JP2019214793A - Rolled copper foil, copper-clad laminate, flexible printed wiring board, electronic equipment, and method for manufacturing rolled copper foil - Google Patents

Rolled copper foil, copper-clad laminate, flexible printed wiring board, electronic equipment, and method for manufacturing rolled copper foil Download PDF

Info

Publication number
JP2019214793A
JP2019214793A JP2019144865A JP2019144865A JP2019214793A JP 2019214793 A JP2019214793 A JP 2019214793A JP 2019144865 A JP2019144865 A JP 2019144865A JP 2019144865 A JP2019144865 A JP 2019144865A JP 2019214793 A JP2019214793 A JP 2019214793A
Authority
JP
Japan
Prior art keywords
copper foil
measurement point
area
rolled copper
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019144865A
Other languages
Japanese (ja)
Inventor
和樹 冠
Kazuki Kan
和樹 冠
達也 山路
Tatsuya Yamaji
達也 山路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2019144865A priority Critical patent/JP2019214793A/en
Publication of JP2019214793A publication Critical patent/JP2019214793A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

To provide a rolled copper foil which has excellent bendability and handleability, and can make productivity of a copper-clad laminate and a flexible printed wiring board excellent; a copper-clad laminate; a flexible printed wiring board; electronic equipment; and a method for manufacturing the rolled copper foil.SOLUTION: A rolled copper foil is a rolled copper foil after final rolling and before recrystallization. An area AT is 20% or more and 45% or less with respect to the surface area of the copper foil, when the area AT is the total of areas A, in which A is the area of regular hexagon in which a distance between each side and a measurement point a is 100 nm, with the measurement point a being the center of the regular hexagon, whose an average value of orientation angle differences between a crystal orientation obtained by irradiating a measurement point a of a metal structure of crystal on a copper foil surface with an electron beam, and a crystal orientation obtained by irradiating a plurality of adjacent measurement points positioned around the measurement point a so as to be separated by 200 nm with an electron beam is 1.5° or more and less than 2.0°.SELECTED DRAWING: Figure 1

Description

本発明は、圧延銅箔、銅張積層板、フレキシブルプリント配線板、電子機器及び圧延銅箔の製造方法に関する。   The present invention relates to a rolled copper foil, a copper-clad laminate, a flexible printed wiring board, an electronic device, and a method for producing a rolled copper foil.

電子機器は、通常複数の電子基板で構成されており、これら電子基板同士を電気的に接続するフレキシブルプリント配線板が電子基板間に設けられている。フレキシブルプリント配線板は、通常、絶縁基板と、該基板表面に形成された銅製の配線とを備えている。電子基板同士を接続するフレキシブルプリント配線板には、両基板の熱膨張や収縮の違いにより引張応力や圧縮応力が加わるため、良好な屈曲性等が求められる。このようなフレキシブルプリント配線板に求められる特性としては、MIT屈曲性に代表される良好な折り曲げ性、及び、IPC屈曲性に代表される高サイクル屈曲性があり、従来、このような特性を備えた銅箔や銅−樹脂基板積層体が開発されている(特許文献1〜3)。   An electronic device is generally composed of a plurality of electronic boards, and a flexible printed wiring board for electrically connecting the electronic boards is provided between the electronic boards. The flexible printed wiring board usually includes an insulating substrate and copper wiring formed on the surface of the substrate. A flexible printed wiring board that connects electronic substrates is subjected to tensile stress and compressive stress due to the difference in thermal expansion and contraction between the two substrates, so that good flexibility and the like are required. Characteristics required for such a flexible printed wiring board include a good bending property represented by MIT flexibility and a high cycle flexibility represented by IPC bending property. Copper foil and copper-resin substrate laminates have been developed (Patent Documents 1 to 3).

特開2010−100887号公報JP 2010-10087A 特開2009−111203号公報JP 2009-111203 A 特開2007−207812号公報JP 2007-207812 A

フレキシブルプリント配線板に使用される銅箔は年々薄くなってきており、現状は18μm以下が主流となっていて、シングルμmの厚みを持つ銅箔も商品化されている。圧延銅箔の場合、厚みを薄くしていくと必然と圧延の加工度は高くなり、内部にひずみが蓄積された状態となっている。また、薄くすることでせん断帯が導入されやすくなり、ひずみの蓄積がさらに大きくなる。   Copper foil used for flexible printed wiring boards is becoming thinner year by year, and currently 18 μm or less is mainstream, and copper foil having a thickness of single μm is also commercialized. In the case of a rolled copper foil, as the thickness is reduced, the workability of rolling is inevitably increased, and a state in which strain is accumulated inside. Further, by making the layer thin, a shear band is easily introduced, and the accumulation of strain is further increased.

ひずみの蓄積が大きくなると、銅箔が硬くなり、すぐに折れるため、ハンドリング性が低下してしまう。また、ひずみの蓄積が大きくなると、銅張積層板を作製するときにかかる熱で蓄積されていたひずみが解放されるが、このときに銅箔にシワが入りやすくなる。   When the accumulation of strain increases, the copper foil becomes hard and breaks immediately, resulting in reduced handling. Further, when the accumulation of the strain increases, the strain accumulated by the heat applied when the copper-clad laminate is manufactured is released, but at this time, the copper foil is easily wrinkled.

また、せん断帯が導入されると再結晶後にせん断帯の場所で、圧延面に{111}面が平行な結晶粒が出現しやすくなる。これはヤング率を上げてフレキシブル性を損なったり、屈曲試験や折り曲げ試験で割れの起点となったりするため好ましくない。また、Ag等の元素を微量添加した銅箔とすると、屈曲性等が向上することが知られているが、銅以外の元素が銅箔に含まれることでひずみは蓄積しやすくなり、上記問題が顕著になってしまう。   In addition, when a shear band is introduced, crystal grains having a {111} plane parallel to the rolling surface are likely to appear at the location of the shear band after recrystallization. This is not preferable because the Young's modulus is increased and the flexibility is impaired, or it becomes a starting point of a crack in a bending test or a bending test. In addition, it is known that when a copper foil to which a small amount of an element such as Ag is added is used, the flexibility and the like are improved. Becomes noticeable.

そこで、本発明は、良好な折り曲げ性及びハンドリング性を有し、銅張積層板、フレキシブルプリント配線板の生産性が良好となる圧延銅箔、銅張積層板、フレキシブルプリント配線板、電子機器及び圧延銅箔の製造方法を提供することを課題とする。   Therefore, the present invention provides a copper-clad laminate, a rolled copper foil having a good productivity of a flexible printed wiring board, a copper-clad laminate, a flexible printed wiring board, an electronic device, It is an object to provide a method for producing a rolled copper foil.

本発明者らは、鋭意検討の結果、圧延銅箔の結晶内における結晶方位の角度差を制御することで、折り曲げ性及びハンドリング性、及び、銅張積層板、フレキシブルプリント配線板に用いたときの生産性を向上させることができることを見出した。   The present inventors, as a result of intensive studies, by controlling the angle difference of the crystal orientation in the crystal of the rolled copper foil, bending and handling, and, when used for copper-clad laminates, flexible printed wiring boards Has been found to be able to improve the productivity of the product.

以上の知見を基礎として完成した本発明は一側面において、最終圧延後、且つ、再結晶前の圧延銅箔であって、銅箔表面において結晶の金属組織の測定点aに電子線を照射して得られた結晶方位と、前記測定点aの周囲に200nm離間して位置する複数の隣接測定点に電子線を照射して得られた結晶方位との方位角度差の平均値が1.5°以上2.0°未満である前記測定点aを中心とし、前記測定点aと各辺との距離がそれぞれ100nmである正六角形の面積を面積Aとし、前記面積Aの合計を面積ATとしたとき、前記ATが銅箔の表面面積に対し20%以上45%以下である圧延銅箔である。   The present invention completed on the basis of the above findings is, in one aspect, a rolled copper foil after final rolling, and before recrystallization, and irradiates an electron beam to a measurement point a of the metal structure of the crystal on the copper foil surface. The average value of the azimuthal angle difference between the obtained crystal orientation and the crystal orientation obtained by irradiating a plurality of adjacent measurement points located around the measurement point a with a distance of 200 nm from the electron beam is 1.5. The center of the measurement point a is not less than 2.0 ° and less than 2.0 °, the area of the regular hexagon in which the distance between the measurement point a and each side is 100 nm is defined as the area A, and the sum of the areas A is defined as the area AT. Then, the AT is a rolled copper foil in which the AT is 20% or more and 45% or less with respect to the surface area of the copper foil.

本発明の圧延銅箔は一実施形態において、前記ATが銅箔の表面面積に対し20%以上30%以下である。   In one embodiment of the rolled copper foil of the present invention, the AT is at least 20% and at most 30% based on the surface area of the copper foil.

本発明の圧延銅箔は別の一実施形態において、最終圧延後、且つ、再結晶前の圧延銅箔であって、銅箔表面において結晶の金属組織の測定点bに電子線を照射して得られた結晶方位と、前記測定点bの周囲に200nm離間して位置する複数の隣接測定点に電子線を照射して得られた結晶方位との方位角度差の平均値が0.3°以上0.9°未満である前記測定点bを中心とし、前記測定点bと各辺との距離がそれぞれ100nmである正六角形の面積を面積Bとし、前記面積Bの合計を面積BTとしたとき、前記BTが銅箔の表面面積に対し20%以上50%以下である圧延銅箔である。   In another embodiment, the rolled copper foil of the present invention is a rolled copper foil after final rolling, and before recrystallization, and irradiates an electron beam to the measurement point b of the metal structure of the crystal on the copper foil surface. The average value of the azimuth angle difference between the obtained crystal orientation and the crystal orientation obtained by irradiating the electron beam to a plurality of adjacent measurement points located at a distance of 200 nm around the measurement point b is 0.3 °. The area of a regular hexagon in which the distance between the measurement point b and each side is 100 nm is defined as the area B, and the total of the areas B is defined as the area BT. In this case, the BT is a rolled copper foil having a surface area of 20% or more and 50% or less with respect to the surface area of the copper foil.

本発明の圧延銅箔は更に別の一実施形態において、前記BTが銅箔の表面面積に対し30%以上50%以下である。   In still another embodiment of the rolled copper foil of the present invention, the BT is at least 30% and at most 50% of the surface area of the copper foil.

本発明の圧延銅箔は更に別の一実施形態において、厚みが3μm以上15μm以下である。   In still another embodiment, the rolled copper foil of the present invention has a thickness of 3 μm or more and 15 μm or less.

本発明の圧延銅箔は更に別の一実施形態において、Ag、Zn、Zr、Cr、Ti及びSnからなる群から選択された1種又は2種以上を合計で10質量ppm以上500質量ppm以下含む。   In still another embodiment, the rolled copper foil of the present invention is Ag, Zn, Zr, Cr, Ti, and at least one selected from the group consisting of Sn in a total of 10 mass ppm or more and 500 mass ppm or less. Including.

本発明は更に別の一側面において、本発明の圧延銅箔を使用して作製された銅張積層板である。   In still another aspect, the present invention is a copper-clad laminate manufactured using the rolled copper foil of the present invention.

本発明は更に別の一側面において、本発明の銅張積層板を使用して作製されたフレキシブルプリント配線板である。   In still another aspect, the present invention is a flexible printed wiring board manufactured using the copper-clad laminate of the present invention.

本発明は更に別の一側面において、本発明のフレキシブルプリント配線板を使用して作製された電子機器である。   In another aspect, the present invention is an electronic device manufactured using the flexible printed wiring board of the present invention.

本発明は更に別の一側面において、最終圧延後に温度T(K)及び時間t(秒)が、
T=473t-C (但し、−0.03≦C≦−0.02)
を満たすT及びtにて熱処理を行う圧延銅箔の製造方法である。
In another aspect of the present invention, the temperature T (K) and the time t (second) after the final rolling are:
T = 473t- C (However, -0.03≤C≤-0.02)
This is a method for producing a rolled copper foil in which heat treatment is performed at T and t that satisfy the following.

本発明によれば、良好な折り曲げ性及びハンドリング性を有し、銅張積層板、フレキシブルプリント配線板の生産性が良好となる圧延銅箔、銅張積層板、フレキシブルプリント配線板、電子機器及び圧延銅箔の製造方法を提供することができる。   According to the present invention, a copper-clad laminate, a rolled copper foil having good productivity of a flexible printed wiring board, a copper-clad laminate, a flexible printed wiring board, an electronic device, A method for producing a rolled copper foil can be provided.

圧延銅箔の結晶方位の測定態様を表す模式図である。It is a schematic diagram showing the measurement aspect of the crystal orientation of a rolled copper foil. 実施例に係る180°曲げ試験の説明図である。It is explanatory drawing of the 180 degree bending test which concerns on an Example.

(圧延銅箔の構成)
本発明に用いることのできる圧延銅箔の材料としては、タフピッチ銅(JIS−H3100 C1100)や無酸素銅(JIS−H3100 C1020、JIS−H3510 C1011)が使用可能である。
さらには、タフピッチ銅及び無酸素銅をベースとした銅合金箔も使用可能である。タフピッチ銅及び無酸素銅をベースとした銅合金箔は、具体的には、Ag、Zn、Zr、Cr、Ti及びSnからなる群から選択された1種又は2種以上を合計で10質量ppm以上500質量ppm以下含む銅合金箔が挙げられる。
なお、本明細書において「銅箔」には銅合金箔も含まれ、「タフピッチ銅」及び「無酸素銅」で形成した銅箔には、タフピッチ銅及び無酸素銅をベースとした銅合金箔も含まれる。
(Structure of rolled copper foil)
As the material of the rolled copper foil that can be used in the present invention, tough pitch copper (JIS-H3100 C1100) or oxygen-free copper (JIS-H3100 C1020, JIS-H3510 C1011) can be used.
Furthermore, a copper alloy foil based on tough pitch copper and oxygen-free copper can also be used. The copper alloy foil based on tough pitch copper and oxygen-free copper is specifically, Ag, Zn, Zr, Cr, Ti, and at least one selected from the group consisting of Sn in a total of 10 mass ppm. A copper alloy foil containing at least 500 mass ppm is given.
In this specification, “copper foil” includes a copper alloy foil, and a copper foil formed of “tough pitch copper” and “oxygen-free copper” includes a copper alloy foil based on tough pitch copper and oxygen-free copper. Is also included.

本発明の圧延銅箔は、最終圧延後、且つ、再結晶前の圧延銅箔であり、厚みは3μm以上15μm以下であるのが好ましい。最終圧延後、且つ、再結晶前の圧延銅箔の厚さが3μm未満であると銅箔のハンドリングが悪くなり、15μm超であるとファインピッチ性が低下する。また、銅箔の厚さが薄くなると、回路幅40μm以下のファインピッチが直線性良く形成できる傾向にあり、特に厚さが12μm以下でその傾向が顕著となる。このため、当該圧延銅箔の厚さは、3〜12μmであるのがより好ましい。   The rolled copper foil of the present invention is a rolled copper foil after final rolling and before recrystallization, and preferably has a thickness of 3 μm or more and 15 μm or less. If the thickness of the rolled copper foil after the final rolling and before recrystallization is less than 3 μm, the handling of the copper foil will be poor, and if it exceeds 15 μm, the fine pitch property will be reduced. Further, when the thickness of the copper foil is reduced, a fine pitch having a circuit width of 40 μm or less tends to be formed with good linearity, and the tendency is particularly remarkable when the thickness is 12 μm or less. For this reason, the thickness of the rolled copper foil is more preferably 3 to 12 μm.

本発明の圧延銅箔は、銅箔表面において結晶の金属組織の測定点aに電子線を照射して得られた結晶方位と、測定点aの周囲に200nm離間して位置する複数の隣接測定点に電子線を照射して得られた結晶方位との方位角度差の平均値が1.5°以上2.0°未満である測定点aを中心とし、測定点aと各辺との距離がそれぞれ100nmである正六角形の面積を面積Aとし、面積Aの合計を面積ATとしたとき、ATが銅箔の表面面積に対し20%以上45%以下に制御されている。   The rolled copper foil of the present invention has a crystal orientation obtained by irradiating the measurement point a of the crystal structure of the crystal on the copper foil surface with an electron beam, and a plurality of adjacent measurement points 200 nm apart from the measurement point a. The distance between the measurement point a and each side is centered on the measurement point a in which the average value of the azimuth angle difference from the crystal orientation obtained by irradiating the point with an electron beam is 1.5 ° or more and less than 2.0 °. Is 100 nm, the area of a regular hexagon is defined as area A, and the total of area A is defined as area AT, AT is controlled to 20% or more and 45% or less with respect to the surface area of the copper foil.

本発明の圧延銅箔は、銅箔表面において結晶の金属組織の測定点bに電子線を照射して得られた結晶方位と、測定点bの周囲に200nm離間して位置する複数の隣接測定点に電子線を照射して得られた結晶方位との方位角度差の平均値が0.3°以上0.9°未満である前記測定点bを中心とし、測定点bと各辺との距離がそれぞれ100nmである正六角形の面積を面積Bとし、面積Bの合計を面積BTとしたとき、BTが銅箔の表面面積に対し20%以上50%以下に制御されているのが好ましい。   The rolled copper foil of the present invention has a crystal orientation obtained by irradiating the measurement point b of the crystal structure of the crystal on the surface of the copper foil with an electron beam, and a plurality of adjacent measurement points located 200 nm apart from the measurement point b. The center of the measurement point b where the average value of the azimuth angle difference with the crystal orientation obtained by irradiating the point with an electron beam is 0.3 ° or more and less than 0.9 °, and the measurement point b and each side When the area of a regular hexagon having a distance of 100 nm is defined as area B and the total area B is defined as area BT, it is preferable that BT is controlled to 20% or more and 50% or less with respect to the surface area of the copper foil.

上記測定点aについては、具体的には、まず、銅箔表面において結晶の金属組織の測定点aを決定する。この測定点aは、電子線を照射して得られた結晶方位と、測定点aの周囲に200nm離間して位置する6点の隣接測定点に電子線を照射して得られた結晶方位との方位角度差の平均値が1.5°以上2.0°未満である。なお、測定点と隣接測定点の結晶方位との方位角度差が2.0°以上である隣接測定点は結晶粒界であると判定し、上記方位角度差の平均値の算出においては考慮しない。そのため、例えば6点の隣接測定点の内、2点が結晶粒界であると判定された場合、測定点の電子線を照射して得られた結晶方位と結晶粒界以外の残りの4点の隣接測定点の結晶方位との方位角度差の平均値が、測定点の電子線を照射して得られた結晶方位と隣接測定点に電子線を照射して得られた結晶方位との方位角度差の平均値となる。   As for the measurement point a, specifically, the measurement point a of the crystal structure of the crystal on the copper foil surface is first determined. The measurement point a has a crystal orientation obtained by irradiating the electron beam and a crystal orientation obtained by irradiating the electron beam to six adjacent measurement points located at a distance of 200 nm around the measurement point a. Is between 1.5 ° and less than 2.0 °. Note that an adjacent measurement point in which the azimuth angle difference between the measurement point and the crystal orientation of the adjacent measurement point is 2.0 ° or more is determined to be a crystal grain boundary, and is not considered in calculating the average value of the azimuth angle difference. . Therefore, for example, when it is determined that two of the six adjacent measurement points are crystal grain boundaries, the crystal orientation obtained by irradiating the electron beam at the measurement point and the remaining four points other than the crystal grain boundary are obtained. The average value of the azimuthal angle difference between the crystal orientation of the adjacent measurement point and the crystal orientation obtained by irradiating the electron beam at the measurement point with the crystal orientation obtained by irradiating the adjacent measurement point with the electron beam It becomes the average value of the angle difference.

上記測定点bについては、具体的には、まず、銅箔表面において結晶の金属組織の測定点bを決定する。この測定点bは、電子線を照射して得られた結晶方位と、測定点bの周囲に200nm離間して位置する6点の隣接測定点に電子線を照射して得られた結晶方位との方位角度差の平均値が0.3°以上0.9°未満である。   Regarding the measurement point b, specifically, the measurement point b of the crystal structure of the crystal on the copper foil surface is determined. The measurement point b has a crystal orientation obtained by irradiating the electron beam and a crystal orientation obtained by irradiating the electron beam to six adjacent measurement points located at a distance of 200 nm around the measurement point b. Is between 0.3 ° and less than 0.9 °.

図1に、本発明の圧延銅箔の結晶方位の測定態様を表す模式図を示す。まず測定点を決定する。図1では、測定点a又はbを、No.1(以下、測定点1という)と記載している。また、測定点1を中心とし、測定点1と各辺との距離がそれぞれ100nmである正六角形を決定する。隣接測定点(測定点2〜7)は、この測定点1を中心にして、周囲に200nm離間して位置する。そして、測定点1〜7について電子線を照射して得られた結晶方位を測定し、測定点1と、測定点2〜7の方位角度差をそれぞれ求める。このようにして求めた方位角度差の平均値が1.5°以上2.0°未満であるとき、その測定点1を測定点aとし、測定点aを中心とする正六角形の面積を面積Aとする。また、方位角度差の平均値が0.3°以上0.9°未満であるとき、その測定点1を測定点bとし、測定点bを中心とする正六角形の面積を面積Bとする。   FIG. 1 is a schematic diagram illustrating a measurement mode of the crystal orientation of the rolled copper foil of the present invention. First, measurement points are determined. In FIG. 1 (hereinafter referred to as measurement point 1). A regular hexagon having the measurement point 1 as the center and the distance between the measurement point 1 and each side being 100 nm is determined. Adjacent measurement points (measurement points 2 to 7) are located around the measurement point 1 at a distance of 200 nm from each other. Then, the crystal orientations obtained by irradiating the measurement points 1 to 7 with an electron beam are measured, and the azimuth angle difference between the measurement point 1 and the measurement points 2 to 7 is obtained. When the average value of the azimuth angle differences thus obtained is not less than 1.5 ° and less than 2.0 °, the measurement point 1 is defined as the measurement point a, and the area of the regular hexagon centered on the measurement point a is defined as the area. A. When the average value of the azimuth angle difference is 0.3 ° or more and less than 0.9 °, the measurement point 1 is defined as a measurement point b, and the area of a regular hexagon centered on the measurement point b is defined as an area B.

さらに、これらの隣接測定点(測定点2〜7)について、測定点1と同様に、それぞれを中心として各辺との距離がそれぞれ100nmである正六角形を決定する。このように正六角形を順に決定していくと、図1に示すように互いに接し合う複数の正六角形で銅箔の金属組織が埋められていく。そして、各測定点についても上述と同様にして測定点aかbかを判定し、面積A又はBを求める。このようにして得られた各測定点における面積Aの合計を面積ATとしたとき、ATが銅箔の表面面積に対し20%以上45%以下である。また、各測定点における面積Bの合計を面積BTとしたとき、BTが銅箔の表面面積に対し20%以上50%以下であるのが好ましい。   Further, for these adjacent measurement points (measurement points 2 to 7), similarly to the measurement point 1, a regular hexagon having a distance of 100 nm from each side with respect to each center is determined. When the regular hexagons are sequentially determined in this manner, the metal structure of the copper foil is filled with a plurality of regular hexagons that are in contact with each other as shown in FIG. Then, for each measurement point, whether the measurement point is a or b is determined in the same manner as described above, and the area A or B is obtained. When the total area A at each measurement point obtained in this way is defined as area AT, AT is 20% or more and 45% or less with respect to the surface area of the copper foil. When the total area B at each measurement point is defined as area BT, BT is preferably 20% or more and 50% or less with respect to the surface area of the copper foil.

上述の結晶方位の測定は、EBSP(Electron Backscattering Pattern)のいわゆるKAM(Kernel Average Misorientation)値で200nmステップによるものが挙げられる。方位角度差が2°以上ある場所は結晶粒界としたため省いている。KAM値はEBSPを測定するステップ間隔により大きく変化するが、ステップ間隔を短くしていくと徐々に変化しなくなり、本発明の圧延銅箔では200nm以下であればほぼ一定の値となる。このため、200nmステップで測定したKAM値を用いることができる。   The above-described measurement of the crystal orientation may be performed by a so-called KAM (Kernel Average Misorientation) value of EBSP (Electron Backscattering Pattern) in steps of 200 nm. Locations where the azimuth angle difference is 2 ° or more are omitted because they are crystal grain boundaries. Although the KAM value greatly changes depending on the step interval for measuring the EBSP, the KAM value does not gradually change as the step interval is shortened. In the case of the rolled copper foil of the present invention, the KAM value becomes almost constant if it is 200 nm or less. For this reason, a KAM value measured in 200 nm steps can be used.

面積ATの割合は、小さい方が、銅箔におけるひずみの蓄積が少ない。ATが銅箔の表面面積に対し20%未満であると、ひずみ蓄積量が少なくハンドリング性が良くなるが、銅張積層板を作る工程で再結晶せず、さらに再結晶しても結晶径が不均一となる。一方、ATが銅箔の表面面積に対し45%を超えると、ひずみの蓄積が大きすぎてハンドリング性が著しく悪くなる。また、面積ATの割合は、銅箔の表面面積に対し20%以上30%以下であるのが好ましい。面積ATの割合が30%以下であると、ハンドリング性向上の効果が大きくなる。   The smaller the ratio of the area AT, the less the accumulation of strain in the copper foil. When the AT is less than 20% of the surface area of the copper foil, the amount of strain accumulation is small and the handleability is improved. It becomes uneven. On the other hand, if the AT exceeds 45% of the surface area of the copper foil, the accumulation of strain is too large, and the handling property is significantly deteriorated. The ratio of the area AT is preferably 20% or more and 30% or less with respect to the surface area of the copper foil. When the ratio of the area AT is 30% or less, the effect of improving the handleability is increased.

面積BTの割合は、小さい方が、銅箔におけるひずみの蓄積が少ない。BTが銅箔の表面面積に対し20%未満であると、ひずみ蓄積量が少なくハンドリング性が良くなるが、銅張積層板を作る工程で再結晶せず、さらに再結晶しても結晶径が不均一となる。一方、BTが銅箔の表面面積に対し50%を超えると、再結晶し難くなったり、再結晶粒径が不均一になったりする。また、面積BTの割合は、銅箔の表面面積に対し30%以上50%以下であるのが好ましい。面積BTの割合が30%以上であると、ハンドリング性向上の効果が大きくなる。   The smaller the ratio of the area BT, the less the accumulation of strain in the copper foil. When the BT is less than 20% of the surface area of the copper foil, the amount of strain accumulation is small and the handleability is improved. It becomes uneven. On the other hand, if BT exceeds 50% of the surface area of the copper foil, recrystallization becomes difficult or the recrystallized particle size becomes uneven. The ratio of the area BT is preferably 30% or more and 50% or less with respect to the surface area of the copper foil. When the ratio of the area BT is 30% or more, the effect of improving the handleability is increased.

本発明の圧延銅箔は、Ag、Zn、Zr、Cr、Ti及びSnからなる群から選択された1種又は2種以上を合計で10質量ppm以上500質量ppm以下含むことが好ましい。Ag、Zn、Zr、Cr、Ti及びSnからなる群から選択された1種又は2種以上を合計で10質量ppm以上含むことで、銅箔の屈曲性が向上する。また、銅以外の元素が含まれることでひずみが蓄積しやすくなり、ハンドリング性が劣化するおそれがあるため、Ag、Zn、Zr、Cr、Ti及びSnからなる群から選択された1種又は2種以上を合計で500質量ppm以下とするのが好ましい。   The rolled copper foil of the present invention preferably contains at least 10 mass ppm and not more than 500 mass ppm of one or more selected from the group consisting of Ag, Zn, Zr, Cr, Ti and Sn. By including 10 mass ppm or more in total of one or more selected from the group consisting of Ag, Zn, Zr, Cr, Ti and Sn, the flexibility of the copper foil is improved. In addition, since an element other than copper is included, strain easily accumulates, and handling properties may be deteriorated. Therefore, one or two selected from the group consisting of Ag, Zn, Zr, Cr, Ti, and Sn. It is preferred that the total of the species or more be 500 ppm by mass or less.

(圧延銅箔の製造方法)
圧延銅箔の製造プロセスは、電気銅を純銅の原料に使用し、必要に応じて合金元素を添加した後、鋳造して厚み100〜300mmのインゴットを製造する。このインゴットを熱間圧延して厚み5〜20mm程度とした後、冷間圧延と焼鈍を繰り返して、冷間圧延で所定の厚みに仕上げる。このとき、最終圧延加工度が90%以上になるように圧延する。最終圧延加工度とは、再結晶を伴う焼鈍後、製品の板厚まで加工する圧延の総加工度である。最終圧延加工度が90%以上であると、銅箔の屈曲性及び折り曲げ性が良好となる。続いて、最終圧延後に、温度T(K)及び時間t(秒)が、
T=473t-C (但し、−0.03≦C≦−0.02)
を満たすT及びtにて熱処理を行う。当該熱処理は再結晶を伴わず、再結晶温度の1/2〜3/4の温度にて行われている。熱処理時間は1〜30時間であるのが好ましい。当該熱処理の温度が高い方が銅箔におけるひずみの蓄積を小さくする効果があり、ハンドリング性向上の効果は大きいが、温度が高すぎると部分的に再結晶してハンドリング性が逆に悪くなってしまう。すなわち、このような熱処理を行うことで、本発明の圧延銅箔の面積AT及びBTの割合を制御することができる。
(Production method of rolled copper foil)
In the production process of rolled copper foil, electrolytic copper is used as a raw material for pure copper, alloy elements are added as necessary, and then cast to produce an ingot having a thickness of 100 to 300 mm. After hot-rolling this ingot to a thickness of about 5 to 20 mm, cold rolling and annealing are repeated to finish the ingot to a predetermined thickness by cold rolling. At this time, rolling is performed so that the final rolling degree is 90% or more. The final rolling degree is the total degree of rolling for rolling to the thickness of the product after annealing accompanied by recrystallization. When the final rolling degree is 90% or more, the flexibility and bendability of the copper foil are improved. Subsequently, after the final rolling, the temperature T (K) and the time t (second) are:
T = 473t- C (However, -0.03≤C≤-0.02)
The heat treatment is performed at T and t satisfying the following. The heat treatment is performed without recrystallization and at a temperature of 1/2 to 3/4 of the recrystallization temperature. The heat treatment time is preferably from 1 to 30 hours. A higher temperature of the heat treatment has an effect of reducing the accumulation of strain in the copper foil, and the effect of improving the handleability is great, but if the temperature is too high, the recrystallization partially deteriorates and the handleability becomes worse. I will. That is, by performing such a heat treatment, the ratio of the area AT and BT of the rolled copper foil of the present invention can be controlled.

(銅張積層板、フレキシブルプリント配線板及び電子機器)
本発明の銅張積層板は、本発明の圧延銅箔に対し、必要であれば再結晶等の処理を行った後、絶縁基板を貼り合わせることで構成されている。また、本発明に係るフレキシブルプリント配線板は、本発明の銅張積層板の圧延銅箔部分を加工して配線パターンを形成することで作製することができる。すなわち、本発明に係るフレキシブルプリント配線板は、絶縁基板と、この絶縁基板の表面に形成された配線パターンとを備えている。ここで用いられる絶縁基板は、フレキシブルプリント配線板に適用可能な良好な屈曲性及び折れ曲げ性を有するものであれば特に制限を受けないが、例えば、ポリイミドフィルム、液晶ポリマーフィルム、ポリエチレンナフタレート等が挙げられる。絶縁基板の厚さは、12〜50μmが好ましい。厚さが12μm未満であるとハンドリングが悪くなり、50μm超であるとフレキシブル性が低下する。配線パターンは、上述のフレキシブルプリント配線板用圧延銅箔を用いて形成されている。配線パターンの形状は特に限定されず、どのようなものであってもよい。
(Copper clad laminates, flexible printed wiring boards and electronic equipment)
The copper-clad laminate of the present invention is configured by subjecting the rolled copper foil of the present invention to recrystallization or the like, if necessary, and then bonding an insulating substrate thereto. Further, the flexible printed wiring board according to the present invention can be manufactured by processing a rolled copper foil portion of the copper-clad laminate of the present invention to form a wiring pattern. That is, a flexible printed wiring board according to the present invention includes an insulating substrate and a wiring pattern formed on a surface of the insulating substrate. The insulating substrate used here is not particularly limited as long as it has good flexibility and bendability that can be applied to a flexible printed wiring board. Examples thereof include a polyimide film, a liquid crystal polymer film, and polyethylene naphthalate. Is mentioned. The thickness of the insulating substrate is preferably 12 to 50 μm. If the thickness is less than 12 μm, handling becomes poor, and if it is more than 50 μm, flexibility decreases. The wiring pattern is formed using the above-described rolled copper foil for a flexible printed wiring board. The shape of the wiring pattern is not particularly limited, and may be any shape.

銅張積層板は、圧延銅箔と、良好な屈曲性及び折れ曲げ性を有するポリイミドフィルム、液晶ポリマーフィルム等の絶縁基板とを貼り合わせて製造することができる。   The copper-clad laminate can be manufactured by laminating a rolled copper foil and an insulating substrate such as a polyimide film or a liquid crystal polymer film having good flexibility and bendability.

貼り合わせの方法は、ポリイミドフィルムの場合、熱硬化性ポリイミドフィルムに熱可塑性のポリイミド接着剤を塗工、乾燥した後、銅箔と積層させ、熱圧着させる。圧着方法としては真空熱プレスする方法や熱ロールによってラミネートする方法がある。またポリイミドフィルムの場合、銅箔にポリイミドの前駆体を塗工、乾燥、硬化させることで銅張積層板を作製する。   In the case of a polyimide film, in the case of a polyimide film, a thermoplastic polyimide adhesive is applied to a thermosetting polyimide film, dried, laminated with a copper foil, and thermocompressed. As a pressure bonding method, there is a method of performing vacuum hot pressing or a method of laminating using a hot roll. In the case of a polyimide film, a copper-clad laminate is prepared by applying a polyimide precursor to a copper foil, drying and curing.

銅張積層板からフレキシブルプリント配線板を作製する工程は当業者に周知の方法を用いればよい。例えば、エッチングレジストを銅張積層板の銅箔面に配線パターンとして必要となる部分だけに塗工し、エッチング液を銅箔面に噴射することで不要銅箔を除去して回路パターンを形成する。次いでエッチングレジストを剥離・除去して配線パターンを露出することで、フレキシブルプリント配線板を作製する。   The process for producing a flexible printed wiring board from a copper-clad laminate may be performed by a method well known to those skilled in the art. For example, an etching resist is applied only to a portion required as a wiring pattern on a copper foil surface of a copper-clad laminate, and unnecessary copper foil is removed by spraying an etching solution onto the copper foil surface to form a circuit pattern. . Next, a flexible printed wiring board is produced by exposing and removing the etching resist to expose the wiring pattern.

このフレキシブルプリント配線板を2つの電子基板間に設けて、それらを電気的に接続させることで、種々の電子機器を作製することができる。電子機器としては、特に限定されず、例えば、液晶ディスプレイ、カーナビゲーション、携帯電話、ゲーム機、CDプレイヤー、デジタルカメラ、テレビ、DVDプレイヤー、電子手帳、電子辞書、電卓、ビデオカメラ、プリンター等が挙げられる。   Various electronic devices can be manufactured by providing the flexible printed wiring board between two electronic substrates and electrically connecting them. The electronic device is not particularly limited, and examples thereof include a liquid crystal display, a car navigation, a mobile phone, a game machine, a CD player, a digital camera, a television, a DVD player, an electronic organizer, an electronic dictionary, a calculator, a video camera, and a printer. Can be

以下、本発明の実施例を示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。   EXAMPLES Hereinafter, examples of the present invention will be described, but these are provided for better understanding of the present invention, and are not intended to limit the present invention.

タフピッチ銅:TPC(実施例1〜3、16、比較例2、4)(JIS−H3100 C1100)、無酸素銅:OFC(実施例4〜15、17〜29、比較例1、3、5)(JIS−H3100 C1020)に表1に記載の元素を添加してインゴットを作製した。なお、実施例1〜7は添加元素を使用せず、タフピッチ銅、無酸素銅をそれぞれそのまま用いてインゴットを作製した。次に、作製したインゴットを熱間圧延で厚さ7mmの板に加工し、表面研削で酸化物を取り除いた後、冷間圧延、焼鈍、酸洗を繰り返した。この後、表1に記載の厚さまでの冷間圧延を実施した。このとき、最終圧延加工度が90%以上になるように圧延した。最終圧延後に、再結晶を伴わない熱処理として、温度T(K)及び時間t(秒)が、
T=473t-C (T、t、Cは表1に記載)
を満たすように熱処理を行った。
Tough pitch copper: TPC (Examples 1-3, 16, Comparative Examples 2, 4) (JIS-H3100 C1100), oxygen-free copper: OFC (Examples 4-15, 17-29, Comparative Examples 1, 3, 5) (JIS-H3100 C1020) was added with the elements shown in Table 1 to produce an ingot. In addition, in Examples 1-7, the ingot was produced using tough pitch copper and oxygen-free copper as they were without using any additional element. Next, the produced ingot was processed into a plate having a thickness of 7 mm by hot rolling, and after removing oxides by surface grinding, cold rolling, annealing, and pickling were repeated. Thereafter, cold rolling was performed to the thickness described in Table 1. At this time, rolling was performed so that the final rolling degree was 90% or more. After the final rolling, as a heat treatment without recrystallization, the temperature T (K) and the time t (second)
T = 473t- C (T, t and C are described in Table 1)
The heat treatment was performed so as to satisfy the following.

(AT及びBTの割合の測定)
上述のようにして作製した各銅箔に対して、電子顕微鏡JEOL FE−SEMを用い、TSL社製の解析ソフトを用いてEBSPをとってKAM値を算出した。これによって銅箔表面の500μm×500μmの範囲を測定し、当該測定面における上述の面積AT及び面積BTを求め、銅箔の表面面積に対する割合を算出した。なお、当該面積AT及び面積BTは、銅箔表面の500μm×500μmの範囲において、結晶粒数で625個程度の測定を行い、その平均を算出して求めた。
(Measurement of the ratio of AT and BT)
The KAM value was calculated for each of the copper foils prepared as described above using an electron microscope JEOL FE-SEM and EBSP using analysis software manufactured by TSL. Thus, the area of 500 μm × 500 μm on the copper foil surface was measured, and the above-mentioned area AT and area BT on the measurement surface were determined, and the ratio to the surface area of the copper foil was calculated. The area AT and the area BT were determined by measuring about 625 crystal grains in the range of 500 μm × 500 μm on the surface of the copper foil and calculating the average.

(ハンドリング性)
300℃に加熱した2つのロールを100kgf/cmのニップ圧にてニップさせ、その間に銅箔を、テンションフリー且つ2m/分の速度で通箔させた。このときにシワが消えないものを×、ライン張力の調整でシワが少なくなったものを○、シワが発生しなくなるものを◎とした。
(Handling)
The two rolls heated to 300 ° C. were nipped at a nip pressure of 100 kgf / cm, during which the copper foil was passed through at a tension-free rate of 2 m / min. At this time, the case where wrinkles did not disappear was evaluated as x, the case where wrinkles were reduced by adjusting the line tension was evaluated as ○, and the case where wrinkles did not occur was evaluated as ◎.

(折り曲げ性)
各銅箔に対して、圧延方向が長手方向となるように試験片を12.7mm×100mm短冊状に切り出した。この試験片S1を長手方向の両端同士が合うように中央部でU字状に曲げ、長手方向が水平になるように横に向けて逆C字状にした状態で、圧縮試験機(島津製作所製の万能試験機 AGS−5kN)にセットした(図2(a))。具体的には、試験片S1を圧縮試験機の台座12上に載置し、試験片S1の上方のクロスヘッド11を荷重98kN(10kgf)、50mm/分の速度で下降させ、荷重を加えてから5秒保持して試験片S1を完全に潰した(試験片S1を完全に潰す回数を折り曲げ回数とした。)その後、クロスヘッド11を上昇させ、U字部が潰れた試験片S2を取り出し、長手方向が上下になるよう向きを変えて試験片S3とした(図2(b))。試験片S2、S3は、U字部が潰れた突状の曲げ部Cを有する。曲げ部C外面を観察し割れの有無を確認した。割れが見つかなかったら、曲げ部Cが上向きになるようにして試験片S3を上記圧縮試験機の台座12上に載置し、曲げ部Cの上方のクロスヘッド11を上記と同様の荷重及び速度で下降させ、荷重を加えてから5秒保持して試験片S3を完全に潰した(図2(c)、(d))。その後、クロスヘッド11を上昇させ、曲げ部Cが潰れてほぼ平坦になった試験片S4を取り出した。試験片S4を試験片S1として折り曲げ回数が3回になるまで続け、割れの有無をCCDカメラで確認する。3回曲げても割れないものを○、割れるものを×とした。
測定条件及び結果を表1に示す。
(Bendability)
For each copper foil, a test piece was cut into a 12.7 mm x 100 mm strip so that the rolling direction was the longitudinal direction. This test piece S1 was bent in a U-shape at the center so that both ends in the longitudinal direction were aligned with each other, and turned in an inverted C-shape so that the longitudinal direction became horizontal, a compression tester (Shimadzu Corporation) (AGS-5kN) (FIG. 2 (a)). Specifically, the test piece S1 is placed on the pedestal 12 of the compression tester, and the crosshead 11 above the test piece S1 is lowered at a load of 98 kN (10 kgf) at a speed of 50 mm / min. After 5 seconds, the test piece S1 was completely crushed (the number of times the test piece S1 was completely crushed was defined as the number of bendings). Thereafter, the crosshead 11 was raised, and the test piece S2 whose U-shaped portion was crushed was taken out. The test piece S3 was changed in direction so that the longitudinal direction was up and down (FIG. 2B). Each of the test pieces S2 and S3 has a protruding bent portion C whose U-shaped portion is crushed. The outer surface of the bent portion C was observed to check for cracks. If no crack is found, the test piece S3 is placed on the pedestal 12 of the compression tester with the bent portion C facing upward, and the crosshead 11 above the bent portion C is subjected to the same load and speed as described above. The test piece S3 was completely crushed by holding for 5 seconds after applying a load (FIGS. 2C and 2D). Thereafter, the crosshead 11 was raised, and the test piece S4 in which the bent portion C was crushed and became almost flat was taken out. The test piece S4 is used as a test piece S1 until the number of times of bending is three times, and the presence or absence of cracks is checked with a CCD camera. Those that did not crack even after being bent three times were rated as ○, and those that broke were rated as ×.
Table 1 shows the measurement conditions and results.

Figure 2019214793
Figure 2019214793

(評価)
実施例1〜29は、ATが銅箔の表面面積に対し20%以上45%以下であり、ハンドリング性及び折り曲げ性が良好であった。
比較例1、3、5は、ATが銅箔の表面面積に対し45%超であり、ハンドリング性が不良であった。
比較例2、4は、ATが銅箔の表面面積に対し20%未満であり、折り曲げ性が不良であった。
(Evaluation)
In Examples 1 to 29, AT was 20% or more and 45% or less with respect to the surface area of the copper foil, and the handling property and the bending property were good.
In Comparative Examples 1, 3, and 5, the AT was more than 45% with respect to the surface area of the copper foil, and the handling property was poor.
In Comparative Examples 2 and 4, the AT was less than 20% of the surface area of the copper foil, and the bendability was poor.

11 クロスヘッド
12 台座
S1 試験片
S2 試験片
S3 試験片
S4 試験片
C 曲げ部
11 Crosshead 12 Pedestal S1 Specimen S2 Specimen S3 Specimen S4 Specimen C Bent

Claims (10)

最終圧延後、且つ、再結晶前の圧延銅箔であって、銅箔表面において結晶の金属組織の測定点aに電子線を照射して得られた結晶方位と、前記測定点aの周囲に200nm離間して位置する複数の隣接測定点に電子線を照射して得られた結晶方位との方位角度差の平均値が1.5°以上2.0°未満である前記測定点aを中心とし、前記測定点aと各辺との距離がそれぞれ100nmである正六角形の面積を面積Aとし、前記面積Aの合計を面積ATとしたとき、前記ATが銅箔の表面面積に対し20%以上45%以下である圧延銅箔。   After the final rolling, and the rolled copper foil before recrystallization, the crystal orientation obtained by irradiating the measurement point a of the crystal structure of the crystal on the copper foil surface with an electron beam, and around the measurement point a A plurality of adjacent measurement points located at a distance of 200 nm are irradiated with an electron beam. The center of the measurement point a having an average value of the azimuth angle difference from the crystal orientation of 1.5 ° or more and less than 2.0 ° is centered. When the area of a regular hexagon in which the distance between the measurement point a and each side is 100 nm is defined as the area A, and the total of the areas A is defined as the area AT, the AT is 20% of the surface area of the copper foil. A rolled copper foil of at least 45% inclusive. 前記ATが銅箔の表面面積に対し20%以上30%以下である請求項1に記載の圧延銅箔。   The rolled copper foil according to claim 1, wherein the AT is at least 20% and at most 30% based on the surface area of the copper foil. 最終圧延後、且つ、再結晶前の圧延銅箔であって、銅箔表面において結晶の金属組織の測定点bに電子線を照射して得られた結晶方位と、前記測定点bの周囲に200nm離間して位置する複数の隣接測定点に電子線を照射して得られた結晶方位との方位角度差の平均値が0.3°以上0.9°未満である前記測定点bを中心とし、前記測定点bと各辺との距離がそれぞれ100nmである正六角形の面積を面積Bとし、前記面積Bの合計を面積BTとしたとき、前記BTが銅箔の表面面積に対し20%以上50%以下である請求項1又は2に記載の圧延銅箔。   After the final rolling, and the rolled copper foil before recrystallization, the crystal orientation obtained by irradiating the measurement point b of the crystal structure of the crystal on the copper foil surface with an electron beam, and around the measurement point b A plurality of adjacent measurement points located at a distance of 200 nm are irradiated with an electron beam, and the average value of the azimuthal angle difference from the crystal orientation obtained from the measurement point b is 0.3 ° or more and less than 0.9 °. When the area of the regular hexagon in which the distance between the measurement point b and each side is 100 nm is defined as the area B and the total of the areas B is defined as the area BT, the BT is 20% of the surface area of the copper foil. The rolled copper foil according to claim 1, which is at least 50%. 前記BTが銅箔の表面面積に対し30%以上50%以下である請求項1〜3のいずれか一項に記載の圧延銅箔。   The rolled copper foil according to any one of claims 1 to 3, wherein the BT is at least 30% and at most 50% of the surface area of the copper foil. 厚みが3μm以上15μm以下である請求項1〜4のいずれか一項に記載の圧延銅箔。   The rolled copper foil according to any one of claims 1 to 4, having a thickness of 3 µm or more and 15 µm or less. Ag、Zn、Zr、Cr、Ti及びSnからなる群から選択された1種又は2種以上を合計で10質量ppm以上500質量ppm以下含む請求項1〜5のいずれか一項に記載の圧延銅箔。   Rolling according to any one of claims 1 to 5, comprising one or more selected from the group consisting of Ag, Zn, Zr, Cr, Ti and Sn in a total amount of 10 mass ppm or more and 500 mass ppm or less. Copper foil. 請求項1〜6のいずれか一項に記載の圧延銅箔を使用して作製された銅張積層板。   A copper-clad laminate produced using the rolled copper foil according to any one of claims 1 to 6. 請求項7に記載の銅張積層板を使用して作製されたフレキシブルプリント配線板。   A flexible printed wiring board produced using the copper-clad laminate according to claim 7. 請求項8に記載のフレキシブルプリント配線板を使用して作製された電子機器。   An electronic device manufactured using the flexible printed wiring board according to claim 8. 最終圧延後に温度T(K)及び時間t(秒)が、
T=473t-C (但し、−0.03≦C≦−0.02)
を満たすT及びtにて熱処理を行う圧延銅箔の製造方法。
After the final rolling, the temperature T (K) and the time t (second)
T = 473t- C (However, -0.03≤C≤-0.02)
A method for producing a rolled copper foil, wherein a heat treatment is performed at T and t that satisfy the following.
JP2019144865A 2019-08-06 2019-08-06 Rolled copper foil, copper-clad laminate, flexible printed wiring board, electronic equipment, and method for manufacturing rolled copper foil Pending JP2019214793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019144865A JP2019214793A (en) 2019-08-06 2019-08-06 Rolled copper foil, copper-clad laminate, flexible printed wiring board, electronic equipment, and method for manufacturing rolled copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019144865A JP2019214793A (en) 2019-08-06 2019-08-06 Rolled copper foil, copper-clad laminate, flexible printed wiring board, electronic equipment, and method for manufacturing rolled copper foil

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014209150A Division JP6887213B2 (en) 2014-10-10 2014-10-10 Manufacturing method of rolled copper foil, copper-clad laminate, flexible printed wiring board, electronic equipment and rolled copper foil

Publications (1)

Publication Number Publication Date
JP2019214793A true JP2019214793A (en) 2019-12-19

Family

ID=68919335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019144865A Pending JP2019214793A (en) 2019-08-06 2019-08-06 Rolled copper foil, copper-clad laminate, flexible printed wiring board, electronic equipment, and method for manufacturing rolled copper foil

Country Status (1)

Country Link
JP (1) JP2019214793A (en)

Similar Documents

Publication Publication Date Title
JP5094834B2 (en) Copper foil manufacturing method, copper foil and copper clad laminate
KR101935128B1 (en) Copper foil for flexible printed wiring board, copper-clad laminate using the same, flexible printed wiring board and electronic device
TWI588273B (en) Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board and electronic equipment
JP2014077182A (en) Rolled copper foil
TWI426995B (en) Copper or copper alloy foil, and a method of manufacturing both sides of a copper-clad laminate using the copper or copper alloy foil
JP2014214376A (en) Rolled copper foil, flexible copper-clad laminated plate, and flexible printed wiring board
TWI730280B (en) Copper foil for flexible printed circuit boards, copper-clad laminates using the same, flexible printed circuit boards and electronic devices
JP6104200B2 (en) Rolled copper foil, copper clad laminate, flexible printed circuit board, and electronic device
JP2022095855A (en) Copper foil for flexible printed substrate
JP5694094B2 (en) Copper foil for flexible printed wiring board, copper-clad laminate, flexible printed wiring board, and electronic device
JP5933943B2 (en) Rolled copper foil for flexible printed wiring boards, copper-clad laminates, flexible printed wiring boards, and electronic equipment
JP6887213B2 (en) Manufacturing method of rolled copper foil, copper-clad laminate, flexible printed wiring board, electronic equipment and rolled copper foil
JP2009280855A (en) Rolled copper foil and method for producing the same
JP5753115B2 (en) Rolled copper foil for printed wiring boards
JP2011153360A (en) Rolled copper alloy foil for double-sided copper-clad laminated plate, and method for producing double-sided copper-clad laminated plate using the same
JP2019214793A (en) Rolled copper foil, copper-clad laminate, flexible printed wiring board, electronic equipment, and method for manufacturing rolled copper foil
JP6647253B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
TWI741365B (en) Copper foil for flexible printed circuit boards, copper-clad laminates using the same, flexible printed circuit boards and electronic devices
JP3409941B2 (en) Stainless steel for press plate and method for producing the same
WO2024014173A1 (en) Rolled copper foil, copper-clad laminate, method for manufacturing copper-clad laminate, method for manufacturing flexible printed wiring board, and method for manufacturing electronic component
WO2024014171A1 (en) Rolled copper foil, copper-clad laminate, method for manufacturing copper-clad laminate, method for manufacturing flexible printed circuit board, and method for manufacturing electronic part
KR20120079131A (en) Method of manufacturing double-sided copper-clad laminate, and pair of copper or copper alloy foil sheets used thereupon
CN111526674A (en) Rolled copper foil, copper-clad laminate, flexible printed board, and electronic device
JPH04224650A (en) Aluminum alloy foil for printed circuit and its manufacture
TWI539017B (en) Rolled copper foil, copper clad laminate, and flexible printed circuit boards and electronic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210202