JP2022095855A - Copper foil for flexible printed substrate - Google Patents
Copper foil for flexible printed substrate Download PDFInfo
- Publication number
- JP2022095855A JP2022095855A JP2022064896A JP2022064896A JP2022095855A JP 2022095855 A JP2022095855 A JP 2022095855A JP 2022064896 A JP2022064896 A JP 2022064896A JP 2022064896 A JP2022064896 A JP 2022064896A JP 2022095855 A JP2022095855 A JP 2022095855A
- Authority
- JP
- Japan
- Prior art keywords
- copper foil
- copper
- flexible printed
- orientation
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 90
- 239000011889 copper foil Substances 0.000 title claims abstract description 55
- 239000000758 substrate Substances 0.000 title claims abstract description 11
- 239000010949 copper Substances 0.000 claims abstract description 40
- 229910052802 copper Inorganic materials 0.000 claims abstract description 35
- 239000013078 crystal Substances 0.000 claims abstract description 28
- 229910001369 Brass Inorganic materials 0.000 claims abstract description 19
- 239000010951 brass Substances 0.000 claims abstract description 19
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 230000003746 surface roughness Effects 0.000 claims description 8
- 239000000654 additive Substances 0.000 claims description 7
- 230000000996 additive effect Effects 0.000 claims description 7
- 239000011888 foil Substances 0.000 claims description 4
- 238000000137 annealing Methods 0.000 description 27
- 238000005452 bending Methods 0.000 description 24
- 238000005097 cold rolling Methods 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 9
- 238000001953 recrystallisation Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 238000005096 rolling process Methods 0.000 description 8
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 238000000984 pole figure measurement Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 238000001028 reflection method Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/40—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Conductive Materials (AREA)
Abstract
Description
本発明はフレキシブルプリント基板等の配線部材に用いて好適な銅箔に関する。 The present invention relates to a copper foil suitable for use in a wiring member such as a flexible printed substrate.
電子機器の小型、薄型、高性能化にともない、フレキシブルプリント基板(フレキシブル配線板、以下、「FPC」と称する)が広く用いられている。
FPCは銅箔と樹脂とを積層したCopper Clad Laminate(銅張積層体、以下CCLと称する)をエッチングすることで配線を形成し、その上をカバーレイと呼ばれる樹脂層によって被覆したものである。
Flexible printed circuit boards (flexible wiring boards, hereinafter referred to as "FPCs") are widely used as electronic devices become smaller, thinner, and have higher performance.
FPC is formed by etching Copper Clad Laminate (copper-clad laminate, hereinafter referred to as CCL) in which a copper foil and a resin are laminated to form wiring, and covering the wiring with a resin layer called a coverlay.
ところで、FPCの導体である銅箔には、屈曲性と共に、折り曲げを繰り返しても破断し難い耐折り曲げ特性が求められ、さらに高速伝送特性も求められている。
通常、FPC用銅箔には表面に粗化粒子と称される微細な金属粒子を形成させる粗化処理が施され、さらに耐熱性や耐薬品性、接着性を付与するために各種表面処理が施される。そして、この銅箔を、フィルム状の絶縁性樹脂基材と加圧ラミネートする工法や、絶縁性樹脂基材を銅箔に塗布後、乾燥又は高温処理する工法等により、CCLが形成され、最後に銅箔部分をエッチングして回路形成してFPCが製造される。
By the way, the copper foil which is the conductor of the FPC is required to have bending resistance which is hard to break even if it is repeatedly bent, and further high-speed transmission characteristic.
Normally, copper foil for FPC is subjected to roughening treatment to form fine metal particles called roughened particles on the surface, and various surface treatments are applied to impart heat resistance, chemical resistance, and adhesiveness. Be given. Then, CCL is formed by a method of pressure laminating this copper foil with a film-shaped insulating resin base material, a method of applying an insulating resin base material to the copper foil, and then drying or high-temperature treatment. The copper foil portion is etched to form a circuit, and the FPC is manufactured.
そして、圧延銅箔の折り曲げ性を向上させる方法として、最終圧下率を高くして再結晶集合組織のCube方位である立方体集合組織を発達させることが知られているが、最終圧下率が高いと、歪が蓄積されて軟化温度が低くなるという問題がある。
そこで、最終圧下率を高くしなくとも、圧延銅箔の折り曲げ性を向上させる方策として、Copper方位の結晶方位密度を10以上とし、Brass方位の結晶方位密度を20以上とする技術が開発されている(特許文献1)。
As a method for improving the bendability of the rolled copper foil, it is known to increase the final reduction rate to develop a cubic texture, which is the Cube orientation of the recrystallized texture, but when the final reduction rate is high, it is known. There is a problem that strain is accumulated and the softening temperature is lowered.
Therefore, as a measure to improve the bendability of rolled copper foil without increasing the final reduction ratio, a technology has been developed in which the crystal orientation density in the Copper orientation is 10 or more and the crystal orientation density in the Brass orientation is 20 or more. (Patent Document 1).
ところで、単体の銅箔を一度折り曲げると、折り曲げ箇所が加工硬化し、次回の折り曲げ時に加工硬化した箇所を避けて折り曲げられる。これに対し、銅箔を支持体(樹脂)と積層させたCCLを折り曲げると、折り曲げ箇所が樹脂により拘束されるため、同一箇所が折り曲げられ、銅箔単体よりも厳しい折り曲げ試験となる。
そして、特許文献1記載の技術のように、Copper方位の結晶方位密度を高くすると、再結晶集合組織においてCube方位が発達し、再結晶粒径が大きくなるため、CCLの折り曲げ性が低下することが判明した。
また、Brass方位の結晶方位密度が高いと、再結晶集合組織においてBrass方位からなる集合組織が発達する。Brass方位は歪をためやすい方位であり、折り曲げ時に歪が解放されてクラックが発生し易く、CCLの折り曲げ性に劣る。
By the way, once a single copper foil is bent, the bent portion is work-hardened, and the copper foil is bent while avoiding the work-hardened portion at the next bending. On the other hand, when the CCL in which the copper foil is laminated with the support (resin) is bent, the bent portion is restrained by the resin, so that the same portion is bent, and the bending test is stricter than that of the copper foil alone.
When the crystal orientation density of the Copper orientation is increased as in the technique described in Patent Document 1, the Cube orientation develops in the recrystallized texture and the recrystallized grain size increases, so that the bendability of the CCL decreases. There was found.
Further, when the crystal orientation density of the Brass orientation is high, the texture consisting of the Brass orientation develops in the recrystallized texture. The Brass azimuth is an azimuth in which distortion is easily accumulated, and the strain is released at the time of bending to easily generate cracks, which is inferior in the bending property of CCL.
本発明は上記の課題を解決するためになされたものであり、CCLの折り曲げ性を向上させたフレキシブルプリント基板用銅箔の提供を目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a copper foil for a flexible printed circuit board having improved bendability of a CCL.
本発明者らは種々検討した結果、CCLの折り曲げ性を向上させるには、再結晶後のCube方位の発達を抑制する、つまり圧延組織の段階でCopper方位の存在割合を抑制する必要があることを見出した。また、CCLの折り曲げ性を劣化させるBrass方位の結晶方位密度も低減することとした。 As a result of various studies by the present inventors, in order to improve the bendability of CCL, it is necessary to suppress the development of the Cube orientation after recrystallization, that is, to suppress the abundance ratio of the Copper orientation at the stage of the rolled structure. I found. In addition, it was decided to reduce the crystal orientation density of the Brass orientation, which deteriorates the bendability of the CCL.
すなわち、本発明のフレキシブルプリント基板用銅箔は、99.9質量%以上のCuと、添加元素として0.0005~0.0220質量%のPを含有し、残部不可避的不純物からなる圧延銅箔であって、Copper方位の結晶方位密度が10未満であり、Brass方位の結晶方位密度が20未満である。
Copper方位とBrass方位はそれぞれ、{112}<111>、{110}<112>で定義される。
That is, the copper foil for a flexible printed substrate of the present invention is a rolled copper foil containing 99.9% by mass or more of Cu and 0.0005 to 0.0220% by mass of P as an additive element, and the balance is unavoidable impurities. The crystal orientation density of is less than 10, and the crystal orientation density of the Brass orientation is less than 20.
The Copper orientation and the Brass orientation are defined by {112} <111> and {110} <112>, respectively.
本発明のフレキシブルプリント基板用銅箔は、JIS-H3100(C1100)に規格するタフピッチ銅又はJIS-H3100(C1020)の無酸素銅に、添加元素として0.0005~0.0220質量%のPを含有してもよい。
本発明のフレキシブルプリント基板用銅箔は、表面粗さSaが0.2μm未満であるとよい。
本発明のフレキシブルプリント基板用銅箔は、厚さが12μm以下であるとよい。
The copper foil for a flexible printed substrate of the present invention may contain 0.0005 to 0.0220% by mass of P as an additive element in tough pitch copper specified in JIS-H3100 (C1100) or oxygen-free copper in JIS-H3100 (C1020). good.
The copper foil for a flexible printed substrate of the present invention preferably has a surface roughness Sa of less than 0.2 μm.
The copper foil for a flexible printed circuit board of the present invention is preferably 12 μm or less in thickness.
本発明によれば、CCLの折り曲げ性を向上させたフレキシブルプリント基板用銅箔が得られる。 According to the present invention, a copper foil for a flexible printed circuit board having improved bendability of a CCL can be obtained.
以下、本発明に係る銅箔の実施の形態について説明する。なお、本発明において%は特に断らない限り、質量%を示すものとする。 Hereinafter, embodiments of the copper foil according to the present invention will be described. In the present invention,% means mass% unless otherwise specified.
<組成>
本発明に係る銅箔は、99.9質量%以上のCuと、添加元素として0.0005~0.0220質量%のPを含有し、残部不可避的不純物からなる。Cuが99.96質量%以上であると好ましい。
添加元素としてPを含有すると、Copper方位の結晶方位密度を10未満にすることができる。
<Composition>
The copper foil according to the present invention contains 99.9% by mass or more of Cu and 0.0005 to 0.0220% by mass of P as an additive element, and the balance is unavoidable impurities. It is preferable that Cu is 99.96% by mass or more.
When P is contained as an additive element, the crystal orientation density of Copper orientation can be reduced to less than 10.
Pの含有量が0.0005質量%(5質量ppm)未満であると、Copper方位の結晶方位密度が10以上となり、CCLの折り曲げ性が低下する。Pの含有量が0.0220質量%(220質量ppm)を超えると、導電率が低下し、フレキシブルプリント基板に適さない。 When the P content is less than 0.0005 mass% (5 mass ppm), the crystal orientation density in the Copper orientation becomes 10 or more, and the bendability of the CCL is lowered. If the P content exceeds 0.0220 mass% (220 mass ppm), the conductivity will decrease, making it unsuitable for flexible printed substrates.
本発明に係る銅箔を、JIS-H3100(C1100)に規格するタフピッチ銅又はJIS-H3100(C1020)の無酸素銅に、添加元素として0.0005~0.0220質量%のPを含有してなる組成としてもよい。 The copper foil according to the present invention may be composed of tough pitch copper specified in JIS-H3100 (C1100) or oxygen-free copper of JIS-H3100 (C1020) containing 0.0005 to 0.0220% by mass of P as an additive element. good.
<結晶方位密度>
銅箔のCopper方位の結晶方位密度が10未満である。上述のように、CCLの折り曲げ性を向上させるには、再結晶後のCube方位の発達を抑制する、つまり圧延組織の段階でCopper方位の存在割合を抑制する必要がある。
Copper方位の結晶方位密度が10以上になると、再結晶後にCube方位が発達し、再結晶粒径が大きくなってCCLの折り曲げ性が低下する。
銅箔のBrass方位の結晶方位密度が20未満である。Brass方位は歪をためやすく、Brass方位の結晶方位密度が20以上であると、折り曲げ時に歪が解放されてクラックが発生し易く、CCLの折り曲げ性が低下する。
<Crystal orientation density>
The crystal orientation density of the Copper orientation of the copper foil is less than 10. As described above, in order to improve the bendability of CCL, it is necessary to suppress the development of the Cube orientation after recrystallization, that is, to suppress the abundance ratio of the Copper orientation at the stage of the rolled structure.
When the crystal orientation density of the Copper orientation is 10 or more, the Cube orientation develops after recrystallization, the recrystallization grain size becomes large, and the bendability of the CCL decreases.
The crystal orientation density of the Brass orientation of the copper foil is less than 20. The Brass orientation is easy to accumulate strain, and when the crystal orientation density of the Brass orientation is 20 or more, the strain is released at the time of bending and cracks are likely to occur, and the bending property of the CCL is lowered.
結晶方位密度は、完全極点図を用いて算出した。完全極点図は、不完全極点図を用いて算出した。不完全極点図は、圧延集合組織のX線極図形測定により得ることができる。X線極図形測定にはリガク製RINT2500(商品名)を用い、銅箔の(111)、(200)、(220)の面について、Schultzの反射法の条件でX線極図形測定を行った。測定条件は、入射X線源:Co、管電圧:30kV、管電流:100mA、発散スリット:1°、散乱スリット:0.05mm、受光スリット:0.05mm、発散縦制限スリット:1.2mm、走査速度:360°/min、ステップ幅:5°の条件で行なう。各面において回折強度を測定した2θの範囲(θは回折角度)は、(111):48.0~54.0°、(200):56.5~62.5°、(220):86.0~92.0°である。 The crystal orientation density was calculated using a perfect pole figure. The perfect pole figure was calculated using the incomplete pole figure. The incomplete pole figure can be obtained by measuring the X-ray pole figure of the rolled texture. Rigaku's RINT2500 (trade name) was used for the X-ray pole figure measurement, and the X-ray pole figure measurement was performed on the (111), (200), and (220) surfaces of the copper foil under the conditions of Schultz's reflection method. .. The measurement conditions are incident X-ray source: Co, tube voltage: 30 kV, tube current: 100 mA, divergence slit: 1 °, scattering slit: 0.05 mm, light receiving slit: 0.05 mm, divergence vertical limiting slit: 1.2 mm, The scanning speed is 360 ° / min and the step width is 5 °. The range of 2θ (θ is the diffraction angle) in which the diffraction intensity was measured on each surface is (111): 48.0 to 54.0 °, (200): 56.5 to 62.5 °, (220): 86. It is 0.0 to 92.0 °.
X線極図形測定で得られた不完全極点図のデータ処理には、リガク製RINT2500付属正極点データ処理ソフトを用いた。処理条件は、RD補正、スムージング、バックグランド処理、random規格化である。処理したデータはリガク製ASC変換ソフトを用いてテキスト変換した。 The positive point data processing software attached to RINT2500 manufactured by Rigaku was used for the data processing of the incomplete pole figure obtained by the X-ray pole figure measurement. The processing conditions are RD correction, smoothing, background processing, and random standardization. The processed data was converted into text using Rigaku's ASC conversion software.
テキストデータ化した不完全極点図から完全極点図への変換と結晶方位分布関数の抽出にはStandard ODF Ver2.4を用いた。なお、Copper方位及びBrass方位はオイラー角空間上に複数箇所現れるため、本発明では結晶方位密度関数f(gCopper)およびf(gBrass)のオイラー角は、gCopper=(90°,35°,45°)およびgBrass=(35°,45°,90°)を採用した。 Standard ODF Ver2.4 was used for the conversion from the incomplete pole figure converted into text data to the perfect pole figure and the extraction of the crystal orientation distribution function. Since the Copper orientation and the Brass orientation appear at multiple points in the Euler angle space, in the present invention, the Euler angles of the crystal orientation density functions f (gCopper) and f (gBrass) are gCopper = (90 °, 35 °, 45 °). ) And gBrass = (35 °, 45 °, 90 °) were adopted.
銅箔の表面粗さSaが0.2μm未満であることが好ましい。表面粗さSaが0.2μm未満であると、銅箔をFPCにした際の伝送損失を抑制できる。
表面粗さSaはISO25178で規定される。
The surface roughness Sa of the copper foil is preferably less than 0.2 μm. When the surface roughness Sa is less than 0.2 μm, the transmission loss when the copper foil is made into FPC can be suppressed.
Surface roughness S a is specified by ISO 25178.
銅箔の厚さは、JISC6515に規定される公称厚さで12μm以下が好ましい。厚さが薄い程、銅箔にかかる応力が小さくなるため折り曲げ性の向上に資すると共にポータブル機器の小型化、薄型化、軽量化にも資する。 The thickness of the copper foil is preferably 12 μm or less, which is the nominal thickness specified in JIS C6515. The thinner the thickness, the smaller the stress applied to the copper foil, which contributes to the improvement of bendability and the miniaturization, thinning, and weight reduction of portable devices.
本発明の銅箔は、例えば以下のようにして製造することができる。まず、銅インゴットにPを添加して溶解、鋳造した後、熱間圧延し、冷間圧延と焼鈍を繰り返し行うことにより箔を製造することができる。なお、焼鈍は1回でも良い。
ここで、焼鈍のうち最後に行うものを最終焼鈍と呼び、最終焼鈍前後の冷間圧延をそれぞれ最終焼鈍前冷間圧延、最終焼鈍後冷間圧延と呼ぶ。
The copper foil of the present invention can be produced, for example, as follows. First, P can be added to a copper ingot, melted and cast, and then hot rolled, and cold rolling and annealing are repeated to produce a foil. Annealing may be performed once.
Here, the final annealing is called final annealing, and cold rolling before and after final annealing is called cold rolling before final annealing and cold rolling after final annealing, respectively.
ここで、最終焼鈍前冷間圧延の圧下率は、80%以上とすることが好ましい。銅条に十分なひずみを蓄積させるためである。
最終焼鈍後冷間圧延の圧下率(最終圧下率)は95%以上が好ましく、更に好ましくは、99%以上である。圧下率が95%以下であると、銅箔に蓄積するひずみが不均一であるため、圧延組織が不均一となる。また、圧下率が95%以上であるとCopper方位の成長が抑制されるからである。
圧下率(R)は、圧延前の箔厚さをT0、圧延後の箔厚さT1とし、圧下率R={(T0-T1)/T0}×100で表される。
Here, the rolling reduction before final annealing is preferably 80% or more. This is to accumulate sufficient strain in the copper strip.
The reduction rate (final reduction rate) of cold rolling after final annealing is preferably 95% or more, more preferably 99% or more. When the rolling reduction is 95% or less, the strain accumulated in the copper foil is non-uniform, so that the rolled structure becomes non-uniform. Moreover, when the reduction rate is 95% or more, the growth in the Copper direction is suppressed.
The rolling reduction ratio (R) is represented by the rolling reduction ratio R = {(T 0 −T 1 ) / T 0 } × 100, where the foil thickness before rolling is T 0 and the foil thickness after rolling is T 1 .
最終焼鈍の熱処理条件を制御することで、Copper方位、およびBrass方位を抑制することができる。
ここで、最終焼鈍の熱処理温度としては、「再結晶」域の温度とする。最終焼鈍の熱処理温度を「回復」状態の温度とすると、最終焼鈍後冷間圧延によってBrass方位が発達してしまう。「回復」状態よりも高温となるよう、最終焼鈍の熱処理温度を「粒成長」状態の温度とすると、最終焼鈍後冷間圧延によってCopper方位が発達してしまう。このため、最終焼鈍の熱処理温度を「再結晶」域となるように設定する。
By controlling the heat treatment conditions of the final annealing, the Copper orientation and the Brass orientation can be suppressed.
Here, the heat treatment temperature for final annealing is set to a temperature in the “recrystallization” region. Assuming that the heat treatment temperature of the final annealing is the temperature in the "recovered" state, the Brass orientation is developed by cold rolling after the final annealing. If the heat treatment temperature of the final annealing is set to the temperature of the "grain growth" state so that the temperature is higher than that of the "recovery" state, the Copper orientation is developed by cold rolling after the final annealing. Therefore, the heat treatment temperature for final annealing is set to be in the "recrystallization" range.
「再結晶」域温度は、以下の方法により決定することができる。
まず、最終焼鈍前冷間圧延後で最終焼鈍前の銅条を、25、100、150℃、200~260℃まで10℃刻み、280,300,350,380、400℃まで温度を変化させ、30分間、窒素雰囲気下で熱処理を行ったときの抗張力(N/mm2)をJISZ2241に準拠してそれぞれ測定する。
次に、図1に示すように、熱処理温度をX軸、抗張力をY軸としたグラフに測定データをプロットする。低温側(25℃)から高温側へ向かい、隣接するプロット間で抗張力が10MPa/10℃以上に急激に低下する点を変曲点1とする。変曲点1から高温側へ向かい、隣接するプロット間で抗張力が10MPa/10℃未満になった点を変曲点2とする。変曲点2から高温側へ向かい、隣接するプロット間で抗張力が5%以上に低下した点を変曲点3とする。
変曲点2より低温を「回復域」、変曲点2以上かつ変曲点3未満の温度を「再結晶域」、変曲点3以上の高温を「粒成長域」とする。
The "recrystallized" region temperature can be determined by the following method.
First, the copper strips before the final annealing after cold rolling and before the final annealing are changed in 10 ° C. increments of 25, 100, 150 ° C. and 200 to 260 ° C., and the temperature is changed to 280, 300, 350, 380 and 400 ° C. The tensile strength (N / mm2) when heat-treated in a nitrogen atmosphere for 30 minutes is measured in accordance with JIS Z2241.
Next, as shown in FIG. 1, the measurement data is plotted on a graph with the heat treatment temperature on the X-axis and the tensile strength on the Y-axis. The point where the tensile strength drops sharply to 10 MPa / 10 ° C or higher between adjacent plots from the low temperature side (25 ° C.) to the high temperature side is defined as inflection point 1. The point where the tensile strength is less than 10 MPa / 10 ° C. between the adjacent plots from the inflection point 1 toward the high temperature side is defined as the inflection point 2. The point where the tensile strength drops to 5% or more between adjacent plots from the inflection point 2 toward the high temperature side is defined as the inflection point 3.
The temperature lower than the inflection point 2 is defined as the "recovery region", the temperature at which the inflection point 2 or more is less than the inflection point 3 is defined as the "recrystallization region", and the temperature higher than the inflection point 3 is defined as the "grain growth region".
このように、最終焼鈍の熱処理温度を「再結晶域」となるように設定し、最終焼鈍を窒素雰囲気下で、保持時間が1分~30分で行うことが好ましい。 In this way, it is preferable that the heat treatment temperature of the final annealing is set to be in the “recrystallization region”, and the final annealing is performed in a nitrogen atmosphere with a holding time of 1 to 30 minutes.
なお、本発明は、上記実施形態に限定されない。又、本発明の作用効果を奏する限り、上記実施形態における銅合金がその他の成分を含有してもよい。
例えば、銅箔の表面に、粗化処理、防錆処理、耐熱処理、またはこれらの組み合わせによる表面処理を施してもよい。
The present invention is not limited to the above embodiment. Further, the copper alloy in the above-described embodiment may contain other components as long as the effects of the present invention are exhibited.
For example, the surface of the copper foil may be roughened, rust-proofed, heat-resistant, or surface-treated by a combination thereof.
次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
無酸素銅(JIS-H3100C1020)に対し、表1に記載の元素を添加したインゴットを作製した。このインゴットを900℃前後で熱間圧延、冷間圧延が加えられた後に、焼鈍を加えて表面の酸化スケール除去のための面削を行った。その後に、多段式の冷間圧延機により圧延銅条の厚みが2.0mmになるまで最終焼鈍前冷間圧延した。その後、上記した方法で決定した最終焼鈍の熱処理温度(図1の再結晶域の最低温度である変曲点2の温度)で、窒素雰囲気下で30分間の最終焼鈍を行った。その後、最終銅箔厚みである12μmまで圧下率99.4%で最終焼鈍後冷間圧延を行った。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
An ingot was prepared by adding the elements shown in Table 1 to oxygen-free copper (JIS-H3100C1020). This ingot was hot-rolled and cold-rolled at around 900 ° C., and then annealed to perform surface milling to remove the oxide scale on the surface. After that, it was cold-rolled before final annealing by a multi-stage cold rolling machine until the thickness of the rolled copper strip became 2.0 mm. Then, the final annealing was performed for 30 minutes in a nitrogen atmosphere at the heat treatment temperature of the final annealing determined by the above method (the temperature of the inflection point 2 which is the lowest temperature in the recrystallization region of FIG. 1). Then, cold rolling was performed after final annealing at a rolling reduction of 99.4% to the final copper foil thickness of 12 μm.
<銅箔サンプルの評価>
1.導電率
上記最終冷間圧延後の各銅箔サンプルについて、JIS H 0505に基づいて4端子法により、20℃の導電率(%IACS)を測定した。
導電率が80%IACSより大きければ導電性が良好である。
2.銅箔の表面粗さSa
上記最終冷間圧延後の各銅箔サンプルについて、表面粗さSaをISO25178に従って測定した。
各実施例及び比較例の銅箔の表面粗さSaは0.1であった。
3.結晶方位密度(Copper方位及びBrass方位)
上述のようにして測定した。
<Evaluation of copper foil sample>
1. 1. Conductivity For each copper foil sample after the final cold rolling, the conductivity (% IACS) at 20 ° C. was measured by the 4-terminal method based on JIS H 0505.
If the conductivity is greater than 80% IACS, the conductivity is good.
2. 2. Surface roughness of copper foil Sa
The surface roughness S a of each copper foil sample after the final cold rolling was measured according to ISO 25178.
The surface roughness Sa of the copper foils of each Example and Comparative Example was 0.1.
3. 3. Crystal orientation density (Copper orientation and Brass orientation)
It was measured as described above.
4.耐折り曲げ特性
上記最終冷間圧延後の各銅箔サンプルからフレキシブルプリント配線板を作製し、折り曲げ試験して耐折り曲げ特性を評価した。
フレキシブルプリント配線板は下記の様に作製した。ポリイミド樹脂フィルム(株式会社カネカ製FRS-142#SW;厚み25um)の両面にそれぞれ銅箔サンプルを積層し、真空熱プレスで360℃で5分間加熱して銅張積層板を作製した。この銅張積層版の片側の銅箔を全面エッチングで除去し、他の側の銅箔には、MD(圧延平行方向)に平行となるようにL(ライン)/S(スペース)=300μm/300μmの回路を8本形成してフレキシブルプリント配線板とした。
4. Bending resistance characteristics A flexible printed wiring board was prepared from each copper foil sample after the final cold rolling, and a bending test was performed to evaluate the bending resistance characteristics.
The flexible printed wiring board was manufactured as follows. Copper foil samples were laminated on both sides of a polyimide resin film (FRS-142 # SW manufactured by Kaneka Corporation; thickness 25 um), and heated at 360 ° C. for 5 minutes with a vacuum heat press to prepare a copper-clad laminate. The copper foil on one side of this copper-clad laminated plate is removed by etching on the entire surface, and the copper foil on the other side is L (line) / S (space) = 300 μm / so as to be parallel to the MD (rolling parallel direction). Eight 300 μm circuits were formed to form a flexible printed wiring board.
図2に示すようにして折り曲げ試験を行った。まず、(A)に示すように、フレキシブルプリント配線板Fを折り曲げ治具により銅側が外側になるようにして、(B)のように折り曲げた。続いて、折り曲げたフレキシブルプリント配線板Fを戻し治具を用いて開き(C)、開いた曲げ部を平坦に戻した(D)。(A)~(D)を1回の180°密着曲げとし、これを繰り返した。 A bending test was performed as shown in FIG. First, as shown in (A), the flexible printed wiring board F was bent as in (B) with the copper side facing outward by a bending jig. Subsequently, the bent flexible printed wiring board F was opened using a return jig (C), and the opened bent portion was returned flat (D). (A) to (D) were made one 180 ° close contact bending, and this was repeated.
折り曲げ回数は以下のように判定した。すなわち、1回の180°密着曲げ毎に、フレキシブルプリント配線板の銅箔回路に一定電流を流し、当該電流を流すために必要な電圧値を測定し、測定した電圧値からフレキシブルプリント配線板の銅箔回路の抵抗値を算出した。算出した抵抗値が初期値(上記折り曲げ前の抵抗値)の120%以上となったときに、破断が生じたと判定した。
折り曲げ回数は、破断した直前までの180°密着曲げの回数とした。
又、折り曲げ試験は、各銅箔サンプルにつき、フレキシブルプリント配線板を5枚作製してn=5で行い、各試験での折り曲げ回数の平均値を採用した。折り曲げ回数が5回以上であれば良好である。
The number of bends was determined as follows. That is, a constant current is passed through the copper foil circuit of the flexible printed wiring board for each 180 ° close contact bending, the voltage value required to pass the current is measured, and the measured voltage value is used to determine the flexible printed wiring board. The resistance value of the copper foil circuit was calculated. When the calculated resistance value was 120% or more of the initial value (the resistance value before bending), it was determined that the fracture occurred.
The number of bendings was the number of 180 ° close contact bendings until immediately before breaking.
In the bending test, five flexible printed wiring boards were prepared for each copper foil sample and performed at n = 5, and the average value of the number of bendings in each test was adopted. It is good if the number of bends is 5 or more.
得られた結果を表1に示す。 The results obtained are shown in Table 1.
表1から明らかなように、Copper方位の結晶方位密度が10未満、かつBrass方位の結晶方位密度が20未満である各実施例の場合、耐折り曲げ特性が優れており、銅箔単体より過酷なCCLの折り曲げ性が向上した。 As is clear from Table 1, each example in which the crystal orientation density in the Copper orientation is less than 10 and the crystal orientation density in the Brass orientation is less than 20 has excellent bending resistance and is more severe than the copper foil alone. The bendability of CCL has been improved.
一方、最終焼鈍温度を「回復」状態の温度とした比較例1、2の場合、最終冷間圧延によってBrass方位が発達し、Brass方位の結晶方位密度が20以上となり、耐折り曲げ特性が劣った。なお、比較例1の場合、Pが添加されていないのでCopper方位が成長し易くなり、その結晶方位密度が10以上になった。
Pの含有量が0.0005質量%(5質量ppm)未満である比較例3の場合、Copper方位の結晶方位密度が10以上となり、耐折り曲げ特性が劣った。
最終焼鈍温度を「回復」状態よりも高温な「粒成長」状態の温度とした比較例4,5の場合、最終冷間圧延によってCopper方位が発達し、その結晶方位密度が10以上となり、耐折り曲げ特性が劣った。
On the other hand, in the cases of Comparative Examples 1 and 2 in which the final annealing temperature was set to the temperature in the "recovered" state, the Brass orientation was developed by the final cold rolling, the crystal orientation density of the Brass orientation became 20 or more, and the bending resistance was inferior. .. In the case of Comparative Example 1, since P was not added, the Copper orientation was easy to grow, and the crystal orientation density was 10 or more.
In the case of Comparative Example 3 in which the P content was less than 0.0005 mass% (5 mass ppm), the crystal orientation density in the Copper orientation was 10 or more, and the bending resistance was inferior.
In the case of Comparative Examples 4 and 5 in which the final annealing temperature is set to the temperature in the "grain growth" state, which is higher than the "recovery" state, the Copper orientation is developed by the final cold rolling, and the crystal orientation density becomes 10 or more, and the resistance to resistance. The bending characteristics were inferior.
Claims (4)
Copper方位の結晶方位密度が10未満であり、Brass方位の結晶方位密度が20未満であるフレキシブルプリント基板用銅箔。 A rolled copper foil containing 99.9% by mass or more of Cu and 0.0005 to 0.0220% by mass of P as an additive element, and the balance is unavoidable impurities.
Copper foil for flexible printed substrates with a crystal orientation density of less than 10 in the Copper orientation and a crystal orientation density of less than 20 in the Brass orientation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022064896A JP2022095855A (en) | 2019-07-10 | 2022-04-11 | Copper foil for flexible printed substrate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019128145A JP7186141B2 (en) | 2019-07-10 | 2019-07-10 | Copper foil for flexible printed circuit boards |
JP2022064896A JP2022095855A (en) | 2019-07-10 | 2022-04-11 | Copper foil for flexible printed substrate |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019128145A Division JP7186141B2 (en) | 2019-07-10 | 2019-07-10 | Copper foil for flexible printed circuit boards |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022095855A true JP2022095855A (en) | 2022-06-28 |
JP2022095855A5 JP2022095855A5 (en) | 2022-07-14 |
Family
ID=74058821
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019128145A Active JP7186141B2 (en) | 2019-07-10 | 2019-07-10 | Copper foil for flexible printed circuit boards |
JP2022064896A Ceased JP2022095855A (en) | 2019-07-10 | 2022-04-11 | Copper foil for flexible printed substrate |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019128145A Active JP7186141B2 (en) | 2019-07-10 | 2019-07-10 | Copper foil for flexible printed circuit boards |
Country Status (4)
Country | Link |
---|---|
JP (2) | JP7186141B2 (en) |
KR (2) | KR20210007845A (en) |
CN (1) | CN112210689B (en) |
TW (1) | TWI747330B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7186141B2 (en) * | 2019-07-10 | 2022-12-08 | Jx金属株式会社 | Copper foil for flexible printed circuit boards |
DE112021006727T5 (en) | 2021-02-01 | 2023-10-12 | Rohm Co., Ltd. | SIC SEMICONDUCTOR COMPONENT |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019026917A (en) * | 2017-08-03 | 2019-02-21 | Jx金属株式会社 | Copper foil for flexible printed wiring board, copper-clad laminate using the same, flexible printed wiring board and electronic device |
JP2019029606A (en) * | 2017-08-03 | 2019-02-21 | Jx金属株式会社 | Copper foil for flexible printed board, copper-clad laminate arranged by use thereof, flexible printed board, and electronic device |
JP7186141B2 (en) * | 2019-07-10 | 2022-12-08 | Jx金属株式会社 | Copper foil for flexible printed circuit boards |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2091634B (en) * | 1981-01-22 | 1984-12-05 | Gen Electric | Transfer lamination of vapour deposited copper thin sheets and films |
JPS616742U (en) | 1984-06-18 | 1986-01-16 | 株式会社大泉製作所 | Thermistor thermometer |
JPH01319641A (en) * | 1988-06-21 | 1989-12-25 | Hitachi Cable Ltd | Soft rolled copper foil and flexible printed board |
JP4118832B2 (en) * | 2004-04-14 | 2008-07-16 | 三菱伸銅株式会社 | Copper alloy and manufacturing method thereof |
JP4992940B2 (en) * | 2009-06-22 | 2012-08-08 | 日立電線株式会社 | Rolled copper foil |
JP5752536B2 (en) * | 2011-08-23 | 2015-07-22 | Jx日鉱日石金属株式会社 | Rolled copper foil |
CN107046768B (en) * | 2016-02-05 | 2019-12-31 | Jx金属株式会社 | Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device |
CN107046763B (en) * | 2016-02-05 | 2019-12-24 | Jx金属株式会社 | Copper foil for flexible printed board and copper-clad laminate using same |
JP6328679B2 (en) * | 2016-03-28 | 2018-05-23 | Jx金属株式会社 | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device |
JP2016211077A (en) * | 2016-07-26 | 2016-12-15 | Jx金属株式会社 | Titanium copper |
JP6617313B2 (en) * | 2017-08-03 | 2019-12-11 | Jx金属株式会社 | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device |
JP6442020B1 (en) * | 2017-10-12 | 2018-12-19 | 福田金属箔粉工業株式会社 | Hard rolled copper foil and method for producing the hard rolled copper foil |
CN108246804B (en) * | 2018-01-12 | 2019-11-05 | 中色奥博特铜铝业有限公司 | A kind of preparation method of high bending performance rolled copper foil |
-
2019
- 2019-07-10 JP JP2019128145A patent/JP7186141B2/en active Active
-
2020
- 2020-06-16 TW TW109120157A patent/TWI747330B/en active
- 2020-06-23 KR KR1020200076302A patent/KR20210007845A/en not_active Application Discontinuation
- 2020-07-10 CN CN202010662207.0A patent/CN112210689B/en active Active
-
2022
- 2022-04-11 JP JP2022064896A patent/JP2022095855A/en not_active Ceased
- 2022-04-20 KR KR1020220048908A patent/KR20220054767A/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019026917A (en) * | 2017-08-03 | 2019-02-21 | Jx金属株式会社 | Copper foil for flexible printed wiring board, copper-clad laminate using the same, flexible printed wiring board and electronic device |
JP2019029606A (en) * | 2017-08-03 | 2019-02-21 | Jx金属株式会社 | Copper foil for flexible printed board, copper-clad laminate arranged by use thereof, flexible printed board, and electronic device |
JP7186141B2 (en) * | 2019-07-10 | 2022-12-08 | Jx金属株式会社 | Copper foil for flexible printed circuit boards |
Also Published As
Publication number | Publication date |
---|---|
CN112210689B (en) | 2021-12-14 |
JP2021014603A (en) | 2021-02-12 |
CN112210689A (en) | 2021-01-12 |
KR20210007845A (en) | 2021-01-20 |
TW202106885A (en) | 2021-02-16 |
JP7186141B2 (en) | 2022-12-08 |
KR20220054767A (en) | 2022-05-03 |
TWI747330B (en) | 2021-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4716520B2 (en) | Rolled copper foil | |
JP2022095855A (en) | Copper foil for flexible printed substrate | |
KR101935128B1 (en) | Copper foil for flexible printed wiring board, copper-clad laminate using the same, flexible printed wiring board and electronic device | |
KR102098479B1 (en) | Copper foil for flexible printed circuit, copper clad laminate using the same, flexible printed circuit and electronic device | |
KR102470725B1 (en) | Copper foil for flexible printed circuit, and copper clad laminate, flexible printed circuit and electronic device using copper foil | |
JP6781562B2 (en) | Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices | |
TWI663270B (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
JP6104200B2 (en) | Rolled copper foil, copper clad laminate, flexible printed circuit board, and electronic device | |
KR20170113104A (en) | Copper foil for flexible printed wiring board, copper-clad laminate using the same, flexible printed wiring board and electronic device | |
CN107046763B (en) | Copper foil for flexible printed board and copper-clad laminate using same | |
JP6442020B1 (en) | Hard rolled copper foil and method for producing the hard rolled copper foil | |
KR102136096B1 (en) | Copper foil for flexible printed substrate, and copper clad laminate using the same, flexible printed substrate and electronic equipment | |
JP6647253B2 (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
JP7194857B1 (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic equipment | |
TWI852523B (en) | Copper foil for flexible printed circuit board, copper-clad multilayer using the same, flexible printed circuit board and electronic device | |
JP7164752B1 (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic equipment | |
JP6030325B2 (en) | Rolled copper foil, copper-clad laminate, flexible printed wiring board, and electronic equipment | |
JP2013095933A (en) | Rolled copper foil, copper-clad laminate, flexible printed wiring board and electronic equipment | |
JP2013082984A (en) | Rolled copper foil, copper-clad laminate, flexible printed wiring board, and electronic equipment | |
JP2013067853A (en) | Rolled copper foil, copper-clad laminate, flexible printed wiring board and electronic device | |
KR20200038410A (en) | Copper foil for flexible printed substrate, copper-clad laminate using the same, flexible printed substrate, and electronic equipment | |
JP2000273595A (en) | Manufacture of copper foil excellent in resin bonding property |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220706 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220706 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230613 |
|
A045 | Written measure of dismissal of application [lapsed due to lack of payment] |
Free format text: JAPANESE INTERMEDIATE CODE: A045 Effective date: 20231107 |