JP5933943B2 - Rolled copper foil for flexible printed wiring boards, copper-clad laminates, flexible printed wiring boards, and electronic equipment - Google Patents

Rolled copper foil for flexible printed wiring boards, copper-clad laminates, flexible printed wiring boards, and electronic equipment Download PDF

Info

Publication number
JP5933943B2
JP5933943B2 JP2011191083A JP2011191083A JP5933943B2 JP 5933943 B2 JP5933943 B2 JP 5933943B2 JP 2011191083 A JP2011191083 A JP 2011191083A JP 2011191083 A JP2011191083 A JP 2011191083A JP 5933943 B2 JP5933943 B2 JP 5933943B2
Authority
JP
Japan
Prior art keywords
area
copper foil
measurement point
printed wiring
flexible printed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011191083A
Other languages
Japanese (ja)
Other versions
JP2013055162A (en
Inventor
和樹 冠
和樹 冠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2011191083A priority Critical patent/JP5933943B2/en
Publication of JP2013055162A publication Critical patent/JP2013055162A/en
Application granted granted Critical
Publication of JP5933943B2 publication Critical patent/JP5933943B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、フレキシブルプリント配線板用銅箔、銅張積層板、フレキシブルプリント配線板及び電子機器に関する。   The present invention relates to a copper foil for a flexible printed wiring board, a copper clad laminate, a flexible printed wiring board, and an electronic device.

フレキシブルプリント配線板は、曲げ、ねじり、巻き付け及び重ね等が可能な軟らかいプリント配線板であり、又、狭空間に実装可能であるため、携帯電話、コンピュータ関連製品、オーディオ・ビジュアル製品、カメラ及び自動車等の配線に使用されている。
フレキシブルプリント配線板に求められる特性としては、MIT屈曲性に代表される良好な折り曲げ性、及び、IPC屈曲性に代表される高サイクル屈曲性があり、従来、このような特性を備えた銅箔や銅−樹脂基板積層体が開発されている(特許文献1〜3)。
Flexible printed wiring boards are soft printed wiring boards that can be bent, twisted, wound, and stacked, and can be mounted in narrow spaces, so mobile phones, computer-related products, audio-visual products, cameras, and automobiles. Used for wiring.
The characteristics required for a flexible printed wiring board include good bendability represented by MIT bendability and high cycle bendability represented by IPC bendability. Conventionally, copper foil having such characteristics And copper-resin substrate laminates have been developed (Patent Documents 1 to 3).

特開2010−100887号公報JP 2010-100877 A 特開2009−111203号公報JP 2009-111203 A 特開2007−207812号公報JP 2007-207812 A

フレキシブルプリント配線板は、小スペース化のために折り曲げて使用される場合があるが、近年、このような折り曲げの曲げ半径が小さくなっており、MIT屈曲性試験では評価できないほど過酷な状態で使用されている。特にタッチパネル式のスマートフォンに代表される小型機器ではタッチパネルにつながるフレキシブルプリント配線板やLEDモジュールのフレキシブルプリント配線板の折り曲げが過酷となっている。   Flexible printed wiring boards are sometimes used by being folded to reduce space, but in recent years, the bending radius of such bending has become small, and it is used in such a harsh state that it cannot be evaluated by the MIT flexibility test. Has been. In particular, in a small device represented by a touch panel type smartphone, bending of a flexible printed wiring board connected to the touch panel and a flexible printed wiring board of an LED module is severe.

上述のように厳しい折り曲げ加工を施したフレキシブルプリント配線板を一度他の部品へ接続した後、やり直し等で、折り曲げ加工を元の状態に戻して、再度同様に厳しい折り曲げ加工を施すことがあるが、折り曲げ加工が厳しいと、これらを数回繰り返すだけでフレキシブルプリント配線板の銅箔が割れてしまうことがある。また、MIT屈曲性試験では数百回、数千回繰り返して曲げ加工を施しても割れない銅箔が、上述の厳しい折り曲げ加工を数回繰り返しただけで割れてしまうことがある。   After connecting a flexible printed wiring board that has been subjected to strict bending as described above to other parts, the bending process may be restored to the original state by redoing, etc. If the bending process is severe, the copper foil of the flexible printed wiring board may be broken only by repeating these several times. Moreover, in the MIT bendability test, a copper foil that does not break even if it is bent several hundreds or thousands of times may be broken only by repeating the above-mentioned severe bending process several times.

そこで、本発明は、折り曲げ加工性に優れたフレキシブルプリント配線板用銅箔、及び、それを用いた銅張積層板、フレキシブルプリント配線板及び電子機器を提供することを課題とする。   Then, this invention makes it a subject to provide the copper foil for flexible printed wiring boards excellent in bending workability, the copper clad laminated board using the same, a flexible printed wiring board, and an electronic device.

本発明者は、銅箔の折り曲げ加工性が、銅箔の結晶粒内の結晶方位に生じる微小な角度差の割合と関係があることを見出した。そして、このような知見に基づき結晶方位の角度差を制御することで、折り曲げ加工性に優れたフレキシブルプリント配線板用銅箔を提供することができることを見出した。   The present inventor has found that the bending workability of the copper foil is related to the ratio of a minute angle difference generated in the crystal orientation in the crystal grain of the copper foil. And it discovered that the copper foil for flexible printed wiring boards excellent in bending workability can be provided by controlling the angle difference of crystal orientation based on such knowledge.

以上の知見を基礎として完成した本発明は一側面において、銅箔断面において、金属組織の測定点aに電子線を照射して得られた結晶方位と、前記測定点aの周囲に200nm離間して位置する複数の隣接測定点に電子線を照射して得られた結晶方位との方位角度差の平均値が0.4゜未満である前記測定点aを中心とし、前記測定点aと各辺との距離がそれぞれ100nmである正六角形の面積を面積Aとし、前記面積Aの合計を面積ATとし、
銅箔断面において、金属組織の測定点bに電子線を照射して得られた結晶方位と、前記測定点bの周囲に200nm離間して位置する複数の隣接測定点に電子線を照射して得られた結晶方位との方位角度差の平均値が0.4゜以上2.0゜未満である前記測定点bを中心とし、前記測定点bと各辺との距離がそれぞれ100nmである正六角形の面積を面積Bとし、前記面積Bの合計を面積BTとしたときに、
22(%) ≦ 面積BT/面積AT×100(%) ≦ 40(%)
を満たすフレキシブルプリント配線板用圧延銅箔である。
The present invention completed on the basis of the above knowledge is, in one aspect, in the copper foil cross section, the crystal orientation obtained by irradiating the measurement point a of the metal structure with an electron beam and the measurement point a around 200 nm apart. Centered on the measurement point a having an average value of the azimuth angle difference with the crystal orientation obtained by irradiating an electron beam to a plurality of adjacent measurement points positioned at The area of a regular hexagon whose distance from each side is 100 nm is area A, and the total of the areas A is area AT,
In the copper foil cross section, the crystal orientation obtained by irradiating the electron beam to the measurement point b of the metal structure and the electron beam is irradiated to a plurality of adjacent measurement points located 200 nm apart around the measurement point b. A center of the measurement point b where the average value of the orientation angle difference from the obtained crystal orientation is not less than 0.4 ° and less than 2.0 °, and the distance between the measurement point b and each side is 100 nm. When the area of the square is area B and the total of area B is area BT,
22 (%) ≦ area BT / area AT × 100 (%) ≦ 40 (%)
It is the rolled copper foil for flexible printed wiring boards that satisfies the above.

本発明は別の一側面において、200〜350℃で30分間の熱処理が行われたときに、銅箔断面において、金属組織の測定点aに電子線を照射して得られた結晶方位と、前記測定点aの周囲に200nm離間して位置する複数の隣接測定点に電子線を照射して得られた結晶方位との方位角度差の平均値が0.4゜未満である前記測定点aを中心とし、前記測定点aと各辺との距離がそれぞれ100nmである正六角形の面積を面積Aとし、前記面積Aの合計を面積ATとし、
銅箔断面において、金属組織の測定点bに電子線を照射して得られた結晶方位と、前記測定点bの周囲に200nm離間して位置する複数の隣接測定点に電子線を照射して得られた結晶方位との方位角度差の平均値が0.4゜以上2.0゜未満である前記測定点bを中心とし、前記測定点bと各辺との距離がそれぞれ100nmである正六角形の面積を面積Bとし、前記面積Bの合計を面積BTとしたときに、
22(%) ≦ 面積BT/面積AT×100(%) ≦ 40(%)
を満たすフレキシブルプリント配線板用圧延銅箔である。
In another aspect of the present invention, when heat treatment is performed at 200 to 350 ° C. for 30 minutes, in the copper foil cross section, the crystal orientation obtained by irradiating the measurement point a of the metal structure with an electron beam, The measurement point a in which the average value of the azimuth angle differences from the crystal orientation obtained by irradiating a plurality of adjacent measurement points positioned around the measurement point a by 200 nm with an electron beam is less than 0.4 °. The area of a regular hexagon whose distance between the measurement point a and each side is 100 nm is defined as area A, and the total of the areas A is defined as area AT,
In the copper foil cross section, the crystal orientation obtained by irradiating the electron beam to the measurement point b of the metal structure and the electron beam is irradiated to a plurality of adjacent measurement points located 200 nm apart around the measurement point b. A center of the measurement point b where the average value of the orientation angle difference from the obtained crystal orientation is not less than 0.4 ° and less than 2.0 °, and the distance between the measurement point b and each side is 100 nm. When the area of the square is area B and the total of area B is area BT,
22 (%) ≦ area BT / area AT × 100 (%) ≦ 40 (%)
It is the rolled copper foil for flexible printed wiring boards that satisfies the above.

本発明に係るフレキシブルプリント配線板用圧延銅箔の別の実施形態においては、ポリイミド樹脂層及び熱可塑性ポリイミド接着層で形成された厚さ10〜60μmの基材に、厚さ4〜50μmとした銅箔を積層して熱圧着により形成した銅張積層板に対し、180゜密着曲げを一回実施した後、曲げ部を直線状に戻して、曲げ方向と平行な方向で切断して得た前記銅箔の曲げ部の断面において、
22(%) ≦ 面積BT/面積AT×100(%) ≦ 40(%)
を満たす。
In another embodiment of the rolled copper foil for a flexible printed wiring board according to the present invention, a thickness of 4 to 50 μm is formed on a 10 to 60 μm thick substrate formed of a polyimide resin layer and a thermoplastic polyimide adhesive layer. A copper clad laminate formed by laminating copper foil and thermocompression bonding was subjected to 180 ° contact bending once, and then the bent portion was returned to a straight line and cut in a direction parallel to the bending direction. In the cross section of the bent portion of the copper foil,
22 (%) ≦ area BT / area AT × 100 (%) ≦ 40 (%)
Meet.

本発明に係るフレキシブルプリント配線板用圧延銅箔の更に別の実施形態においては、不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiが、合計で20質量ppm以下である。
In still another embodiment of the rolled copper foil for flexible printed wiring board according to the present invention, P, Fe, Zr, Mg, S, Ge and Ti as inevitable impurities are 20 ppm by mass or less in total. .

本発明に係るフレキシブルプリント配線板用圧延銅箔の更に別の実施形態においては、Ag、In、Au、Pd及びSnを合計で20〜500質量ppm含む。
In still another embodiment of the rolled copper foil for flexible printed wiring board according to the present invention, Ag, In, Au, Pd and Sn are contained in a total of 20 to 500 ppm by mass.

本発明は別の一側面において、本発明に係る圧延銅箔を備えた銅張積層板である。

In another aspect, the present invention is a copper clad laminate provided with the rolled copper foil according to the present invention.

本発明は更に別の一側面において、本発明に係る銅張積層板を材料としたフレキシブルプリント配線板である。   In still another aspect, the present invention is a flexible printed wiring board made of the copper clad laminate according to the present invention.

本発明は更に別の一側面において、本発明に係るフレキシブルプリント配線板と、前記フレキシブルプリント配線板で電気的に接続された第1の基板及び第2の基板とを備えた電子機器である。   In still another aspect, the present invention is an electronic device including the flexible printed wiring board according to the present invention, and a first substrate and a second substrate electrically connected by the flexible printed wiring board.

本発明によれば、折り曲げ加工性に優れたフレキシブルプリント配線板用銅箔、及び、それを用いた銅張積層板、フレキシブルプリント配線板及び電子機器を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the copper foil for flexible printed wiring boards excellent in bending workability, the copper clad laminated board using the same, a flexible printed wiring board, and an electronic device can be provided.

銅箔の結晶方位の測定態様を示す模式図である。It is a schematic diagram which shows the measurement aspect of the crystal orientation of copper foil. 180゜密着曲げの態様を示す模式図である。It is a schematic diagram which shows the aspect of 180 degree contact | adherence bending. 180゜密着曲げの銅張積層板の曲げ方向を示す模式図である。It is a schematic diagram which shows the bending direction of the copper clad laminated board of 180 degree | times adhesion bending.

(フレキシブルプリント配線板用銅箔の構成)
フレキシブルプリント配線板用銅箔の材料としては、圧延銅箔及び電解銅箔のいずれを用いてもよいが、折り曲げ加工性が良好な圧延銅箔を用いることが好ましい。圧延銅箔としては、タフピッチ銅(JIS−H3100 C1100)や無酸素銅(JIS−H3100 C1020、JIS−H3510 C1011)が使用可能である。
本明細書において「銅箔」には銅合金箔も含まれ、「タフピッチ銅」及び「無酸素銅」で形成した銅箔には、タフピッチ銅及び無酸素銅をベースとした銅合金箔も含まれる。タフピッチ銅及び無酸素銅をベースした銅合金箔は、具体的には、Ag、In、Au、Pd及びSnからなる群から選択された1種又は2種以上を合計で20〜500質量ppm含むことが、後述の銅箔断面における面積BT/面積AT×100(%)を小さくする効果があるため好ましい。当該金属が合計で20質量ppm未満であれば望ましい効果が得られず、500質量ppm超であれば面積BT/面積AT×100(%)が大き過ぎてこちらも望ましい効果が得られなくなる。
(Configuration of copper foil for flexible printed wiring board)
As a material for the copper foil for a flexible printed wiring board, either a rolled copper foil or an electrolytic copper foil may be used, but it is preferable to use a rolled copper foil having good bending workability. As the rolled copper foil, tough pitch copper (JIS-H3100 C1100) or oxygen-free copper (JIS-H3100 C1020, JIS-H3510 C1011) can be used.
In this specification, “copper foil” includes copper alloy foil, and copper foil formed of “tough pitch copper” and “oxygen-free copper” includes copper alloy foil based on tough pitch copper and oxygen-free copper. It is. Specifically, the copper alloy foil based on tough pitch copper and oxygen-free copper contains 20 to 500 mass ppm in total of one or more selected from the group consisting of Ag, In, Au, Pd and Sn. It is preferable because there is an effect of reducing the area BT / area AT × 100 (%) in the copper foil cross section described later. If the total amount of the metals is less than 20 ppm by mass, the desired effect cannot be obtained, and if it exceeds 500 ppm by mass, the area BT / area AT × 100 (%) is too large and the desired effect cannot be obtained.

本発明に係る銅箔は、工業的に使用される銅で形成されており、99.9質量%、又は、99.99質量%の銅、及び、不可避的不純物を含んでいる。このうち、不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiは、微少量であっても後述の銅箔断面における面積BT/面積AT×100(%)を大きくしてしまう。このため、本発明に係る銅箔は、不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiからなる群から選択された1種又は2種以上を合計で20質量ppm以下に制御することが好ましい。
一般に、銅箔は、薄く加工すると取り扱う際に歪が入ってしまうため、曲げる前から面積BT/面積AT×100(%)が大きな値になっている。また、銅箔断面において結晶粒界や隣接する結晶粒との方位関係により面積BT/面積AT×100(%)がより大きくなり易いことがある。さらに、180゜に折り曲げた後も結晶粒界や隣接する結晶粒界との方位関係、又は、曲げる前から存在していた歪の存在により面積BT/面積AT×100(%)が大きくなることがある。なお、本発明では、銅箔の曲げ部の断面で観察したときの面積BT/面積AT×100(%)を制御しているが、これは曲げ加工を行ったときに断面に蓄積された歪の量(面積BT/面積AT×100(%)に相当)が割れに影響を与えるためである。銅箔表面の面積BT/面積ATが高くても、銅箔内部の面積BT/面積ATが低ければ曲げ加工を受けても割れ難い等、銅箔表面の面積BT/面積AT×100(%)を制御しても効果的ではないためである。これに対し、本発明に係る銅箔は、上述のように不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiからなる群から選択された1種又は2種以上を合計で20質量ppm以下に制御することで、面積BT/面積AT×100(%)が大きくならないように制御することができる。
The copper foil which concerns on this invention is formed with the copper used industrially, and contains 99.9 mass% or 99.99 mass% copper and an unavoidable impurity. Among these, P, Fe, Zr, Mg, S, Ge, and Ti as unavoidable impurities increase the area BT / area AT × 100 (%) in the copper foil cross section described later even if they are very small amounts. . For this reason, the copper foil which concerns on this invention makes 1 mass or 2 types or more selected from the group which consists of P, Fe, Zr, Mg, S, Ge, and Ti as an unavoidable impurity to 20 mass ppm or less in total It is preferable to control.
In general, since copper foil is distorted when it is processed thinly, the area BT / area AT × 100 (%) has a large value before bending. Further, the area BT / area AT × 100 (%) may be more likely to be larger depending on the orientation relation with the crystal grain boundary and adjacent crystal grains in the copper foil cross section. Furthermore, the area BT / area AT × 100 (%) is increased even after being bent by 180 ° due to the orientation relationship with the crystal grain boundary and the adjacent crystal grain boundary, or the presence of the strain existing before the bending. There is. In the present invention, the area BT / area AT × 100 (%) when observed in the cross section of the bent portion of the copper foil is controlled. This is the strain accumulated in the cross section when the bending process is performed. This is because the amount (corresponding to area BT / area AT × 100 (%)) affects cracking. Even if the area BT / area AT of the copper foil surface is high or the area BT / area AT inside the copper foil is low, the copper foil surface area BT / area AT × 100 (%) This is because it is not effective to control the above. On the other hand, the copper foil according to the present invention is a total of one or more selected from the group consisting of P, Fe, Zr, Mg, S, Ge and Ti as inevitable impurities as described above. By controlling to 20 mass ppm or less, the area BT / area AT × 100 (%) can be controlled not to increase.

本発明に係る銅箔の厚さとしては、4〜50μmが好ましく、6〜50μmがより好ましい。銅箔の厚さが4μm未満であると銅箔のハンドリングが悪くなり、50μm超であるとフレキシブル性が低下する。また、銅箔の厚さが薄くなると、初めから後述の面積BTの面積ATに対する割合が大きくなる傾向にあり、特に厚さが12μm以下でその傾向が顕著となる。また35μm以上であると曲げ後にスプリングバックによる折り曲げ形状を保てない傾向がある。このため、銅箔の厚さは、12〜35μmが更に好ましい。   As thickness of the copper foil which concerns on this invention, 4-50 micrometers is preferable and 6-50 micrometers is more preferable. When the thickness of the copper foil is less than 4 μm, the handling of the copper foil is deteriorated, and when it is more than 50 μm, the flexibility is lowered. Further, when the thickness of the copper foil is reduced, the ratio of the area BT described later to the area AT tends to increase from the beginning, and this tendency becomes particularly noticeable when the thickness is 12 μm or less. Further, when it is 35 μm or more, there is a tendency that the bent shape by the springback cannot be maintained after bending. For this reason, as for the thickness of copper foil, 12-35 micrometers is still more preferable.

本発明に係る銅箔は、異なる測定点における結晶方位の方位角度差が制御されている。具体的には、まず、銅箔断面において、結晶の金属組織の測定点aを決定する。この測定点aは、電子線を照射して得られた結晶方位と、測定点aの周囲に200nm離間して位置する6点の隣接測定点に電子線を照射して得られた結晶方位との方位角度差の平均値が0.4°未満である。また、銅箔断面において、結晶の金属組織の測定点bを決定する。この測定点bは、電子線を照射して得られた結晶方位と、測定点bの周囲に200nm離間して位置する6点の隣接測定点に電子線を照射して得られた結晶方位との方位角度差の平均値が0.4°以上2.0°未満である。なお、測定点と隣接測定点の結晶方位との方位角度差が2.0°以上である隣接測定点は結晶粒界であると判定し、上記方位角度差の平均値の算出においては考慮しなかった。そのため、例えば6点の隣接測定点の内、2点が結晶粒界であると判定された場合、測定点の電子線を照射して得られた結晶方位と結晶粒界以外の残りの4点の隣接測定点の結晶方位との方位角度差の平均値が、測定点の電子線を照射して得られた結晶方位と隣接測定点に電子線を照射して得られた結晶方位との方位角度差の平均値となる。
本発明に係る銅箔は、測定点aを中心とし、測定点aと各辺との距離がそれぞれ100nmである正六角形の面積を面積Aとし、前記面積Aの合計を面積ATとし、測定点bを中心とし、測定点bと各辺との距離がそれぞれ100nmである正六角形の面積を面積Bとし、前記面積Bの合計を面積BTとしたときに、
面積BT/面積AT×100(%) ≦ 40(%)
を満たす。
上記の条件は、後述の積層体に形成された後の銅箔、又は、当該積層体作製時と同様の200〜350℃で30分間の熱処理が行われた後の銅箔について行ったときに測定して得られるものである。
In the copper foil according to the present invention, the azimuth angle difference between crystal orientations at different measurement points is controlled. Specifically, first, the measurement point a of the metal structure of the crystal is determined in the copper foil cross section. This measurement point a includes a crystal orientation obtained by irradiating an electron beam, and a crystal orientation obtained by irradiating an electron beam to six adjacent measurement points located 200 nm apart around the measurement point a. The average value of the azimuth angle differences is less than 0.4 °. Moreover, the measurement point b of the metal structure of the crystal is determined in the copper foil cross section. The measurement point b includes a crystal orientation obtained by irradiating an electron beam, and a crystal orientation obtained by irradiating an electron beam to six adjacent measurement points located 200 nm apart around the measurement point b. The average value of the azimuth angle differences is 0.4 ° or more and less than 2.0 °. In addition, it is determined that the adjacent measurement point where the azimuth angle difference between the measurement point and the crystal orientation of the adjacent measurement point is 2.0 ° or more is a crystal grain boundary, and is taken into consideration in calculating the average value of the above azimuth angle difference. There wasn't. Therefore, for example, when it is determined that two of the six adjacent measurement points are crystal grain boundaries, the crystal orientation obtained by irradiating the electron beam at the measurement point and the remaining four points other than the crystal grain boundaries The average value of the orientation angle difference from the crystal orientation of the adjacent measurement point is the orientation between the crystal orientation obtained by irradiating the electron beam at the measurement point and the crystal orientation obtained by irradiating the adjacent measurement point with the electron beam. The average value of the angle difference.
In the copper foil according to the present invention, the area of the regular hexagon centering on the measurement point a and the distance between the measurement point a and each side being 100 nm is defined as area A, and the total of the areas A is defined as area AT. When the area of the regular hexagon centered on b and the distance between the measurement point b and each side is 100 nm is area B, and the total of the areas B is area BT,
Area BT / Area AT x 100 (%) ≤ 40 (%)
Meet.
When the above conditions are performed on a copper foil after being formed in a laminated body described later, or a copper foil after being subjected to a heat treatment at 200 to 350 ° C. for 30 minutes similar to that at the time of producing the laminated body It is obtained by measurement.

図1に、本発明に係る銅箔の結晶方位の測定態様を表す模式図を示す。まず測定点を決定する。図1では、測定点a又はbを、No.1(以下、測定点1という)と記載している。また、測定点1を中心とし、測定点1と各辺との距離がそれぞれ100nmである正六角形を決定する。隣接測定点(測定点2〜7)は、この測定点1を中心にして、周囲に200nm離間して位置する。そして、測定点1〜7について電子線を照射して得られた結晶方位を測定し、測定点1と、測定点2〜7の方位角度差をそれぞれ求める。このようにして求めた方位角度差の平均値が0.4°未満であるとき、その測定点1を測定点aとし、測定点aを中心とする正六角形の面積を面積Aとする。また、方位角度差の平均値が0.4°以上2.0°未満であるとき、その測定点1を測定点bとし、測定点bを中心とする正六角形の面積を面積Bとする。   In FIG. 1, the schematic diagram showing the measurement aspect of the crystal orientation of the copper foil which concerns on this invention is shown. First, the measurement point is determined. In FIG. 1 (hereinafter referred to as measurement point 1). Further, a regular hexagon having the measurement point 1 as the center and the distance between the measurement point 1 and each side being 100 nm is determined. Adjacent measurement points (measurement points 2 to 7) are located around the measurement point 1 and spaced apart by 200 nm. And the crystal orientation obtained by irradiating an electron beam about the measurement points 1-7 is measured, and the azimuth | direction angle difference of the measurement point 1 and the measurement points 2-7 is calculated | required, respectively. When the average value of the azimuth angle differences thus obtained is less than 0.4 °, the measurement point 1 is defined as the measurement point a, and the regular hexagonal area centered on the measurement point a is defined as the area A. Further, when the average value of the azimuth angle difference is 0.4 ° or more and less than 2.0 °, the measurement point 1 is defined as a measurement point b, and the area of a regular hexagon centering on the measurement point b is defined as an area B.

さらに、これらの隣接測定点(測定点2〜7)について、測定点1と同様に、それぞれを中心として各辺との距離がそれぞれ100nmである正六角形を決定する。このように正六角形を順に決定していくと、図1に示すように互いに接し合う複数の正六角形で銅箔の金属組織が埋められていく。そして、各測定点についても上述と同様にして測定点aかbかを判定し、面積A又はBを求める。このようにして得られた各測定点における面積Aの合計を面積ATとし、各測定点における面積Bの合計を面積BTとしたとき、面積BT/面積AT×100(%) ≦ 40(%)を満たしている、すなわち、面積ATに対する面積BTが40%以下となっている。銅箔断面において、結晶方位の方位角度差の平均値が0.4°以上2.0°未満である領域の面積が、0.4°未満である領域の面積よりも小さければ小さいほど、折り曲げ加工性が良好となることを発明者は見出している。この点、本発明に係る銅箔はこのような構成により0.4°以上2.0°未満である領域の面積BTが0.4°未満である領域の面積ATに対して40%以下と小さいため、良好な折り曲げ加工性を有している。また、この場合の面積BTは、より好ましくは面積ATに対して20%以下である。   Further, for these adjacent measurement points (measurement points 2 to 7), similarly to the measurement point 1, a regular hexagon whose distance from each side is 100 nm is determined. When the regular hexagons are sequentially determined in this way, the metal structure of the copper foil is filled with a plurality of regular hexagons in contact with each other as shown in FIG. Then, the measurement points a or b are determined for each measurement point in the same manner as described above, and the area A or B is obtained. When the total area A at each measurement point thus obtained is defined as area AT and the total area B at each measurement point is defined as area BT, area BT / area AT × 100 (%) ≦ 40 (%) That is, the area BT with respect to the area AT is 40% or less. In the copper foil cross-section, the smaller the area of the region where the average value of the crystallographic orientation angle difference is not less than 0.4 ° and less than 2.0 ° is smaller than the area of the region less than 0.4 °, the bending The inventor has found that processability is good. In this respect, the copper foil according to the present invention has an area BT of a region that is not less than 0.4 ° and less than 2.0 ° with such a configuration, and the area BT of the region that is less than 0.4 ° is 40% or less. Since it is small, it has good bending workability. In this case, the area BT is more preferably 20% or less with respect to the area AT.

上述の結晶方位の測定は、EBSP(Electron Backscattering Pattern)のいわゆるKAM(kernel average misorientation)値で200nmステップによるものが挙げられる。方位角度差が2°以上ある場所は結晶粒界としたため省いている。KAM値はEBSPを測定するステップ間隔により大きく変化するが、ステップ間隔を短くしていくと徐々に変化しなくなり、本発明の圧延銅箔では200nm以下であればほぼ一定の値となる。このため、200nmステップで測定したKAM値を用いることができる。   The measurement of the crystal orientation described above is based on a so-called KAM (kernel average misorientation) value of EBSP (Electron Backscattering Pattern) in 200 nm steps. Locations with an azimuth angle difference of 2 ° or more are omitted because they are grain boundaries. The KAM value varies greatly depending on the step interval for measuring EBSP, but as the step interval is shortened, the KAM value does not change gradually. In the rolled copper foil of the present invention, the KAM value is almost constant as long as it is 200 nm or less. For this reason, the KAM value measured at 200 nm steps can be used.

本発明に係る銅箔は、180°密着曲げを一回実施した後の曲げ断面において、微小角度差が制御されていてもよい。具体的には、本発明に係る銅箔は、ポリイミド樹脂層及び熱可塑性ポリイミド接着層で形成された厚さ10〜60μmの基材に、厚さ4〜50μmとした銅箔を積層して熱圧着により形成した銅張積層板に対し、180°密着曲げを一回実施した後、曲げ部を直線状に戻して、曲げ方向と平行な方向で切断して得た銅箔の曲げ部の断面において、
面積BT/面積AT×100(%) ≦ 40(%)
を満たしてもよい。
上記180°密着曲げの態様を図2に示す。まず、状態Aに示すように、銅張積層板を折り曲げ治具により折り曲げ、状態Bのように180°折り返されるように折り曲げる。続いて、180°折り曲げた銅張積層板を状態Cに示すように戻し治具を用いて開き、状態Dに示すように曲げ部を直線状に戻す。これを一回の180°密着曲げとする。これを再度状態Aに示す折り曲げへ移行することで、二回目、三回目と繰り返すことができる。
また、上記「曲げ方向」とは、図3に示すように、銅張積層板を折り曲げていく方向を示す。
このような構成によれば、180°密着曲げを実施した後であっても0.4°以上2.0°未満である領域の面積BTが0.4°未満である領域の面積ATに対して40%以下と小さいため、良好な折り曲げ加工性を有している。また、この場合の面積BTは、より好ましくは面積ATに対して20%以下である。
As for the copper foil which concerns on this invention, the minute angle difference may be controlled in the bending cross section after implementing 180 degree | times adhesion bending once. Specifically, the copper foil according to the present invention is obtained by laminating a copper foil having a thickness of 4 to 50 μm on a base material having a thickness of 10 to 60 μm formed of a polyimide resin layer and a thermoplastic polyimide adhesive layer. A cross section of a copper foil bending portion obtained by performing 180 ° contact bending once on a copper clad laminate formed by pressure bonding, returning the bending portion to a straight line, and cutting in a direction parallel to the bending direction. In
Area BT / Area AT x 100 (%) ≤ 40 (%)
May be satisfied.
FIG. 2 shows the 180 ° contact bending mode. First, as shown in state A, the copper-clad laminate is bent by a bending jig and bent so as to be folded back 180 ° as in state B. Subsequently, the copper clad laminate bent by 180 ° is opened using a return jig as shown in state C, and the bent part is returned to a straight line as shown in state D. This is a single 180 ° contact bend. By shifting this to the bending shown in the state A again, the second and third times can be repeated.
The “bending direction” indicates a direction in which the copper clad laminate is bent as shown in FIG.
According to such a configuration, even after performing 180 ° contact bending, the area BT of the region that is 0.4 ° or more and less than 2.0 ° is smaller than the region AT of the region that is less than 0.4 °. Therefore, it has good bending workability. In this case, the area BT is more preferably 20% or less with respect to the area AT.

(フレキシブルプリント配線板の構成)
本発明に係るフレキシブルプリント配線板は、絶縁基板と、この絶縁基板の表面に形成された配線パターンとを備えている。絶縁基板は、フレキシブルプリント配線板に適用可能な良好な屈曲性及び折り曲げ加工性を有するものであれば特に制限を受けないが、例えば、ポリイミドフィルム、液晶ポリマーフィルム等を使用することができる。絶縁基板の厚さは、12〜50μmが好ましい。厚さが12μm未満であるとハンドリングが悪くなり、50μm超であるとフレキシブル性が低下する。配線パターンは、上述のフレキシブルプリント配線板用圧延銅箔を用いて形成されている。配線パターンの形状は特に限定されず、どのようなものであってもよい。
(Configuration of flexible printed wiring board)
A flexible printed wiring board according to the present invention includes an insulating substrate and a wiring pattern formed on the surface of the insulating substrate. The insulating substrate is not particularly limited as long as it has good bendability and bending workability applicable to a flexible printed wiring board. For example, a polyimide film, a liquid crystal polymer film, or the like can be used. The thickness of the insulating substrate is preferably 12 to 50 μm. When the thickness is less than 12 μm, the handling becomes worse, and when it exceeds 50 μm, the flexibility is lowered. The wiring pattern is formed using the above-mentioned rolled copper foil for flexible printed wiring boards. The shape of the wiring pattern is not particularly limited, and any shape may be used.

(フレキシブルプリント配線板用銅箔の製法)
フレキシブルプリント配線板用銅箔が圧延銅箔である場合は、以下の製造方法によって作製することができる。
まず、P、Fe、Zr、Mg、S、Ge及びTiの含有量が少ない高純度電気銅を銅原料にし、坩堝、鋳型、耐火物からの不純物を混入させないように、さらに、脱酸素処理でP、Zr、Mgを混入させないようにして、不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiからなる群から選択された1種又は2種以上が、合計で20質量ppm以下に制御したものに、Ag、In、Au、Pd及びSnからなる群から選択された1種又は2種以上が合計で20〜500質量ppmとなるように副成分を添加してインゴットを作製する。
次に、このインゴットを熱間圧延後、表面研削で酸化物を除去し、冷間圧延、焼鈍、酸洗を繰り返して所定の厚さまで加工することで、フレキシブルプリント配線板用の圧延銅箔を作製する。
(Manufacturing method of copper foil for flexible printed wiring boards)
When the copper foil for flexible printed wiring boards is a rolled copper foil, it can be produced by the following production method.
First, high-purity electrolytic copper with a low content of P, Fe, Zr, Mg, S, Ge, and Ti is used as a copper raw material, and in order to prevent impurities from crucibles, molds, and refractories from being mixed, further deoxidation treatment One or two or more selected from the group consisting of P, Fe, Zr, Mg, S, Ge, and Ti as inevitable impurities are added in a total of 20 ppm by mass so that P, Zr, and Mg are not mixed. An ingot is prepared by adding sub-components to one controlled from the group consisting of Ag, In, Au, Pd and Sn so that the total amount is 20 to 500 ppm by mass. To do.
Next, after this ingot is hot-rolled, the oxide is removed by surface grinding, and cold rolling, annealing, and pickling are repeated and processed to a predetermined thickness, whereby a rolled copper foil for a flexible printed wiring board is obtained. Make it.

また、上記以外の製造方法としては、以下のようなものが挙げられる。
まず、タフピッチ銅(JIS−H3100 C1100)、無酸素銅(JIS−H3100 C1020)のインゴットに均質化処理を行い、熱間圧延を行う。熱間圧延後の平均結晶粒径は10〜20μmとなるように均質化処理の温度、熱間圧延の温度、加工度を調整する。この後、冷間圧延と焼鈍とを繰り返し行うが、焼鈍の際は全て結晶粒径を10〜20μmに調整する。そして0.1mm以下では1パスの加工度を20%以下、圧延張力を100MPa以下に押さえる。
Moreover, the following are mentioned as manufacturing methods other than the above.
First, tough pitch copper (JIS-H3100 C1100) and oxygen-free copper (JIS-H3100 C1020) ingots are homogenized and hot rolled. The homogenization temperature, hot rolling temperature, and workability are adjusted so that the average grain size after hot rolling is 10 to 20 μm. Thereafter, cold rolling and annealing are repeated, and the crystal grain size is adjusted to 10 to 20 μm in all the annealing. When the thickness is 0.1 mm or less, the processing degree of one pass is suppressed to 20% or less and the rolling tension is suppressed to 100 MPa or less.

(フレキシブルプリント配線板の製法)
フレキシブルプリント配線板は、上記銅箔を用いて製造することができる。以下に、フレキシブルプリント配線板の製造例を示す。
まず、銅箔と、良好な屈曲性及び折れ曲げ性を有するポリイミドフィルム、液晶ポリマーフィルム等の絶縁基板とを貼り合わせて銅張積層板を製造する。銅箔は、あらかじめ所定の表面処理を施しておいてもよい。
(Production method of flexible printed wiring board)
A flexible printed wiring board can be manufactured using the copper foil. Below, the manufacture example of a flexible printed wiring board is shown.
First, a copper-clad laminate is manufactured by laminating a copper foil and an insulating substrate such as a polyimide film or a liquid crystal polymer film having good bendability and foldability. The copper foil may be subjected to a predetermined surface treatment in advance.

貼り合わせの方法は、ポリイミドフィルムの場合、熱硬化性ポリイミドフィルムに熱可塑性のポリイミド接着剤を塗工、乾燥した後、銅箔と積層させ、熱圧着させる。圧着方法としては真空熱プレスする方法や熱ロールによってラミネートする方法がある。またポリイミドフィルムの場合、銅箔にポリイミドの前駆体を塗工、乾燥、硬化させることで銅張積層板を作製する。   In the case of a polyimide film, the bonding is performed by applying a thermoplastic polyimide adhesive to a thermosetting polyimide film, drying it, laminating it with a copper foil, and thermocompression bonding. As a pressure bonding method, there are a method of vacuum hot pressing and a method of laminating with a heat roll. Moreover, in the case of a polyimide film, a copper-clad laminate is produced by coating, drying and curing a polyimide precursor on a copper foil.

銅張積層板からフレキシブルプリント配線板を作製する工程は当業者に周知の方法を用いればよい。例えば、エッチングレジストを銅張積層板の銅箔面に配線パターンとしての必要部分だけに塗工し、エッチング液を銅箔面に噴射することで不要銅箔を除去して回路パターンを形成する。次いでエッチングレジストを剥離・除去して配線パターンを露出することで、フレキシブルプリント配線板を作製する。   A method well-known to those skilled in the art may be used for the process of producing a flexible printed wiring board from a copper clad laminated board. For example, an etching resist is applied only to a necessary portion as a wiring pattern on a copper foil surface of a copper clad laminate, and unnecessary copper foil is removed by spraying an etching solution onto the copper foil surface to form a circuit pattern. Next, a flexible printed wiring board is produced by peeling and removing the etching resist to expose the wiring pattern.

このフレキシブルプリント配線板を2つの電子基板間に設けて、それらを電気的に接続させることで、種々の電子機器を作製することができる。電子機器としては、特に限定されず、例えば、液晶ディスプレイ、カーナビゲーション、携帯電話、ゲーム機、CDプレイヤー、デジタルカメラ、テレビ、DVDプレイヤー、電子手帳、電子辞書、電卓、ビデオカメラ、プリンター等が挙げられる。   Various electronic devices can be manufactured by providing this flexible printed wiring board between two electronic substrates and electrically connecting them. The electronic device is not particularly limited, and examples thereof include a liquid crystal display, a car navigation system, a mobile phone, a game machine, a CD player, a digital camera, a TV, a DVD player, an electronic notebook, an electronic dictionary, a calculator, a video camera, a printer, and the like. It is done.

以下、本発明の実施例を示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。   EXAMPLES Examples of the present invention will be described below, but these are provided for better understanding of the present invention and are not intended to limit the present invention.

(例1:実施例1、2、6、7、19、21〜28、参考例3〜5、8〜18、20
実施例1、2、6、7、19、23、24、参考例3〜5、8〜18、20については高純度電気銅に表1に記載の元素を添加してインゴットを作製した。また、このとき、坩堝、鋳型、耐火物からの不純物を混入させないように、さらに、脱酸素処理でP、Zr、Mgを混入させないようにすることで、不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiからなる群から選択された1種又は2種以上が、合計で20質量ppm以下となるように制御した。
続いて、このインゴットを熱間圧延で厚さ7mmの板に加工し、表面研削で酸化物を取り除いた後、冷間圧延、焼鈍、酸洗を繰り返して、表1に記載の厚さに加工した。
続いて、銅箔片面に、Cu−Niめっきの粗化処理を行い、その後Cr浸漬めっきを行った。逆面にはクロメート処理を行った。
なお、実施例21〜22、25〜28については、タフピッチ銅(JIS−H3100 C1100/実施例21)、無酸素銅(JIS−H3100 C1020/実施例22)、タフピッチ銅(実施例26、28)及び無酸素銅ベース(実施例25、27)の銅に表1に記載の添加元素を加えて作製したインゴットに均質化処理を行い、熱間圧延を行った。熱間圧延後の平均結晶粒径が10〜20μmとなるように均質化処理の温度、熱間圧延の温度、加工度を調整した。この後、冷間圧延と焼鈍とを繰り返し行うが、焼鈍の際は全て結晶粒径を10〜20μmに調整した。そして0.1mm以下では1パスの加工度を20%以下、圧延張力を100MPa以下に押さえた。なお、実施例21、22、25〜28については上述の不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiからなる群から選択された1種又は2種以上が、合計で20質量ppm以下となるように制御することを行わないで、通常の方法によりインゴットを作製した。
続いて、カプトンEN(登録商標)に熱可塑性PI接着剤を2μm塗工、乾燥して形成した27μm厚の樹脂層を銅箔に積層させて真空熱プレス(200℃〜350℃で30分間)によって銅張積層板を作製した。
(Example 1: Examples 1 , 2 , 6 , 7 , 19, 21 to 28, Reference Examples 3 to 5, 8 to 18, 20 )
In Examples 1, 2, 6, 7, 19 , 23 , and 24 and Reference Examples 3 to 5, 8 to 18 , and 20 , the elements listed in Table 1 were added to high-purity electrolytic copper to produce ingots. At this time, P, Fe, and Zr as inevitable impurities are prevented by not mixing impurities from the crucible, the mold, and the refractory and further preventing P, Zr, and Mg from being mixed in the deoxidation treatment. , Mg, S, Ge and Ti were controlled so that one or more selected from the group consisting of Mg, S, Ge and Ti would be 20 ppm by mass or less in total.
Subsequently, this ingot was processed into a plate having a thickness of 7 mm by hot rolling, the oxide was removed by surface grinding, and then cold rolling, annealing, and pickling were repeated to process to the thickness shown in Table 1. did.
Then, the roughening process of Cu-Ni plating was performed to the copper foil single side | surface, and Cr immersion plating was performed after that. The reverse side was chromated.
In addition, about Examples 21-22, 25-28, tough pitch copper (JIS-H3100 C1100 / Example 21), oxygen-free copper (JIS-H3100 C1020 / Example 22), tough pitch copper (Examples 26, 28) And the homogenization process was performed to the ingot produced by adding the addition element of Table 1 to the copper of oxygen free copper base (Examples 25 and 27), and hot rolling was performed. The homogenization temperature, hot rolling temperature, and workability were adjusted so that the average grain size after hot rolling was 10 to 20 μm. Thereafter, cold rolling and annealing are repeated, but the crystal grain size is adjusted to 10 to 20 μm in all the annealing. When the thickness was 0.1 mm or less, the processing degree of one pass was suppressed to 20% or less, and the rolling tension was suppressed to 100 MPa or less. In Examples 21, 22, 25 to 28, one or more selected from the group consisting of P, Fe, Zr, Mg, S, Ge, and Ti as inevitable impurities described above are in total. An ingot was produced by a normal method without controlling to 20 ppm by mass or less.
Subsequently, a 27 μm-thick resin layer formed by applying 2 μm of thermoplastic PI adhesive to Kapton EN (registered trademark) and drying is laminated on a copper foil, followed by vacuum hot pressing (at 200 ° C. to 350 ° C. for 30 minutes). A copper-clad laminate was prepared.

(例2:比較例1〜2)
比較例1〜2は、18μm厚の市販の特殊電解銅箔を用いて、カプトンEN(登録商標)に熱可塑性PI接着剤を2μm塗工、乾燥して形成した14.5μm厚の樹脂層を銅箔に積層させて真空熱プレス(200℃〜350℃で30分間)によって銅張積層板を作製した。
(Example 2: Comparative Examples 1-2)
In Comparative Examples 1 and 2, a 14.5 μm-thick resin layer formed by applying 2 μm of a thermoplastic PI adhesive to Kapton EN (registered trademark) and drying using a commercially available special electrolytic copper foil having a thickness of 18 μm. A copper-clad laminate was produced by laminating on a copper foil and vacuum hot pressing (200 ° C. to 350 ° C. for 30 minutes).

(例3:比較例3〜10)
比較例3〜10は、表1に記載の元素を添加した無酸素銅(JIS−H3100 C1020)のインゴットを作製した。また、このとき、不可避的不純物の抑制は行わず、P、Fe、Zr、Mg、S、Ge及びTiからなる群から選択された1種又は2種以上が、合計で20質量ppm超となった。続いて、カプトンEN(登録商標)に熱可塑性PI接着剤を2μm塗工、乾燥して形成した27μm厚の樹脂層を銅箔に積層させて真空熱プレス(200℃〜350℃で30分間)によって銅張積層板を作製した。
(Example 3: Comparative Examples 3 to 10)
Comparative Examples 3-10 produced ingots of oxygen-free copper (JIS-H3100 C1020) to which the elements listed in Table 1 were added. At this time, inevitable impurities are not suppressed, and one or two or more selected from the group consisting of P, Fe, Zr, Mg, S, Ge, and Ti become more than 20 mass ppm in total. It was. Subsequently, a 27 μm-thick resin layer formed by applying 2 μm of thermoplastic PI adhesive to Kapton EN (registered trademark) and drying is laminated on a copper foil, followed by vacuum hot pressing (at 200 ° C. to 350 ° C. for 30 minutes). A copper-clad laminate was prepared.

このようにして作製した実施例1、2、6、7、19、21〜28、参考例3〜5、8〜18、20及び比較例1〜10の供試材の銅箔に対して、L(ライン)/S(スペース)=300μm/300μmで回路を形成してフレキシブルプリント配線板とした。
次に、回路に平行な方向にCP法(クロスセッションポリッシャー法)を用いてフレキシブルプリント配線板を切断し、銅箔断面を得た。その後、すぐに「表1に記載の銅箔厚み」×「200μm幅」の面積において電子顕微鏡JEOL FE−SEMを用い、TSL社製の解析ソフトを用いてEBSPをとってKAM値を算出し、続いてBT及びATを算出した。
また、フレキシブルプリント配線板に180°密着曲げを行い、曲げ部を直線状に戻し、回路に平行な方にCP法(クロスセッションポリッシャー法)を用いてフレキシブルプリント配線板を切断し、曲げ部の銅箔断面を得た。その後、酸化膜が形成されないようにすぐに「表1に記載の銅箔厚み」×「銅箔の曲げ頂点を中心に両側へ50μm幅ずつの合計100μm幅(図3参照)」の面積において電子顕微鏡JEOL FE−SEMを用い、TSL社製の解析ソフトを用いてEBSPをとってKAM値を算出し、続いてBT及びATを算出した。
また、折り曲げを行っている際に銅箔に破断が生じたか否かについても観察した。
ここで、破断の発生は以下のように判定した。すなわち、フレキシブルプリント配線板の銅箔回路に一定電流(0.01〜0.1mA)を流し、当該電流を流すために必要な電圧値を測定し、測定した電圧値からフレキシブルプリント配線板の銅箔回路の抵抗値を算出した。算出した抵抗値が初期値(上記折り曲げ前の抵抗値)の500%以上となったときに、破断が生じたと判定した。
測定結果を表1に示す。
For the copper foils of the test materials of Examples 1, 2 , 6 , 7 , 19, 21 to 28, Reference Examples 3 to 5, 8 to 18, 20 and Comparative Examples 1 to 10 thus prepared, A circuit was formed with L (line) / S (space) = 300 μm / 300 μm to obtain a flexible printed wiring board.
Next, the flexible printed wiring board was cut using a CP method (cross session polisher method) in a direction parallel to the circuit to obtain a copper foil cross section. Then, immediately using the electron microscope JEOL FE-SEM in the area of “copper foil thickness described in Table 1” × “200 μm width”, EBSP was taken using TSL analysis software, and the KAM value was calculated. Subsequently, BT and AT were calculated.
Also, it performed 180 ° adhesion bending the flexible printed wiring board, cutting the flexible printed wiring board using the bent portion linearly back, CP method in the direction parallel to the circuit (cross session polisher method), the bending portion A copper foil cross section was obtained. Thereafter, in order to prevent the formation of an oxide film, electrons were immediately formed in an area of “thickness of copper foil described in Table 1” × “total width of 100 μm (50 μm width on both sides centering on the bending vertex of the copper foil) (see FIG. 3)” Using a microscope JEOL FE-SEM, KAM values were calculated by taking EBSP using analysis software manufactured by TSL, and then BT and AT were calculated.
Moreover, it was observed whether or not the copper foil was broken during bending.
Here, the occurrence of breakage was determined as follows. That is, a constant current (0.01 to 0.1 mA) is passed through the copper foil circuit of the flexible printed wiring board, a voltage value necessary to pass the current is measured, and the copper of the flexible printed wiring board is measured from the measured voltage value. The resistance value of the foil circuit was calculated. When the calculated resistance value was 500% or more of the initial value (resistance value before bending), it was determined that a fracture occurred.
The measurement results are shown in Table 1.

(評価)
実施例1、2、6、7、19、23及び24、参考例3〜5、8〜18、20の供試材は、いずれも不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiからなる群から選択された1種又は2種以上が合計で20質量ppm以下であり、180°密着曲げ前及び当該曲げを1回行って元に戻した状態で面積BT/面積AT×100(%) ≦ 40(%)を満たし、180°密着曲げを4回又は8回繰り返しても銅箔に破断が生じなかった。
実施例21、22、25〜28の供試材は、いずれも不純物制御を行っておらず、不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiからなる群から選択された1種又は2種以上を合計で20質量ppm超含んでいるが、その他の製造条件を上述のように制御したことで、180°密着曲げ前及び当該曲げを1回行って元に戻した状態で面積BT/面積AT×100(%) ≦ 40(%)を満たし、180°密着曲げを4回繰り返しても銅箔に破断が生じなかった。
比較例1〜10の供試材は、いずれも不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiからなる群から選択された1種又は2種以上が合計で20質量ppm超であり、180°密着曲げ前及び当該曲げを1回行って元に戻した状態で面積BT/面積AT×100(%) ≦ 40(%)を満たさず、180°密着曲げを1〜3回のいずれか行っただけですぐに銅箔に破断が生じた。
なお、実施例1、19、22〜24、参考例3、14、15に用いた銅箔を、樹脂層に積層せずに、200℃〜350℃で30分間加熱した。その後、当該銅箔の面積BT/面積AT×100(%)を測定した。その結果、当該銅箔の面積BT/面積AT×100(%)は、それぞれ表1に記載の実施例1、19、22〜24、参考例3、14、15の180°密着曲げ前の面積BT/面積AT×100(%)と同じ値となった。
(Evaluation)
The test materials of Examples 1, 2, 6, 7, 19 , 23 and 24 and Reference Examples 3 to 5 , 8 to 18 and 20 are all P, Fe, Zr, Mg, S, as inevitable impurities. One or more selected from the group consisting of Ge and Ti are 20 ppm by mass or less in total, and the area BT / area AT before 180 ° contact bending and after performing the bending once and returning to the original state Even if it satisfy | filled x100 (%) <= 40 (%) and 180 degree | times contact | adherence bending was repeated 4 times or 8 times, the fracture | rupture did not arise in copper foil.
The specimens of Examples 21, 22, 25 to 28 were not subjected to impurity control, and were selected from the group consisting of P, Fe, Zr, Mg, S, Ge and Ti as unavoidable impurities. 1 type or 2 types or more are included in total but more than 20 ppm by mass, but other manufacturing conditions are controlled as described above. And satisfying area BT / area AT × 100 (%) ≦ 40 (%), and the copper foil was not broken even when 180 ° contact bending was repeated four times.
As for the test materials of Comparative Examples 1 to 10, all of one or more selected from the group consisting of P, Fe, Zr, Mg, S, Ge, and Ti as inevitable impurities are 20 mass ppm in total. It is super, and does not satisfy area BT / area AT × 100 (%) ≦ 40 (%) before 180 ° contact bending and in a state where the bending is performed once and returned to its original state, and 180 ° contact bending is performed by 1-3. The copper foil broke immediately after one of the above operations.
In addition, the copper foil used for Example 1 , 19, 22-24, Reference example 3 , 14, 15 was heated for 30 minutes at 200 to 350 degreeC, without laminating | stacking on a resin layer. Thereafter, the area BT / area AT × 100 (%) of the copper foil was measured. As a result, the area BT / area AT × 100 (%) of the copper foil was 180 ° before adhesion bending of Examples 1, 19, 22 to 24, and Reference Examples 3 , 14, and 15 shown in Table 1, respectively. The value was the same as area BT / area AT × 100 (%).

Claims (8)

銅箔断面において、金属組織の測定点aに電子線を照射して得られた結晶方位と、前記測定点aの周囲に200nm離間して位置する複数の隣接測定点に電子線を照射して得られた結晶方位との方位角度差の平均値が0.4°未満である前記測定点aを中心とし、前記測定点aと各辺との距離がそれぞれ100nmである正六角形の面積を面積Aとし、前記面積Aの合計を面積ATとし、
銅箔断面において、金属組織の測定点bに電子線を照射して得られた結晶方位と、前記測定点bの周囲に200nm離間して位置する複数の隣接測定点に電子線を照射して得られた結晶方位との方位角度差の平均値が0.4°以上2.0°未満である前記測定点bを中心とし、前記測定点bと各辺との距離がそれぞれ100nmである正六角形の面積を面積Bとし、前記面積Bの合計を面積BTとしたときに、
22(%) ≦ 面積BT/面積AT×100(%) ≦ 40(%)
を満たすフレキシブルプリント配線板用圧延銅箔。
In the copper foil cross section, the crystal orientation obtained by irradiating the electron beam to the measurement point a of the metal structure and the electron beam is irradiated to a plurality of adjacent measurement points located 200 nm apart around the measurement point a. The area of a regular hexagon centered on the measurement point a where the average value of the orientation angle difference from the obtained crystal orientation is less than 0.4 ° and the distance between the measurement point a and each side is 100 nm. A, and the total of the area A is the area AT,
In the copper foil cross section, the crystal orientation obtained by irradiating the electron beam to the measurement point b of the metal structure and the electron beam is irradiated to a plurality of adjacent measurement points located 200 nm apart around the measurement point b. A regular hexagon with the average value of the orientation angle difference from the obtained crystal orientation being 0.4 ° or more and less than 2.0 ° as the center, and the distance between the measurement point b and each side being 100 nm. When the area of the square is area B and the total of area B is area BT,
22 (%) ≦ area BT / area AT × 100 (%) ≦ 40 (%)
Rolled copper foil for flexible printed wiring boards that meets the requirements.
200〜350℃で30分間の熱処理が行われたときに、
銅箔断面において、金属組織の測定点aに電子線を照射して得られた結晶方位と、前記測定点aの周囲に200nm離間して位置する複数の隣接測定点に電子線を照射して得られた結晶方位との方位角度差の平均値が0.4°未満である前記測定点aを中心とし、前記測定点aと各辺との距離がそれぞれ100nmである正六角形の面積を面積Aとし、前記面積Aの合計を面積ATとし、
銅箔断面において、金属組織の測定点bに電子線を照射して得られた結晶方位と、前記測定点bの周囲に200nm離間して位置する複数の隣接測定点に電子線を照射して得られた結晶方位との方位角度差の平均値が0.4°以上2.0°未満である前記測定点bを中心とし、前記測定点bと各辺との距離がそれぞれ100nmである正六角形の面積を面積Bとし、前記面積Bの合計を面積BTとしたときに、
22(%) ≦ 面積BT/面積AT×100(%) ≦ 40(%)
を満たすフレキシブルプリント配線板用圧延銅箔。
When heat treatment is performed at 200 to 350 ° C. for 30 minutes,
In the copper foil cross section, the crystal orientation obtained by irradiating the electron beam to the measurement point a of the metal structure and the electron beam is irradiated to a plurality of adjacent measurement points located 200 nm apart around the measurement point a. The area of a regular hexagon centered on the measurement point a where the average value of the orientation angle difference from the obtained crystal orientation is less than 0.4 ° and the distance between the measurement point a and each side is 100 nm. A, and the total of the area A is the area AT,
In the copper foil cross section, the crystal orientation obtained by irradiating the electron beam to the measurement point b of the metal structure and the electron beam is irradiated to a plurality of adjacent measurement points located 200 nm apart around the measurement point b. A regular hexagon with the average value of the orientation angle difference from the obtained crystal orientation being 0.4 ° or more and less than 2.0 ° as the center, and the distance between the measurement point b and each side being 100 nm. When the area of the square is area B and the total of area B is area BT,
22 (%) ≦ area BT / area AT × 100 (%) ≦ 40 (%)
Rolled copper foil for flexible printed wiring boards that meets the requirements.
ポリイミド樹脂層及び熱可塑性ポリイミド接着層で形成された厚さ10〜60μmの基材に、厚さ4〜50μmとした前記銅箔を積層して熱圧着により形成した銅張積層板に対し、180°密着曲げを一回実施した後、曲げ部を直線状に戻して、曲げ方向と平行な方向で切断して得た前記銅箔の曲げ部の断面において、
22(%) ≦ 面積BT/面積AT×100(%) ≦ 40(%)
を満たす請求項1または2に記載のフレキシブルプリント配線板用圧延銅箔。
With respect to a copper clad laminate formed by thermocompression bonding by laminating the copper foil having a thickness of 4 to 50 μm on a base material having a thickness of 10 to 60 μm formed of a polyimide resin layer and a thermoplastic polyimide adhesive layer. ° After carrying out contact bending once, return the bent portion to a straight line, and in the cross section of the bent portion of the copper foil obtained by cutting in a direction parallel to the bending direction,
22 (%) ≦ area BT / area AT × 100 (%) ≦ 40 (%)
The rolled copper foil for flexible printed wiring boards according to claim 1 or 2 , satisfying
不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiが、合計で20質量ppm以下である請求項1〜のいずれかに記載のフレキシブルプリント配線板用圧延銅箔。 The rolled copper foil for flexible printed wiring boards according to any one of claims 1 to 3 , wherein P, Fe, Zr, Mg, S, Ge and Ti as inevitable impurities are 20 ppm by mass or less in total. Ag、In、Au、Pd及びSnを合計で20〜500質量ppm含む請求項1〜のいずれかに記載のフレキシブルプリント配線板用圧延銅箔。 The rolled copper foil for flexible printed wiring boards according to any one of claims 1 to 4 , comprising 20 to 500 mass ppm in total of Ag, In, Au, Pd and Sn. 請求項1〜のいずれかに記載の圧延銅箔を備えた銅張積層板。 The copper clad laminated board provided with the rolled copper foil in any one of Claims 1-5 . 請求項に記載の銅張積層板を材料としたフレキシブルプリント配線板。 A flexible printed wiring board made of the copper-clad laminate according to claim 6 . 請求項に記載のフレキシブルプリント配線板と、前記フレキシブルプリント配線板で電気的に接続された第1の基板及び第2の基板とを備えた電子機器。 An electronic device comprising: the flexible printed wiring board according to claim 7; and a first substrate and a second substrate electrically connected by the flexible printed wiring board.
JP2011191083A 2011-09-01 2011-09-01 Rolled copper foil for flexible printed wiring boards, copper-clad laminates, flexible printed wiring boards, and electronic equipment Active JP5933943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011191083A JP5933943B2 (en) 2011-09-01 2011-09-01 Rolled copper foil for flexible printed wiring boards, copper-clad laminates, flexible printed wiring boards, and electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011191083A JP5933943B2 (en) 2011-09-01 2011-09-01 Rolled copper foil for flexible printed wiring boards, copper-clad laminates, flexible printed wiring boards, and electronic equipment

Publications (2)

Publication Number Publication Date
JP2013055162A JP2013055162A (en) 2013-03-21
JP5933943B2 true JP5933943B2 (en) 2016-06-15

Family

ID=48131899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011191083A Active JP5933943B2 (en) 2011-09-01 2011-09-01 Rolled copper foil for flexible printed wiring boards, copper-clad laminates, flexible printed wiring boards, and electronic equipment

Country Status (1)

Country Link
JP (1) JP5933943B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6887213B2 (en) * 2014-10-10 2021-06-16 Jx金属株式会社 Manufacturing method of rolled copper foil, copper-clad laminate, flexible printed wiring board, electronic equipment and rolled copper foil
JP6617313B2 (en) * 2017-08-03 2019-12-11 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6643287B2 (en) * 2017-08-03 2020-02-12 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
CN110885937B (en) * 2019-12-19 2021-04-13 福州大学 Cu-Ti-Ge-Ni-X copper alloy material and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3856582B2 (en) * 1998-11-17 2006-12-13 日鉱金属株式会社 Rolled copper foil for flexible printed circuit board and method for producing the same
JP2002167632A (en) * 2000-11-29 2002-06-11 Nippon Mining & Metals Co Ltd Rolled copper foil for flexible printed circuit board and its production method
JP2003193211A (en) * 2001-12-27 2003-07-09 Nippon Mining & Metals Co Ltd Rolled copper foil for copper-clad laminate

Also Published As

Publication number Publication date
JP2013055162A (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP4691573B2 (en) Printed wiring board, method for producing the printed wiring board, and electrolytic copper foil for copper-clad laminate used for producing the printed wiring board
KR100466062B1 (en) Copper-alloy foil to be used for laminate sheet
TWI646207B (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
TWI588273B (en) Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board and electronic equipment
KR102470725B1 (en) Copper foil for flexible printed circuit, and copper clad laminate, flexible printed circuit and electronic device using copper foil
TW201734220A (en) Copper foil for flexible printed circuit board, cooper-clad laminate using same, flexible printed circuit board, and electronic machine which is constituted by 99 mass% or above of Cu and the remainder of inevitable impurities
JP5933943B2 (en) Rolled copper foil for flexible printed wiring boards, copper-clad laminates, flexible printed wiring boards, and electronic equipment
JP6781562B2 (en) Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices
JP5694094B2 (en) Copper foil for flexible printed wiring board, copper-clad laminate, flexible printed wiring board, and electronic device
JP5479002B2 (en) Copper alloy foil
TWI663270B (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP2014214376A (en) Rolled copper foil, flexible copper-clad laminated plate, and flexible printed wiring board
KR20170113104A (en) Copper foil for flexible printed wiring board, copper-clad laminate using the same, flexible printed wiring board and electronic device
CN107046763B (en) Copper foil for flexible printed board and copper-clad laminate using same
JP2013191638A (en) Rolled copper foil for printed wiring board
JP2002226928A (en) Copper alloy foil for laminated board
JP2002249835A (en) Copper alloy foil for lamination
JP6887213B2 (en) Manufacturing method of rolled copper foil, copper-clad laminate, flexible printed wiring board, electronic equipment and rolled copper foil
JP6647253B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP2003041332A (en) Copper alloy foil for laminate
JP2003064431A (en) Copper alloy foil for laminate sheet
JP5788225B2 (en) Rolled copper foil, copper-clad laminate, flexible printed wiring board, and electronic equipment
JP2003034829A (en) Copper alloy foil for laminate
JP2012001786A (en) Flexible copper-clad laminate, and method of manufacturing the same
JP2019214793A (en) Rolled copper foil, copper-clad laminate, flexible printed wiring board, electronic equipment, and method for manufacturing rolled copper foil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150515

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150610

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160506

R150 Certificate of patent or registration of utility model

Ref document number: 5933943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250