更に向上するものの、伸びが低下して加工性が悪化する場合があるので、これらの元素の含有量の合計は0.05質量%以下とするのが好ましい。より好ましくは上記合金元素の含有量が合計で0.03質量%以下である。上記合金元素を合計した含有量の下限は特に制限されないが、例えば0.001質量%を下限とすることができる。含有量が合計で0.001質量%未満であると、所望の効果を得られなくなる他、含有量が小さいためその含有量を制御することが困難になる場合がある。好ましくは、上記合金元素を合計した量の下限値は0.003質量%以上、更に好ましくは0.004質量%以上、最も好ましくは0.005質量%以上である。   In addition, since Young's modulus can be easily controlled, alloy elements such as Sn, Ag, In, Au, Cr, Zr, Mg, and Pd can be added to tough pitch copper and oxygen-free copper. If the total content of these elements exceeds 0.05% by mass, the strength is further improved, but the elongation may decrease and workability may deteriorate, so the total content of these elements is 0.05. It is preferable to set it as the mass% or less. More preferably, the total content of the alloy elements is 0.03% by mass or less. Although the lower limit of the total content of the alloy elements is not particularly limited, for example, 0.001% by mass can be set as the lower limit. If the total content is less than 0.001% by mass, the desired effect cannot be obtained, and the content may be difficult to control because the content is small. Preferably, the lower limit of the total amount of the alloy elements is 0.003% by mass or more, more preferably 0.004% by mass or more, and most preferably 0.005% by mass or more.

(2.銅箔の厚み)
本発明に用いることのできる圧延銅箔の厚さについては特に制限はなく、プリント配線板用に適した厚さに適宜調節すればよい。FPCの導電性材料として使用する場合、銅箔を薄肉化した方がより高い屈曲性や耐振動性を得ることができる一方で、薄すぎるとシワが発生し易くなることから、例えば5〜75μm程度とすることができる。ファインパターン形成を目的とする場合には30μm以下、好ましくは20μm以下であり、典型的には5〜20μm程度である。
(2. Thickness of copper foil)
There is no restriction | limiting in particular about the thickness of the rolled copper foil which can be used for this invention, What is necessary is just to adjust suitably to the thickness suitable for printed wiring boards. When used as a conductive material for FPC, it is possible to obtain higher flexibility and vibration resistance when the copper foil is thinned. On the other hand, if it is too thin, wrinkles are likely to occur. Can be about. For the purpose of forming a fine pattern, it is 30 μm or less, preferably 20 μm or less, and typically about 5 to 20 μm.

(3.再結晶前後のヤング率の差ΔE)
銅張積層板を製造する際、銅箔と絶縁基板を貼り合わせるための加熱処理が行われ、通常はこのときに銅箔の組織が圧延組織から再結晶組織に変化し、軟化して屈曲特性が向上する。本発明に係る圧延銅箔では、25℃における圧延方向のヤング率をE1とし、350℃で1秒間の加熱処理をした後、25℃における圧延方向のヤング率をE2としたとき、ヤング率E1とヤング率E2の差ΔE=E1−E2が12〜33GPaであることが特徴の一つである。350℃で1秒間の加熱処理というのは銅箔を絶縁基板に貼り合わせるときの典型的な加熱条件であることから、本発明における熱処理の条件とした。尚、再結晶後のヤング率は熱処理条件に大きく依存し、数秒で熱処理したときと10秒以上の熱処理時間があったときでは大きく異なる。
(3. Difference in Young's modulus before and after recrystallization ΔE)
When manufacturing a copper-clad laminate, heat treatment is performed to bond the copper foil and the insulating substrate. Usually, at this time, the copper foil structure changes from a rolled structure to a recrystallized structure, which softens and bends. Will improve. In the rolled copper foil according to the present invention, when the Young's modulus in the rolling direction at 25 ° C. is E1, and after heat treatment at 350 ° C. for 1 second, the Young's modulus in the rolling direction at 25 ° C. is E2, the Young's modulus E1 One feature is that the difference ΔE = E1−E2 between the Young's modulus E2 and the Young's modulus E2 is 12 to 33 GPa. The heat treatment at 350 ° C. for 1 second is a typical heating condition when the copper foil is bonded to the insulating substrate, and is therefore the heat treatment condition in the present invention. The Young's modulus after recrystallization greatly depends on the heat treatment conditions, and is greatly different between the heat treatment in several seconds and the heat treatment time of 10 seconds or more.

銅張積層板の製造ラインにおいては、途中の熱処理のために、銅箔は再結晶組織と再結晶前の圧延組織が混在した状況でテンションが張られる。このとき、ΔEに差がありすぎるとEが小さい部分でEが大きい部分より変形が大きくなり、Eの大きい部分と小さい部分の境界でシワが生じやすい。そのため、ΔEは小さい方が好ましく、シワを効果的に抑制するためには33GPa以下であることが必要であり、好ましくは30GPa以下であり、より好ましくは28GPa以下である。但し、ΔEが小さすぎると再結晶が不十分であることが多く、屈曲特性が低下するため、ΔEは12GPa以上であることが必要であり、好ましくは15GPa以上である。   In the copper clad laminate production line, due to heat treatment in the middle, the copper foil is tensioned in a state where a recrystallized structure and a rolled structure before recrystallization are mixed. At this time, if there is an excessive difference in ΔE, the deformation is larger in the portion where E is small than the portion where E is large, and wrinkles are likely to occur at the boundary between the portion where E is large and the portion where E is small. Therefore, ΔE is preferably small, and in order to effectively suppress wrinkles, it is necessary to be 33 GPa or less, preferably 30 GPa or less, more preferably 28 GPa or less. However, if ΔE is too small, recrystallization is often inadequate and the bending properties are deteriorated. Therefore, ΔE needs to be 12 GPa or more, and preferably 15 GPa or more.

(4.再結晶前のヤング率)
本発明に係る圧延銅箔は一般に圧延上がりの状態であり、圧延組織を有している。但し、脱脂後の乾燥等で再結晶しない程度の熱履歴があってもよい。本発明に係る圧延銅箔では、この時点において、25℃における圧延方向のヤング率E1が80〜130GPaであることも特徴の一つである。E1が80GPa未満であると銅箔製造過程における圧延や脱脂の際にシワが入りやすく製造製に劣るので、80GPa以上と設定した。E1は好ましくは85GPa以上であり、より好ましくは95GPa以上である。一方、E1が130GPaより大きいと再結晶後にΔEが33GPaより大きくなりやすく、再結晶前後での物性変化に伴うシワの発生を抑制できなくなるので、130GPa以下に設定した。E1は好ましくは125GPa以下であり、より好ましくは120GPa以下である。
(4. Young's modulus before recrystallization)
The rolled copper foil according to the present invention is generally in a state after rolling and has a rolled structure. However, there may be a thermal history that does not cause recrystallization due to drying after degreasing. One feature of the rolled copper foil according to the present invention is that, at this point, the Young's modulus E1 in the rolling direction at 25 ° C. is 80 to 130 GPa. When E1 is less than 80 GPa, wrinkles are likely to occur during rolling and degreasing in the copper foil production process, and the production is inferior. E1 is preferably 85 GPa or more, more preferably 95 GPa or more. On the other hand, if E1 is greater than 130 GPa, ΔE tends to be greater than 33 GPa after recrystallization, and the generation of wrinkles accompanying changes in physical properties before and after recrystallization cannot be suppressed. E1 is preferably 125 GPa or less, more preferably 120 GPa or less.

(5.再結晶後のヤング率)
上述したように、銅張積層板を製造する際の加熱処理によって銅箔の組織が圧延組織から再結晶組織に変化する。本発明に係る圧延銅箔では、350℃で1秒間の加熱処理をした後、25℃における圧延方向のヤング率E2が60〜110GPaであることも特徴の一つである。屈曲特性の観点からは、E2は小さい方が好ましく、具体的には110GPa以下に設定した。E2は好ましくは100GPa以下であり、より好ましくは90GPa以下である。但し、E2が小さすぎると、ΔEが大きくなりやすいため、E2を60GPa以上に設定した。E2は好ましくは65GPa以上であり、より好ましくは70GPa以上である。
(5. Young's modulus after recrystallization)
As described above, the structure of the copper foil changes from the rolled structure to the recrystallized structure by the heat treatment when manufacturing the copper-clad laminate. One feature of the rolled copper foil according to the present invention is that the Young's modulus E2 in the rolling direction at 25 ° C. is 60 to 110 GPa after heat treatment at 350 ° C. for 1 second. From the viewpoint of the bending characteristics, E2 is preferably small, and specifically, it is set to 110 GPa or less. E2 is preferably 100 GPa or less, more preferably 90 GPa or less. However, if E2 is too small, ΔE tends to increase, so E2 was set to 60 GPa or more. E2 is preferably 65 GPa or more, more preferably 70 GPa or more.

(6.立方体集合組織)
優れた屈曲特性を得る観点からは、再結晶後の銅箔の金属組織において立方体集合組織({100}<001>方位)が発達していることが好ましい。立方体集合組織の発達の程度は、(200)面のX線回折強度比I/I0(I:銅箔の200面の回折強度、I0:ランダム方位をもつ銅粉末の(200)面の回折強度)の大きさで表すことができ、この値が大きいほど立方体方位が発達していることを示す。I/I0は好ましくは10以上であり、より好ましくは15以上である。但し、I/I0は高くなりすぎると、ソフトエッチング時にディッシュダウン(皿のように窪んだ欠陥/(200)面とその他の方位を向いた面でエッチング速度が異なること、結晶粒内と粒界でエッチング速度が異なることに起因)が発生しやすいことから、I/I0は好ましくは30以下であり、より好ましくは25以下である。尚、I/Ioが60以上であるとおよそ全面に(200)面が発達した状態になるため、ディッシュダウンは発生しにくくなるが60以上であるとΔEが大きくなるために好ましくない。
銅粉末としては純銅標準粉末を使用し、これは325メッシュ(JIS Z8801)の純度99.5%の銅粉末で定義される。
(6. Cube texture)
From the viewpoint of obtaining excellent bending properties, it is preferable that a cubic texture ({100} <001> orientation) is developed in the metal structure of the copper foil after recrystallization. The degree of development of the cubic texture is determined by the X-ray diffraction intensity ratio I / I 0 of the (200) plane (I: the diffraction intensity of the 200 plane of the copper foil, I 0 : the (200) plane of the copper powder having a random orientation. It can be expressed by the magnitude of (diffraction intensity), and the larger this value, the more the cube orientation is developed. I / I 0 is preferably 10 or more, more preferably 15 or more. However, if I / I 0 becomes excessively high, the etching rate is different between the dishdown (soft-etched defect / (200) plane and other orientation planes), and within the crystal grains. I / I 0 is preferably 30 or less, and more preferably 25 or less. When I / Io is 60 or more, since the (200) plane is developed on the entire surface, dishdown is difficult to occur.
A pure copper standard powder is used as the copper powder, which is defined as a copper powder having a purity of 99.5% with a 325 mesh (JIS Z8801).

(7.圧延銅箔の製造方法)
圧延銅箔の製造プロセスでは、電気銅の純銅原料を溶解して合金元素を添加した後、この溶湯を鋳造し、厚みが100〜300mm程度のインゴットを製造する。このインゴットに対して均質化のための焼鈍を行った後、熱間圧延して5〜20mm程度の板にした後、冷間圧延と焼鈍を繰り返して薄くし、最後に冷間圧延(最終冷間圧延)で所定厚みの箔に仕上げる。最終冷間圧延後の銅箔には脱脂、防錆や絶縁基板との密着性向上のための粗化処理等各種表面処理を行ってもよい。
(7. Manufacturing method of rolled copper foil)
In the manufacturing process of the rolled copper foil, after melting a pure copper raw material of electrolytic copper and adding an alloy element, the molten metal is cast to manufacture an ingot having a thickness of about 100 to 300 mm. The ingot is annealed for homogenization, then hot rolled to a plate of about 5 to 20 mm, then cold rolled and annealed repeatedly to make it thinner, and finally cold rolled (final cold To a foil with a predetermined thickness. The copper foil after the final cold rolling may be subjected to various surface treatments such as degreasing, rust prevention, and roughening treatment for improving adhesion to the insulating substrate.

本発明に係る圧延銅箔を製造する上では、冷間圧延と焼鈍を繰り返すが、冷間圧延後に行うすべての焼鈍において、材料の焼鈍温度下の耐力に対し0.1〜0.5倍程度のテンションを掛けながら実施するのがよい。これは、冷間圧延後の焼鈍で形成される再結晶組織を制御することで最終圧延後の組織を制御し、E1、E2、ΔEを制御するためである。焼鈍時にテンションをかけると再結晶に要する熱量はテンションが無いとき比べ大きくなる。また再結晶後に結晶粒が大きく成長しやすい。テンションが耐力に対して0.5倍より大きいと2次再結晶が部分的に起こり易く、その後の圧延で粗大化した結晶粒部でオレが生じ易い。0.1倍より小さいとE2が小さくなりやすく、ΔEが33GPaより大きくなりやすい。また、焼鈍の条件としては、再結晶に必要な熱量を加えれば良いが例えば350〜800℃で1〜2000sが挙げられる。温度が低いときは焼鈍時間を長くし、高いときは焼鈍時間を短くすれば良い。更に、最終冷間圧延は銅張積層板作製時の熱によって全面が均一に再結晶するように90〜99.7%の加工度とするのが好ましい。ここで、加工度r(%)は、r=(to−t)/to×100(t:圧延後の厚み、to:圧延前、焼鈍後の厚み)で定義される。また、最終冷間圧延は1パスあたりの加工度の加工度を10〜40%にするのが好ましい。10%未満であるとE2が小さくなりやすく、ΔEが33GPaより大きくなりやすい。40%以上にするとE2が大きくなりやすく、ΔEが12より小さくなりやすい。ここで、1パスあたりの加工度r(%)は、r=(t1−t2)/t1×100(t1:圧延ロール入り側の厚み、t2:圧延ロール出側の厚み)で定義される。   In producing the rolled copper foil according to the present invention, cold rolling and annealing are repeated, but in all the annealing performed after cold rolling, it is about 0.1 to 0.5 times the yield strength at the annealing temperature of the material. It is good to carry out while applying the tension. This is because the structure after final rolling is controlled by controlling the recrystallized structure formed by annealing after cold rolling, and E1, E2, and ΔE are controlled. When tension is applied during annealing, the amount of heat required for recrystallization is greater than when there is no tension. In addition, the crystal grains tend to grow large after recrystallization. When the tension is larger than 0.5 times the yield strength, secondary recrystallization is likely to occur partially, and burrs are likely to occur at crystal grain portions coarsened by subsequent rolling. If it is less than 0.1 times, E2 tends to be small and ΔE tends to be larger than 33 GPa. Moreover, as conditions for annealing, the amount of heat necessary for recrystallization may be added, but examples include 1 to 2000 s at 350 to 800 ° C. When the temperature is low, the annealing time may be lengthened, and when the temperature is high, the annealing time may be shortened. Further, the final cold rolling is preferably performed at a working degree of 90 to 99.7% so that the entire surface is uniformly recrystallized by heat at the time of producing the copper-clad laminate. Here, the working degree r (%) is defined by r = (to-t) / to × 100 (t: thickness after rolling, to: thickness before rolling, and thickness after annealing). Further, in the final cold rolling, it is preferable that the degree of work per pass is 10 to 40%. If it is less than 10%, E2 tends to be small, and ΔE tends to be larger than 33 GPa. If it is 40% or more, E2 tends to be large, and ΔE tends to be smaller than 12. Here, the processing degree r (%) per pass is defined by r = (t1−t2) / t1 × 100 (t1: thickness on the rolling roll entering side, t2: thickness on the rolling roll exit side).

(8.プリント配線板の製造)
本発明に係る銅箔を用いてプリント配線板(PWB)を常法に従って製造することができる。以下に、プリント配線板の製造例を示す。
(8. Production of printed wiring boards)
A printed wiring board (PWB) can be manufactured according to a conventional method using the copper foil according to the present invention. Below, the example of manufacture of a printed wiring board is shown.

まず、銅箔と絶縁基板を貼り合わせて銅張積層板を製造する。銅箔が積層される絶縁基板はフレキシブルプリント配線板、電磁波シールド材、照明機器のリフレクタ、配線、放熱板に適用可能な特性を有するものであれば特に制限を受けないが、ポリエステルフィルムやポリイミドフィルム、液晶ポリマーフィルム等を使用する事ができる。   First, a copper-clad laminate is manufactured by bonding a copper foil and an insulating substrate. The insulating substrate on which the copper foil is laminated is not particularly limited as long as it has characteristics applicable to flexible printed wiring boards, electromagnetic shielding materials, reflectors for lighting equipment, wiring, and heat sinks, but polyester films and polyimide films A liquid crystal polymer film can be used.

フレキシブルプリント配線板(FPC)用の場合、ポリイミドフィルム又はポリエステルフィルムと銅箔の被覆層を有する面をエポキシ系やアクリル系の接着剤を使って接着することができる(3層構造)。また、接着剤を使用しない方法(2層構造)としては、ポリイミドの前駆体であるポリイミドワニス(ポリアミド酸ワニス)を銅箔の被覆層を有する面に塗布し、加熱することでイミド化するキャスティング法や、ポリイミドフィルム上に熱可塑性のポリイミドを塗布し、その上に銅箔の被覆層を有する面を重ね合わせ、加熱加圧するラミネート法が挙げられる。キャスティング法においては、ポリイミドワニスを塗布する前に熱可塑性ポリイミド等のアンカーコート材を予め塗布しておくことも有効である。   In the case of a flexible printed wiring board (FPC), a surface having a polyimide film or polyester film and a copper foil coating layer can be bonded using an epoxy or acrylic adhesive (three-layer structure). In addition, as a method without using an adhesive (two-layer structure), a polyimide varnish (polyamic acid varnish), which is a polyimide precursor, is applied to a surface having a coating layer of copper foil, and imidized by heating. And a lamination method in which a thermoplastic polyimide is applied on a polyimide film, a surface having a copper foil coating layer is superimposed thereon, and heated and pressed. In the casting method, it is also effective to apply an anchor coating material such as thermoplastic polyimide in advance before applying the polyimide varnish.

樹脂フィルムの両側に銅箔を貼り付ける両面銅張積層板を工業的規模で製造するには、長尺の銅箔をロールトゥロールのライン上で流しながら絶縁基板への貼り合わせを行うが、貼り合わせのための加熱処理は例えば300〜400℃に熱せられたニップロール中を0.5〜10m/min程度の速度で通板することにより行われる。本発明に係る圧延銅箔によれば、加熱による再結晶前後でのヤング率が制御されているため、シワの発生が抑制される。このため、生産性及び歩留まりの向上が期待できる。   To manufacture a double-sided copper-clad laminate with copper foil on both sides of the resin film on an industrial scale, the long copper foil is bonded to an insulating substrate while flowing on a roll-to-roll line. The heat treatment for bonding is performed, for example, by passing through a nip roll heated to 300 to 400 ° C. at a speed of about 0.5 to 10 m / min. According to the rolled copper foil which concerns on this invention, since the Young's modulus before and behind recrystallization by heating is controlled, generation | occurrence | production of a wrinkle is suppressed. For this reason, improvement in productivity and yield can be expected.

本発明に係る銅張積層板は各種のプリント配線板(PWB)に使用可能であり、特に制限されるものではないが、例えば、導体パターンの層数の観点からは片面PWB、両面PWB、多層PWB(3層以上)に適用可能であり、絶縁基板材料の種類の観点からはフレキシブルPWB(FPC)、リジッド・フレックスPWBに適用可能である。   The copper-clad laminate according to the present invention can be used for various printed wiring boards (PWB) and is not particularly limited. For example, from the viewpoint of the number of layers of the conductor pattern, single-sided PWB, double-sided PWB, multilayer It can be applied to PWB (3 layers or more), and can be applied to flexible PWB (FPC) and rigid flex PWB from the viewpoint of the type of insulating substrate material.

銅張積層板からプリント配線板を製造する工程は当業者に周知の方法を用いればよく、例えばエッチングレジストを銅張積層板の銅箔面に導体パターンとしての必要部分だけに塗布し、エッチング液を銅箔面に噴射することで不要銅箔を除去して導体パターンを形成し、次いでエッチングレジストを剥離・除去して導体パターンを露出することができる。   The process for producing a printed wiring board from a copper clad laminate may be performed by a method well known to those skilled in the art. For example, an etching resist is applied only to a necessary portion as a conductor pattern on the copper foil surface of the copper clad laminate, and an etching solution By spraying on the copper foil surface, the unnecessary copper foil can be removed to form a conductor pattern, and then the etching resist can be peeled and removed to expose the conductor pattern.

以下、実施例及び比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例のみに制限されるものではない。   Hereinafter, description will be made based on Examples and Comparative Examples. In addition, a present Example is an example to the last, and is not restrict | limited only to this example.

(例1)
電気銅を真空中で溶解し、次いで、表1に示す組成の元素をそれぞれ添加し、大気中又はAr雰囲気中で厚み50mmのインゴットを鋳造した。酸素含有量は大気中で鋳造したものは150〜300質量ppmであり、Ar雰囲気中で鋳造したものは15質量ppm未満であった。得られたインゴットを800℃の温度で10時間の加熱条件で均質化焼鈍した後、熱間圧延を施した。次いで、表面の酸化スケールを面削により除去した後に、冷間圧延と再結晶焼鈍を繰り返し、最終の冷間圧延で表1に記載の各箔厚の長尺銅箔試料を作製した。
(Example 1)
Electrolytic copper was melted in a vacuum, and then elements having the compositions shown in Table 1 were added to cast an ingot having a thickness of 50 mm in the air or in an Ar atmosphere. The oxygen content was 150-300 ppm by mass when cast in the atmosphere, and less than 15 ppm by mass when cast in an Ar atmosphere. The obtained ingot was subjected to homogenization annealing at a temperature of 800 ° C. for 10 hours, and then subjected to hot rolling. Next, after removing the oxide scale on the surface by chamfering, cold rolling and recrystallization annealing were repeated, and long copper foil samples having respective foil thicknesses shown in Table 1 were prepared by final cold rolling.

上記の製造工程において、実施例及び比較例の何れも、冷間圧延後の再結晶焼鈍はすべて650℃で10秒間の加熱条件で行ったが、実施例では650℃での各実施例の試料の耐力に対して0.3となるテンションを圧延方向に掛けながら行い、比較例ではテンションを掛けずに行った。また、実施例では、最終圧延加工度を95%〜99.5%とし、最終冷間圧延のすべてのパスにおいて一パスあたりの加工度を15〜35%内に入るよう制御したのに対し、比較例ではすべて最終圧延加工度を92%〜99.5%とし、最終冷間圧延のすべてのパスにおいて、比較例2では一パスあたりの加工度を5〜15%、比較例3では一パスあたりの加工度を15〜35%とし、比較例1では30〜50%に入るように制御した。また、最終冷間圧延時の圧延油の温度は特に制御しなかった。   In the above production process, in all of the examples and comparative examples, all recrystallization annealing after cold rolling was performed under heating conditions at 650 ° C. for 10 seconds. In the examples, the samples of each example at 650 ° C. This was performed while applying a tension of 0.3 to the proof stress in the rolling direction, and in the comparative example, the tension was not applied. Further, in the examples, the final rolling work degree was set to 95% to 99.5%, and the working degree per pass was controlled to fall within 15 to 35% in all passes of the final cold rolling, In all of the comparative examples, the final rolling degree is 92% to 99.5%. In all the passes of the final cold rolling, the comparative example 2 has a working degree per pass of 5 to 15%, and the comparative example 3 has one pass. The degree of processing was set to 15 to 35%, and in Comparative Example 1, it was controlled to fall within 30 to 50%. Further, the temperature of the rolling oil during the final cold rolling was not particularly controlled.

得られた銅箔試料に対して、以下の特性を評価した。   The following characteristics were evaluated with respect to the obtained copper foil sample.

(ヤング率の測定)
圧延上がり銅箔試料の圧延方向におけるヤング率(E1)を、25℃の温度条件下とした他は、振動法(JIS Z2280)に準拠して測定した。また、銅箔試料に対し350℃で1秒間の加熱プレス(プレス圧:30MPa)を施し、熱処理後の銅箔の圧延方向におけるヤング率(E2)を25℃の温度条件下で同様の方法で測定した。測定装置には日本テクノプラス株式会社製の片持ち式薄板ヤング率測定装置、TE−RTを用いた。試料は幅3.2mm、長さ15mmの短冊形状とし、振動長さを10mmとした。ヤング率は10回測定して平均値を測定値とした。
(Measurement of Young's modulus)
The Young's modulus (E1) in the rolling direction of the rolled copper foil sample was measured according to the vibration method (JIS Z2280) except that the temperature condition was 25 ° C. Also, the copper foil sample was subjected to a heat press (press pressure: 30 MPa) at 350 ° C. for 1 second, and the Young's modulus (E2) in the rolling direction of the copper foil after the heat treatment was measured in the same manner under a temperature condition of 25 ° C. It was measured. As a measuring device, a cantilever type thin plate Young's modulus measuring device, TE-RT manufactured by Nippon Techno Plus Co., Ltd. was used. The sample had a strip shape with a width of 3.2 mm and a length of 15 mm, and the vibration length was 10 mm. The Young's modulus was measured 10 times and the average value was taken as the measured value.

(I/I0の測定)
350℃で1秒間の加熱プレス(プレス圧:30MPa)を施した後の銅箔試料について、圧延面のX線回折(リガク社製型式RINT−2500)で(200)面の回折強度の積分値(I)を求めた。この値を予め測定しておいた微粉末銅(325mesh)の(200)回折強度の積分値(I0)で割り、I/I0値を計算した。X線回折はCo管球を用いて行い、(200)面の回折強度の積分値は、2θ=57〜63°(θは回折角度)の範囲で測定した。
(Measurement of I / I 0 )
The integrated value of the diffraction intensity of the (200) plane in the X-ray diffraction of the rolled surface (model RINT-2500, manufactured by Rigaku Corporation) for the copper foil sample after being heated and pressed at 350 ° C. for 1 second (press pressure: 30 MPa). (I) was determined. This value was divided by the integral value (I 0 ) of (200) diffraction intensity of finely powdered copper (325 mesh), which had been measured in advance, to calculate an I / I 0 value. X-ray diffraction was performed using a Co tube, and the integrated value of the diffraction intensity of the (200) plane was measured in the range of 2θ = 57 to 63 ° (θ is the diffraction angle).

(シワの抑制)
圧延上がり銅箔試料と厚み12μmのポリイミドフィルム(カプトンEN)に市販の熱可塑性ポリイミド接着剤を塗工、乾燥して作製した厚み15μmの接着剤付きポリイミドフィルムを積層して350℃に加熱されたニップロール中を通板するラミネート試験にて熱圧着して銅張積層板を製造した。銅箔巻き出しのテンションを30MPa、通板速度を0.5〜10m/minで変化させ、すべての速度で熱圧着時にシワが入ったものをシワの抑制×、0.5〜3m/minでシワが入らなかったものをシワの抑制○、0.5〜1m/minでシワが入らなかったものをシワの抑制△、すべての速度でシワが入らなかったものをシワの抑制◎とした。
(Wrinkle suppression)
Rolled copper foil sample and 12 μm thick polyimide film (Kapton EN) were coated with a commercially available thermoplastic polyimide adhesive and dried, and a 15 μm thick polyimide film with adhesive was laminated and heated to 350 ° C. A copper-clad laminate was manufactured by thermocompression bonding in a laminating test in which the sheet was passed through a nip roll. The tension of copper foil unwinding was changed to 30 MPa, the sheet passing speed was changed from 0.5 to 10 m / min, and wrinkles were suppressed at the time of thermocompression bonding at all speeds, with wrinkle suppression x, 0.5 to 3 m / min. Wrinkles were suppressed when the wrinkles did not enter, and wrinkles were suppressed when the wrinkles did not enter at 0.5 to 1 m / min, and wrinkles were suppressed when no wrinkles occurred at all speeds.

(ソフトエッチング性)
ソフトエッチングを行った後、外観を光学顕微鏡により検査した。ディッシュダウンとよばれる面積率の少ない方の面は多い方の面に囲まれて存在するが、その内、短径が50μmを超える箇所の個数を数えた。ソフトエッチング剤として、アデカテックCL−8(株式会社アデカ製)を用いて常温で2分間エッチングを行い、エッチング後の1mm四方の観察範囲の表面を光学顕微鏡で撮影した画像を明暗二値化し、明暗の割合を算出した。積率の少ない方の面は多い方の面に囲まれて存在するが、その内短径が50μmを超える箇所の個数を数えた。当該箇所が7以下である場合をエッチング性最良好(◎)、10以下である場合をエッチング性良好(○)とし、10個より多かった場合をエッチング性劣(×)とした。
(Soft etching)
After soft etching, the appearance was inspected with an optical microscope. Although the surface with a smaller area ratio called dish down is surrounded by the surface with the larger area, the number of locations where the minor axis exceeds 50 μm was counted. Etching is performed for 2 minutes at room temperature using Adeka Tech CL-8 (manufactured by Adeka Co., Ltd.) as a soft etchant, and an image obtained by photographing the surface of the observation range of 1 mm square after etching with an optical microscope is converted into light and dark. The percentage of was calculated. Although the surface with the smaller volume fraction is surrounded by the surface with the larger volume, the number of locations where the inner minor axis exceeds 50 μm was counted. When the location was 7 or less, the etching property was the best (◎), and when it was 10 or less, the etching property was good (◯), and when it was more than 10, the etching property was poor (x).

(屈曲疲労特性)
厚み25μmのポリイミドフィルム(商品名:カプトンEN)に市販の熱可塑性PI接着剤を2μm塗工、乾燥して形成した27μm厚の樹脂層を銅箔に積層させて真空熱プレスによって銅張積層体を作製した。図1に示す屈曲試験装置により、屈曲疲労寿命の測定を行った。この装置は、発振駆動体4に振動伝達部材3を結合した構造になっており、被試験体1は、矢印で示したねじ2の部分と振動部3の先端部の計4点で装置に固定される。振動部3が上下に駆動すると、被試験体1の中間部は、所定の曲率半径rでヘアピン状に屈曲される。本試験では、以下の条件下で屈曲を繰り返した時の破断までの回数を求めた。
試験条件は次の通りである:試験片幅:12.7mm、試験片長さ:200mm、試験片採取方向:試験片の長さ方向が圧延方向と平行になるように採取、曲率半径r:2.5mm、振動ストローク:25mm、振動速度:1500回/分。
屈曲疲労寿命が60万回以上の場合に◎、50万回以上の場合に○、50万回未満の場合×とした。
(Bending fatigue properties)
A 27 μm thick resin layer formed by applying 2 μm of a commercially available thermoplastic PI adhesive to a polyimide film (trade name: Kapton EN) having a thickness of 25 μm and drying it is laminated on a copper foil, and a copper-clad laminate by vacuum hot pressing. Was made. The bending fatigue life was measured by the bending test apparatus shown in FIG. This apparatus has a structure in which a vibration transmitting member 3 is coupled to an oscillation driver 4, and the device under test 1 is connected to the apparatus at a total of four points: a screw 2 portion indicated by an arrow and a tip portion of the vibration portion 3. Fixed. When the vibration part 3 is driven up and down, the intermediate part of the DUT 1 is bent into a hairpin shape with a predetermined radius of curvature r. In this test, the number of times until breakage when bending was repeated under the following conditions was determined.
The test conditions are as follows: Specimen width: 12.7 mm, Specimen length: 200 mm, Specimen sampling direction: Sampled so that the length direction of the specimen is parallel to the rolling direction, radius of curvature r: 2 0.5 mm, vibration stroke: 25 mm, vibration speed: 1500 times / minute.
When the bending fatigue life is 600,000 times or more, ◎, when it is 500,000 times or more, ○, when it is less than 500,000 times, ×.

(最終圧延後の外観)
最終圧延、脱脂後に銅箔表面を市販のCCDラインセンサーにより600m2観察し、他の場所と色調が異なるスジが全くないものを◎、他の場所と色調が異なるスジが1箇所以上発生○、他の場所と色調が異なるスジが1箇所以上発生し、スジ状の部分に1箇所以上ピンホールが出来ていたものを△とした。
(Appearance after final rolling)
After final rolling and degreasing, the surface of the copper foil is observed with a commercially available CCD line sensor at 600 m 2 , and there is no streak that has a different color tone from other places. A case where one or more streaks having a color tone different from that of other places occurred and one or more pinholes were formed in the streaky portion was designated as Δ.

結果を表1に示す。実施例1〜24では、E1、E2及びΔEが共に適切に制御されていたことから、熱処理前後でシワの発生が抑制されている。また、実施例1〜24では、屈曲性に優れており、圧延、脱脂時のシワも抑制されていた。更に、実施例1〜21、23、24では、I/I0も適切に制御されており、ソフトエッチング性にも優れていた。
一方で、比較例1は最終冷間圧延の一パスあたりの加工度が大きかったため、ΔEが小さすぎたことから屈曲性が実施例に比べて劣っていた。比較例2は最終圧延の一パスあたりの加工度が低すぎたためにΔEが大きすぎたことから熱処理に伴うシワの発生が見られた。比較例3は中間焼鈍でのテンションをかけなかったためにΔEが大きすぎたことから熱処理に伴うシワの発生が見られた。
The results are shown in Table 1. In Examples 1 to 24, since E1, E2, and ΔE were all appropriately controlled, generation of wrinkles was suppressed before and after the heat treatment. Moreover, in Examples 1-24, it was excellent in the flexibility and the wrinkle at the time of rolling and degreasing was also suppressed. Further, in Examples 1 to 21, 23, and 24, I / I 0 was also appropriately controlled, and the soft etching property was excellent.
On the other hand, in Comparative Example 1, since the degree of processing per pass of the final cold rolling was large, ΔE was too small, so that the flexibility was inferior to that of the example. In Comparative Example 2, since the degree of processing per one pass of final rolling was too low, ΔE was too large, so that wrinkles due to heat treatment were observed. In Comparative Example 3, since ΔE was too large because no tension was applied in the intermediate annealing, generation of wrinkles due to heat treatment was observed.

Figure 2013191638
Figure 2013191638

(例2:特開2012−001786号公報に記載された銅箔に相当する比較例)
電気銅を真空中で溶解し、次いで、表2に示す組成の元素をそれぞれ添加し、大気中でインゴットを鋳造した。酸素含有量は大気中で鋳造したものは150〜300質量ppmであった。得られたインゴットを850℃の温度で3時間の加熱条件で加熱した後、熱間圧延を施した。次いで、表面の酸化スケールを面削により除去した後に、冷間圧延と再結晶焼鈍を繰り返し、最終の冷間圧延で厚み12μmの長尺銅箔試料を作製した。
上記の製造工程において、冷間圧延後の再結晶焼鈍はすべて650℃で10秒間の加熱条件でテンションを掛けずに行った。また、最終圧延加工度を95%〜99.9%とした。また、最終冷間圧延時の圧延油の温度を30〜40℃の範囲に調整した。
(Example 2: Comparative example corresponding to the copper foil described in JP2012-001786A)
The electrolytic copper was dissolved in a vacuum, and then elements having the compositions shown in Table 2 were added to cast the ingot in the atmosphere. What was cast in air | atmosphere was 150-300 mass ppm for oxygen content. The obtained ingot was heated at a temperature of 850 ° C. for 3 hours and then hot-rolled. Next, after removing the oxide scale on the surface by chamfering, cold rolling and recrystallization annealing were repeated, and a long copper foil sample having a thickness of 12 μm was produced by the final cold rolling.
In the above manufacturing process, all recrystallization annealing after cold rolling was performed at 650 ° C. for 10 seconds without applying tension. Further, the final rolling work degree was set to 95% to 99.9%. Moreover, the temperature of the rolling oil at the time of final cold rolling was adjusted to the range of 30-40 degreeC.

得られた銅箔試料に対して、例1と同様に特性評価を行った。また、参考用に360℃で6分間加熱プレス(プレス圧:30MPa)した後のヤング率(E3)を25℃の温度条件下で例1と同様の方法で測定した。結果を表2に示す。比較例4、6は再結晶焼鈍でテンションをかけなかったこと、最終圧延での1パスあたりの加工度を制御しなかったためにΔEが大きすぎたことから熱処理に伴うシワの発生が見られた。比較例5は最終圧延の加工度が大きすぎたためにΔEが小さすぎたことから屈曲性が実施例に比べて劣っていた。   The obtained copper foil sample was evaluated for characteristics in the same manner as in Example 1. Further, for reference, Young's modulus (E3) after heating and pressing at 360 ° C. for 6 minutes (press pressure: 30 MPa) was measured in the same manner as in Example 1 under a temperature condition of 25 ° C. The results are shown in Table 2. In Comparative Examples 4 and 6, wrinkles due to heat treatment were observed because ΔE was too large because no tension was applied by recrystallization annealing and the degree of processing per pass in final rolling was not controlled. . In Comparative Example 5, since the degree of work of the final rolling was too large, ΔE was too small, so that the flexibility was inferior to that of the example.

Figure 2013191638
Figure 2013191638

(例3:特開2009−158382号公報に記載された銅箔に相当する比較例)
電気銅を真空中で溶解し、Ar雰囲気中でインゴットを鋳造した。得られたインゴットを加熱した後、熱間圧延を施した。次いで、表面の酸化スケールを面削により除去した後に、冷間圧延と再結晶焼鈍を繰り返し、最終の冷間圧延で厚み18μmの長尺銅箔試料を作製した。但し、再結晶焼鈍においてはテンションをかけず、最終圧延での1パスあたりの加工度も制御しなかった。
(Example 3: Comparative example corresponding to the copper foil described in JP2009-158382A)
Electro-copper was melted in a vacuum and an ingot was cast in an Ar atmosphere. The obtained ingot was heated and then hot-rolled. Next, after removing the oxide scale on the surface by chamfering, cold rolling and recrystallization annealing were repeated, and a long copper foil sample having a thickness of 18 μm was produced by the final cold rolling. However, no tension was applied in the recrystallization annealing, and the degree of processing per pass in the final rolling was not controlled.

得られた銅箔試料に対して、例1と同様に特性評価を行った。また、参考用に300℃で5分間加熱プレス(プレス圧:30MPa)する前後に引張試験を行い、応力−歪み曲線における原点付近での傾き(加熱プレス前をE4、加熱プレス後をE5)を25℃の温度条件下で測定した。結果を表3に示す。比較例7、8は再結晶焼鈍でテンションをかけなかったこと、最終圧延での1パスあたりの加工度を制御しなかったためにΔEが大きすぎたことから熱処理に伴うシワの発生が見られた。   The obtained copper foil sample was evaluated for characteristics in the same manner as in Example 1. For reference, a tensile test was performed before and after heating press at 300 ° C. for 5 minutes (press pressure: 30 MPa), and the slopes near the origin in the stress-strain curve (E4 before heating press, E5 after heating press). Measurement was performed under a temperature condition of 25 ° C. The results are shown in Table 3. In Comparative Examples 7 and 8, since no tension was applied by recrystallization annealing, and the degree of processing per pass in the final rolling was not controlled, ΔE was too large, so that generation of wrinkles due to heat treatment was observed. .

Figure 2013191638
Figure 2013191638

1.被試験体
2.ねじ
3.振動伝達部材
4.発振駆動体
1. 1. Device under test Screw 3. 3. Vibration transmission member Oscillation driver

Claims (6)

25℃における圧延方向のヤング率E1がE1=80〜130GPaであり、350℃で1秒間の加熱処理をした後、25℃における圧延方向のヤング率E2がE2=60〜110GPaであり、ヤング率E1とヤング率E2の差ΔE=E1−E2が12〜33GPaであるプリント配線板用圧延銅箔。   The Young's modulus E1 in the rolling direction at 25 ° C. is E1 = 80 to 130 GPa, and after heat treatment at 350 ° C. for 1 second, the Young's modulus E2 in the rolling direction at 25 ° C. is E2 = 60 to 110 GPa. A rolled copper foil for printed wiring boards in which the difference ΔE = E1−E2 between E1 and Young's modulus E2 is 12 to 33 GPa. 350℃で1秒間の加熱処理をした後の圧延面のX線回折で求めた200回折強度(I)が、微粉末銅のX線回折で求めた200回折強度(I0)に対し、10≦I/I0≦30である請求項1に記載のプリント配線板用圧延銅箔。 The 200 diffraction intensity (I) obtained by X-ray diffraction of the rolled surface after heat treatment at 350 ° C. for 1 second is 10 times the 200 diffraction intensity (I 0 ) obtained by X-ray diffraction of fine powder copper. The rolled copper foil for printed wiring boards according to claim 1, wherein ≦ I / I 0 ≦ 30. 25℃における圧延方向のヤング率E1がE1=85〜125GPaであり、350℃で1秒間の加熱処理をした後、25℃における圧延方向のヤング率E2がE2=65〜100GPaである請求項1又は2に記載のプリント配線板用圧延銅箔。   The Young's modulus E1 in the rolling direction at 25 ° C. is E1 = 85 to 125 GPa, and after heat treatment at 350 ° C. for 1 second, the Young's modulus E2 in the rolling direction at 25 ° C. is E2 = 65 to 100 GPa. Or the rolled copper foil for printed wiring boards of 2. ΔEが15〜30GPaであるプリント配線板用圧延銅箔。   The rolled copper foil for printed wiring boards whose (DELTA) E is 15-30GPa. 請求項1〜4の何れか一項記載のプリント配線板用圧延銅箔を備えた銅張積層板。   The copper clad laminated board provided with the rolled copper foil for printed wiring boards as described in any one of Claims 1-4. 請求項5記載の銅張積層板を材料とするプリント配線板。   A printed wiring board made of the copper clad laminate according to claim 5.
JP2012055117A 2012-03-12 2012-03-12 Rolled copper foil for printed wiring boards Active JP5753115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012055117A JP5753115B2 (en) 2012-03-12 2012-03-12 Rolled copper foil for printed wiring boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012055117A JP5753115B2 (en) 2012-03-12 2012-03-12 Rolled copper foil for printed wiring boards

Publications (2)

Publication Number Publication Date
JP2013191638A true JP2013191638A (en) 2013-09-26
JP5753115B2 JP5753115B2 (en) 2015-07-22

Family

ID=49391619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012055117A Active JP5753115B2 (en) 2012-03-12 2012-03-12 Rolled copper foil for printed wiring boards

Country Status (1)

Country Link
JP (1) JP5753115B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017043789A (en) * 2015-08-24 2017-03-02 Dowaメタルテック株式会社 Cu-Ni-Co-Si-BASED HIGH STRENGTH COPPER ALLOY THIN SHEET MATERIAL AND MANUFACTURING METHOD THEREFOR, AND CONDUCTIVE SPRING MEMBER
JP2017183459A (en) * 2016-03-30 2017-10-05 Jx金属株式会社 Copper foil, copper clad laminate sheet, flexible printed circuit board and electronic apparatus
WO2017095346A3 (en) * 2015-11-30 2017-10-12 Dokuz Eylul Universitesi Rektorlugu Method of producing antibacterial copper sheets having a shape being suitable to coat the surface of objects and their uses
JP2023024926A (en) * 2021-08-09 2023-02-21 ▲き▼邦科技股▲分▼有限公司 Flexible circuit board and heat sink thereof

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11286760A (en) * 1998-03-31 1999-10-19 Nippon Mining & Metals Co Ltd Rolled copper foil and its production
JP2000192172A (en) * 1998-12-28 2000-07-11 Nippon Mining & Metals Co Ltd Rolled copper foil flexible printed circuit board and its production
JP2001058203A (en) * 1999-08-19 2001-03-06 Nippon Mining & Metals Co Ltd Rolled copper foil excellent in bendability
JP2001144391A (en) * 1999-11-16 2001-05-25 Nippon Mining & Metals Co Ltd Rolled copper foil for printed circuit board and manufacturing method therefor
JP2002167632A (en) * 2000-11-29 2002-06-11 Nippon Mining & Metals Co Ltd Rolled copper foil for flexible printed circuit board and its production method
JP2003092526A (en) * 2001-07-11 2003-03-28 Matsushita Electric Ind Co Ltd Interdigital transducer, surface acoustic wave filter and communication equipment using the same
JP2003253357A (en) * 2002-02-27 2003-09-10 Nippon Mining & Metals Co Ltd Rolled copper foil for copper-clad laminate and its manufacturing method (2)
JP2007106107A (en) * 2005-07-29 2007-04-26 Sumitomo Chemical Co Ltd Laminate of liquid crystalline polyester with copper foil
JP2009108376A (en) * 2007-10-31 2009-05-21 Nikko Kinzoku Kk Copper foil and flexible printed circuit board using the same
JP2009242846A (en) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd Copper alloy foil
JP2010100887A (en) * 2008-10-23 2010-05-06 Nippon Mining & Metals Co Ltd Copper foil excellent in flexibility, and flexible copper clad laminated sheet
JP2011153360A (en) * 2010-01-28 2011-08-11 Jx Nippon Mining & Metals Corp Rolled copper alloy foil for double-sided copper-clad laminated plate, and method for producing double-sided copper-clad laminated plate using the same
JP2011174156A (en) * 2010-02-25 2011-09-08 Jx Nippon Mining & Metals Corp Rolled copper alloy foil for double-sided copper clad laminated plate and method for manufacturing double-sided copper clad laminated plate using the same
JP2012001786A (en) * 2010-06-18 2012-01-05 Jx Nippon Mining & Metals Corp Flexible copper-clad laminate, and method of manufacturing the same
JP2012041574A (en) * 2010-08-13 2012-03-01 Jx Nippon Mining & Metals Corp Copper foil for flexible printed wiring board and method for manufacturing the same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11286760A (en) * 1998-03-31 1999-10-19 Nippon Mining & Metals Co Ltd Rolled copper foil and its production
JP2000192172A (en) * 1998-12-28 2000-07-11 Nippon Mining & Metals Co Ltd Rolled copper foil flexible printed circuit board and its production
JP2001058203A (en) * 1999-08-19 2001-03-06 Nippon Mining & Metals Co Ltd Rolled copper foil excellent in bendability
JP2001144391A (en) * 1999-11-16 2001-05-25 Nippon Mining & Metals Co Ltd Rolled copper foil for printed circuit board and manufacturing method therefor
JP2002167632A (en) * 2000-11-29 2002-06-11 Nippon Mining & Metals Co Ltd Rolled copper foil for flexible printed circuit board and its production method
JP2003092526A (en) * 2001-07-11 2003-03-28 Matsushita Electric Ind Co Ltd Interdigital transducer, surface acoustic wave filter and communication equipment using the same
JP2003253357A (en) * 2002-02-27 2003-09-10 Nippon Mining & Metals Co Ltd Rolled copper foil for copper-clad laminate and its manufacturing method (2)
JP2007106107A (en) * 2005-07-29 2007-04-26 Sumitomo Chemical Co Ltd Laminate of liquid crystalline polyester with copper foil
JP2009108376A (en) * 2007-10-31 2009-05-21 Nikko Kinzoku Kk Copper foil and flexible printed circuit board using the same
JP2009242846A (en) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd Copper alloy foil
JP2010100887A (en) * 2008-10-23 2010-05-06 Nippon Mining & Metals Co Ltd Copper foil excellent in flexibility, and flexible copper clad laminated sheet
JP2011153360A (en) * 2010-01-28 2011-08-11 Jx Nippon Mining & Metals Corp Rolled copper alloy foil for double-sided copper-clad laminated plate, and method for producing double-sided copper-clad laminated plate using the same
JP2011174156A (en) * 2010-02-25 2011-09-08 Jx Nippon Mining & Metals Corp Rolled copper alloy foil for double-sided copper clad laminated plate and method for manufacturing double-sided copper clad laminated plate using the same
JP2012001786A (en) * 2010-06-18 2012-01-05 Jx Nippon Mining & Metals Corp Flexible copper-clad laminate, and method of manufacturing the same
JP2012041574A (en) * 2010-08-13 2012-03-01 Jx Nippon Mining & Metals Corp Copper foil for flexible printed wiring board and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017043789A (en) * 2015-08-24 2017-03-02 Dowaメタルテック株式会社 Cu-Ni-Co-Si-BASED HIGH STRENGTH COPPER ALLOY THIN SHEET MATERIAL AND MANUFACTURING METHOD THEREFOR, AND CONDUCTIVE SPRING MEMBER
WO2017095346A3 (en) * 2015-11-30 2017-10-12 Dokuz Eylul Universitesi Rektorlugu Method of producing antibacterial copper sheets having a shape being suitable to coat the surface of objects and their uses
JP2017183459A (en) * 2016-03-30 2017-10-05 Jx金属株式会社 Copper foil, copper clad laminate sheet, flexible printed circuit board and electronic apparatus
JP2023024926A (en) * 2021-08-09 2023-02-21 ▲き▼邦科技股▲分▼有限公司 Flexible circuit board and heat sink thereof

Also Published As

Publication number Publication date
JP5753115B2 (en) 2015-07-22

Similar Documents

Publication Publication Date Title
WO2012128099A1 (en) Copper foil and copper-clad laminate obtained using same
JP3824593B2 (en) Rolled copper foil with high elongation
JP2006281249A (en) High gloss rolled copper foil for copper-clad laminated substrate, and method for producing the same
TWI526553B (en) Flexible laminates for flexible wiring
JP2008294432A (en) Printed wiring board, method of manufacturing the same, and electrolytic copper foil for copper clad laminate used for manufacturing printed wiring board
TWI588273B (en) Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board and electronic equipment
JP5753115B2 (en) Rolled copper foil for printed wiring boards
KR20170093706A (en) Copper foil for flexible printed wiring board, copper-clad laminate using the same, flexible printed wiring board and electronic device
TWI687526B (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board and electronic equipment
TWI730280B (en) Copper foil for flexible printed circuit boards, copper-clad laminates using the same, flexible printed circuit boards and electronic devices
JP5694094B2 (en) Copper foil for flexible printed wiring board, copper-clad laminate, flexible printed wiring board, and electronic device
TW201920700A (en) Copper foil for flexible printed circuit and copper clad laminate and flexible printed circuit and electronic device using the same
JP5933943B2 (en) Rolled copper foil for flexible printed wiring boards, copper-clad laminates, flexible printed wiring boards, and electronic equipment
JP2011153360A (en) Rolled copper alloy foil for double-sided copper-clad laminated plate, and method for producing double-sided copper-clad laminated plate using the same
TWI718025B (en) Copper foil for flexible printed circuit boards, copper-clad laminates, flexible printed circuit boards and electronic devices using the same
TWI715964B (en) Copper foil for flexible printed circuit boards, copper-clad laminates, flexible printed circuit boards and electronic devices using the same
JP6647253B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP5373453B2 (en) Copper foil for printed wiring boards
JP2016079423A (en) Rolled copper foil, copper-clad laminate, flexible printed wiring board, electronic equipment, and method for manufacturing rolled copper foil
TW201247041A (en) Method for forming electronic circuit, electronic circuit, and copper-clad laminated board for forming electronic circuit
KR101721314B1 (en) Rolled copper foil, copper clad laminate, and flexible printed board and electronic device
TWI741365B (en) Copper foil for flexible printed circuit boards, copper-clad laminates using the same, flexible printed circuit boards and electronic devices
TWI852523B (en) Copper foil for flexible printed circuit board, copper-clad multilayer using the same, flexible printed circuit board and electronic device
JP6712561B2 (en) Rolled copper foil for flexible printed circuit board, copper clad laminate using the same, flexible printed circuit board, and electronic device
TW202428899A (en) Copper foil for flexible printed substrate, and copper-clad laminate, flexible printed substrate and electronic device using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150203

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150521

R150 Certificate of patent or registration of utility model

Ref document number: 5753115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250